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ABSTRACT

This paper introduces a novel approach to tackle the challenges of causal modeling
and attribution in sparse and non-continuous data with limited feature knowledge.
Traditional methods rely on static inputs and lack adaptability to dynamic changes
in causal relationships, resulting in a limited understanding and goodness-of-fit.
To address this challenge, we introduce a unique causal discovery framework on
real-world sparse datasets. We leverage a Directed Acyclic Graph (DAG) by dis-
covering causal relationships between the variables by identifying confounder-
treatment pairs that make the variable selection process robust and efficient. We
propose a three-stage causal model that uses multiple distinct regressors such as
likelihood-based, tree-based, and Generalized Additive Models (GAMs). Further-
more, we introduce a Model Score by including the sensitivity analysis involving
random shuffling confounders and treatments to select the best optimal model. We
implement a partial dependency approach to understand the attribution of vari-
ables, contributing by adding a 53% increase in R? score compared to traditional
methods. This research underscores the limitations of conventional approaches in
addressing real-world challenges to address practical scenarios effectively.

1 INTRODUCTION

Understanding causal relationships is crucial for informed decision-making, but traditional meth-
ods struggle with sparse datasets, leading to inaccuracies in identifying causes and constructing
Directed Acyclic Graphs (DAGs). This highlights the need for more robust techniques to ensure
reliable causal inferences in such challenging scenarios. This paper introduces a causal discovery
framework, termed the “union” framework, which seeks to address these challenges by integrat-
ing existing domain knowledge with the discovery of new indicative causal pairs. This approach
leverages a combination of both parametric and non-parametric models, enhanced by advanced sen-
sitivity analyses. By incorporating randomized shuffling of confounders and treatment variables, our
methodology ensures the identification of robust causal models, thereby enhancing the accuracy and
reliability of the derived inferences Rohrer| (2018); [VanderWeele| (2019). Furthermore, we propose
a comprehensive methodology for attributing outcomes to both direct and indirect effects of causal
variables, while separating the baseline effects. This is achieved through a detailed algorithm that
applies scaling techniques, allowing for precise estimation of variable attributions.

One significant limitation of existing methodologies is their inability to accurately attribute direct
and indirect effects. These approaches often struggle to effectively disentangle the influence of
primary variables—those directly affecting the outcome—from secondary variables with indirect
causal relationships [Peters et al.| (2016); |VanderWeele| (2019). To address this shortcoming, we im-
plemented an output decomposition model that removes seasonality, trends, and other extraneous
effects, thereby constructing a robust baseline model. Moreover, current methodologies for dis-
covering causal relationships are particularly inefficient when dealing with sparse observations. To
the best of our knowledge, there are no existing methods that effectively incorporate or backprop-
agate the effects of sensitivity treatments to identify the optimal combination of models for causal
inference.
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2 RELATED WORK

Causal inference begins with the specification of essential assumptions, such as domain-specific
assumptions, followed by the construction of a causal graph. This process involves identifying con-
founder pairs, attributing causal influences, diagnosing the causal structure, and estimating effects
Shao et al.| (2017); [Sharma et al.| (2021); [Ibeling & Icard (2024)); Zheng et al.| (2024). Traditional
machine learning algorithms used for effect estimation include the average treatment effect (ATE)
and the conditional average treatment effect (CATE), both facilitating the estimation of causal ef-
fects. Moreover, these methods address the issue of confounding effects prevalent in observational
studies, thereby ensuring more accurate treatment effect estimation.

In prior research, (Colnet et al.| (2024) underscores a critical limitation in existing causal discovery
methods, namely their inability to control the family-wise error rate, which increases the likelihood
of erroneous identification of causal relationships. Furthermore, emphasizes the significant advan-
tage of invariant causal predictors over non-causal predictors, noting that the influence of invariant
causal predictors on the outcome variable remains stable despite environmental changes. [Peters et al.
(2016); Bergstra & Bengio| (2012); [Frauen et al.| (2023); Zheng et al.| (2024) also addresses limita-
tions in the field, particularly highlighting the challenges associated with relying on randomized
controlled trials (RCTs). Additionally, |Peters et al.| (2016) caution that large observational studies,
while offering high representativeness, may inadvertently introduce biases by conflating confound-
ing effects with the treatment of interest.

3 PROBLEM FORMULATION

The objective of a sparse causal model is to identify the causal relationships among variables and
attribute both direct and indirect effects of these variables on the outcome. Given a sparse input
dataset D = (z1,%2,...,%m,Y), where Xinpu = {x1,%2,...,2} represents the set of input
variables and Y denotes the outcome variable, the task is to determine the corresponding adjacency
matrix that captures these causal relationships. In addition, the goal is to construct a robust causal
model capable of accurate output prediction, along with quantifying the respective attributions of
each variable to the outcome.

Output value vs Input value

Output value

Input value

Figure 1: Distribution of sparse. input versus output.

4 METHODOLOGY

We propose a methodology that leverages transfer function-based estimation within a rigorously
constructed causal model, incorporating causal discovery. This approach involves analyzing the
causal directed acyclic graph (DAG), estimating sensitivity (R?) scores, and evaluating the impact of
baseline metrics alongside causal variables. Our study offers a solution to the challenges of causal
modeling and attribution in sparse, feature-limited, and non-continuous datasets. Unlike traditional
methods that rely on static inputs, our approach adapts to dynamic changes, providing a deeper
understanding of causal relationships.

4.0.1 CONFIGURATION FRAMEWORK

We developed a causal discovery model integrating three machine learning algorithms: Linear Re-
gression, XGBoost, and Generalized Additive Models (GAM). Hyperparameter tuning using Ran-
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Figure 2: Overview of our proposed framework, Sparse causal model, consisting of three stages: a)
Causal discovery; b) Causal model; and c) Sensitivity Analysis.

domizedSearchCV Bergstra & Bengio|(2012) was performed, which is crucial for optimizing models
in diverse applications|Gambella et al.|(2021); Bergstra et al.[(2011). The best hyperparameters were
configured using scikit-learn|[Pedregosa et al.|(2011). For training samples (x1,y1), . .., (x4, y;), the
conditional expectation in linear regression is expressed and identified the optimal model by mini-
mizing the loss across all training samples:

Ble) = [ o752 dy

1 n
* T L N\
f arg %1}71 n ; (f(ajz)a yz)

XGBoost minimizes the following objective function |Yang & Shami| (2020); Chen & Guestrin
(2016) where ¢ is the number of leaves, G and H are the first and second-order gradient sums,
and 7y, A are penalty coefficients. GAM approximates regression by summing smooth functions of
predictor variables Hastie (2017); Saltelli et al.| (2006)); Shao et al.[(2017)

1<~ G2
T _J
Obj = 2ZHj+A+Wt

Jj=1

yi = fi(z1i) + fa(wa) + -+ folon:) + &

Our methodology employs a data-driven approach, starting with correlation analysis to identify po-
tential causal relationships, followed by constructing treatment models for each pair to account for
confounders. Covariates were defined as all variables excluding the target outcome and treatment,
and residuals were stored after predicting treatment values. A baseline outcome model was fitted us-
ing covariates and control variables, followed by a model excluding these controls. Residual models
predicted outcome residuals based on treatment model residuals. These models were integrated into
a causal framework to estimate treatment effects, with sensitivity analyses through random treatment
shuffling and confounder introduction to ensure robustness.

4.0.2 IDENTIFICATION OF THE CONFOUNDER-TREATMENT PAIR

Selecting appropriate confounder-treatment pairs is crucial in causal inference Rohrer| (2018)). This
process involves determining which covariates should be controlled for confounding, a task that
typically depends on assumptions about causality and the variables of interest. Given the challenges
in identifying pairs without prior domain knowledge, our study introduced a data-driven selection
method for confounded treatment pairs by analyzing correlation path coefficients.

cov(Xk, X))

0X,0X,

corr( Xy, X)) =
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We select the top k pairs based on correlation coefficients and exclude perfectly correlated pairs
(corrg; = 1) to preserve the utility of the Directed Acyclic Graph (DAG). This method improves
causal inference by systematically identifying significant confounder-treatment pairs. To maintain
the integrity and utility of the Directed Acyclic Graph (DAG) for causal inference, any pairs exhibit-
ing perfect correlations (corry; = 1) are excluded, as they do not contribute additional information.

4.1 CAUSAL DIRECTED ACYCLIC GRAPH CONSTRUCTION

Let the dataset be denoted as D with n observations, the outcome variable be Y, the treatment
variable be X, and the confounder variables be Z1, Zs, . .., Z,,. We constructed a Directed Acyclic
Graph (DAG), a graphical representation of the causal relationships among the variables, where the
direction of the edges is determined by the sign and magnitude of the estimated CATE. For feature
pair (X,Y), the edge directionis X — Y.

N
r(X) = 5 YOEI(1) - ¥i(0) | X

For each confounder-treatment pair (Z;, X), a treatment model was fitted to predict the treatment
variable X using covariate features Z1, Zs, . .., Z,,. The treatment model is represented as:

X =Fx(Z1,Z2,..., Zp)

where F'x is the treatment model selected from the set of machine learning models. After fitting
the treatment model, the outcome model was trained to predict the outcome variable Y using the

treatment variable X and covariate features Z 1,29, ..., Zmn. The outcome model is denoted as:
Y=FW(X,21,Z5,...,Zm)

where Fy is the outcome model selected from a set of models. The residuals for both the treatment
and outcome models were calculated as the difference between observed and predicted values

Xpe =X — X

Yo=Y -V

After calculating the residuals, the residual model was trained to predict the outcome residuals using
the treatment residuals

Y, = Fre(Xre) (2)

where F. is chosen from a set of residual models.

Y (Yi = ¥)?
Y (Yi-Y)?

This process is repeated for all feature pairs (X%, Y;) in the dataset, where k and [ index features. For
each pair, DAG and validation R? scores were recorded. The best causal structure for each feature
pair was identified based on a comparison of R? scores. An adjacency matrix A is then derived from
the DAG, where Aj; = 1 indicates a directed edge from X}, to Y}, and Ay; = 0 indicates no edge:

R*=1-

A — 1, ifXy =Y
k=13 0, otherwise

Adjacency matrix A encapsulates the causal relationships among all the features, providing a com-
prehensive framework for causal inference. Bidirectionality was addressed by comparing the R?
scores of the forward and reverse models. The business approach (3) uses pairs from domain knowl-
edge whereas the union approach () uses the additional identified pairs. We created a DAG for both
methods individually.
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Figure 3: Directed Acyclic Graph (DAG)
illustrating causal relationships between
variables for the Business approach.

Figure 4: Directed Acyclic Graph (DAG)
illustrating causal relationships between
variables for the Union approach.

4.2 CAUSAL MODEL SELECTION USING SENSITIVITY ANALYSIS

In this section, we evaluate the effectiveness of the union approach by conducting experiments using
real-world datasets. Our goal is to identify the most appropriate model combinations for treatment,
outcome, and residual models with the observed confounders Z, treatment X, and outcome variable
Y within a Directed Acyclic Graph (DAG). Sensitivity analysis plays a crucial role by testing the
stability of the models under random unobserved effects, thus providing a deeper understanding of
causal impact assessment. A stable R? score is critical when introducing random confounders in the
test data or shuffling the treatment, which nullifies the effect of causal relationships.

m
Y = Z FY(Z)
i=1

YC(ZuX)=EY|Z X)
where F? represents the individual spline functions for the confounder Z; that constitute the out-

come model. Where F} is the representation of the individual spline functions for confounders Z;
which constitute the treatment model.

Xe =Y Fl(Z) )

X CZ= EX|2)
The residual component captures what is left out by the outcome model. where Fi. is the represen-
tation of residual X~ which constitutes our residual model.

Yie = Fre(X7, X3, X5, ., Xi)

Adjusted Outcome is the sum of outcome model prediction and residual model prediction. Where
F° is the representation of the outcome model from the covariates and Fi. which constitutes our
residual model. ,

Y'=Y + }/re = FO(Z) + Ee(Xre)

R E (Y - E[Y|Z, X))*Z, X]

’ E[(Y - E[Y])?]
During sensitivity analyses, we randomly shuffled confounders and treatments individually within
an unobserved dataset and observed their effect on the outcome variable. Shuffled confounders
Goodness-of-Fit (R-squared) is calculated by using random methods of shuffling of confounders
and observing their effect on the outcome variable as illustrated below.

Z 7(m) }
where 7 denotes random permutations of confounder Z in testing sample of data

Zshufﬂed, test — {Zw(l)v Z7r(2)7 sy

E [(Y = E[Y|Zutted: X])?| Zshutted X |

fire=1- B[V - B[]
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Shuffled treatments R-squared is obtained by using random methods of shuffling of treat-
ment and observing their effect on the outcome variable as illustrated below Xgwuffied, test =

{ X1y, Xar2ys o Xarm) }
where 7/ denotes random permutations of treatment X in testing sample of data.

E [(Y - E[Y|Z7 XshufﬂedD2|Z7 Xtest]

fore=1- E[(Y — EY])?)

®)

Model Selection Using Neyman’s Orthogonality Criterion is applied to select the best model
using a defined composite model score. Slight perturbations in conditional expectations E[X | Z]
do not significantly impact the composite model score. The composite model score integrates R*
values to ensure Neyman’s orthogonality:

Model Score = w, - R2 + wy. - R, + wy - RZ, (6)
subject to the weights constraint and ensuring Neyman’s orthogonality:
Wo + Wre + Wy = 1

OModel Score(E[X|Z] + )
04

By incorporating the elements Z, X, and Y in a Directed Acyclic Graph (DAG) context , we created
a comprehensive causal framework that ensures robustness and correctness in causal inference and
model selection. DAG helps visualize and clarify the dependencies, while set theory formalizes the
definitions and relationships, and Neyman’s orthogonality ensures the robustness of our estimations.

E

E[X|Z]} ~0 ™)

4.3 DETERMINING VARIABLE ATTRIBUTION WITH PARTIAL DEPENDENCY METHOD AND
BASELINE SCALED MODELLING

Baseline prediction and Secondary variables attribution
Input: (Z, X, 0)
Output: B, Secondary variables attributions
Step 1: Minimum influence
Set features to minimal/median values
By < predict(0, median)
Step 2: Actual scenario
Use actual input values
B; < predict(actual, actual)
Step 3: Scaling factor Scl «+ %
Step 4: Predicted baseline B2 < Y, X Sc
Step 5: Recalculate residual YV «+ Y, — B2
Step 6: Non-Baseline attribution from causal model
NBA < Yo+ Yr
Step 7: Sum of secondary variables attributions
TA+0
For each secondary variable Z,X :
A + calc_att(Z,X, input, median)
TA+~TA+ A
Step 8: Attribution for each secondary variable
For each secondary variable Z,X :
A « calc_att(Z,X, input, median)
T A
AR+ r x NBA
Step 9: End

The baseline variable is denoted by B, with By referring to the un-scaled baseline value, B; rep-
resenting the actual scenario value, and B, indicating the scaled baseline value. The non-baseline
attribution, which captures the influence of factors beyond the baseline, is represented by NBA.
Additionally, the total attribution from secondary variables is captured by TA. To calculate the at-
tribution from secondary variables, the function calc_att is employed, while the function predict is
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used to compute the baseline. The ratio of secondary variable attribution to the total is represented
by r, with A signifying the un-scaled secondary variable attribution, and AR corresponding to the
scaled secondary variable attribution.

We implemented an output decomposition model comprising a robust baseline that removes season-
ality, trends, and other effects, and a secondary variables causal model to understand the influence
of primary variables (those directly impacting the outcome) and secondary variables (those with a
causal relationship) . Given the confounders Z, treatment X and outcome variables Y and other
variables, O.

4.3.1 BASELINE MODEL CONSTRUCTION

For baseline prediction, we start by defining the minimal influence scenario, By, where all primary
variables Z, X, and O have negligible or no impact. This is represented as By = f(0 U @ U 0),
implying that without the influence of these variables, the outcome would be minimal or zero.

The baseline model for the primary variables Z, X, and O, and the outcome Y is a function of these
sets:

Y =f(ZUXUO) ®)

Baseline Prediction defines the minimal influence scenario By where Z, X, and O have minimal or
zero influence:

By=f(0UupduUB) )

In contrast, actual scenario, B, takes into account the presence and influence of all variables Z, X,
and O:

B =f(ZuXUO) (10)

To normalize our predictions, we calculate the scaling factor Sc1, which adjusts the baseline predic-

tion based on the expected values in both minimal and actual scenarios. Scaling factor Sc1 based on
the expected values.

B E(Y|Z=0,X=0,0=0)
T E(Y[Z=0,X=0,0=0)+E(Y|ZX,0)

Secl

Using this scaling factor, we calculate the predicted baseline Ba:
By =E(Y | ZUXUO) x Sel (11)

This adjusted prediction reflects the expected outcome while accounting for the influence of the
primary variables. Finally, we computed the residual by subtracting B, from the expected outcome
to determine what remains unexplained by the baseline model

EY, | ZUXUO)=E(Y | ZUX UO) — B, (12)

4.3.2 SECONDARY VARIABLES ATTRIBUTION

Non-Baseline Attribution E(NBA | Z,X) for secondary variables Z and X is computed by
summing up the contributions from the outcome model E(Y,y | Z, X) and the residual model
E(Yies | Z,X). This provided a measure of the influence of these secondary variables on the out-
come.

ENBA | Z,X) =37 xezux (E(You | Z,X) + E(Vies | Z, X)) (13)

For each secondary variable Z; or X, the attribution Az, or Ax, is calculated by setting Z; or X;
to its actual value while keeping the others minimal:

E(Az. | Z)=EY | Z;,X =0,0=0) (14)

Total attribution E(TA | Z, X) from all secondary variables Z and X:

E(TA|Z,X)= Y (B(Az | Z)+E(Ax, | Xi)
Z,XeZUX
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The attribution for each secondary variable Z; or X; is further expressed as a ratio to provide a
proportional contribution to the non-baseline attribution:

E(Ag, | Z;
E(ARy; | Z) = M x E(NBA | Z) (16)
E(Ax, | X;

The expected value of the outcome given the primary variables Z, X, and O is denoted as
E(Y | Z,X,0). We also consider the expected attribution due to specific secondary variables Z;
or X;, conditioned on minimal influence from other primary variables, represented as E(AZ; | Z;)
and E(AX; | X;), respectively. Further, the expected non-baseline attribution given the secondary
variables Z and X is denoted as F(NBA | Z, X), while the expected sum of all secondary vari-
ables’ attributions, given Z and X, is expressed as F(T'A | Z, X). In addition, we calculate the
expected scaled attribution for secondary variables X; and Z;, represented as E(ARX; | X) and
E(ARZ; | Z), respectively.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of our approach with attributions for the variables and
their corresponding values from the baseline single-stage best model.

1. Baseline vs Secondary Variables Attribution (Baseline single-stage) 2. Secondary Variables Attribution (Baseline single-stage)
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Figure 5: Baseline and secondary variables attributions for baseline single-stage model and sparse
causal model

5.0.1 COMPARISON WITH BASELINES

Dataset: We utilized the Perfect Store Key Performance Indicator (KPI) survey data, along with
sales data for fast-moving consumer goods (FMCG) comprising 43,000 stock-keeping units (SKUs).
The dataset was randomly split, with 80% allocated for training and the remaining 20% reserved for
testing. The model’s performance was assessed using the R? score on the test dataset.

The attributions derived from the sparse causal model demonstrate significant reliability, address-
ing the issue of negative secondary variable attribution. This model also yields a higher baseline
compared to the traditional single-stage model Enouen & Liu|(2022); Imbens|(2004); Bergstra et al.
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Table 1: Performance comparison with other models

Dataset Model Category Channel R-squared (Train) R-squared (Test)
Linear Regression Express A Express A 0.0527 0.0476
Ridge Chocolate  Express A 0.0505 0.0384

Perfect  Lasso Chocolate  Express A 0.0000 -0.0003

Store Random Forest Chocolate  Express A 0.8346 -0.0054

(KPI) Gradient Boosting Chocolate  Express A 0.6636 -0.1058

Survey  XGBoost Chocolate  Express A 0.9999 -0.1669

Data KNN Regression Chocolate  Express A 0.2615 -0.0713
Sparse Causal Model Chocolate Express A 0.5797 0.5771

Table 2: Best model selection from sparse causal framework

Category  Channel Model Combinations (3-stages) RZ? (Train) R? (Test)
Chocolate Express A Linear Regression, Linear Regression, XGBoost 0.5797 0.5771
Chocolate  Express A Linear GAM, XGBoost, Linear GAM 0.4961 0.0734
Chocolate  Express A Linear GAM, Linear GAM, Linear GAM 0.6110 0.1683
Chocolate ~ Express A Linear GAM, Linear Regression, Linear GAM 0.3195 0.3184

(2011). Multiple experiments across various granularities further support that our model outper-
forms others in discovering causality, optimizing model combinations through exploitation methods,
and utilizing sensitivity scores to accurately infer causality and ensure the smoothness of attributions.
Additionally, traditional models often suffer from model fit, particularly when dealing with sparse
observations that exhibit causal relationships.

6 CONCLUSION

In conclusion, this research presents a novel framework for causal discovery and attribution that ef-
fectively addresses the challenges posed by sparse real-time datasets and limited feature knowledge.
Our integrated “union” approach combines domain knowledge with the discovery of new causal re-
lationships, resulting in more accurate and robust Directed Acyclic Graph (DAG) constructions. By
blending parametric and non-parametric models with advanced sensitivity analyses, our framework
surpasses traditional methods, ensuring correct causal identification and controlling the family-wise
error rate. It enhances inference reliability by isolating robust causal models, providing a flexible
tool for researchers across various fields. Our approach improves causal inference accuracy by 53%,
particularly in addressing attribution challenges in sparse datasets.

Future research could further refine and expand upon this framework, particularly by exploring its
applicability to other types of data and integrating additional techniques, such as bootstrapping,
to enhance causal discovery across diverse sparse datasets. While our experiments on real-world
datasets validate the effectiveness of our approach, additional empirical studies across different do-
mains would provide deeper insights into its broader applicability. This study represents a significant
advancement in the field of causal discovery and attribution, offering a practical and theoretically
sound solution for improving the accuracy and robustness of causal inferences in complex data en-
vironments.
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