
How Does Return Distribution in Distributional
Reinforcement Learning Help Optimization?

Ke Sun, Bei Jiang, Linglong Kong∗
Department of Mathematical and Statistical Sciences

University of Alberta
Edmonton, Canada

{ksun6,bei1,lkong}@ualberta.ca

Abstract

Distributional reinforcement learning, which focuses on learning the entire return
distribution instead of only its expectation in standard RL, has demonstrated re-
markable success in enhancing performance. Despite these advancements, our
comprehension of how the return distribution within distributional RL still remains
limited. In this study, we investigate the optimization advantages of distributional
RL by utilizing its extra return distribution knowledge over classical RL within the
Neural Fitted Z-Iteration (Neural FZI) framework. To begin with, we demonstrate
that the distribution loss of distributional RL has desirable smoothness characteris-
tics and hence enjoys stable gradients, which is in line with its tendency to promote
optimization stability. Furthermore, the acceleration effect of distributional RL
is revealed by decomposing the return distribution. It shows that distributional
RL can perform favorably if the return distribution approximation is appropriate,
measured by the variance of gradient estimates in each environment. Rigorous
experiments validate the stable optimization behaviors of distributional RL and
its acceleration effects compared to classical RL. Our research findings illuminate
how the return distribution in distributional RL algorithms helps the optimization.

1 Introduction

Distributional reinforcement learning [3, 8, 7, 35, 25, 17, 30] characterizes the intrinsic randomness
of returns within the framework of Reinforcement Learning (RL). When the agent interacts with the
environment, the intrinsic uncertainty of the environment seeps into the stochasticity of rewards the
agent receives and the inherently chaotic state and action dynamics of physical interaction, increasing
the difficulty of the RL algorithm design. Distributional RL aims to represent the entire distribution
of returns to capture more intrinsic uncertainty of the environment and, therefore, to use these return
distributions to evaluate and optimize the policy. This is in stark contrast to the classical RL that only
focuses on the expectation of the return distributions, such as temporal-difference (TD) learning [31]
and Q-learning [33].

Despite the remarkable empirical success of distributional RL, the illumination of its theoretical
advantages still needs to be studied. A distributional regularization effect [29] stemming from
the additional return distribution knowledge has been characterized to explain the superiority of
distributional RL over classical RL, but the benefit of the proposed regularization on the optimization
of algorithms has not been further investigated. Such a gap inspires us to investigate the optimization
impact of distributional RL by leveraging the full return distribution knowledge. However, existing
literature [22, 28] that helps to analyze the optimization of RL learning may not apply to practical
distributional RL algorithms as there still remains a gap between the theory and practice in RL.

∗Corresponding Author

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

In this paper, we study the optimization advantages of distributional RL over classical RL. Within
the Neural FZI framework, our optimization analysis can not only sufficiently characterize offline
distributional RL behaviors but also approximate the online setting. Within this framework, we
study the uniform stability of distributional loss based on categorical parameterization. Owing to
the smoothness properties of distributional loss, distributional RL algorithms tend to satisfy the
uniform stability in the optimization process, thus enjoying stable gradient behaviors in the input
space. In addition to the optimization stability, we also elaborate on the acceleration effect of
distributional RL algorithms based on the return density decomposition technique proposed recently.
Distributional RL can speed up the convergence and perform favorably if the return distribution
is approximated appropriately, measured by the gradient estimates’ variance. Empirical results
corroborate that distributional RL possesses stable gradient behaviors and acceleration effects by
suggesting smaller gradient norms concerning the states and model parameters. Our study opens up
many exciting research pathways in this domain through the lens of optimization, paving the way
for future investigations to reveal more advantages of distributional RL. Our contributions can be
summarized as follows:

• We specifically study the optimization advantage of practical distributional RL algorithms
with the general function approximators. Within the Neural FZI framework, we can ana-
lyze the optimization properties of distributional RL by establishing its connection with
supervised learning.

• We reveal the uniform stability of distributional RL thanks to the smoothness properties of
distributional loss. By contrast, classical RL may not guarantee such a stable optimization
property due to the sensitivity of the least squared loss.

• The acceleration effects of distributional RL have also been demonstrated through the return
density decomposition. We show that distributional RL can speed up convergence if the
parameterization error of the return distribution is appropriate.

2 Related Work

Interpretation of distributional RL. Interpreting the behavior difference between distributional
and classical RL was initially studied using the coupled updates method in [18]. They conclude
that both distributional and classical RL behave the same in the tabular and linear approximation
settings and attribute the superiority of distributional RL to its non-linear approximation. However,
the coupled methodology mainly investigated preserving the expectation of return distribution to
measure the behavior differences, which rules out other factors, including the optimization effect due
to the distributional loss [15]. An implicit risk-sensitive entropy regularization was then revealed in
distributional RL by [29], without further analyzing its optimization benefits. Our work complements
and extends their results through the lens of optimization.

Convergence and Acceleration in RL. Existing optimization analysis in RL is mainly based on
the policy gradient framework. [22] shows that the policy gradient with a softmax parameterization
converges at a O(1/t) rate, which significantly expands the existing asymptotic convergence results.
Entropy regularization [12, 13] has gained increasing attention and [2] provides a fine-grained
understanding of the impact of entropy on policy optimization and emphasizes that any strategy, such
as entropy regularization, can only affect learning in one of two ways: either it reduces the noise in
the gradient estimates or it changes the optimization landscape. The seemingly applicable analysis
framework on value-based RL is PAC-MDP [28], which effectively analyzes the convergence of
typical RL algorithms in the tabular setting. However, it is unclear whether this analysis applies to
practical distributional RL algorithms. By contrast, our optimization is within a more interpretable
Neural FZI framework and focuses on accelerating the distributional RL algorithm.

Stable Optimization. Stable optimization is one of the crucial properties for RL algorithms, and com-
mon strategies include Batch Normalization [27], Spectral Normalization [23], gradient penalty [11].
In RL, stable optimization techniques [10, 16] also benefit the training and the final performance. By
contrast, we show that (categorical) distributional RL naturally enjoys stable optimization compared
with classical RL.

2

3 Preliminary Knowledge

Classical RL. In a standard RL setting, the interaction between an agent and the environment is
modeled as a Markov Decision Process (MDP) (S,A, R, P, γ), where S and A denote state and
action spaces. P is the transition kernel dynamics, R is the reward measure and γ ∈ (0, 1) is the
discount factor. For a fixed policy π, the return, Zπ =

∑∞
t=0 γ

tRt, is a random variable representing
the sum of discounted rewards observed along one trajectory of states while following the policy
π. Classical RL focuses on the value and action-value functions, the expectation of returns Zπ.
The action-value function Qπ(s, a) is defined as Qπ(s, a) = E [Zπ(s, a)] = E [

∑∞
t=0 γ

tR (st, at)],
where s0 = s, a0 = a, st+1 ∼ P (·|st, at), and at ∼ π(·|st).
Distributional RL. Distributional RL, on the other hand, focuses on the action-state return distribu-
tion, the entire distribution of Zπ(s, a) rather than only its expectation, i.e., Qπ(s, a). Leveraging
knowledge on the entire return distribution can better capture the uncertainty of returns and thus
can be advantageous to explore the intrinsic uncertainty of the environment [7, 21]. Therefore, the
scalar-based classical Bellman update is extended to the distributional Bellman update, which allows
a flurry of distributional RL algorithms.

Categorical Distributional RL (CDRL). As the first successful distributional RL family, CDRL [3]
approximates the action-state return distribution η by a categorical distribution η̂ =

∑k
i=1 fiδli where

l1, l2, ..., lk is a set of fixed supports and {fi}ki=1 are learnable probabilities, normally parameterized
by a neural network. A projection is also introduced to have the joint support with newly distributed
target probabilities, equipped by a KL divergence to compute the distribution distance between the
current and target return distribution within each Bellman update. In practice, C51 [3], an instance of
CDRL with k = 51, performs favorably in various environments.

4 Optimization Analysis

Under Neural FZI established in Section 4.1, we analyze two optimization aspects of distributional
RL based on the categorical parameterization, including the stable optimization from the loss function
in Section 4.2, and its acceleration effect determined by the gradient estimate variance in Section 4.3.

4.1 Optimization Analysis for Distributional RL within Neural Fitted Z-Iteration

In classical RL, Neural Fitted Q-Iteration (Neural FQI) [9, 26] provides a statistical interpretation of
DQN [24], capturing its two key features, i.e., the leverage of target network and experience replay:

Qk+1
θ = argmin

Qθ

1

n

n∑
i=1

[
yi −Qk

θ (si, ai)
]2

, (1)

where the target yi = r(si, ai) + γmaxa∈A Qk
θ∗ (s′i, a) is fixed within every Ttarget steps to up-

date target network Qθ∗ by letting θ∗ = θ. The experience buffer induces independent samples
{(si, ai, ri, s′i)}i∈[n] and ideally without the optimization and TD approximation errors, Neural FQI
is exactly the update under Bellman optimality operator [9]. Similarly, [29, 20] proposed Neural
Fitted Z-Iteration (Neural FZI), a distributional version of Neural FQI based on the parameterization
of Zθ to characterize distributional RL:

Zk+1
θ = argmin

Zθ

1

n

n∑
i=1

dp(Yi, Z
k
θ (si, ai)), (2)

where the target Yi = R(si, ai) + γZk
θ∗ (s′i, πZ(s

′
i)) is a random variable, whose distribution is

also fixed within every Ttarget steps. The target follows a greedy policy rule, where πZ(s
′
i) =

argmaxa′ E
[
Zk
θ∗(s′i, a

′)
]

and dp is the choice of distribution distance.

Approximate Supervised Learning within Neural FZI to Allow the Optimization Analysis.
Previous optimization analysis focuses on either policy gradient methods [22, 1] or the sample
complexity in the tabular setting [28]. However, there remains some gap between the theory and the
practical neural network parameterized RL algorithm, and the previous results may not be directly
attainable for the optimization analysis of distributional RL. By contrast, Neural FZI simplifies the

3

optimization problem in deep RL into an approximate iterative supervised learning on a local fixed
offline dataset by leveraging experience buffer and target networks, allowing richer optimization
analysis. It sufficiently characterizes the offline behaviors of practical distributional RL algorithms and
can also approximate online algorithms. In particular, Neural FZI does not consider the exploration;
the data distribution shift caused by exploration from an ϵ-greedy policy can be negligible in the
online setting, when the replay memory is sufficiently large or considering the short period. Thus,
the optimization in each phase of Neural FZI can be approximately viewed as supervised learning in
contrast to PAC-MDP analysis [28] that explicitly involves the impact of exploration.

Two Key Factors. The Neural FZI framework offers new insights to analyze the optimization benefits
for practical distributional RL algorithms, within which there are mainly two crucial components.

• Factor 1: the choice of dp. On the one hand, dp determines the convergence rate of
distributional Bellman update, i.e., the speed of outer iterations in Neural FZI. For instance,
distributional Bellman operator under Crámer distance is

√
γ-contractive [4], γ-contractive

under Wasserstein distance [3]. Moreover, dp also largely affects the continuous optimization
problem concerning parameters θ in Zθ within each iteration of Neural FZI.

• Factor 2: the parameterization of Zθ. Given the same dp, a more informative param-
eterization can approximate the true return distribution more reasonably, promoting the
optimization within each phase of Neural FZI. For example, with a more expressiveness
power on quantile functions, IQN [7] outperforms QR-DQN [8] on a wider range of envi-
ronments.

Remark. We mainly attribute the optimization benefit of distributional RL to the choice of distri-
butional loss dp in Neural FZI relative to the least squared loss in Neural FQI based on the same
categorical parameterization on Zθ, despite the different convergence rates under them.

Categorical Pameterization Equipped with KL Divergence. To allow for theoretical analysis,
we resort to the histogram function [32, 15] as the density estimator of Zθ, a continuous version of
categorical parameterization with their equivalent proof provided in [29]. After incorporating the
projection to redistribute probabilities of target return distribution by the neighboring smoothing
proposed in CDRL, the target, and current histogram function estimators inherit the joint supports,
based on which we apply KL divergence as dp. In particular, we denote the histogram density
estimator as fs,a with k uniform partitions on the support, denote x(s) as the state feature on
each state s. We let the support of Z(s, a) be uniformly partitioned into k bins. The output
dimension of fs,· can be |A| × k, where we use the index a to focus on the function fs,a. Hence,
the function fs,a : X → [0, 1]k provides a k-dimensional vector fs,a(x(s)) of the coefficients,
indicating the probability that the target is in this bin given the state feature x(s) and action a. Next,
we use softmax based on the linear approximation x(s)⊤θi to express fs,a, i.e., fs,a,θ

i (x(s)) =

exp
(
x(s)⊤θi

)
/
∑k

j=1 exp
(
x(s)⊤θj

)
. For simplicity, we use fθ

i (x(s)) to replace fs,a,θ
i (x(s)).

Categorical Distributional Loss. Note that the form of fs,a is similar to that in Softmax policy
gradient optimization [22, 31], but we focus on the value-based RL rather than the policy gradient
RL. Our prediction probability fs,a

i is redefined as the probability in the i-th bin over the support of
Z(s, a), thus eventually serving as a density function. While the linear approximator is limited, this
is the setting where, so far, the cleanest results can be firstly achieved, and understanding this setting
is necessary for the first step towards bigger problems of understanding distributional RL algorithms.
Under this categorical parameterization with KL divergence, the distributional objective function
Lθ(s, a) for the continuous optimization in each phase of Neural FZI (Eq. 2) can be expressed as:

Lθ(s, a) = −
k∑

i=1

∫ zi+wi

zi

ps,a(y) log
fθ
i (x(s))

wi
dy ∝ −

k∑
i=1

ps,ai log fθ
i (x(s)), (3)

where θ = {θ1, ..., θk} and ps,ai is the probability in the i-th bin of the true density function ps,a(x)
for Z(s, a) defined in Eq. 6. wi is the width for the i-th bin (zi, zi+1]. The derivation of the categorical
distributional loss under the categorical parameterization is given in Appendix A.

4.2 Stable Optimization Analysis under Uniform Stability

Optimization Properties. Our stable optimization conclusions are based on the smoothness prop-
erties of categorical distributional loss in Eq. 3. A similar histogram loss was also analyzed in

4

[15] along with a local Lipschitz constant analysis. By contrast, in Proposition 1, we extend their
optimization results and further establish its connection with distributional RL.

Proposition 1. (Properties of Categorical Distributional Loss) Assume the state features ∥x(s)∥2 ≤ l
for each state s, then Lθ is kl-Lipschitz continuous, kl2-smooth and convex w.r.t. the parameter θ.

Please refer to Appendix B for the proof. The smoothness properties of categorical distributional loss
dp are the foundation for the stable optimization of distributional RL. In stark contrast, classical RL
optimizes a least squared loss function [31] in Neural FQI. It is known that the least squared estimator
has no bounded Lipschitz constant in general and is only λmax-smooth, where λmax is the largest
singular value of the data matrix. Specifically, we have ∥∇θLθ∥ ≤ kl for the categorical distributional
loss in distributional RL. By contrast, the gradient norm in classical RL is |yi − Qk

θ(s, a)|∥x(s)∥,
where Qk

θ(s, a) =
∑k

i=1(zi + zi+1)f
θ
i (x(s))/2wi under the same categorical parameterization for

a fair comparison. Clearly, Qk
θ(s, a) can be sufficiently large if the support [z0, zk] is specified to

be large, which is common in environments with a high level of expected returns [3]. As such,
|yi −Qk

θ(s, a)| can vary significantly larger than k and classical RL with the potentially larger upper
bound of gradient norms is prone to the instability optimization issue.

Uniform Stability of Distributional RL. As an application of stable analysis in [14], we next show
that distributional RL loss can naturally induce a uniform stability property under the desirable
smoothness properties in Proposition 1, while classical RL can not. We first recap the definition of
uniform stability for an algorithm while running Stochastic Gradient Descent (SGD) in Definition 1.

Definition 1. (Uniform Stability) [14] Consider a loss function gw(e) parameterized by w encoun-
tered on the example e, a randomized algorithm M is uniformly stable if for all data sets D,D′ such
that D,D′ differ in at most one example, we have

sup
e

EM
[
gM(D)(e)− gM(D′) (e)

]
≤ ϵstab . (4)

Remark: Rationale of Uniform Stability Analysis. One may be concerned whether the uniform
stability analysis is applicable to the RL setting with a gradually varying experience replay buffer.
Thanks to the Neural FZI framework, it can be viewed as an approximate supervised learning on
a nearly fixed offline dataset D with each iteration of Neural FZI, as the experiment replay allows
nearly independent sampling on a fixed data distribution in a short period when the reply memory is
large enough [9]. As such, the loss difference by varying the dataset for at most one sample can serve
as a surrogate to measure the uniform stability for an algorithm in each phase of Neural FZI.

Theorem 1. (Uniform Stability for Distributional RL) Suppose that we run SGD under Lθ in Eq. 3
with step sizes λt ≤ 2/kl2 for T steps. Assume ∥x(s)∥ ≤ l for each state s and action a, then we
have Lθ satisfies the uniform stability in Definition 1 with ϵstab ≤ 4kT

n , i.e.,

E
∣∣LθT (s, a)− Lθ′

T
(s, a)

∣∣ ≤ 4kT

n
, (5)

where θT and θ′T are the minimizers after T steps under the dataset D and D′, respectively.

Please refer to the proof of Theorem 1 in Appendix C. Theorem 1 shows that while running SGD to
solve the categorical distributional loss within each Neural FZI, the continuous optimization process
in each iteration is ϵstab-uniformly stable with the stability errors shrinking at the rate of O(n−1). The
stable optimization has multiple advantages, including ϵstab -bounded generalization gap, a desirable
local minimum in deep learning optimization literature [14], and improvement in performance in
RL [5, 16]. By contrast, classical RL may not yield thestable optimization property without these
smooth properties. For example, λmax-smooth may be of less help for the optimization given a bad
conditional number of the design matrix where λmax could be sufficiently large. Empirically, we
validate the stable gradient behaviors, with smaller gradient norms in the input space, of CDRL
compared with classical RL, and similar results are also observed in Quantile Regression distributional
RL in Section 5.

Remark: Limitations. The potential optimization instability for classical RL can be used to partially
explain its inferiority to distributional RL in most environments, although it may not explain why
distributional RL could not perform favorably in certain games [6]. We leave the comprehensive
explanation as future works.

5

Remark: Non-linear Categorical Parameterization. Although the stability above optimization
conclusions are established on the linear categorical parameterization on Zπ, similar conclusions
with a non-linear categorical parameterization can be naturally expected by non-convex optimization
techniques proposed in [14]. We empirically validate our theoretical conclusions by directly applying
practical neural network parameterized distributional RL algorithms.

4.3 Acceleration Effect of distributional RL

To characterize the acceleration effect of distributional RL, we additionally leverage the recently
proposed return density function decomposition [29].

Return Density Function Decomposition. To decompose the optimization impact of return dis-
tribution into its expectation and the remaining distribution part, we apply the return density func-
tion decomposition to decompose the target histogram density function ps,a. This decomposition
was successfully applied to derive the distributional regularization effect of distributional RL and
was rigorously justified in [29]. Based on the categorical parameterization, we denote ∆E as the
interval that E [Zπ(s, a)] falls into, i.e., E [Zπ(s, a)] ∈ ∆E , and the categorical parameterized
ps,a(x) =

∑N
i=1 f

θ
i 1(x ∈ ∆i)/∆ can be decomposed as

ps,a(x) = (1− ϵ)ps,aE + ϵµs,a = (1− ϵ)1(x ∈ ∆E)/∆+ ϵ

N∑
i=1

pµi 1(x ∈ ∆i)/∆, (6)

where ps,a is decomposed into a single-bin histogram density ps,aE and an induced one µ̂s,a with
each bin probability pµi determined by fθ

i . The pre-specified ϵ measures the impact of remaining
distribution µ̂s,a independent of its expectation E [Zπ(s, a)]. It shows optimizing the first term
in Eq. 6 is equivalent to the classical RL loss in Neural FQI [29], which we provide the proof in
Appendix G for completeness. Therefore, this decomposition allows us to conduct the acceleration
effect of distributional RL loss as opposed to classical RL.

Measuring the Variance of Gradient Estimates. Within Neural FZI, our goal is to minimize
1
n

∑n
i=1 Lθ(si, ai). We rewrite Lθ(s, a) as Lθ(g

s,a, fs,a
θ), where the target density function gs,a

can be ps,a, µs,a or ps,aE , and fs,a,θ is rewritten as fs,a
θ for conciseness. We denote Gk(θ) =

E [Lθ(p
s,a
E , fs,a

θ)] and use G(θ) for Gk(θ) for simplicity. Based on Proposition 1 in Section 4.2, the
appealing optimization properties concerning the parameter θ in fθ still hold for G(θ). Although
ps,aE is a single-bin density without non-zero joint support as fs,a

θ , thanks to the leverage of target
networks, the KL-based Lθ would degrade to the cross-entropy loss, on which Lθ is still well-defined.
As the KL divergence has unbiased gradient estimates, we let the variance of its stochastic gradient
over the expectation-related term ps,aE be bounded, i.e.,

E(s,a)∼ρπ

[
∥∇Lθ(p

s,a
E , fs,a

θ))−∇G(θ)∥2
]
= σ2. (7)

Next, following the similar label smoothing analysis in [34], we further characterize the approximation
degree of fs,a

θ to the target return distribution µs,a by measuring its variance as κσ2:

E(s,a)∼ρπ

[
∥∇Lθ(µ

s,a, fs,a
θ))−∇G(θ)∥2

]
= σ̂2 := κσ2. (8)

Notably, κ can be used to measure the approximation error between fs,a
θ and µs,a and we do not

assume σ̂2 to be bounded as κ can be arbitrarily large. This expression κσ2 for σ̂2 allows us to utilize
κ to characterize different acceleration effects for distributional RL given different κ. Concretely, a
favorable approximation of fs,a

θ to µs,a, which coincides with the role of the Zθ parameterization, will
lead to a small κ, contributing to the acceleration effect of distributional RL as shown in Theorem 2.
Proposition 2. Based on the return density decomposition in Eq. 6, and Eq. 8, we have:

E(s,a)∼ρπ

[
∥∇Lθ(p

s,a, fs,a
θ))−∇G(θ)∥2

]
≤ (1− ϵ)2σ2 + ϵ2κσ2. (9)

Proposition 2 reveals the upper bound of gradient estimate variance for the whole target density
function ps,a, with proof in Appendix D. Before comparing the sample complexity in optimizing
both classical and distributional RL, we define the first-order τ -stationary point.
Definition 2. (First-order τ -Stationary Point) When minθ G(θ), the updated parameters θT after T
steps is a first-order τ -stationary point if ∥∇θG(θT)∥ ≤ τ .

6

Based on Definition 2, we formally characterize the acceleration effects for distributional RL in
Theorem 2 that depends upon approximation errors between µs,a and fs,a

θ measured by κ.

Theorem 2. (Sample Complexity and Acceleration Effects of Distributional RL) While running
SGD to minimize Lθ in Eq. 6 within Neural FZI, we assume the step size λ ≤ 1

kl2 min{1, τ2

2σ2 },
ϵ = 1/(1 + κ), and the sample is uniformly drawn from T samples. Denote G(θ0) as initialization.

(1) (Classical RL) The sample complexity T = 4G(θ0)
λτ2 = O(1

τ4) when minimizing Lθ(p
s,a
E , fs,a

θ),
such that Lθ converges to a τ -stationary point in expectation.

(2) (Distributional RL) The sample complexity T = O(1
τ2) when minimizing Lθ(p

s,a, fs,a
θ), such

that Lθ converges to a max{τ, 2σκ}-stationary point in expectation.

The proof is provided in Appendix E. Theorem 2 is inspired by the intuitive connection between the
return distribution in distributional RL and the label distribution in label smoothing [34].

Interpretation of Theorem 2. Theorem 2 demonstrates that optimizing the categorical distributional
loss of distributional RL can speed up the convergence with the sample complexity from O(1

τ4)

to O(1
τ2), if the distribution approximation error is favorable. In particular, when the agnostic κ

determined by the environment satisfies 2κσ ≤ τ , the distributional RL algorithm has an effective
return distribution parameterization for Zθ with a smaller approximation error between fs,a

θ and µs,a

(ps,a). In this case, the acceleration effect of distributional RL over classical RL can be guaranteed.
However, it is not vice versa. When 2κσ > τ , it is unclear whether the required sample complexity for
distributional RL is higher than classical RL, as classical RL will require a lower sample complexity
than O(1

τ4) to achieve a 2κσ-stationary point in this case. These theoretical results also coincide with
past empirical observations [8, 6], where distributional RL algorithms outperform classical RL in
most cases, but are inferior in certain environments. Based on our results in Theorem 2, we contend
that these certain environments have much intrinsic uncertainty, the distribution parameterization
error between Zθ and the true return distribution under the distributional TD approximation is still
too large (κ > τ

2σ) to guarantee an acceleration effect as revealed in Theorem 2.

Smaller Gradient Norms in the Weight Space. The acceleration effect of distributional RL in
Theorem 2 also implies that distributional RL tends to have smaller gradient norms concerning
parameters than classical RL at the same training step, according to the definition of Lipschitz
constant in terms of the first-order stationary point. The small gradient norms we analyze here are in
the weight space, commonly used and directly linked with the convergence rate analysis. In contrast,
the uniform stability analyzed in Section 4.2 is defined on the bounded loss difference that is strongly
correlated to the gradient norms in the input space. Similar works include Spectral Normalization to
stabilize the training of Generative Adversarial Networks [23] and RL [10], which normalizes the

0.2 0.4 0.6 0.8 1.0
1000

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

R
et

ur
n

ant

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000
humanoid

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

walker2d

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0

100
50

0
50

100
150
200
250

bipedalwalkerhardcore

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

2000

4000

6000

8000

10000

Av
er

ag
e

R
et

ur
n

halfcheetah

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

500

400

300

200

100

0
reacher

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

20

40

60

80

100

120
swimmer

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

60000

80000

100000

120000

140000

160000

180000
humanoidstandup

AC
DAC(C51)
DAC(IQN)

Figure 1: Performance. Learning curve of AC, DAC (C51), and DAC (IQN) over five seeds with
smooth size five across eight MuJoCo games.

7

spectral norm of the weight matrix in each layer to lead to a one-valued Lipschitz constant concerning
the input. We empirically demonstrate both of them in Section 5.

5 Experiments

Our experiments focus on the online distributional RL algorithms on continuous control Mujoco
environments to demonstrate their stable gradient behaviors and acceleration effects.

Implementation. Our implementation is based Soft Actor Critic (SAC) [13] and distributional Soft
Actor Critic [19]. We eliminate the optimization impact of entropy regularization in these algorithm
implementations, and thus, we denote the resulting algorithms as Actor Critic (AC) and Distributional
Actor Critic (DAC) for conciseness. For DAC, we first perform a categorical parameterized C51
critic loss from the classical least-squared critic loss dubbed DAC (C51), which coincides with our
theoretical analysis in Sections 4.2 and 4.3. We further apply our experiments on Quantile Regression
distributional RL, i.e., Implicit Quantile Network (IQN), denoted as DAC (IQN), to heuristically
extend our conclusion in broader algorithm classes. More implementation details are provided in
Appendix F.

5.1 Performance and Uniform Stability

Figure 1 suggests both DAC (IQN) and DAC (C51) excel at the classical RL counterpart, i.e.,
AC (black lines), in most environments, which allows our further optimization analysis.

Proxy: Gradient Norms in the Input Space. We demonstrate the advantage of uniform optimization
stability for distributional RL over classical RL. According to Theorem 1, the stable optimization of
distribution loss within Neural FZI is described as a bounded loss difference for a neighboring dataset
regarding each state s and action a. In other words, the error bound holds by taking the supreme over
each state and action pair. To measure this algorithm stability, while far from perfect, we consider
leveraging the average gradient norms concerning the state feature x(s) in the whole optimization
process as the proxy. This is because the gradient magnitude in the input space could measure the
sensitivity of the loss function regarding each state and action pair.

Results. Figure 2 suggests that both DAC (C51) and DAC (IQN) entail a much smaller gradient norm
magnitude than the classical AC (black lines) across all environments, corroborating the advantage
of uniform stability for distributional RL over classical RL analyzed in Theorem 1. As analyzed in
Section 4.2, this result provides empirical evidence to interpret behaviors of distributional RL.

0.2 0.4 0.6 0.8 1.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

lo
g

x

ant

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
7.5
5.0
2.5
0.0
2.5
5.0

humanoid

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

walker2d

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
6
4
2
0
2
4

bipedalwalkerhardcore

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

15

10

5

0

5

lo
g

x

halfcheetah

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

12
10

8
6
4
2
0

reacher

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10
8
6
4
2
0
2

swimmer

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10
5
0
5

10
humanoidstandup

AC
DAC(C51)
DAC(IQN)

Figure 2: Uniform Stability. The critic gradient norms in the logarithmic scale regarding the state
during the training of AC, DAC (C51), DAC (IQN) over 5 seeds on eight MuJoCo environments.

8

0.2 0.4 0.6 0.8 1.0
4
2
0
2
4
6
8

lo
g

ant

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
2
0
2
4
6
8

10
humanoid

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
2
0
2
4
6
8

walker2d

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0

2

0

2

4

bipedalwalkerhardcore

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

5.0
2.5
0.0
2.5
5.0
7.5

lo
g

halfcheetah

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

6

4

2

0

2
reacher

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

4
2
0
2
4

swimmer

AC
DAC(C51)
DAC(IQN)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

5

0

5

10

humanoidstandup

AC
DAC(C51)
DAC(IQN)

Figure 3: Acceleration Effect. The critic gradient norms in the logarithmic scale regarding network
parameters in the training of AC, DAC (C51), DAC (IQN) over 5 seeds on MuJoCo environments.

5.2 Acceleration Effect of Distributional RL

Proxy: Gradient Norms in the Weight Space. Theorem 2 implies that if the distribution param-
eterization is appropriate, distributional RL can speed up the convergence and thus can achieve
better first-order stationary point, corresponding to smaller gradient norms given the time step in the
learning process. To demonstrate it, we take the same step size for both DAC and AC, and evaluate the
ℓ2-norms of gradients concerning network parameters of their critics. A direct comparison between
vanilla AC and DAC algorithm is given in Figure 3, despite the slight difference in the network
architecture in the last layer. For an apple-to-apple comparison, we keep the same DAC architecture
while implementing a variant AC by optimizing the expectation of represented return distribution.
We also find a similar result in Appendix H.

Results. Figure 3 showcases that both DAC (C51) and DAC (IQN) have smaller gradient norms in
terms of network parameters θ compared with AC in the whole optimization process. This result also
validates that distributional RL loss tends to enjoy smoothness properties in Proposition 1. Moreover,
it turns out that DAC (IQN) tends to have smaller gradient norms than DAC (C51). Given the fact
that DAC (IQN) outperforms DAC (C51) in most environments in Figure 1, we hypothesize that
DAC (IQN) may have a better acceleration effect than DAC (C51), contributing to explaining its
superiority. Moreover, the more expressive parameterization of IQN over C51 is also helpful in
interpreting both the acceleration and the improvement in the final performance. Lastly, according to
Theorem 2, the access to the agnostic κ can serve as a sufficient condition to discriminate whether a
specific distributional RL algorithm can accelerate the training in a given environment. However, a
precise evaluation of κ is tricky, which we leave as valuable future work.

6 Conclusion, Limitations and Future Work

In our paper, we answer the question: how does return distribution in distributional RL help the
optimization from perspectives of the uniform stability and acceleration effect in the optimization.
Our conclusions are made within a new Neural FZI framework that connects the optimization results
in supervised learning with practical deep RL algorithms.

Limitations and Future Work. Our optimization analysis of distributional RL is based on cat-
egorical parameterization, and therefore, some optimization properties, such as uniform stability,
may not directly apply to other distributional RL families. The alternative analysis on distributional
RL algorithms based on Wasserstein distance is also an integral and valuable complement to our
conclusions, which we leave as future work.

9

Acknowledgements

Bei Jiang and Linglong Kong were partially supported by grants from the Canada CIFAR AI Chairs
program, the Alberta Machine Intelligence Institute (AMII), and Natural Sciences and Engineering
Council of Canada (NSERC), and Linglong Kong was also partially supported by grants from the
Canada Research Chair program from NSERC. We also thank all the constructive suggestions and
comments from the reviewers.

References
[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approxi-

mation with policy gradient methods in markov decision processes. In Conference on Learning
Theory, pages 64–66. PMLR, 2020.

[2] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. In International conference on machine learning,
pages 151–160. PMLR, 2019.

[3] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. International Conference on Machine Learning (ICML), 2017.

[4] Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein
gradients. arXiv preprint arXiv:1705.10743, 2017.

[5] Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement
learning. Advances in neural information processing systems (NeurIPS), 2021.

[6] Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more
insightful and inclusive deep reinforcement learning research. In International Conference on
Machine Learning, pages 1373–1383. PMLR, 2021.

[7] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. International Conference on Machine Learning (ICML),
2018.

[8] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. Association for the Advancement of Artificial Intelligence
(AAAI), 2018.

[9] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep
q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR, 2020.

[10] Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective.
In International Conference on Machine Learning, pages 3734–3744. PMLR, 2021.

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

[12] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning, pages
1352–1361. PMLR, 2017.

[13] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[14] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning, pages 1225–
1234. PMLR, 2016.

10

[15] Ehsan Imani and Martha White. Improving regression performance with distributional losses.
In International Conference on Machine Learning, pages 2157–2166. PMLR, 2018.

[16] Alexander Li and Deepak Pathak. Functional regularization for reinforcement learning via
learned fourier features. Advances in Neural Information Processing Systems, 34, 2021.

[17] Yudong Luo, Guiliang Liu, Haonan Duan, Oliver Schulte, and Pascal Poupart. Distributional
reinforcement learning with monotonic splines. In International Conference on Learning
Representations, 2021.

[18] Clare Lyle, Marc G Bellemare, and Pablo Samuel Castro. A comparative analysis of expected
and distributional reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4504–4511, 2019.

[19] Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao. Dsac: Distributional
soft actor critic for risk-sensitive reinforcement learning. arXiv preprint arXiv:2004.14547,
2020.

[20] Yecheng Jason Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional
reinforcement learning. arXiv preprint arXiv:2107.06106, 2021.

[21] Borislav Mavrin, Shangtong Zhang, Hengshuai Yao, Linglong Kong, Kaiwen Wu, and Yaoliang
Yu. Distributional reinforcement learning for efficient exploration. International Conference on
Machine Learning (ICML), 2019.

[22] Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global con-
vergence rates of softmax policy gradient methods. In International Conference on Machine
Learning, pages 6820–6829. PMLR, 2020.

[23] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. International Conference on Learning Representations,
2018.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[25] Thanh Tang Nguyen, Sunil Gupta, and Svetha Venkatesh. Distributional reinforcement learning
with maximum mean discrepancy. Association for the Advancement of Artificial Intelligence
(AAAI), 2020.

[26] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European conference on machine learning, pages 317–328.
Springer, 2005.

[27] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? Advances in neural information processing systems, 31, 2018.

[28] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps:
Pac analysis. Journal of Machine Learning Research, 10(11), 2009.

[29] Ke Sun, Yingnan Zhao, Yi Liu, Shi Enze, Wang Yafei, Yan Xiaodong, Bei Jiang, and Linglong
Kong. Interpreting distributional reinforcement learning: A regularization perspective. arXiv
preprint arXiv:2110.03155, 2021.

[30] Ke Sun, Yingnan Zhao, Yi Liu, Bei Jiang, and Linglong Kong. Distributional reinforcement
learning via sinkhorn iterations. arXiv preprint arXiv:2202.00769, 2022.

[31] Richard S Sutton and Andrew G Barto. Reinforcement learning: An Introduction. MIT press,
2018.

[32] Larry Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.

[33] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

11

[34] Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, and Rong Jin. Towards understanding label smoothing.
arXiv preprint arXiv:2006.11653, 2020.

[35] Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parameterized
quantile function for distributional reinforcement learning. Advances in neural information
processing systems, 32:6193–6202, 2019.

12

A Derivation of Categorical Distributional Loss

We show the derivation details of the Categorical distribution loss starting from KL divergence
between p and qθ. pi is the cumulative probability increment of target distribution {Yi}i∈[n] within

the i-th bin, and qθ corresponds to a (normalized) histogram, and has density values fθ
i (x(s))
wi

per bin.
Thus, we have:

DKL (p
s,a, qs,aθ) =

∫ b

a

ps,a(y) log ps,a(y)dy −
∫ b

a

ps,a(y) log qs,aθ (y)dy

∝ −
∫ b

a

ps,a(y) log qs,aθ (y)dy

= −
k∑

i=1

∫ zi+wi

zi

ps,a(y) log
fθ
i (x(s))

wi
dy

= −
k∑

i=1

log
fθ
i (x(s))

wi
(F s,a (zi + wi)− F s,a (zi))︸ ︷︷ ︸

ps,a
i

∝ −
k∑

i=1

ps,ai log fθ
i (x(s))

(10)

where the first ∝ results from the fixed target ps,a in the Neural FZI framework. The second equality
is based on the categorical parameterization for the density function qs,aθ . The last ∝ holds because
the width parameter wi can be ignored for this minimization problem.

B Proof of Proposition 1

Proof. For the Categorical distributional loss below,

Lθ(s, a) = −
k∑

i=1

ps,ai log fθ
i (x(s)), where fθ

i (x(s)) =
exp

(
x(s)⊤θi

)∑k
j=1 exp (x(s)

⊤θj)

(1) Convexity. Note that − log
exp(x(s)⊤θi)∑k
j=1 exp(x(s)⊤θj)

= log
∑k

j=1 exp
(
x(s)⊤θj

)
− x(s)⊤θi, the first

term is Log-sum-exp, which is convex (see Convex optimization by Boyd and Vandenberghe), and
the second term is affine function. Thus, Lθ(s, a) is convex.

(2) Lθ(s, a) is kl-Lipschitz continuous. We compute the gradient of the Histogram distributional
loss regarding θi:

∂

∂θi

k∑
j=1

ps,aj log fθ
j (x(s)) =

k∑
j=1

ps,aj

1

fθ
j (x(s))

∇θif
θ
j (x(s))

=

k∑
j=1

ps,aj

1

fθ
j (x(s))

fθ
i (x(s))(δij − fθ

j (x(s)))x(s)

=

ps,ai (1− fθ
i (x(s)))−

k∑
j ̸=i

ps,aj fθ
i (x(s))

x(s)

=
(
ps,ai − ps,ai fθ

i (x(s))− (1− ps,ai)fθ
i (x(s))

)
x(s)

=
(
ps,ai − fθ

i (x(s))
)
x(s)

(11)

13

where δij = 1 if i = j, otherwise 0. Then, as we have ∥x(s)∥ ≤ l, we bound the norm of its gradient

∥ ∂

∂θ

k∑
j=1

pj log f
θ
j (x(s))∥ ≤

k∑
i=1

∥ ∂

∂θi

k∑
j=1

pj log f
θ
j (x(s))∥

=

k∑
i=1

∥
(
ps,ai − fθ

i (x(s))
)
x(s)∥

≤
k∑

i=1

|ps,ai − fθ
i (x(s))|∥x(s)∥

≤ kl

(12)

The last equality satisfies because |pi − fθ
i (x(s))| is less than 1 and even smaller. Therefore, we

obtain that Lθ is kl-Lipschitz.

(3) Lθ is kl2-Lipschitz smooth. A lemma is that log(1 + exp(x)) is 1
4 -smooth as its second-order

gradient is bounded by 1
4 , and if g(w) is β-smooth w.r.t. w, then g(⟨x,w⟩) is β∥x∥2-smooth. Based

on this knowledge, we firstly focus on the 1-dimensional case of the function log fθ
j (z), where

fθ
j (z) =

exp zj∑k
i=1 exp zi

. As we have derived, we know that ∂
∂θi

log fθ
j (zj) = δij − fθ

i (zi). Then

the second-order gradient is
∂2 log fθ

j (z)

∂θi∂θk
= −fθ

i (z)(δik − fθ
k (z)) = fθ

i (z)(f
θ
k (z) − 1) if i = k,

otherwise fθ
i (z)f

θ
k (z). Clearly, |∂

2 log fθ
j (z)

∂θi∂θk
| ≤ 1, which implies that log fθ

j (z) is 1-smooth. Thus,

log fθ
j (⟨x, θi⟩) is ∥x∥2-smooth, or l2-smooth. Further,

∑k
j=1 p

s,a
j log fθ

j (x(s)) is also l2-smooth as
we have

∥∇θi

k∑
j=1

ps,aj log fµ
j (x(s))−∇θi

k∑
j=1

ps,aj log fν
j (x(s))∥

≤
k∑

j=1

ps,aj ∥∇θi log f
µ
j (x(s))−∇θi log f

ν
j (x(s))∥

≤
k∑

j=1

ps,aj · l2∥µ− ν∥

= l2∥µ− ν∥

(13)

for each parameter µ and ν. Therefore, we further have

∥∇θ

k∑
j=1

ps,aj log fµ
j (x(s))−∇θ

k∑
j=1

ps,aj log fν
j (x(s))∥

≤
k∑

i=1

∥∇θi

k∑
j=1

ps,aj log fµ
j (x(s))−∇θi

k∑
j=1

ps,aj log fν
j (x(s))∥

≤
k∑

i=1

l2∥µ− ν∥

= kl2∥µ− ν∥

(14)

Finally, we conclude that Lθ(s, a) is kl2-smooth.

C Proof of Theorem 1

Proof. Consider the stochastic gradient descent rule as Gλ,L(θ) = θ − λ∇θLθ. Firstly, we provide
two definitions about Lθ for the following proof.

14

Definition 3. (σ-bounded) An update rule is σ-bounded if supθ ∥θ − λ∇θLθ∥ ≤ σ.

Definition 4. (η-expansive) An update rule is η-expansive if supv,w
∥Gλ,L(v)−Gλ,L(w)∥

∥u−w∥ ≤ η.

Lemma 1. (Grow Recursion, Lemma 2.5 [14]) Fix an arbitrary sequence of updates G1, ..., GT and
another sequence G′

1, ..., G
′
T . Let θ0 = θ′0 be the starting point and define δt = ∥θ′i − θt∥, where θt

and θ′t are defined recursively through
θt+1 = Gλ,L(θt), θ

′
t+1 = G′

λ,L(θ
′
t)

Then we have the recurrence relation:

δt+1 ≤
{
ηδt Gt = G′

t is η-expansive
min(η, 1)δt + 2σt Gt and G′

t are σ-bounded , Gt is η expansive

Lemma 2. (Lipschitz Continuity) Assume Lθ is L-Lipschitz, the gradient update Gλ,L is (λL)-
bounded.

Proof. ∥θ −Gλ,L(θ)∥ = ∥λ∇θLθ∥ ≤ λL

Lemma 3. (Lipschitz Smoothness and Convex) Assume Lθ is β-smooth and convex, then for any
λ ≤ 2

β , the gradient update Gλ,L is 1-expansive.

Proof. Please refer to Lemma 3.7 in [14] for the proof.

Based on all the results above, we start to prove Theorem 1. Our proof is largely based on [14],
but it is applicable in distributional RL settings and considering desirable properties of histogram
distributional loss. According to Proposition 1, we attain that Lθ is kl-Lipschitz as well as kl2-smooth,
and thus based on Lemma 2 and Lemma 3, we have Gλ,L is (λkl)-bounded, and 1-expansive if
λ ≤ 2

kl2 . In the step t, SGD selects samples that are both in D and D′, with probability 1− 1
n . In

this case, Gt = G′
t, and thus δt+1 ≤ δt as Gt is 1-expansive based on Lemma 1. The other case is

that samples selected are different with probability 1
n , where δt+1 ≤ δt + 2λtkl based on Lemma 1.

Thus, if λt ≤ 2
kl2 , for each state s and action a, we have:

E
∣∣LθT (s, a)− Lθ′

T
(s, a)

∣∣ ≤ klE [δT] , where δT = ∥θT − θ′T ∥

≤ kl

(
(1− 1

n
)E [δT−1] +

1

n
E [δT−1] +

2λT−1kl

n

)
= kl

(
E [δT−1] +

2λT−1kl

n

)
= kl

(
E [δ0] +

T−1∑
t=0

2λtkl

n

)

≤ 2k2l2

n

T−1∑
t=0

2

kl2

=
4kT

n

(15)

Since this bound holds for all D, D′ and s, a, we attain the uniform stability in Definition 1 for our
categorical distributional loss applied in distributional RL.

Define the population risk as:
R [θ] = ExLθ(s, a)

and the empirical risk as:

RS [θ] =
1

n

n∑
i=1

Lθ(si, ai)

According to Theorem 2.2 in [14], if an algorithm M is ϵstab-uniformly stable, then the generalization
gap is ϵstab-bounded, i.e.,

|ES,A [RS [M(D)]−R[M(D′)]]| ≤ ϵstab

15

D Proof of Proposition 2

E(s,a)∼ρπ

[
∥∇Lθ(p

s,a, fs,a
θ))−∇G(θ)∥2

]
≤ (1− ϵ)2σ2 + ϵ2κσ2. (16)

Proof. As we know that ps,a(x) = (1− ϵ)ps,aE + ϵµs,a(x) and we use KL divergence in Lθ, then we
have:

∇Lθ(p
s,a, fs,a

θ) = (1− ϵ)∇Lθ(p
s,a
E , fs,a

θ) + ϵ∇Lθ(µ
s,a, fs,a

θ)

Therefore,

E(s,a)∼ρπ

[
∥∇Lθ(p

s,a, fs,a
θ))−∇G(θ)∥2

]
≤ E(s,a)∼ρπ

[
(1− ϵ)2∥∇Lθ(p

s,a
E , fs,a

θ))−∇G(θ)∥2 + ϵ2∥∇Lθ(µ
s,a, fs,a

θ))−∇G(θ)∥2
]

= (1− ϵ)2σ2 + ϵ2κσ2,

(17)

where the first inequality uses the triangle inequality of norm, i.e., ∥(1 − ϵ)a + ϵb∥2 ≤ (1 −
ϵ)2∥a∥2 + ϵ2∥b∥2, and the last equality uses the definition of the variance of Lθ(p

s,a
E , fs,a

θ) and
Lθ(µ

s,a, fs,a
θ).

E Proof of Theorem 2

Proof. Classical RL (1) If we only consider the expectation of Zπ(s, a), we use the information ps,aE

to construct the loss function. As Lθ(p
s,a
E , qs,aθ) is kl2-smooth, we have

G(θt+1)−G(θt) ≤ ⟨∇G(θt), θt+1 − θt⟩+
kl2

2
∥θt+1 − θt∥2

= −λ ⟨∇G(θt),∇Lθ(p
s,a
E , fs,a

θ)⟩+ kl2λ2

2
∥∇Lθ(p

s,a
E , fs,a

θ)∥2
(18)

where the inequality is according to the definition of Lipschitz-smoothness, and the last equation is
based on the updating rule of θ. Next, we take the expectation on both sides,

E [G(θt+1)−G(θt)]

≤ −λE
[
∥∇G(θt)∥2

]
+

kl2λ2

2
E
[
∥∇Lθ(p

s,a
E , fs,a

θ)−∇G(θt) +∇G(θt)∥2
]

≤ −λE
[
∥∇G(θt)∥2

]
+

kl2λ2

2
E
[
∥∇Lθ(p

s,a
E , fs,a

θ)−∇G(θt)∥2
]
+

kl2λ2

2
E
[
∥∇G(θt)∥2

]
=

λ(kl2λ− 2)

2
E
[
∥∇G(θt)∥2

]
+

kl2λ2

2
σ2

≤ −λ

2
E
[
∥∇G(θt)∥2

]
+

kl2λ2

2
σ2

(19)

where the first two inequalities hold because ∇G(θ) = E [∇Lθ] and the last inequality comes from
λ ≤ 1

kl2 . Through the summation, we obtain that

E [G(θT)−G(θ0)] ≤ −λ

2

T−1∑
t=0

E
[
∥∇G(θt)∥2

]
+

kl2λ2T

2
σ2

We let E [G(θT)] = 0, we have

1

T

T−1∑
t=0

E
[
∥∇G(θt)∥2

]
≤ 2G(θ0)

λT
+ kl2λσ2

By setting λ ≤ τ2

2kl2σ2 (simultaneously λ ≤ 1
kl2 , i.e., λ ≤ 1

kl2 min{1, τ2

2σ2 }) and T = 4G(θ0)
λτ2 , we

can have 1
T

∑T−1
t=0 E

[
∥∇G(θt)∥2

]
≤ τ2, implying that the degenerated loss function based on the

expectation ps,aE can achieve τ -stationary point if the sample complexity T = O(1
τ4).

16

Distributional RL (2). We are still based on the kl2-smoothness of L(ps,a, fs,a
θ).

G(θt+1)−G(θt) ≤ ⟨∇G(θt), θt+1 − θt⟩+
kl2

2
∥θt+1 − θt∥2

= −λ ⟨∇G(θt),∇Lθ(p
s,a, fs,a

θ)⟩+ kl2λ2

2
∥∇Lθ(p

s,a, fs,a
θ)∥2

= −λ

2
∥∇G(θt)∥2 +

λ

2
∥∇G(θt)−∇Lθ(p

s,a, fs,a
θ)∥2 + λ(kl2λ− 1)

2
∥∇Lθ(p

s,a, fs,a
θ)∥2

≤ −λ

2
∥∇G(θt)∥2 +

λ

2
∥∇G(θt)−∇Lθ(p

s,a, fs,a
θ)∥2

(20)
where the second equation is based on ⟨a,−b⟩ = 1

2

(
∥a− b∥2 − ∥a∥2 − ∥b∥2

)
, and the last in-

equality is according to λ ≤ 1
kl2 . After taking the expectation, we have

E [G(θt+1)−G(θt)] ≤ −λ

2
E
[
∥∇G(θt)∥2

]
+

λ

2
E
[
∥∇G(θt)−∇Lθ(p

s,a, fs,a
θ)∥2

]
≤ −λ

2
E
[
∥∇G(θt)∥2

]
+

λ

2

(
(1− ϵ)2σ2 + ϵ2κσ2

) (21)

where the last inequality is based on Proposition 2. We take the summation, and therefore,

E [G(θT)−G(θ0)] ≤ −λ

2

T−1∑
t=0

E
[
∥∇G(θt)∥2

]
+

Tλ

2

(
(1− ϵ)2σ2 + ϵ2κσ2

)
We let E [G(θT)] = 0 and ϵ = 1

1+κ , then,

1

T

T−1∑
t=0

E
[
∥∇G(θt)∥2

]
≤ 2G(θ0)

λT
+ (1− ϵ)2σ2 + ϵ2κσ2

=
2G(θ0)

λT
+

2κ2

(1 + κ)2
σ2

≤ 2G(θ0)

λT
+ 2κ2σ2

(22)

If κ ≤ τ
2σ and let T = 4G(θ0)

λτ2 , this leads to 1
T

∑T−1
t=0 E

[
∥∇G(θt)∥2

]
≤ τ2, i.e., τ -stationary

point, with the sample complexity as O(1
τ2). If κ > τ

2σ , we set T = G(θ0)
λκ2σ2 . This implies that

1
T

∑T−1
t=0 E

[
∥∇G(θt)∥2

]
≤ 4κ2σ2, which can only achieve 2κσ-stationary point. Putting two cases

together, we conclude that distributional RL can achieve max{τ, 2κσ}-stationary point (since τ can
be pre-given, while 2κσ is determined by the environment.)

F Implementation Details

Our implementation is directly adapted from the source code in [19]. For DAC (IQN), we consider the
quantile regression for the distribution estimation on the critic loss. Instead of using fixed quantiles
in QR-DQN [8], we leverage the quantile fraction generation based on IQN [7] that uniformly
samples quantile fractions in order to approximate the full quantile function. In particular, we fix
the number of quantile fractions as N and keep them ascending. Besides, we adapt the sampling as
τ0 = 0, τi = ϵi/

∑N−1
i=0 , where ϵi ∈ U [0, 1], i = 1, ..., N .

F.1 Hyper-parameters and Network structure

We adopt the same hyper-parameters listed in Table 1 and network structure as in the original
distributional SAC paper [19].

F.2 Best lk for DAC (C51)

As suggested in Table 1, after a line search for the hyperparameter tuning, we select lk as 500, 10,000,
15,000, 160, 50, 5,000, 500, 500 for ant, halfcheetah, humanoidstand, swimmer, bipedalwalkerhard-
core, humanoid, walker2d and reacher, respectively.

17

Table 1: Hyper-parameters Sheet.
Hyperparameter Value
Shared

Policy network learning rate 3e-4
(Quantile / Categorical) Value network learning rate 3e-4
Optimization Adam
Discount factor 0.99
Target smoothing 5e-3
Batch size 256
Replay buffer size 1e6
Minimum steps before training 1e4

DAC (IQN)
Number of quantile fractions (N) 32
Quantile fraction embedding size 64
Huber regression threshold 1

DAC (C51)
Number of Atoms (k) 51

Hyperparameter lk for C51 Max episode lenght
Walker2d-v2 500 1000
Swimmer-v2 160 1000
Reacher-v2 500 1000
Ant-v2 500 1000
HalfCheetah-v2 10,000 1000
Humanoid-v2 5,000 1000
HumanoidStandup-v2 15,000 1000
BipedalWalkerHardcore-v2 50 2000

G Equivalence between the loss function in Theorem 2 and mean squared loss
in Neural FQI

Proposition 3. (Equivalence between the first term in Decomposed Neural FZI and Neural FQI) In
Neural FZI, if the function class {Zθ : θ ∈ Θ} is sufficiently large such that it contains the target
{Yi}ni=1. As ∆ → 0, minimizing the first term in implies

P (Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1, ∀k. (23)

Proof. Firstly, we define the distributional Bellman optimality operator Topt as follows:

ToptZ(s, a)
D
= R(s, a) + γZ (S′, a∗) , S′ ∼ P (· | s, a), a∗ = argmax

a′
E [Z (S′, a′)] (24)

If {Zθ : θ ∈ Θ} is sufficiently large enough such that it contains ToptZθ∗ , then optimizing Neural
FZI in Eq. 2 leads to Zk+1

θ = ToptZθ∗ .

We apply the action-value density function decomposition on the target histogram function p̂s,a(x).
Consider the parameterized histogram density function hθ and denote hE

θ /∆ as the bin height in the
bin ∆E , under the KL divergence between the first histogram function 1(x ∈ ∆E) with hθ(x), the
objective function is simplified as

DKL(1(x ∈ ∆E)/∆, hθ(x)) ∝ −
∫
x∈∆E

1

∆
log

hE
θ

∆
dx ∝ − log hE

θ (25)

18

Since {Zθ : θ ∈ Θ} is sufficiently large enough, the KL minimizer would be ĥθ = 1(x ∈
∆E)/∆ in expectation. Then, argminhθ

lim∆→0 DKL(1(x ∈ ∆E)/∆, hθ(x)) = δE[Z target(s,a)],
where δE[Z target(s,a)] is a Dirac Delta function centered at E [Z target(s, a)] and can be viewed as a
generalized probability density function. This also applies from hθ to Zθ. In Neural FZI, we have
Z target = ToptZθ∗ . According to the definition of the Dirac function, as ∆ → 0, we attain

P (Zk+1
θ (s, a) = E

[
ToptZk

θ∗(s, a)
]
) = 1 (26)

Due to the linearity of expectation analyzed in Lemma 4 of [3], we have

E
[
ToptZk

θ∗(s, a)
]
= ToptE

[
Zk
θ∗(s, a)

]
= T optQk

θ∗(s, a) (27)

Finally, we obtain:
P (Zk+1

θ (s, a) = T optQk
θ∗(s, a)) = 1 as ∆ → 0 (28)

H Experimental Results on Acceleration Effects of Distributional RL

Same Architecture. For a fair comparison, we keep the same DAC network architecture and
evaluate the gradient norms of DAC (C51) and a variant of AC, which is optimized based on the
expectation of the represented value distribution within the DAC implementation framework. Figure 4
suggests DAC (C51) still enjoys smaller gradient norms than AC in this fair comparison setting.

0.2 0.4 0.6 0.8 1.0

5
0
5

10
15
20

lo
g

2

ant

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0

0

10

20

30
humanoid

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
5
0
5

10
15
20

walker2d

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0

5

0

5

10
bipedalwalkerhardcore

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10

0

10

20

30

lo
g

2

halfcheetah

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10
5
0
5

10
15

reacher

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10
5
0
5

10

swimmer

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10

0

10

20

30
humanoidstandup

AC
DAC(C51)

Figure 4: The critic gradient norms in the logarithmic scale during the training of AC and DAC (C51)
over five seeds on three MuJoCo games. We keep the same DAC network architecture and
evaluate based on the expectation of the represented value distribution.

Results under Return Density Decomposition We also provide gradient norms of both expectation
and distribution based on the Return Density Function decomposition in Eq. 6. Similar results can
still be observed in Figure 5.

19

0.2 0.4 0.6 0.8 1.0

5

0

5

10

lo
g

2

ant

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
5

0

5

10

15
humanoid

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
5.0
2.5
0.0
2.5
5.0
7.5

10.0
walker2d

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

bipedalwalkerhardcore

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10
5
0
5

10
15

lo
g

2

halfcheetah

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10

5

0

5

10
reacher

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10

5

0

5

swimmer

AC
DAC(C51)

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

10
5
0
5

10
15
humanoidstandup

AC
DAC(C51)

Figure 5: The critic gradient norms in the logarithmic scale during the training of AC and DAC (C51)
over five seeds on three MuJoCo games. Results of AC is the expectation part calculated via the
Return Density Function Decomposition.

20

	Introduction
	Related Work
	Preliminary Knowledge
	Optimization Analysis
	Optimization Analysis for Distributional RL within Neural Fitted Z-Iteration
	Stable Optimization Analysis under Uniform Stability
	Acceleration Effect of distributional RL

	Experiments
	Performance and Uniform Stability
	Acceleration Effect of Distributional RL

	Conclusion, Limitations and Future Work
	Derivation of Categorical Distributional Loss
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Theorem 2
	Implementation Details
	Hyper-parameters and Network structure
	Best lk for DAC (C51)

	Equivalence between the loss function in Theorem 2 and mean squared loss in Neural FQI
	Experimental Results on Acceleration Effects of Distributional RL

