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Abstract

Increased training parameters have enabled large pre-trained models to excel in
various downstream tasks. Nevertheless, the extensive computational require-
ments associated with these models hinder their widespread adoption within the
community. We focus on Knowledge Distillation (KD), where a compact stu-
dent model is trained to mimic a larger teacher model, facilitating the transfer
of knowledge of large models. In contrast to much of the previous work, we
scale up the parameters of the student model during training, to benefit from over-
parameterization without increasing the inference latency. In particular, we propose
a tensor decomposition strategy that effectively over-parameterizes the relatively
small student model through an efficient and nearly lossless decomposition of
its parameter matrices into higher-dimensional tensors. To ensure efficiency, we
further introduce a tensor constraint loss to align the high-dimensional tensors
between the student and teacher models. Comprehensive experiments validate
the significant performance enhancement by our approach in various KD tasks,
covering computer vision and natural language processing areas. Our code is
available at https://github.com/intell-sci-comput/OPDF.

1 Introduction

Large-scale pre-trained models are gradually achieving remarkable milestones due to the exhibit of
remarkable performance across various tasks [1–7]. These models leverage extensive pre-training data
and parameters, enabling them to effectively encapsulate a significant breadth of world knowledge [8,
9] and exhibit strong generalization capabilities across diverse tasks [1, 10–13]. Following this
trajectory, the utilization of increased data and parameters has emerged as a notable trend in enhancing
the performance of pre-trained models in recent years, leading to the number expansion of pre-trained
model parameters from millions to billions [4, 14, 15].

Despite their impressive performance, the substantial storage demands and high computational
complexity hinder the practical deployment of these models in real-world applications. Therefore,
on the one hand, some studies focus on pre-training relatively smaller models (such as BERT-
base-uncased [2]) on domain-specific or task-specific corpora [16–18]. However, due to the lesser
over-parameterization of small models compared to large ones, their generalization capability often
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falls short, resulting in suboptimal fine-tuning performance on downstream tasks. On the other
hand, model compression methods, such as pruning less informative parameters [19–21] or utilizing
knowledge distillation (KD) [22] to transfer knowledge from larger models (teachers) to smaller ones
(students), have been proposed. KD has swiftly diversified into numerous branches, primarily falling
into two categories: i.e., logits-based [22–26] and features-based [27–30] depending on the source
of student model knowledge. Nevertheless, as student models have fewer trainable parameters and
limited capacity, a significant performance gap remains between student and teacher models.

To address the disparity between small and large models, this study aims to over-parameterize small
student models as large ones during distillation training to enhance their generalization capability.
Typically, most parameters of student models are stored as matrices. Through tensor decomposition
techniques [31–34] (e.g., Singular Value Decomposition), each matrix can be factorized into a set
of matrices, effectively increasing the total number of parameters during distillation. Moreover,
after convergence, the factorized matrices can be merged to reorganize the parameter matrix of the
student model. This paradigm leverages the benefits of over-parameterization during training without
increasing the inference latency of student models.

However, incorporating tensor decomposition into over-parameterizing student models poses two
major concerns that must be addressed. First, the potential information loss caused by tensor
decomposition should be minimized, as small computation errors may accumulate and propagate
exponentially within the stacked layers of student models. Second, in the over-parameterized student
models, there is no effective mechanism to ensure the consistency of information between student
and teacher models. Therefore, it is essential to choose appropriate tensor decomposition methods
and design loss functions for high-order tensors to ensure the effective transfer of information from
teacher to student models.

To address the above issues, we introduce the matrix product operator (MPO) [34] technique as the
tensor decomposition strategy. The MPO decomposition, widely used in quantum many-body physics,
efficiently factorizes any matrix with arbitrary dimensions into a set of higher-dimensional tensors,
which can reconstruct the original matrix in almost lossless conditions [34–37]. These advantages
make MPO an ideal method for over-parameterizing student models during distillation. Based on
MPO, we also devise high-order tensor alignment losses for student and teacher models to ensure the
effective transfer of information in tensor representation.

Therefore, in this paper, we propose a general Over-Parameterization Distillation Framework, namely
OPDF, to improve the performance of knowledge distillation. Given the parameter matrices of
a student model, we first over-parameterize them through MPO decomposition and then utilize
high-order tensor alignment losses to ensure efficient information transfer. This framework only
modifies the distillation training process, making it applicable to various student models and natural
language processing (NLP) and computer vision (CV) tasks. We conduct extensive experiments in
both NLP and CV domains. Experimental results demonstrate that our OPDF significantly enhances
the effectiveness of model distillation, e.g., improving BERT-base KD +1.6 on average. Moreover,
our approach also enables the student model to achieve performance nearly on par with the teacher
model, e.g., AD-KD+Ours (83.4) v.s. BERT-base (83.4) in average metric on GLUE.

2 Related work

Large Scale Pre-trained Models Large-scale pre-trained models have achieved remarkable success
in many fields (e.g., natural language processing (NLP) [38] and computer vision (CV) [15, 39]).
Since the introduction of the Transformer architecture [40], the pre-training and fine-tuning paradigm
in NLP, exemplified by models like BERT [2] and T5 [4], has shown outstanding performance across
multiple tasks. Furthermore, the emergence of models like GPT-3 has demonstrated that increasing
model size can significantly improve performance on low-resource tasks [12]. In the field of computer
vision, models based on Transformers, such as ViT [7], have also performed exceptionally well. In
our research, we improve the distillation process by increasing the parameters during the training
phase of the student model, without introducing additional inference latency to the student model.

Knowledge Distillation Knowledge Distillation (KD) methods are commonly used to compress
models by transferring knowledge from a larger teacher model to a smaller student model. Building
upon the initiative work by [22], the researchers have exploited the logits follows up with different
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techniques in the computer vision field, e.g., minimizing KL-Divergence (DKD [25]) or a Pearson
correlation (DIST [26]). Logit-based methods have been also popular in NLP [41, 42]. Features-based
methods have tried to align the features from intermediate layers of teacher and student models and
minimize the differences [43]. After the intermediate representations have been introduced [27], a
mount of features-based KD methods have been proposed to match the features, such as LGTM [44],
DBKD [45] and AD-KD [46]. However, the capacity gap between the teacher and student models
makes it difficult to imitate the hidden representations of the teacher [47]. Different from these
existing KD methods, our proposed OPDF has utilized MPO decomposition to over-parameterize
the student model in the training procedure to improve the student model generalization capability,
which can minimize the capacity gap efficiently.

Matrix Product Operators Matrix Product Operators (MPOs) [34, 48], also known as tensor-train
operators (TTOs) [33], have been proposed for a more efficient representation of the linear structure of
neural networks [49, 50]. A large number of typical applications have utilized MPO-based methods
to compress linear layers [51] and convolutional kernels [52] in the parameter matrices of deep
models. Furthermore, existing works have applied the MPO method for lightweight fine-tuning of
ALBERT [35], the efficient expansion for the MoE framework [36], the over-parameterization tuning
process for PLMs [37], construct efficient PLM architecture [53, 54] and compressing datasets [55].
Unlike existing methods, our approach focuses on utilizing MPO decomposition to map parameters
from low-dimensional spaces to high-dimensional spaces, to over-parameterize the student model
during the distillation process, allowing the student model to benefit from more parameters and
achieve better distillation results.

3 Preliminary

Tensor Product We denote a tensor Ti1,i2,...,in as an array with n indices, where {i1, i2, . . . , in}
denotes the dimensions of the n indices, respectively. In this manner, a vector (i.e., v) can be
considered a 1-order tensor, while a matrix (i.e., W) can be regarded as a 2-order tensor. Consider
ψ1, . . . , ψp and ϕ1, . . . , ϕq as the orthonormal bases of tensors T (1) and T (2), respectively. The
tensor product, denoted as ⊗, can be obtained through the contraction of T (1) and T (2). Formally,
the tensor contraction of T (1) =

∑p
i=1 aiψi1 and T (2) =

∑q
j=1 bjϕi2 is defined as follow:

T (1) ⊗ T (2) =

p∑
i=1

q∑
j=1

aibjψi1 ⊗ ϕi2 . (1)

The set ψi1 ⊗ ϕi2 constitutes the orthonormal basis of the resulting vector Hilbert space, with the
dimensionality of this Hilbert space being the product (i.e., p× q) of T (1) and T (2).

Tensor Decomposition Tensor decomposition can be viewed as the reverse operation of the tensor
product. A commonly employed approach is the singular value decomposition (SVD) algorithm.
Given a tensor T ∈ Ri1×···×in , the SVD operation performed n times can decompose this tensor into
n local tensors T (k)n

k=1. Conversely, the decomposed tensors can reconstruct the original tensor by
sequentially applying the tensor product operator.

4 Method

In this section, we describe our proposed over-parameterized distillation framework. We first outline
our approach, then introduce the details of matrix product operator decomposition and the over-
parameterized student model strategy, and finally present the tensor alignment loss.

4.1 Overview

Current distillation methods primarily enhance the performance of student models by introducing
constraints on logits or features between the student and teacher models. In contrast to these methods,
our approach not only utilizes tensor decomposition to over-parameterize the student model for
performance improvement but also designs alignment loss functions for the decomposed high-order
tensors to further enhance the performance of the student model. To achieve this goal, we employ a
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Figure 1: The overview of over-parameter distillation framework (OPDF) for knowledge ditillation.
a, We use MPO decomposition to realize the over-parameter procedure for the student model. The
auxiliary tensors of the student model are trained to imitate the auxiliary tensors of the teacher model
closely. b, We present an illustrative example of MPO decomposition. A parameter matrix WI×J is
decomposed into central tensor and auxiliary tensors.

tensor decomposition method to decompose the parameter matrices of the teacher and student models
into a series of high-order tensor products. These high-order tensors can be used to reconstruct the
original parameter matrices while significantly increasing the number of trainable parameters in
the student model. After reconstruction, the student model has the same number of parameters as
the original matrix without increasing inference time and model size. Additionally, by introducing
distillation loss functions to allow the student model to learn from the teacher model in tensor
representation, the effectiveness of knowledge distillation is further enhanced.

In our proposed over-parameterized distillation framework, we integrate a tensor decomposition
strategy based on MPO into the student model to enlarge the parameter matrix (Section 4.2). Further-
more, we design a tensor alignment loss function to enhance the performance of the student model
in the context of knowledge distillation (Section 4.3). An overview of our approach is depicted in
Figure 1. We also provide a detailed description of our over-parameterized distillation framework in
Algorithm S.1.

4.2 Over-paramterization Distillation Framework via MPO Decomposition

To leverage the advantages of over-parameterization during knowledge distillation, our method utilizes
the MPO, a tensor decomposition technique that increases the number of model parameters. In this
part, we initially present the specifics of the MPO method and subsequently outline its adaptation for
over-parameterizing the student model.

Matrix Product Operator Decomposition The MPO decomposition is an efficient algorithm capa-
ble of factorizing a parameter matrix W ∈ RI×J into a sequential product of multiple tensors [34].
Formally, given a matrix M ∈ RI×J , its MPO decomposition into a product of n local tensors can
be represented as:

MPO (M) =

n∏
k=1

T(k)[dk−1, ik, jk, dk]. (2)

The tensor T (k)[dk−1, ik, jk, dk] is a 4th-order tensor with dimensions dk−1 × ik × jk × dk, where∏n
k=1 ik = I,

∏n
k=1 jk = J , and d0 = dn = 1. To link two sequence tensors, we have adopted the

concept of a bond following the work of [48]. The bond dimension dk is defined by:
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dk = min

( k∏
m=1

im × jm,

n∏
m=k+1

im × jm

)
. (3)

From Eq. (3), we can see that dk will be large in the middle and small on both sides. Following [35],
we refer to the tensor right in the middle as central tensor, and the rest as auxiliary tensor. Figure 1(b)
presents the illustration of MPO decomposition. You can find additional descriptions of tensors and
MPO in Appendix A.

Over-parameterzing Student Model. Utilizing the MPO method within the framework of knowl-
edge distillation, our objective is to extend the parameter scale of the student model, capitalizing
on over-parameterization. More specifically, we can employ the MPO method to break down a
portion of the parameter matrices into multiple tensors as illustrated in Eq. (2). Following MPO
decomposition, the parameter count of the matrix W will increase based on the values of {dk}mk=1,
{ik}mk=1, and {jk}mk=1. The precise augmentation in parameter count, denoted as Nadd, can be
computed as follows:

Nadd =

m∑
k=1

ikjkdk−1dk −
m∏

k=1

ikjk. (4)

Therefore, during the knowledge distillation procedure, we can adopt MPO on student model
parameter matrices to generate their corresponding multiple tensors. In this way, we can scale
up the total parameter of the number of the student model without increasing its inference time
consumption. After training the over-parameterized student model to convergence, we will perform
tensor contraction on these decomposed tensors, to reconstruct the parameter matrices of the student
model in almost lossless conditions which is detailed in Appendix B. This new student model
has the same parameter number and inference latency as the original one and has benefited from
over-parameterization during training.

4.3 Assisted Constraints for Knowledge Distillation

Revisiting Prediction Match of Knowledge Distillation Traditional knowledge distillation in-
volves two stages: fine-tuning the teacher model for a specific task, followed by training strategies to
constrain the student model to closely approximate the teacher model. These processes aim to transfer
the knowledge from the teacher to the student model. Recent studies have mainly focused on directly
learning from the features and logits of the teacher model to transfer crucial knowledge [23, 56].

However, these methods are limited by the capacity of the student model due to the limitation of
total parameters. Moreover, this distillation approach based on cross-entropy loss constraints may
lead to the student model losing its ability to learn independently. We aim to design a novel model
distillation framework to enable the student model not only to effectively learn the knowledge from
the teacher model but also to maintain its ability to learn independently.

Distillation Loss for Auxilary Tensors. To achieve the goal of "learning knowledge from the
teacher model while maintaining the ability of the student model to learn independently," we introduce
a high-order tensor alignment training method based on the MPO decomposition. A crucial merit of
MPO decomposition is its ability to reorganize and aggregate the core information, decomposing
the weight matrices into a central tensor (containing a large number of parameters and important
information) and auxiliary tensors (containing fewer parameters and additional information to the
central tensor) [35, 36]. Therefore, in the knowledge distillation, in addition to minimizing the
cross-entropy loss concerning the ground truth, we add a loss constraint for aligning the auxiliary
tensors between the student and teacher models:

LAux =
1

n

n∑
k=1

MSE (As,k,At,k), (5)

where the matrices At,k and As,k refer to the auxiliary tensor of student and teacher models with the
same dimensions respectively. MSE means the mean-square error loss function. To ensure that the
student model learns from the teacher while preserving its central tensor for independent learning, we
minimize the mean-square error loss between the auxiliary tensors of both the student and teacher
models. Since this distillation framework is based on improvements to the weight matrices, it is
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orthogonal to most current distillation methods. Therefore, it can further enhance the distillation
effectiveness based on existing distillation methods (as thoroughly discussed in the experimental
section). Hence, it can be widely applied to various knowledge distillation models.

5 Experiments

In this section, we assess the efficacy of our approach within two renowned domains: computer vision
and natural language processing. Notably, the OPDF is designed to complement existing distillation
techniques. Consequently, we apply our proposed OPDF with various standard distillation methods
to validate its effectiveness. In the subsequent section, we detail our experimental setup’s datasets
and baseline methods. We then present the primary results achieved with the OPDF and provide a
thorough analysis. Furthermore, we examine the influence of the degree of over-parameterization,
MPO strategy and the learning rate on the performance of OPDF. We report the memory and time
cost of experiments in Appendix D.1.

5.1 Experimental Setup

Datasets and Metrics For NLP tasks, we evaluate our approach on text classification tasks in
GLUE benchmark [57]. The tasks encompassed in our evaluation include RTE, MRPC, STS-B,
CoLA, SST-2, QNLI, QQP, and MNLI. To facilitate comparison with baselines, we employ the F1
score and accuracy as metrics for MRPC and QQP, Matthew’s correlation coefficient for CoLA, and
the average of Pearson and Spearman correlations for STS-B. Accuracy is used as the metric for the
remaining tasks, with the result for MNLI reported as the average across the matched (MNLI-m)
and mismatched (MNLI-mm) domains. Additionally, we calculate the average score across all tasks
to provide a comprehensive performance measure. In the context of CV tasks, we have applied the
OPDF to the distillation of Vision Transformers (ViT) for image classification [7]. This was done
using the ImageNet-21k dataset [58], ImageNet-1k, ImageNet Real [59], and ImageNet V2 [60]
datasets. For these datasets, we use accuracy as the primary evaluation metric.

Baseline Methods For NLP tasks, we implement OPDF on previous KD methods: BERT-of-
Theseus [56], LGTM [44], DBKD [45] and AD-KD [46]. We replicated the baselines using the
publicly released code to assess their performance on the test set. Additionally, LGTM was not
previously evaluated across all tasks in its original publications, and we have addressed this omission
using the provided code. It is important to note that DBKD is designed to estimate logits from
decision distributions [45], and therefore we do not report performance on the STS-B task. For
all experiments in natural language processing, we demonstrate the effectiveness of our method
during the fine-tuning stage. We implement the teacher model as the fine-tuned “BERT-base-uncased”
model [2]. In the context of CV tasks, TinyViT [61], which introduces a rapid pre-training framework,
has emerged as a classical distillation method for ViT. The original paper on TinyViT discusses three
versions of the model with varying parameter counts: TinyViT-5M, TinyViT-11M, and TinyViT-21M.
To incorporate high-order tensor alignment loss into the distillation phase, we utilize CLIP-VIT-
L/14 [7, 62], a variant of ViT, as the teacher model in our experiments. To assess the efficacy of
OPDF, we pretrain the distillation model on ImageNet-21k and evaluate its linear probe performance
on ImageNet-1k, ImageNet Real, and ImageNet V2, without any fine-tuning. During the pre-training
stage, we adhere to the same experimental settings as described in the original paper. Furthermore,
we juxtapose our method with SVD [32], a traditional tensor decomposition technique viable for
over-parameterizing student models. Concretely, we employ SVD to substitute MPO within our
framework and execute over-parameterization across all parameter matrices of the student model
during knowledge distillation. Appendix D.2 shows more experimental details.

5.2 Main Experimental Results

NLP Tasks We present the results on BERT in Table 1. Firstly, it is evident that integrating
KD with over-parameterization methods yields the most significant performance enhancements.
Over-parameterization enhances the generalization ability of the student model. Upon comparing
the two tensor decomposition techniques, we find that MPO consistently outperforms SVD. This
discrepancy arises from the singular value-based SVD in a two-dimensional space, limiting its
ability to substantially increase model parameters compared to MPO decomposition (e.g., 90M
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Table 1: Comparison of performance on the GLUE benchmark (in percent). The terms "+SVD"
and "+OPDF" represent the use of different over-parameterization methods in a KD model. "#
Train Params" and "# Inference Params" refer to the total number of parameters during training and
inference, respectively. Numbers marked with * indicate tasks not tested in the original studies;
results here are reproduced from the published code. The best result for each task is highlight in bold.
For all the results, we report the mean values of five runs using different random seeds.

Datasets RTE
Acc.

MRPC
F1/Acc.

STS-B
Corr.

CoLA
Mcc.

SST-2
F1/Acc.

QNLI
Acc.

QQP
F1/Acc.

MNLI
Acc. Avg.

# Train
Params

(M)

# Inference
Params

(M)
BERT-base [2] 70.5 86.5/81.8 86.6 54.2 92.0 91.2 88.0/91.0 84.2 83.4 110 110

BERT-of-Theseus [56]
None 65.5 85.3/79.6 86.2 39.2* 90.4 88.7 86.1/89.6 81.5 79.2 66 66
+SVD 65.5 85.4/80.0 86.5 43.1 90.6 88.6 86.2/89.7 80.3 79.6 90 66
+OPDF (Ours) 66.2 85.9/80.5 88.6 45.2 91.3 89.0 86.8/90.2 81.4 80.5 160 66

LGTM [44]
None 63.3 86.3/80.1 82.9* 33.9* 91.1 89.3 88.0/91.1 82.2 78.8 67 67
+SVD 64.7 86.8/81.9 83.1 37.4 91.2 88.6 86.5/89.4 79.3 78.9 91 67
+OPDF (Ours) 66.9 87.8/82.4 83.3 38.9 91.5 88.7 87.0/90.2 80.9 79.8 163 67

DBKD [45]
None 61.2 83.3/75.5 / 25.2 88.1 86.1 85.3/88.7 76.1 74.4 53 53
+SVD 64.7 86.5/78.6 / 26.4 88.8 85.8 85.5/89.0 76.5 75.8 69 53
+OPDF (Ours) 69.1 88.4/83.3 / 27.2 89.8 86.5 86.9/90.2 77.7 77.6 83 53

AD-KD [46]
None 68.8 88.7/84.3 89.3 53.1 91.5 90.8 85.9/89.5 81.7 82.4 67 67
+SVD 69.4 89.3/85.8 88.8 53.5 89.9 90.1 86.4/89.8 81.5 82.6 91 67
+OPDF (Ours) 71.7 90.3/86.8 88.9 55.0 91.3 91.1 86.8/90.0 82.1 83.4 182 67

vs. 160M in BERT-of-Theseus). In contrast, MPO allows for arbitrary scaling by increasing the
order of decomposition, rendering it more suitable for over-parameterization. Secondly, following
the integration of the OPDF method, the performance of prior KD techniques (BERT-of-Theseus,
LGTM, DBKD, and AD-KD) have exhibited enhancements across a majority of tasks (e.g., RTE,
MRPC, CoLA, QQP), while maintaining comparability with the original method in other tasks.
This highlights the versatility of OPDF, demonstrating its effectiveness across diverse models and a
wide range of tasks. Finally, our findings have revealed that employing the OPDF method can even
outperform the performance of the teacher model in MRPC and RTE datasets. This indicates that the
process of over-parameterization endows the student model with stronger generalization capabilities,
suggesting that employing over-parameterization may offer a potential solution to the bottleneck in
current distillation methods where the performance of the student model fails to surpass that of the
teacher model.

CV Tasks All CV results of our proposed method are shown in Table 2. We apply OPDF on three
kinds of TinyVit with different total parameters. It is clear that with OPDF, the performance of TinyVit
can be significantly improved. In particular, in all datasets, TinyVit applied OPDF is better than vanilla
TinyVit. Moreover, TinyVit utilized OPDF with 11M parameters can achieve better performance
than TinyVit with 21M parameters. It demonstrates that OPDF is an orthogonal method for various
KD methods based on the Transformer whether in the CV or NLP field. Note that since we only
involved the over-parameterization procedure in the training phase, the total parameter of the student
model will not change in the inference phase. This merit makes the OPDF unique from the existing
KD method: one would not increase inference time while enhancing model accuracy and enabling
the model to acquire more knowledge from the teacher model. Moreover, we can observe that the
performance of the original TinyVit, SVD over-parameterization, and OPDF over-parameterization
improves as the number of parameters gradually increases. This indicates that compared to SVD, the
MPO decomposition, which can decompose the parameter matrix to any size, can better enhance the
expressive capacity of the student model. The impact of the over-parameterization scale on distillation
effectiveness will be analyzed in detail in Section 5.3.

5.3 Further Analysis

Performance Comparison w.r.t. Parameter Increasing Rate. Our OPDF method facilitates
the flexible expansion of model parameters, thereby highlighting the significance of the parameter
increase rate on model performance. Consequently, we investigate the influence of this rate on model
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Table 2: The linear probe performance (in percentage) of TinyViT, pre-trained on ImageNet-21k,
ImageNet-1k [58], ImageNet Real [59], and ImageNet v2 [60]. Numbers marked with * indicate that
these results are got by official checkpoint and released code.For all the results, we report the mean
values of five runs using different random seeds.

Datasets Imagenet-1k Imagenet Real Imagenet V2 # Train Params # Inference Params
top-1 top-5 top-1 top-5 top-1 top-5 (M) (M)

CLIP-ViT-L/14 [62] 84.8* / 88.9* / 75.1* / 321 321
TinyVit-5M [61]

None 77.4* 94.1* 86.1* 97.5* 66.8* 87.6* 5.4 5.4
+SVD 77.9 95.1 86.3 97.3 68.7 88.4 7.6 5.4
+OPDF (Ours) 80.0 96.7 87.4 98.1 69.4 88.9 9.9 5.4

TinyVit-11M
None 80.5* 95.6* 87.8* 98.0* 70.7* 90.4* 11 11
+SVD 82.0 96.7 88.4 97.9 71.7 91.4 17 11
+OPDF (Ours) 82.5 96.9 88.9 98.3 72.4 92.6 23 11

TinyVit-21M
None 82.3* 96.3* 88.9* 98.3* 73.0* 91.9* 21 21
+SVD 82.9 96.8 88.3 97.8 71.8 92.4 29 21
+OPDF (Ours) 84.0 97.5 89.4 98.4 74.9 93.4 38 21
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Figure 2: The impact of over-parameterization scale, learning rate, and various components of the
OPDF on distillation model performance is explored. Figure 2(a) demonstrates the performance
of the LGTM and DBKD model on the MRPC task following the implementation of the OPDF.
Figure 2(b) presents the performance of DBKD + OPDF with different over-parameterization scales
on the MRPC task. Figure 2(c) displays the performance of the theseus model across various tasks,
utilizing different over-parameterization methods and integrating various components of the OPDF.

efficiency further. To underscore the general applicability of our findings, we intentionally over-
parameterize two models: DBKD and LGTM. We then elucidate their relationship with fine-tuning
performance on MRPC tasks. All results are depicted in Figure 2(a).

It is observed that the performance of both the LGTM [44] and DBKD [45] models on the MRPC task
consistently improves with an increase in parameters. This enhancement substantiates the efficacy of
using the OPDF for over-parameterizing models, which in turn significantly boosts the performance of
knowledge distillation models. Furthermore, after over-parameterization, the performance of the mod-
els is capable of achieving, at a minimum, the level of their original benchmarks (e.g., 83.3 for DBKD
and 86.3 for LGTM). The enhancement of model performance through over-parameterization has its
limitations. As demonstrated in Figure 2(a), beyond certain thresholds of over-parameterization (e.g.,
1.6× for DBKD and 2.5× for LGTM), the performance improvements of the models no longer exhibit
significant gains. This observation indicates that there are inherent limits to the benefits that can be
achieved through over-parameterization in knowledge distillation models. These limits are likely
influenced by structural characteristics of each model and size of the initial model configuration.

Hyper-parameters Tuning OPDF decomposes the original weight tensor through over-
parameterization, leading to the updating of more parameters. Consequently, the tensor product
results in larger updates to the existing parameters in the backward phase. In Figure 2(b), we illustrate
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the relationship between the performance on the MRPC task and learning rate when the parameters
of the DBKD model are expanded to 1.2×, 1.4×, and 1.6× their original size.

There exists an optimal learning rate for every scale of over-parameterization. Deviating from this
optimal rate, whether by increasing or decreasing the learning rate, results in diminished model
performance. The reduction in performance due to a lower learning rate can be attributed to the
model becoming trapped in a local optimum.

Additionally, we observe that peak model performance consistently increases with the scale of
over-parameterization. This finding aligns with the conclusions drawn from Figure 2(a). Moreover,
as the scale of over-parameterization increases, the learning rate required to achieve optimal model
performance decreases. This occurs because using the tensor product to restore the shape of the
tensors to that of the original weight tensors also scales the updated values, resulting in significant
changes. Consequently, an increasing learning rate leads to declining performance in the KD model,
indicating that the learning rate should decrease as the over-parameterization scale increases.

Finally, despite changes in the learning rate, the performance of the model with OPDF consistently
remains at least as high as that of the original method. This indicates that OPDF is not sensitive
to learning rate variations during the distillation stage. This resilience is due to OPDF’s ability to
factorize the parameter matrix in almost lossless conditions, ensuring that the decomposed matrix
can match or exceed the training effectiveness of the original matrix without introducing errors.

Impact of MPO strategy To demonstrate the robustness of our MPO methods, we applied different
MPO methods to the DBKD and AD-KD model on the RTE, MRPC, STS-B, CoLA, and SST-2
task. The experimental results are presented in Table 3. To maintain consistent over-parameterization
scales, we used the same decomposition scale (L) for each KD model across the same task.

Table 3: Comparison of performance on the GLUE benchmark (in percent). In the tensor representa-
tion, "L" denotes the number of "1"s in the dimension list.

Experiments RTE
Acc.

MRPC
F1/Acc.

STS-B
Corr.

CoLA
Mcc.

SST-2
F1/Acc.

DBKD
L 4 8 / 7 4
T 32,L,24
64,L,48

69.1 88.4/83.3 / 27.2 89.8
T 16,2,L,2,12
32,2,L,2,24

68.0 86.3/81.0 / 25.2 89.0
T 4,4,2,L,2,3,4
8,4,2,L,2,4,6

68.5 87.9/82.5 / 26.1 88.9
AD-KD

L 8 3 6 1 3
T 32,L,24
64,L,48

71.7 90.3/86.8 88.9 55.0 91.3
T 16,2,L,2,12
32,2,L,2,24

70.9 89.6/86.1 88.7 54.4 89.2
T 4,4,2,L,2,3,4
8,4,2,L,2,4,6

71.0 89.8/86.4 88.3 54.9 90.4

We can observe that the performance of our approach consistently stabilizes around certain values,
indicating that our method is not sensitive to the specific MPO techniques used. Therefore, when
over-parameterizing, we should focus primarily on the decomposition scale rather than the MPO
method employed.

Ablation Study Our approach consists of two novel improvements: (1) the over-parameterization
procedure for the student model, (2) the distillation loss for auxiliary tensors for effective training. To
verify the effectiveness of each component, we conduct the ablation study on the GLUE benchmark
to analyze the contribution of each part. We consider removing over-parameterization and distillation
loss respectively. The ablation results of our OPDF are shown in Figure 2(c).

Firstly, it is clear that regardless of the over-parameterization method used, the area of the radar chart
is greater than that of the vanilla theseus. This outcome suggests that over-parameterization can
greatly improve the performance of distillation methods. Secondly, further analysis of the different
over-parameterization methods reveals that MPO consistently outperforms SVD across all datasets.
This improvement is attributed to MPO’s ability to decompose parameter matrices into higher orders,
effectively enlarging the size of the parameter matrix. Lastly, we examine the contribution of the
LAux term. The radar chart area is significantly larger when OPDF is utilized in conjunction with
LAux than with MPO alone. This indicates that LAux effectively enhances knowledge transfer from
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the teacher model. The underlying reason for this phenomenon is that over-parameterized models can
concentrate on learning central tensors containing critical information, while the LAux term assists in
aligning auxiliary tensors. We can see that removing any component would lead to a decrease in the
model performance. It shows the effectiveness of all these components in our approach.

6 Conclusion

In this paper, we proposed OPDF, a novel over-parameterization distillation framework designed
to enhance the effectiveness of knowledge distillation. This framework employs MPO as a tensor
decomposition technique to expand small models into larger ones, thereby bridging the capacity
gap between the teacher and student models. Moreover, to enhance the effectiveness of knowledge
distillation, our proposed OPDF framework introduces a tensor constraint loss. The OPDF framework
utilizes MPO to decompose each weight matrix into a central tensor and auxiliary tensors. By
aligning the auxiliary tensors, OPDF not only facilitates the transfer of crucial knowledge from the
teacher model but also preserves the student model’s ability to think independently. This approach
provides the student model with the potential to outperform the teacher model. Our ablation studies
demonstrated that all components of the OPDF contribute to enhancing the effectiveness of knowledge
distillation. Experimental results across various tasks in natural language processing and computer
vision domains validate the efficacy of our proposed method in improving model distillation. Although
the number of parameters was increased by MPO during training, the factorized matrices can be
merged to reorganize the original parameter matrix in almost lossless conditions. This means that
OPDF can enhance the performance of the distillation model without increasing the inference latency.
Moreover, since OPDF is based on tensor decomposition, it is orthogonal to most distillation methods.

In our future work, we will investigate more efficient and effective tensor decomposition methods
for student model over-parameterization. In addition, we will also apply OPDF to other important
backbone models, such as in the multimodal learning domains.

Impact statement

This paper proposes a novel knowledge distillation framework for model compression field, which is
helpful to reduce storage requirements and computational complexity. This method facilitates the
practical deployment of models in real-world applications and supports energy conservation. We
focus exclusively on over-parameterizing small student models, presenting no potential ethical risks.
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APPENDIX

A Tensor and Matrix Product Operators

As introduced in [34], the concept of a tensor is specified as:

Definition1
(Tensor). Let D1, D2..., DN ∈ N denote index upper bounds. A tensor T ∈ RD1,...,Dn of order N
is an N -way array where elements Td1,d2,...,dn

are indexed by dn ∈ {1, 2, ..., Dn} for 1 ≤ n ≤ N

Definition2
(Matrix product operator). We can reshape a matrix to high order tensor, denoted as:

Mx×y = Mi1i2...in,j1j2...jn (S.1)
Here, the one-dimensional coordinate x of the input signal x with dimension Nx is reshaped into a
coordinate in a n-dimensional space, labeled by (i1i2 · · · in). Hence, there is a one-to-one mapping
between x and (i1i2 · · · in). Similarly, the one-dimensional coordinate y of the output signal y
with dimension Ny is also reshaped into a coordinate in a n-dimensional space, and there is a
one-to-one correspondence between y and (j1j2 · · · jn). If Ik and Jk are the dimensions of ik and jk,
respectively, then

n∏
k=1

Ik = Nx,

n∏
k=1

Jk = Ny. (S.2)

The MPO representation of M is obtained by factorizing it into a product of n local tensors

Mi1···in,j1···jn = T (1)[i1, j1] · · · T (n)[in, jn] (S.3)

where T (k)[jk, ik] is a Dk−1 ×Dk matrix with Dk the virtual basis dimension on the bond linking
T (k) and T (k+1) with D0 = Dn = 1.

B Theorem

Theorem 1. Suppose that the tensor W(k) of matrix W that is satisfy

W = W(k) +E(k), D(W(k)) = dk,

where ||E(k)||2F = ϵ2k, k = 1, ..., d− 1. (S.4)
Then MPO (W) with the k-th bond dimension dk upper bound of truncation error satisfy:

||W −MPO (W)||F ≤

√√√√d−1∑
k=1

ϵ2k (S.5)

Proof. The proof is by induction. For n = 2 the statement follows from the properties of the SVD.
Consider an arbitrary n > 2. Then the first unfolding W(1) is decomposed as

W(1) = U1λ1V1 +E(1) = U1B
(1) +E(1) (S.6)

where U1 is of size r1 × i1 × j1 and ||E(1)||2F = ϵ21. The matrix B1 is naturally associated with a
(n− 1)-dimensional tensor B(1) with elements B(1)(α, i2, j2, ..., in, jn), which will be decomposed
further. This means that B1 will be approximated by some other matrix B̂1. From the properties of
the SVD it follows that UT

1 E
(1) = 0, and thus

||W − B(1)||2F
= ||W1 −U1B̂1||2F
= ||W1 −U1(B̂1 +B1 −B1)||2F
= ||W1 −U1B1||2F + ||U1(B̂1 −B1)||2F (S.7)
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and since U1 has orthonormal columns,

||W − B(1)||2F ≤ ϵ21 + ||B1 − B̂1||2F . (S.8)

and thus it is not difficult to see from the orthonormality of columns of U1 that the distance of the
k-th unfolding (k = 2, ..., dk − 1) of the (d− 1)-dimensional tensor B(1) to the dk-th rank matrix
cannot be larger than ϵk. Proceeding by induction, we have

||B1 − B̂1||2F ≤
d−1∑
k=2

ϵ2k, (S.9)

combine with Eq. (S.8), this complets the proof.

C Algorithms

The over-parameterized distillation framework algorithm is shown in Algorithm S.1.

Algorithm S.1 Over-parameterized distillation framework.

Input: The parameter matrices list of student model {Ms(k)}nk=1, the parameter matrices list of teacher model
{Mt(k)}mk=1.

1: for k = 1 → n do
2: Select Mt(kt) which has same shape as Ms(k).
3: Ms(k) → MPO (Ms(k)).
4: Mt(kt) → MPO (Mt(kt)).
5: end for
6: repeat
7: Compute LAux between {MPO (Ms(k))}nk=1 and {MPO (Mt(kt))}mt

kt=1 by using Eq. (5).
8: Compute distill loss Ldistill.
9: Backward LAux and Ldistill.

10: until Student model converges

The MPO pseudocode is shown in Algorithm S.2.

Algorithm S.2 MPO decomposition for a matrix.
Input: matrix M, the number of local tensors n
Output : MPO tensor list {T(k)}nk=1

1: for k = 1 → n− 1 do
2: M[I, J ] −→ M[dk−1 × ik × jk,−1]
3: UλV⊤ = SVD (M)
4: U[dk−1 × ik × jk, dk] −→ U [dk−1, ik, jk, dk]

5: T (k) := U
6: M := λV⊤

7: end for
8: T (n) := M
9: Normalization

10: return {T(k)}nk=1

D Addition Experiment Results

D.1 Memory and time cost

The distillation cost (memory and time cost) of the original model and the model after applying
OPDF are shown in Table S.1. We can observe that as the number of parameters obtained from MPO
decomposition increases, both the training time and memory cost increase. However, as the dataset
size increases, the ratio of additional time and memory required for training by OPDF to the original
training requirements generally exhibits a decreasing trend (e.g., 0.6/0.4 for RTE vs 0.3/0.1 for MNLI
in BERT-of-Theseus model). Therefore, the additional time and memory introduced by our method
become less of a critical bottleneck affecting the training speed as the dataset size increases.
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Table S.1: Training time and Memory Cost. (Train time(S) / Memory Cost(GB))

Datasets RTE MRPC STS-B CoLA SST-2 QNLI Q QP MNLI
BERT-of-Theseus

None 400.2/14.8 739.5/14.8 754.4/14.8 1365.4/14.8 2553.7/14.1 3514.2/14.1 7518.7/14.1 8873.9/13.5
+OPDF (Ours) 625.8/20.7 1054.9/20.6 1932.0/20.5 2560.4/16.8 21864.5/22.1 5041.6/27.0 10301.9/18.9 11674.8/14.8

LGTM
None 1086.1/9.7 1408.5/9.6 2049.1/9.6 3358.9/9.6 5270.9/9.6 8142.8/9.6 30272.6/9.6 31554.8/9.6
+OPDF (Ours) 1976.3/19.7 2611.9/19.6 3603.6/19.7 2348.4/19.6 9983.4/19.6 14838.4/19.6 44058.5/14.7 47849.4/19.6

DBKD
None 40.7/2.1 80.3/3.2 NA 186.4/3.2 1355.8/3.2 2149.2/3.2 7487.5/3.2 15513.6/3.2
+OPDF (Ours) 93.1/5.0 213.0/6.6 NA 373.3/6.2 2793.8/5.4 6076.5/6.6 14030.7/6.6 21273.4/5.0

AD-KD
None 308.5/3.8 351.3/3.8 495.6/3.8 780.3/5.9 3637.4/5.9 5832.7/5.9 28763.3/5.9 41898.4/20.6
+OPDF (Ours) 1156.8/14.4 1391.3/14.5 1604.2/12.1 2249.8/18.1 8802.3/14.5 13551.1/14.5 63695.5/14.5 65735.8/34.0

We show the time of overparameterization using MPO and the contraction of decomposed matrices
into the original matrix in Table S.2 as follows. It can be observed that the time required for
decomposition and reconstruction is acceptable compared to the training duration.

Table S.2: The spending time (s) of decomposing and reconstructing.

Datasets RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI
BERT-of-Theseus

Decompose 397.4 308.5 400.2 154.6 797.7 671.6 584.7 137.5
Reconstruct 2.3 2.0 2.4 0.7 12.8 3.3 10.9 0.8

LGTM
Decompose 403.6 369.5 377.8 192.2 131.4 123.9 80.2 83.0
Reconstruct 8.6 6.8 7.2 2.6 1.0 0.9 1.0 1.5

DBKD
Decompose 117.5 189.1 NA 168.5 153.1 166.2 110.7 165.0
Reconstruct 0.9 1.0 NA 0.8 0.9 0.8 0.7 0.8

AD-KD
Decompose 291.7 313.0 232.6 235.5 119.0 148.0 148.1 171.6
Reconstruct 1.6 1.8 1.2 1.4 0.9 1.0 2.5 1.2

D.2 Experimental Details

As illustrated in Eq. (2), when a parameter matrix W is given, its MPO decomposition into a product
of n local tensors can be represented as follows:

MPO (W) = T i1,i2,i3,...,in
j1,j2,j3,...,jn

. (S.10)

The models mentioned—Bert of theseus [56], LGTM [44], DBKD [45] and AD-KD [46]—are all
variants of BERT, which itself is built using transformer blocks. We decompose both the feed-forward
network and the multi-head attention layer within the transformer block. Moreover, the teacher model
must employ a decomposition granularity that is consistent with that of the student model to ensure
proper alignment of auxiliary tensors. When calculating the auxiliary loss LAux, the alignment is
typically between the n-th layer of the student model and the N-th layer of the teacher model, where N
is generally an integer multiple of n. The detailed hyperparameter settings for these NLP distillation
models are provided in Table S.3and S.4. In NLP tasks, our method takes half to two GPU hours on
A100 GPU.

Additionally, we implement OPDF on TinyViT [61] to demonstrate its applicability as an orthogonal
approach across various knowledge distillation methods that utilize the transformer architecture.
Unlike NLP models, we decompose the projection layer in addition to the feed-forward network and
multi-head attention layer in the vision transformer block. The specific experimental parameters
utilized are detailed in Table S.5. In CV tasks, our method takes 160.0 GPU days on A100 GPUs to
pretrain TinyViT-21M. We report the performance of the model that achieves the best results on the
validation set when applied to the test set.

18



Table S.3: The feed-forward network layer settings in NLP distilation model.

Experiments RTE MRPC STS-B CoLA

BERT-of-Theseus [56]
SVD T 32,24

64,48 T 32,24
64,48 T 32,24

64,48 T 32,24
64,48

OPDF (Ours) T 32,1,1,1,24
64,1,1,1,48 T 32,1,1,1,24

64,1,1,1,48 T 32,1,1,1,24
64,1,1,1,48 T 32,1,24

64,1,48

LGTM [44]
SVD T 32,24

64,48 T 32,24
64,48 T 32,24

64,48 T 32,24
64,48

OPDF (Ours) T 32,1,1,1,24
64,1,1,1,48 T 32,1,1,1,24

64,1,1,1,48 T 32,1,1,1,24
64,1,1,1,48 T 32,1,1,1,1,24

64,1,1,1,1,48

DBKD [45]
SVD T 32,24

64,48 T 32,24
64,48 / T 32,24

64,48

OPDF (Ours) T 32,1,1,1,1,24
64,1,1,1,1,48 T 32,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,48 / T 32,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,48

AD-KD [46]
SVD T 32,24

64,48 T 32,24
64,48 T 32,24

64,48 T 32,24
64,48

OPDF (Ours) T 32,1,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,1,48 T 32,1,1,1,24

64,1,1,1,48 T 32,1,1,1,1,1,1,24
64,1,1,1,1,1,1,48 T 32,1,24

64,1,48

Experiments SST-2 QNLI QQP MNLI

BERT-of-Theseus
SVD T 32,24

64,48 T 32,24
64,48 T 32,24

64,48 T 32,24
64,48

OPDF (Ours) T 32,1,1,1,1,1,24
64,1,1,1,1,1,48 T 32,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,48 T 32,1,1,1,24
64,1,1,1,48 T 32,1,24

64,1,48

LGTM
SVD T 32,24

64,48 T 32,24
64,48 T 32,24

64,48 T 32,24
64,48

OPDF (Ours) T 32,1,1,1,24
64,1,1,1,48 T 32,1,1,1,24

64,1,1,1,48 T 32,1,24
64,1,48 T 32,1,1,1,24

64,1,1,1,48

DBKD
SVD T 32,24

64,48 T 32,24
64,48 T 32,24

64,48 T 32,24
64,48

OPDF (Ours) T 32,1,1,1,1,1,24
64,1,1,1,1,1,48 T 32,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,48 T 32,1,1,1,1,24
64,1,1,1,1,48 T 32,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,48

AD-KD
SVD T 32,24

64,48 T 32,24
64,48 T 32,24

64,48 T 32,24
64,48

OPDF (Ours) T 32,1,1,1,24
64,1,1,1,48 T 32,1,1,1,24

64,1,1,1,48 T 32,1,1,1,24
64,1,1,1,48 T 32,1,1,1,1,24

64,1,1,1,1,48
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Table S.4: The multi-head attention layer settings in NLP distilation model.

Experiments RTE MRPC STS-B CoLA

BERT-of-Theseus
SVD T 32,24

32,24 T 32,24
32,24 T 32,24

32,24 T 32,24
32,24

OPDF (Ours) T 32,1,1,1,24
32,1,1,1,24 T 32,1,1,1,24

32,1,1,1,24 T 32,1,1,1,24
32,1,1,1,24 T 32,1,24

32,1,24

LGTM
SVD T 32,24

32,24 T 32,24
32,24 T 32,24

32,24 T 32,24
32,24

OPDF (Ours) T 32,1,1,1,24
32,1,1,1,24 T 32,1,1,1,24

32,1,1,1,24 T 32,1,1,1,24
32,1,1,1,24 T 32,1,1,1,1,24

32,1,1,1,1,24

DBKD
SVD T 32,24

32,24 T 32,24
32,24 / T 32,24

32,24

OPDF (Ours) T 32,1,1,1,1,24
32,1,1,1,1,24 T 32,1,1,1,1,1,1,1,1,24

32,1,1,1,1,1,1,1,1,24 / T 32,1,1,1,1,1,1,1,24
32,1,1,1,1,1,1,1,24

AD-KD
SVD T 32,24

32,24 T 32,24
32,24 T 32,24

32,24 T 32,24
32,24

OPDF (Ours) T 32,1,1,1,1,1,1,1,1,24
32,1,1,1,1,1,1,1,1,24 T 32,1,1,1,24

32,1,1,1,24 T 32,1,1,1,1,1,1,24
32,1,1,1,1,1,1,24 T 32,1,24

32,1,24

Experiments SST-2 QNLI QQP MNLI

BERT-of-Theseus
SVD T 32,24

32,24 T 32,24
32,24 T 32,24

32,24 T 32,24
32,24

OPDF (Ours) T 32,1,1,1,1,1,24
32,1,1,1,1,1,24 T 32,1,1,1,1,1,1,1,1,24

32,1,1,1,1,1,1,1,1,24 T 32,1,1,1,24
32,1,1,1,24 T 32,1,24

32,1,24

LGTM
SVD T 32,24

32,24 T 32,24
32,24 T 32,24

32,24 T 32,24
32,24

OPDF (Ours) T 32,1,1,1,24
32,1,1,1,24 T 32,1,1,1,24

32,1,1,1,24 T 32,1,24
32,1,24 T 32,1,1,1,24

32,1,1,1,24

DBKD
SVD T 32,24

32,24 T 32,24
32,24 T 32,24

32,24 T 32,24
32,24

OPDF (Ours) T 32,1,1,1,1,1,24
32,1,1,1,1,1,24 T 32,1,1,1,1,1,1,1,1,24

32,1,1,1,1,1,1,1,1,24 T 32,1,1,1,1,24
32,1,1,1,1,24 T 32,1,1,1,1,1,1,1,1,24

32,1,1,1,1,1,1,1,1,24

AD-KD
SVD T 32,24

32,24 T 32,24
32,24 T 32,24

32,24 T 32,24
32,24

OPDF (Ours) T 32,1,1,1,24
32,1,1,1,24 T 32,1,1,1,24

32,1,1,1,24 T 32,1,1,1,24
32,1,1,1,24 T 32,1,1,1,1,24

32,1,1,1,1,24

Table S.5: The experiment settings in CV distilation model.

Experiments Feed-forward Network Multi-head Attention Projection Layer
layer1 layer2 layer3 layer1 layer2 layer3 layer1 layer2 layer3

TinyVit-5M
SVD T 16,8

32,16 T 16,10
32,20 T 20,16

40,32 T 16,8
24,16 T 16,10

24,20 T 20,16
32,30 T 16,8

16,8 T 16,10
16,10 T 20,16

20,16

OPDF (Ours) T 16,1,8
32,1,16 T 16,1,10

32,1,20 T 20,1,16
40,1,32 T 16,8

24,1,16 T 16,1,10
24,1,20 T 20,1,16

32,1,30 T 16,1,8
16,1,8 T 16,1,10

16,1,10 T 20,1,16
20,1,16

TinyVit-11M
SVD T 16,8

32,16 T 16,16
32,32 T 32,14

56,32 T 16,8
24,16 T 16,16

32,24 T 32,14
48,28 T 16,8

16,8 T 16,16
16,16 T 32,14

32,14

OPDF (Ours) T 16,1,8
32,1,16 T 16,1,16

32,1,32 T 32,1,14
56,1,32 T 16,1,8

24,1,16 T 16,1,16
32,1,24 T 32,1,14

48,1,28 T 16,1,8
16,1,8 T 16,1,16

16,1,16 T 32,1,14
32,1,14

TinyVit-21M
SVD T 24,8

32,24 T 24,16
48,32 T 32,18

64,36 T 24,8
32,18 T 24,16

36,32 T 32,18
54,32 T 24,8

24,8 T 24,16
24,16 T 32,18

32,18

OPDF (Ours) T 24,1,8
32,1,24 T 24,1,16

48,1,32 T 32,1,18
64,1,36 T 24,1,8

32,1,18 T 24,1,16
36,1,32 T 32,1,18

54,1,32 T 24,1,8
24,1,8 T 24,1,16

24,1,16 T 32,1,18
32,1,18
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paper’s contributions and scope?
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the main claims made in the abstract and introduction are supported by the experimental
results presented in Section 5.
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made in the paper.
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Section 6
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 6
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Guidelines: The paper poses no such risks.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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