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Q: What is the person wearing a pink hoodie in front 
of me doing?
A. Fixing the roof; B. Painting the door;
C. Painting the wall; D. Holding a ladder

GPT-4o: A
Gemini-2.0-Flash: B
Ground Truth: C

Human Attribute

Q: How many people
are there?
A. 1; B. 2; C. 3; D. 4

GPT-4o: C
Gemini-2.0-Flash: C
Ground Truth: B

Counting Egocentric View Orientation
Q: Where is the exit door?
A. Front; B. Right;
C. Left; D. Back
GPT-4o: B
o3: B
Ground Truth: D

Q: sitting in the gray sofa, where is the yellow chair?
A. Front-right; B. Front-left; C. Back-right; D. Back-left

GPT-4o: D
Gemini-2.0-Flash: D
Ground Truth: B

Scene Simulation

Relative Direction ODI ReasoningQ: Where is the blue car in 
respect to the red car on my left?
A. Front; B. Right; 
C. Back; D. Left

GPT-4o: D o3: B
Ground Truth: A

Q: Are they sitting in line?

GPT-4o: Yes
o3: Yes
Ground Truth: No

Q: From the perspective of the girl in red, where is the 
car?
A. Left B. Right C. Back D. Front

GPT-4o: B
Gemini-2.0-Flash: B
Ground Truth: D

Allocentric View Orientation

GPT-4o: C
Gemini-2.0-Flash: C
Ground Truth: B

Object Attribute

Q: What color is the shoulder bag of the person on 
my right wearing an orange top and jeans?”
A. Blue; B. White; C. Black; D. Red

Q: How many people are there?
A. 3 B. 4 C. 5 D. 6
Gemini-2.0-flash Direct Answer: C ✗

Step1: Viewpoint-
guided Answering

Step2:Grounding and
Refining of crop cues

Step3: Response 
Refinement

“C.”

“The images are 
helpful!”

“B.”✓

✗

O3
InternVL3-78B
Qwen2.5-VL-72B

O3
GPT-4o
InternVL3-78B

(a) Examples of ODI-Bench

(c) Illustration of Omni-CoT

(b) Benchmark Results of MLLMs

Figure 1: (a) We introduce ODI-Bench, a comprehensive benchmark for omnidirectional im-
age understanding, covering 10 diverse tasks. (b) 20 leading MLLMs are benchmarked with both
close-ended and open-ended evaluation. (c) To further improve model performance, we propose
Omni-CoT, a chain-of-thought framework that enhances MLLMs’ comprehension on omnidirec-
tional images via step-by-step reasoning.

ABSTRACT

Omnidirectional images (ODIs) provide full 360◦× 180◦ view which are widely
adopted in VR, AR and embodied intelligence applications. While multi-modal
large language models (MLLMs) have demonstrated remarkable performance on
conventional 2D image and video understanding benchmarks, their ability to com-
prehend the immersive environments captured by ODIs remains largely unex-
plored. To address this gap, we first present ODI-Bench, a novel comprehen-
sive benchmark specifically designed for omnidirectional image understanding.
ODI-Bench contains 2,000 high-quality omnidirectional images and over 4,000
manually annotated question-answering (QA) pairs across 10 fine-grained tasks,
covering both general-level and spatial-level ODI understanding. Extensive ex-
periments are conducted to benchmark 20 representative MLLMs, including pro-
prietary and open-source models, under both close-ended and open-ended set-
tings. Experimental results reveal that current MLLMs still struggle to capture the
immersive context provided by ODIs. To this end, we further introduce Omni-
CoT, a training-free method which significantly enhances MLLMs’ comprehen-
sion ability in the omnidirectional environment through chain-of-thought reason-
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Table 1: Comparison between widely adopted general benchmarks, omnidirectional benchmarks,
and our ODI-Bench. The first row group presents commonly used image benchmarks, the middle
row group includes two spatial benchmarks, and the last row group lists ODI benchmarks.

Benchmark #Images #QA Pairs #Question Type Visual Modality Max Reso. Real Scenes
Evaluation Dimension

QA Source
Open Close General Spatial

MMBench (Liu et al., 2024b) 3,217 3,217 20 2D image <1K ✓ ✗ ✓ ✓ ✗ Manual
MM-Vet (Yu et al., 2023) 200 218 16 2D image <6K ✓ ✓ ✗ ✓ ✓ Manual&Existed
ViewSpatial-Bench (Li et al., 2025) 1,000 5,700 5 3D Scene <1K ✓ ✓ ✗ ✗ ✓ Auto
VSI-Bench (Yang et al., 2025a) 29 5,000 8 NFOV Video <1K ✓ ✓ ✓ ✗ ✓ Auto
SSRBench (Liu et al., 2025) 789 789 6 2D Image - ✓ ✓ ✓ ✓ ✓ Auto
VQA 360◦ (Chou et al., 2020) 1,490 17,000 6 Indoor ODI 1K ✗ ✗ ✓ ✓ ✓ Auto
OSR-Bench (Dongfang et al., 2025) 4,100 153,000 3 Indoor ODI 1K ✗ ✓ ✗ ✗ ✓ Auto
Dense360-Bench (Zhou et al., 2025) 1,279 6,000 2 Indoor&Outdoor ODI - ✓ ✓ ✗ ✓ ✗ Auto
ODI-Bench (Ours) 2,000 4,254 10 Indoor&Outdoor ODI 12K ✓ ✓ ✓ ✓ ✓ Manual&Auto

ing across both textual information and visual cues. Both the benchmark and the
code will be released at https://github.com/ylylyl-sjtu/ODI-Bench.

1 INTRODUCTION

360◦ omnidirectional images (ODIs) have gained increasing attention nowadays. Unlike conven-
tional 2D images with limited field of views (FoVs), ODIs provide a full 180◦× 360◦ FoV with
rich scene information, enabling fully immersive viewing. Thus, ODIs are widely used in virtual
reality (VR), augumented reality (AR), spatial navigation, and hold great potential for embodied
intelligence (Yang et al., 2025b; Zheng et al., 2025). Although recent advances in multi-modal large
language models (MLLMs) have led to significant progress in conventional image understanding
across various benchmarks (Liu et al., 2024b; Yu et al., 2023), their ability to comprehend ODIs has
not been comprehensively evaluated, with existing benchmarks remaining insufficient. Compared
to conventional images, ODIs capture substantially richer visual information from omnidirectional
scenes and require higher-level spatial reasoning in immersive environments beyond a single front-
view perspective. These unique characteristics make ODI understanding a distinct and difficult
research challenge, highlighting the necessity to systematically evaluate MLLMs on this task.

Though a limited number of ODI understanding benchmarks have been proposed as shown in Ta-
ble 1, they generally suffer from one or more of the following issues: (1) Low resolution: since
many applications (such as VR, autonomous driving) requires high-resolution ODIs to provide im-
mersive viewing experience or 360◦ details, benchmarks with low resolution are impractical for
real-world application (Chou et al., 2020; Dongfang et al., 2025); (2) Limited scene diversity:
some benchmarks are developed with the assistance of 3D-annotated indoor datasets (Chou et al.,
2020; Dongfang et al., 2025), focousing only on indoor environments, or even unrealistic synthetic
indoor scenes with blurry top-bottom views; (3) Constrained question domains: Existing bench-
marks are automatically annotated, either leveraging existing 3D datasets or curated pipelines for
question generation, thus tend to exhibit strong textual biases and provide relatively narrow or sim-
plistic question types (Zhou et al., 2025); (4) Viewpoint limitation: for spatial understanding, exist-
ing ODI benchmarks are primarily designed from an egocentric perspective, neglecting allocentric
viewpoints and the simulation of user interactions. As a result, they fall short in evaluating the em-
bodied aspects of spatial understanding, which are critical for advancing embodied intelligence and
interactive multimodal systems.

To address these gaps, we introduce ODI-Bench, a novel ODI-oriented benchmark designed to com-
prehensively evaluate both the general-level and spatial-level understanding capabilities of MLLMs.
The question–answer pairs are derived from two complementary sources: (1) a rigorously designed
automated pipeline that generates reliable instance-level QA pairs, which are further checked and
refined by human experts, and (2) high-quality human annotations produced by three domain ex-
perts, whose works are carefully cross-checked to ensure reliability. The final benchmark contains
2,000 high quality real-life omnidirectional images, covering diverse indoor and outdoor scenes. 10
representative tasks are proposed to facilitate fine-grained and multi-perspective evaluation of the
performance of MLLMs under ODI settings, partially illustrated in Figure 1.

Unlike previous benchmarks that restrict the evaluation of each task to either a close-ended
(multiple-choice or true/false) or an open-ended QA setting, ODI-Bench evaluates every task un-
der both settings. This dual-format design enables a comprehensive and comparative assessment,
capturing both the recognition accuracy under constrained choice conditions and the model’s gen-
erative reasoning ability in unconstrained scenarios. Experimental results demonstrate that MLLMs
still struggle to comprehend the immersive environment presented by ODIs. To this end, we fur-
ther propose a training-free chain-of-thought framework, termed Omni-CoT, to improve MLLMs’
understanding capabilities on ODIs through step-by-step reasoning with viewpoint-guided scene
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interpretation and visual cue based refinement. This approach significantly enhances MLLMs’ com-
prehension on ODIs across both general and spatial-level tasks. Our contributions are summarized
as follows:

• We introduce ODI-Bench, a comprehensive benchmark for evaluating MLLMs on om-
nidirectional image understanding, which consists of 2,000 high-quality omnidirectional
images and over 4,000 QA pairs across 10 fine-grained tasks, covering both general and
spatial-level ODI understanding.

• We conduct an in-depth study to evaluate the ODI comprehension ability of 20 leading
MLLMs on our ODI-Bench, using both close-ended and open-ended settings to make
comprehensive and comparative analysis. Experimental results reveal the challenges of
MLLMs in understanding immersive ODI scenes.

• We propose Omni-CoT, a training free strategy to enhance MLLMs’ comprehension ca-
pabilities on omnidirectional scenes through chain-of-thought reasoning. Experimental
results demonstrate the effectiveness of the proposed framework on both propritary and
open-sourced models.

2 RELATED WORKS

2.1 GENERAL UNDERSTANDING BENCHMARKS

With the advancement of MLLMs, there is an increasing need for comprehensive and systematic
evaluation of their visual understanding capabilities. A number of benchmarks have been developed
to assess the general-level comprehension ability of MLLMs (Liu et al., 2024b; Yu et al., 2023;
Duan et al., 2025). However, as the performance of MLLMs has significantly improved, such gen-
eral benchmarks are no longer sufficient for thorough ability assessment. More recently, new bench-
marks are proposed to evaluate the spatial understanding ability of MLLMs (Yang et al., 2025a;
Liu et al., 2025), presenting new challenges for MLLMs on spatial understanding tasks. However,
while most of these benchmarks focus on 2D images or NFoV videos, the benchmarks specifically
designed for omnidirectional images are still scarce. Given their unique format and application sce-
narios, the ability to understand ODIs holds great potential for advancing not only MLLMs but also
vision-language-action (VLA) models.

2.2 OMNIDIREECTIONAL IMAGE UNDERSTANDING BENCHMARKS

A limited number of ODI understanding benchmarks are proposed to evaluate MLLMs’ understand-
ing of this unique type of images. Dense360-Bench (Zhou et al., 2025) introduces a QA curation
pipeline and further constructs a benchmark for general-level grounding and captioning tasks on
ODIs, but such tasks remain superficial and fall short in adequately evaluating spatial understanding
abilities. VQA 360◦ (Chou et al., 2020) constructs a benchmark for simple ODI understanding tasks,
but the image resolution is too low (1024 × 512), constraining its applicability in real-world sce-
narios. OSR-Bench (Dongfang et al., 2025) develops a pipeline for generating ODI spatial compre-
hension QA pairs from 3D datasets, yet it focuses solely on synthetic low-resolution indoor scenes,
limiting its applicability. In contrast, our ODI-Bench is the first to comprehensively benchmark both
the general-level and spatial understanding capabilities of MLLMs on ODIs, with carefully manu-
ally curated QA-pairs assisted by an automatic annotation pipeline, encompassing both high-quality
indoor and outdoor scenes.

3 ODI-BENCH

3.1 OVERVIEW OF ODI-BENCH

In this section, we introduce ODI-Bench, a benchmark for comprehensive evaluation of MLLMs on
omnidirectional image understanding.ODI-Bench consists of 2,000 real-world omnidirectional im-
ages covering diverse indoor and outdoor scenes, along with 4,254 question-answering pairs across
10 fine-grained tasks, offering both general-level and spatial-level ODI understanding evaluation.

3.2 IMAGE COLLECTION

The images in our benchmark are primarily web-crawled from Flickr and carefully selected to en-
sure both quality and diversity. The distribution of images is presented in Figure 2 (a) and (b). Com-
pared with existing omnidirectional image understanding benchmarks (Dongfang et al., 2025; Chou
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Figure 2: Data distribution in ODI-Bench.

et al., 2020) which are largely restricted to indoor environments and predominantly depict house-
like scenes rendered from 3D datasets, our benchmark covers diverse indoor and outdoor scenes,
ranging from human activity to natural landscapes, hereby enabling a comprehensive evaluation
across diverse scenarios. In addition, some exsiting benchmarks suffer from low image quality. For
instance, VQA 360◦ (Chou et al., 2020) consists of ODIs with blurry top and bottom views and the
image resolutions are limted to 1K, which restricts their practical value in real-world applications.
In contrast, as presented in Figure 2 (b), our benchmark is high quality, with sufficient resolution to
ensure both practical applicability and reliable benchmarking.

3.3 FINE-GRAINED TASK DEFINATION

Unlike previous works that evaluate MLLMs’ comprehension abilities on ODIs either at the general
level (Zhou et al., 2025) or the spatial level (Dongfang et al., 2025), or through a simple combination
of the two (Chou et al., 2020), we carefully design 10 fine-grained tasks tailored for comprehensive
ODI understanding, covering both general-level and spatial-level aspects, as shown in Figure 2.

General-level ODI understanding. Inspired by conventional 2D image understanding tasks, we
propose five main general-level tasks to evaluate MLLMs’ comprehension on common ODI sce-
narios. These tasks typically impose relatively low spatial reasoning requirements, while the main
challenges arise from the massive amount of visual information and distorted projections inherent
in ODIs. Among them, we define instance-level tasks, i.e., object-attribute and human-attribute, to
assess the models’ ability to accurately localize instances and extract visual information across wide
fields of view. In addition, we introduce counting and existence tasks to measure the models’ global
perception capabilities on omnidirectional images. Finally, we define a omnidirectional OCR task
to evaluate the models’ capability to extract textual information under distorted perspectives and
high-resolution conditions, including cross-view scenarios.

Spatial-level ODI understanding. Omnidirectional images project immersive 3D scenes onto a
2D plane, leading to substantial differences in spatial perception compared to conventional 2D im-
ages. In 2D images, the viewer is constrained to a single front-facing perspective, while ODIs
provide a full 360◦ field of view encompassing front, back, left, right, top, and bottom perspec-
tives. To evaluate the capability of MLLMs in handling such unique spatial characteristics, we
design dedicated spatial-level ODI understanding tasks. These include egocentric view orientation
and relative direction tasks, which adopt the viewer’s own perspective, as well as allocentric view
orientation and scene simulation tasks, which involve perspective-taking from another agent or a
virtual viewpoint. Furthermore, due to the equirectangular projection (ERP) format of ODIs, spa-
tial relationships and motion trajectories often become distorted and confusing. To address this, we
introduce an ODI-reasoning task, specifically designed to assess MLLMs’ ability to understand and
interpret ERP-related spatial properties in ODIs, as illustrated in Figure 1.

3.4 QUESTION-ANSWERING ANNOTATION

Instead of conventional phrasing in 2D images benchmarks (e.g., “What is [A] on the right side
of the image doing?”), we adopt an immersive question design tailored to the characteristics of
omnidirectional images, i.e., “What is [A] on my right doing?”. This first-person phrasing not only
aligns with the natural immersive viewing experience of ODIs but also serves to evaluate the ability
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(a) Image Collection

(b) Manual Annotation

Web-crawled
images

Manual
Selection

Wrong Format

Blurry Content

Diverse Scene

High Quality

✘
✘
✓
✓

Expert Annotation Cross Check

(c) Data Curation Pipeline

“What is the number 
of the train?”

“210”

Viewport

Split

Back

Grounded
SAM

Label:Man

(i) Instance 
Segmentation

(ii) Description 
Generation

Describe the instance in the image.

“A person wearing a red hoodie, 
dark pants, and a white mask”

Match✓(iii) QA
Generation “What color is the 

hoodie of the man with a 
mask on my back?”

“Red”

(iv) Choice 
Generation Unique Reference

Answer Accuracy

Plausible Choices

✓
✓
✓

Figure 3: Construction procedures of ODI-Bench. (a) The benchmark images are carefully selected
to ensure quality and diversity. (b) The majority tasks are manually annotated by human experts.
(c) Object Attribute and Human Attribute QA pairs are generated through a dedicated annotation
pipeline with human verification to guarantee quality.

of MLLMs to understand and utilize ODIs in interactive environments. For the QA construction
process, we adopt both automatic pipelines and manual annotation process for different tasks.

For instance-level QA generation, i.e., object attribute and human attribute, an automatic pipeline
is adopted as presented in Figure 3. The ERP-formatted image is first cubemap-projected into 6
non-overlapping viewpoints for lower distortion. After that, GroundedSAM (Ren et al., 2024) is
adopted to segment instances in each view, producing both segmentation masks and instance labels.
To ensure precise instance segmentation, instances spanning multiple views are filtered out. The re-
maining instances are cropped based on the segmentation masks and fed into Qwen2.5-VL-72B (Bai
et al., 2025b) for detailed caption. To ensure reliable instance selection, only those instances whose
predicted categories by GroundedSAM are consistent with the descriptions from Qwen-VL-72B are
retained. These captions are further utilized by GPT-4o to generate QA pairs. All the generated QAs
are manually refined to ensure (i) unique reference, so that each question clearly targets a single
instance; (ii) answer accuracy, guaranteeing the correctness of the provided answers.

For more complex tasks including counting, view-orientation and relative direction, etc., automatic
generation is not trust-worthy enough, thus manual annotation is employed for precision. The anno-
tation process took one month in VR environments with three expert participants, whose annotations
were cross-checked to guarantee accuracy. To construct close-ended evaluation, GPT-4o is adopted
to generate 3 distractor options based on the QA pairs and the corresponding omnidirectional im-
ages. Each multiple-choice question is accompanied by three distractors, which are further assessed
by human annotators to ensure their plausibility and to avoid semantic overlap with the correct
answer. To mitigate model bias, the options are randomly shuffled, thereby ensuring a balanced
distribution of correct answers across choices A to D.

4 EXPERIMENT

4.1 EVALUATION SETUP

We conduct comprehensive experiments on 20 leading MLLMs with different architectures and
parameter scales on our ODI-Bench. The models can be categorized into two groups: (1) proprietary
models, including GPT-4o (Hurst et al., 2024), o3 (OpenAI, 2025), Gemini (Comanici et al., 2025),
etc. (2) open-sourced models, including InternVL series (Zhu et al., 2025), Qwen-VL series (Bai
et al., 2025b), LLaVA-NeXT (Li et al., 2024b), LLava-OneVision (Li et al., 2024a), etc. All models
are evaluated using the same prompt template provided in the Appendix.

We believe that model performance may vary under different evaluation settings, i.e., close-ended
and open-ended conditions. Unlike prior benchmarks, we benchmark all models across all tasks us-
ing both close-ended formats (multiple-choice or yes/no) and open-ended formats, providing a com-
prehensive and comparrative assessment of their capabilities. For close-ended benchmark, model
performances are measured by their accuracy on multi-choice or yes/no questions. For open-ended
benchmark, we adopt the LLM-based evaluator (Yu et al., 2023), as detailed in the Appendix E.3.
Finally, we report the average score for each task.
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Table 2: Benchmark results for MLLMs under the close-ended evaluation setting.The tasks are de-
fined as follows: OA (Object Attribute), HA (Human Attribute), Exist. (Existence), Count. (Count-
ing), EVO (Egocentric View Orientation), AVO (Allocentric View Orientation), SS (Scene Simu-
lation), RD (Relative Direction), OR (ODI Reasoning). For each task, the best-performance is
indicated in bold and the second-best are underlined.

Overall
General Spatial

OA HA Exist. Count. OCR EVO AVO SS RD OR
Proprietary MLLMs

GPT-4o (Hurst et al., 2024) 55.79 74.43 67.76 65.50 49.42 74.38 43.24 32.49 39.60 57.55 53.50
Qwen-VL-Plus (Bai et al., 2025b) 53.85 74.51 68.75 43.00 52.33 67.77 46.13 29.98 34.80 50.61 49.00
Gemini-2.0-flash (Comanici et al., 2025) 57.12 73.03 69.41 66.50 52.33 80.16 48.10 32.91 40.20 61.13 54.00
o3 (OpenAI, 2025) 62.62 75.82 74.01 75.00 57.56 77.69 56.20 39.62 46.60 70.20 59.50

Open-sourced MLLMs
LLaVA-v1.5-7B (Liu et al., 2024a) 45.04 64.02 51.44 58.00 34.30 42.15 43.86 28.93 19.60 24.08 50.00
LLaVA-ov-0.5B (Li et al., 2024a) 44.25 61.21 61.26 42.00 44.77 27.27 30.61 29.77 35.40 50.20 32.00
idefics3-8B (Laurençon et al., 2024) 49.89 68.45 65.32 62.50 50.00 57.85 36.71 28.79 30.20 49.39 49.50
XComposer2 (Dong et al., 2024) 51.84 75.57 76.32 44.00 54.07 25.62 46.56 32.29 27.20 31.84 46.00
Deepseek-VL-1.3B (Lu et al., 2024) 42.02 55.66 50.00 52.50 39.53 29.75 39.02 28.18 28.00 23.27 49.00
LLava-Next-7B (Li et al., 2024b) 45.91 64.84 54.93 60.50 39.77 45.45 40.42 27.04 21.20 32.24 53.50
LLava-Next-34B (Li et al., 2024b) 52.24 70.57 62.17 54.50 45.93 45.45 47.42 26.42 38.00 45.71 57.50
glm-4v-9B (GLM et al., 2024) 53.20 70.41 64.14 69.00 54.65 69.42 44.29 32.91 30.80 43.27 57.50
MiniCPM-V 4.0 (Yao et al., 2024) 53.71 71.72 68.42 67.00 51.74 74.38 42.58 32.29 33.00 49.39 51.00
InternVL2.5-8B (Chen et al., 2024) 52.76 68.52 70.07 60.00 51.74 66.12 45.23 31.24 33.00 44.08 58.00
Qwen2.5-VL-3B (Bai et al., 2025b) 52.88 70.66 65.13 64.00 45.93 71.07 46.13 28.60 33.00 45.71 53.50
Qwen2.5-VL-32B (Bai et al., 2025b) 56.70 74.69 67.76 60.00 57.56 72.73 45.97 35.01 38.20 59.59 54.50
Qwen2.5-VL-72B (Bai et al., 2025b) 56.91 77.38 68.75 52.00 58.14 75.21 46.75 32.08 38.40 60.00 50.00
InternVL3-38B (Zhu et al., 2025) 57.91 75.57 76.32 69.00 54.07 76.86 46.56 32.29 40.40 55.92 56.50
InternVL3-78B (Zhu et al., 2025) 59.43 79.18 77.30 66.50 59.30 80.99 46.01 31.67 40.40 60.82 58.50
Intern-s1 (Bai et al., 2025a) 42.37 63.93 51.97 42.50 40.94 33.06 20.15 32.08 31.00 45.31 43.00

Baseline
Blind GPT-4o 36.39 58.93 42.43 17.00 17.44 29.75 21.96 29.14 31.60 29.80 25.50
Random Choice 26.93 25.00 25.00 50.00 25.00 25.00 25.00 25.00 25.00 25.00 41.00

Table 3: Benchmark results for MLLMs under the open-ended evaluation setting. For each task, the
best-performance is indicated in bold and the second-best are underlined.

Overall
General Spatial

OA HA Exist. Count. OCR EVO AVO SS RD OR
Proprietary MLLMs

GPT-4o (Hurst et al., 2024) 42.91 52.62 39.74 68.50 45.35 43.80 32.27 27.25 30.30 61.84 49.50
Qwen-VL-Plus (Bai et al., 2025b) 39.87 44.39 39.35 67.50 47.00 36.36 34.39 29.10 27.65 51.09 46.20
Gemini-2.0-flash (Comanici et al., 2025) 36.42 37.82 28.55 48.26 50.00 56.50 30.86 25.89 31.00 55.51 42.17
o3 (OpenAI, 2025) 49.53 55.49 45.36 69.50 50.00 52.89 45.40 34.59 39.60 62.04 59.10

Open-sourced MLLMs
LLaVA-v1.5-7B (Liu et al., 2024a) 32.29 35.02 32.07 56.50 24.42 9.504 28.28 25.47 26.60 45.10 43.50
LLaVA-ov-0.5B (Li et al., 2024a) 17.90 28.75 11.12 42.00 19.19 3.719 6.196 5.765 8.300 29.18 32.20
idefics3-8B (Laurençon et al., 2024) 27.93 31.50 28.16 65.00 43.60 27.27 16.75 15.41 20.60 37.35 37.90
XComposer2 (Dong et al., 2024) 28.36 30.12 20.92 48.00 34.88 1.652 23.13 25.79 23.00 42.65 43.15
Deepseek-VL-1.3B (Lu et al., 2024) 27.80 31.33 18.22 53.50 33.14 6.198 20.98 19.92 23.10 42.24 44.15
LLava-Next-7B (Li et al., 2024b) 30.52 36.58 32.24 60.50 40.12 12.81 21.04 22.01 17.60 38.78 44.45
LLava-Next-34B (Li et al., 2024b) 35.25 41.57 29.28 49.50 41.52 7.025 35.40 20.21 24.60 45.51 52.42
glm-4v-9B (GLM et al., 2024) 35.79 38.80 26.12 60.50 42.44 32.23 36.38 25.26 26.50 41.43 42.95
MiniCPM-V 4.0 (Yao et al., 2024) 32.52 36.02 30.56 57.00 43.60 38.43 29.34 24.32 21.04 46.53 36.25
InternVL2.5-8B (Chen et al., 2024) 30.86 33.52 22.34 62.00 39.53 34.71 21.96 25.68 20.40 38.98 51.55
Qwen2.5-VL-3B (Bai et al., 2025b) 38.91 40.80 39.64 63.50 41.86 41.32 35.77 28.09 26.80 47.35 56.20
Qwen2.5-VL-32B (Bai et al., 2025b) 37.67 39.56 26.34 62.00 42.44 30.91 36.47 30.21 30.43 50.41 44.25
Qwen2.5-VL-72B (Bai et al., 2025b) 39.49 45.89 35.14 63.00 42.44 39.55 34.91 24.10 27.60 54.39 47.75
InternVL3-38B (Zhu et al., 2025) 40.96 48.11 39.57 59.00 40.94 38.43 34.66 29.77 27.60 54.08 52.62
InternVL3-78B (Zhu et al., 2025) 42.52 47.05 43.91 62.00 57.56 48.76 35.58 29.77 29.82 53.27 53.95
Intern-s1 (Bai et al., 2025a) 42.12 46.30 41.68 53.50 63.95 40.50 34.72 31.87 30.80 52.04 58.85

4.2 MAIN RESULTS

Close-ended and open-ended performances of all models across all tasks are reported in Table 2
and Table 3, respectively. For the close-ended evaluation, we additionally include GPT-4o without
image input (Blind GPT-4o) and chance-level accuracy as baselines for comparison.

4.2.1 OVERALL PERFORMANCE

As illustrated in Table 2, proprietary models achieve the strongest overall performance under both
the close-ended and open-ended evaluation settings, where ChatGPT o3 attaining the top overall
score of 62.62 and 49.53, respectively. Open-source models also show competitive results, in which
Qwen2.5-VL-72B and InternVL3-78B even outperforming GPT-4o. However, the results are still
far from satisfactory, revealing that current MLLMs still struggle to comprehend the immersive
environments presented by omnidirectional images. Besides, the best-performing model (o3) ex-
ceeds the Blind GPT-4o baseline by less than 30% accuracy under close-ended setting, suggesting
that MLLMs still struggle to comprehend the rich visual information conveyed by ODIs.
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4.2.2 TASK-WISE PERFORMANCE

From both the close-ended and open-ended evaluations, it is evident that ODI spatial understand-
ing is substantially more challenging than general understanding. For general-level tasks such
as attribute recognition, existence verification, and OCR, the complexity of immersive environments
increases task difficulty; nevertheless, models can still partially interpret ERP images from a 2D per-
spective and thereby produce correct answers, which aligns with their already strong capabilities in
2D general-level understanding. However, for tasks more closely related to spatial comprehension,
i.e., counting, model performance drops significantly (by about 20% compared with attribute recog-
nition tasks).

The challenge becomes even more pronounced for tasks that fully rely on immersive spatial compre-
hension. Since current MLLMs are primarily trained on 2D data, their spatial reasoning capabilities
are inherently limited. These limitations become especially obvious when it comes to omnidirec-
tional comprehension requiring immersive spatial understanding, where model performance drops
greatly compared to general-level tasks, only slightly above the random choice baseline. This issue
is particularly evident in non-egocentric spatial reasoning tasks, i.e., allocentric view orientation and
scene simulation, which are already difficult in conventional 2D images (Li et al., 2025). In the
ODI setting, these tasks pose an even greater challenge, with model performance only marginally
surpassing (or even falling below) that of the Blind GPT-4o baseline, suggesting that current models
still fall short in capturing the spatial information conveyed by omnidirectional images.

4.3 CLOSED VERSUS OPEN EVALUATION

Comparing Table 2 and Table 3, we observe that model performance differs greatly between closed
and open-ended QA settings. The findings demonstrate the necessity for conducting both closed
and open-ended benchmarks. For tasks with a unique ground truth, i.e., counting and OCR, we
can directly compare their performance across the two tables. The performance of these two tasks
generally drops, indicating that the choices may provide a hint for the MLLMs. Interestingly, not
all answer choices produce a positive effect. We observe cases where a model provides a correct
response in the open-ended setting but selects the wrong option in the close-ended format. This
discrepancy suggests that the presence of predefined options may sometimes introduce interference,
and further reflects a potential difference between the model’s generative reasoning in open-ended
tasks and its discriminative reasoning in multiple-choice tasks.

We further observe that the model performance divergence is more evident in the open-ended set-
ting, especially on spatial-level tasks, where models exhibit significantly larger variations. Un-
like multiple-choice questions, where the given options constrain the answer space, open-ended
responses can better reveal the differences between MLLMs’ reasoning and that of humans. For
example, in the egocentric view orientation task, when no explicit constraints are imposed, models
rarely produce ego orientation terms. Instead, they tend to describe orientations in relative terms.
However, even when explicitly instructed to output absolute orientations, the models’ performance
remains unsatisfactory. This suggests that MLLMs do not naturally reason about immersive ODI
scenes in a human-like manner, i.e., by first engaging in perspective-taking and then conducting
relative spatial analysis. Instead, their reasoning still resembles processing a warped 2D image.

5 OMNI-COT: IMPROVING MLLMS UNDERSTANDING OF ODIS

In this section, we propose Omni-CoT, a training-free framework for improving MLLMs under-
standing capabilities on omnidirectional images by leveraging a human-like step-by-step chain-of-
thought reasoning strategy, including viewpoint-guided answering, crop cue grounding and refining,
and response refinement.

5.1 FRAMEWORK OVERVIEW

5.1.1 VIEWPOINT GUIDED ANSWERING

Unlike conventional images, ODI comprehension requires MLLMs to extract viewpoint cognition
from the projected ERP-format images. However, as analysed in Section 4.3, MLLMs often per-
ceive ODIs merely as warped 2D images rather than reasoning within the immersive full-view set-
ting, which poses a significant challenge even for proprietary models. In 2D image comprehension,
spatial understanding is often enhanced either through large-scale training or by incorporating prior
information generated from 3D models (Yang et al., 2025a; Li et al., 2025). However, training-based
approaches are resource-intensive and may overfit to the training data, While 3D-derived features
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Step 1: Viewpoint-Guided Answering
Direct Answering

Q: Are the two beds positioned side 
by side?

A: Yes. (Ground Truth)

“No.”✘

Omni-CoT

Describe the <viewpoint> image.

“The image shows a bedroom with a 
bed covered in a striped blanket …”

You are given a omnidirectional image and the views 
summarizes:
Right: <right view description>
Front:…
…
Answer the question: …

“No.”✘

Step 2: Grounding and Refining of Crop Cues
Crop:
You are given a omnidirectional image…
The question is…
Provide one or more grounding boxes with normalized 
coordinates related to the question

[{'x1': 0.09, 'y1': 0.47, 'x2': 0.41, 'y2': 0.99}, 
{'x1': 0.68, 'y1': 0.47, 'x2': 0.99, 'y2': 0.99}]

Refine:
Is the image relevant to the question?

“No” “Yes”

Step 3: Response Refinement
Your previous answer is <No.>
Based on the crop from <Right>, 
rethink your answer:

“Yes”✓

Figure 4: We introduce Omni-CoT, The framework enhances VLMs’ comprehension of omnidi-
rectional images via chain-of-thought reasoning through three steps: viewpoint-guided answering,
grounding and refinement of crop cues, and response refinement. Compared with direct answering,
Omni-CoT achieves notable performance improvements.

can provide useful cues, reliance on external models is often insufficient and not widely applicable.
To this end, We aim to explore training-free approaches to enhance MLLMs’ understanding of ODIs
by leveraging internal scene information through step-by-step reasoning.

A straightforward approach is to feed ODIs along with the multi-view images splitted from them
into MLLMs, effectively guiding the models to view the ODIs in a human-like way by incorporat-
ing viewpoint information. However, this approach is not practically feasible, as omnidirectional
images inherently have high resolution, combining them with high-resolution multi-view inputs can
easily exceed the model’s maximum input capacity, leading to failure. Moreover, high-resolution
multi-view inputs generate a large number of image tokens, most of which are redundant or ir-
relevant, potentially hindering the model’s ability to focus on the critical information within the
omnidirectional images.

To this end, we propose a more efficient approach by guiding MLLMs to explore the immersive
environment presented by ODIs using compact textual prompts rather than additional image inputs,
as presented in Figure 4. Specifically, multi-view images are first extracted from the inverse sphere
projection to generate six perspective views, i.e., top, bottom, right, left, front and back. Subse-
quently, we use the MLLM to generate captions for each of the six viewpoints, capturing the key
information contained in each view. By integrating these captions with the corresponding orien-
tation information, the model can acquire a coarse understanding of the surrounding environment,
thereby enhancing its global perception of the omnidirectional scene.

5.1.2 CROP CUE GROUNDING AND REFINEMENT

Directly extracting visual information from the full warped ERP image can be challenging for
MLLMs. To address this, we propose a crop cue projection strategy. The MLLM is tasked with iden-
tifying the most relevant image crops, from which narrow-FoV crops are extracted as low-distortion
visual cues to aid ODI comprehension. For a grounding box (x1, y1, x2, y2) where (x1, y1) and
(x2, y2) represent the normalized coordinates of the top-left and bottom-right corners, respectively,
the spherical parameters of the narrow-FoV crop, i.e., the spherical coordinates of the narrow-FoV
cue’s center (θ, ϕ) and the approximate FoV fov are computed as:

θ = −180◦ +
cx
W

· 360◦, ϕ = 90◦ − cy
H

· 180◦, (1)

fovw = (x2 − x1) · 360◦, fovh = (y2 − y1) · 180◦, (2)

fov = clip
(
max(fovw,fovh) + margin, 30◦, 120◦

)
(3)

where (cx, cy) is the center of the crop, W and H are the width and height of the ERP image,
respectively, margin is an optional angular expansion to avoid overly tight cropping, and clip(·)
limits the FoV to a reasonable range.

However, since grounding may not always be accurate, relying solely on it can introduce unnec-
essary distractors. Therefore, we introduce a refinement mechanism, where the MLLM is queried
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Table 4: Performance of Omni-CoT on ODI-Bench, better performances over baseline are bolded.
Method Overall

General Spatial
OA HA Exist. Count. OCR EVO AVO SS RD OR

o3 62.62 75.82 74.01 75.00 57.56 77.69 56.20 39.62 46.60 70.20 59.50
(w/ Viewpoint Guiding) 68.78 75.57 75.66 78.00 55.81 77.69 81.23 41.93 54.80 68.57 62.00
∆(↑) +6.16 -0.25 +1.65 +3.00 -1.75 +0.00 +25.03 +2.31 +8.20 -1.63 +2.50
(w/ Omni-CoT) 70.03 76.15 75.66 81.00 64.53 78.51 82.60 42.98 55.20 71.02 62.00
∆(↑) +7.41 +0.33 +1.65 +6.00 +6.97 +0.82 +26.40 +3.36 +8.60 +0.82 +2.5
GPT-4o 55.79 74.43 67.76 65.50 49.42 74.38 43.24 32.49 39.60 57.55 53.50
(w/ Viewpoint Guiding) 61.67 73.69 65.28 74.00 54.07 76.03 70.06 37.31 39.80 53.88 56.50
∆(↑) +5.88 -0.74 -2.48 +8.50 +4.65 +1.65 +26.82 +4.82 +0.20 -3.67 +3.00
(w/ Omni-CoT) 62.08 73.77 68.42 75.00 54.07 76.03 71.53 37.94 37.60 52.65 58.50
∆(↑) +6.17 -0.66 +0.66 +9.50 +4.65 +1.65 +28.29 +5.45 -2.00 -4.90 +5.00
Gemini-2.0-flash 57.12 73.03 69.41 66.50 52.33 80.16 48.10 32.91 40.20 61.13 54.00
(w/ Viewpoint Guiding) 62.95 73.60 68.75 75.50 55.23 83.47 72.64 35.85 41.00 62.45 54.00
∆(↑) +5.83 +0.57 -0.66 +9.00 +2.90 +3.31 +24.54 +2.94 +0.8 +1.32 +0.00
(w/ Omni-CoT) 63.89 73.77 69.41 76.50 57.56 84.30 74.36 36.06 42.20 62.45 55.50
∆(↑) +6.77 +0.74 +0.00 +10.00 +5.23 +4.14 +26.26 +3.15 +2.00 +1.32 +1.50
Qwen2.5-VL-72B 56.91 77.38 68.75 52.00 58.14 75.21 46.75 32.08 38.40 60.00 50.00
(w/ Viewpoint Guiding) 64.51 76.39 73.02 66.50 55.49 77.87 76.07 37.31 46.61 54.89 51.00
∆(↑) +7.60 -0.99 +4.27 +14.50 -2.65 +2.66 +29.32 +5.23 +8.21 -5.11 +1.00
(w/ Omni-CoT) 65.41 76.80 74.01 66.50 54.32 77.87 80.12 37.74 45.20 56.33 51.50
∆(↑) +8.50 -0.58 +5.26 +14.50 -3.82 +2.66 +33.37 +5.66 +6.80 -3.67 +1.50
InternVL2.5-8B 52.76 68.52 70.07 60.00 51.74 66.12 45.23 31.24 33.00 44.08 58.00
(w/ Viewpoint Guiding) 55.76 68.77 72.69 63.00 49.42 80.17 52.39 34.38 34.40 48.98 60.50
∆(↑) +3.00 +0.25 +2.62 +3.00 -2.32 +14.05 +7.16 +3.14 +1.40 +4.90 +2.5
(w/ Omni-CoT) 58.04 71.48 72.69 63.50 52.33 80.99 58.28 35.64 34.40 49.39 61.50
∆(↑) +5.28 +2.96 +2.62 +3.50 +0.59 +13.97 +13.05 +4.40 +1.40 +5.31 +3.50

Table 5: Ablation studies of Omni-CoT on ODI-Bench
Model Strategy Performace

Viewpoint Guiding Crop Grounding Crop Refinement Overall General Spatial

Gemini-2.0-flash 57.12 70.49 45.05
✔ 63.07 72.08 54.94
✔ ✔ 62.79 71.79 54.67
✔ ✔ 58.29 67.67 49.83

✔ ✔ 55.88 70.05 43.09
✔ ✔ ✔ 63.89 72.63 56.01

InternVL2.5-8B 52.76 66.33 40.53
✔ 55.76 67.82 44.88
✔ ✔ 53.71 65.79 42.83
✔ ✔ 48.93 54.29 44.12

✔ ✔ 50.52 66.78 35.85
✔ ✔ ✔ 58.04 69.81 47.43

again to label the relevance of each crop with respect to the question as “yes” or “no”, and only the
crops deemed relevant are fed back to the model to assist the response refinement step.

5.1.3 RESPONSE REFINEMENT

Finally, the ODI, along with the viewpoint captions, as well as the crop cues with their orientation
information derived from the spherical coordinates, is fed back to assist in refining the response.
The model is provided with its previous answer and prompted to rethink the answer based on the
crop cues. As illustrated in Figure 4.

5.2 OMNI-COT PERFORMACE

5.2.1 PERFORMANCE IMPROVEMENT ON ODI-BENCH

We conduct close-ended experiments on o3, GPT-4o, Gemini-2.0-flash, Qwen2.5-VL-72B and
InternVL2.5-8B to validate the effectiveness of our framework on both proprietary and open-sourced
MLLMs, the results are presented in Table 4. As indicated in the table, viewpoint guiding serves as
a key component for performance improvement, especially on spatial-related tasks. Moreover, the
models performance could be overall further improved with the aid of crop cues.

5.2.2 ABLATION STUDIES

We conduct ablation experiments to validate the effectiveness of each step in Omni-CoT, with results
presented in Table 5. The results indicate that relying on direct grounding and cropping introduces
unnecessary crops, which can degrade model performance. However, the proposed crop refine-
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Table 6: More hyperparameter ablation of Omni-CoT on ODI-Bench, best performances are
bolded.

Method Overall
General Spatial

OA HA Exist. Count. OCR EVO AVO SS RD OR
GPT-4o 55.79 74.43 67.76 65.50 49.42 74.38 43.24 32.49 39.60 57.55 53.50
Omni-CoT (80◦ FoV) 60.27 66.39 68.09 74.50 52.91 75.21 73.37 37.73 38.60 52.65 58.00
Omni-CoT (100◦ FoV) 60.71 67.29 67.11 74.50 54.07 73.55 72.27 37.73 40.40 55.10 60.50
Omni-CoT (90◦ FoV ) (Ours) 62.08 73.77 68.42 75.00 54.07 76.03 71.53 37.94 37.60 52.65 58.50

Table 7: Performance comparison of multi-view input, video input and proposed Omni-CoT, best
performances are bolded.

Method Overall
General Spatial

OA HA Exist. Count. OCR EVO AVO SS RD OR
GPT-4o 55.79 74.43 67.76 65.50 49.42 74.38 43.24 32.49 39.60 57.55 53.50
(multi-view input) 56.01 74.10 67.11 71.00 53.49 76.03 45.15 32.91 37.60 52.24 54.00
(w/ Omni-CoT) 62.08 73.77 68.42 75.00 54.07 76.03 71.53 37.94 37.60 52.65 58.50
Gemini-2.0-flash 57.12 73.03 69.41 66.50 52.33 80.16 48.10 32.91 40.20 61.13 54.00
(multi-view input) 54.63 72.95 64.46 46.50 55.81 63.64 49.57 28.30 37.00 55.92 55.50
(video input) 55.34 70.66 67.11 67.00 48.84 67.77 48.59 30.40 36.00 66.12 52.50
(w/ Omni-CoT) 63.89 73.77 69.41 76.50 57.56 84.30 74.36 36.06 42.20 62.45 55.50
InternVL2.5-8B 52.76 68.52 70.07 60.00 51.74 66.12 45.23 31.24 33.00 44.08 58.00
(multi-view input) 51.97 70.49 71.38 62.50 47.67 76.86 39.14 22.22 33.60 51.02 58.00
(video input) 50.63 68.85 71.38 64.00 43.60 61.16 36.32 23.27 34.00 53.88 60.00
(w/ Omni-CoT) 58.04 71.48 72.69 63.50 52.33 80.99 58.28 35.64 34.40 49.39 61.50

ment step filters out irrelevant crops, thereby mitigating this negative effect and further boosting
performance beyond the baseline with viewpoint guiding. Besides, viewpoint guiding serves as
the fundamental component to improve model comprehension of spatial understanding, while crop
grounding supplies the model with important visual cues for comprehensive understanding.

We further conduct hyperparameter ablations on GPT-4o to evaluate the effectiveness of the per-
spective FoV settings in Omni-CoT. As shown in Table 6, using a field of view of 90◦ leads to the
best overall performance, supporting the rationality of our chosen configuration.

5.2.3 COMPARISON EXPERIMENTS

We provide additional baseline comparisons using both multi-view images and video-based inputs.
For the multi-view setting, each omnidirectional image is projected into 12 perspective views (front,
front-right, right, right-back, back, left-back, left, left-front, top-front, top-back, bottom-front, and
bottom-back) and fed into the VLMs along with their orientation information. For the video set-
ting, we convert each omnidirectional image into a 12-second, 60-FPS video that smoothly rotates
through the front, right, back, left, and front views, followed by the top and bottom views. Besides,
in Table 7 in the supplementary material, we compare the performance of Zero-shot CoT with our
proposed Omni-CoT.

The results are presented in Table 7. Though multi-view and video-based inputs offer improve-
ments on relative-direction and ODI reasoning tasks, they do not yield clear overall performance
gains. Besides, their effectiveness is further limited by the models’ inherent constraints in han-
dling multi-image or video inputs. While Zero-shot CoT provides minimal improvements on model
performance, no clear improvement is observed in spatial-level tasks. In contrast, Omni-CoT con-
sistently achieves the best results across all evaluated models, demonstrating its effectiveness and
superiority over other inference pipelines. The experiment further highlights the necessity of our
dedicated reasoning strategies tailored for omnidirectional image understanding.

6 CONCLUSION

In this work, we introduce ODI-Bench, a comprehensive benchmark for evaluating MLLMs’ ability
to understand immersive environments presented by omnidirectional images. ODI-Bench consists
of 2,000 high-quality omnidirectional images and over 4,000 question-answering pairs spanning 10
fine-grained tasks, covering both general-level and spatial-level understanding. We benchmark 20
leading MLLMs using both close-ended and open-ended evaluation settings. Our in-depth analysis
of the experimental results reveals that current MLLMs still underperform on omnidirectional image
understanding. To address this, we further propose Omni-CoT, a training-free approach to enhance
MLLMs’ comprehension on omnidirectional images through chain-of-thought reasoning. Overall,
ODI-Bench provides a rigorous yardstick for both evaluating and improving MLLMs on immersive
environment understanding presented by ODIs.
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