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Abstract

Spatial organization of different cell types in tissues have been shown to be impor-
tant factors in many important biological processes such as aging, infection and
cancer [3]]. In particular, organization of the cells in a tumor microenvironment
(TME) has been shown to play a crucial role in treatment response, disease pathol-
ogy and patient outcome [14]. Spatial LDA [J5] is a general purpose probabilistic
model that has been used to discover novel microenvironments in settings such
as Triple Negative Breast Cancer (TNBC) and Tuberculosis infections. However,
the implementation of Spatial LDA proposed in [5] uses variational inference for
learning model parameters and unfortunately does not scale well with dataset size
and does not lend itself to speed-up via GPUs / TPUs. As researchers begin to
collect larger in-situ multiplexed imaging datasets, there is a growing need for
more scalable approaches for analysis of microenvironments. Here we propose a
VAE-style network which we call Neural Spatial LDA extending the auto-encoding
Variational Bayes formulation of classical LDA from [[18]. We show Neural Spa-
tial LDA achives significant speed-up over Spatial LDA while at the same time
recovering similar topic distributions thus enabling its use in large data domains.

1 Introduction

The development of in-situ multiplexed profiling techniques, has enabled high-dimensional measure-
ments of the abundance of protein & expression of genes while preserving spatial information [[12} 4}
19,117,116, 11} 16l]. For example, Keren et al. [8] characterized tumor-immune microenvironments
in TNBC using Multiplixed Ion Bean Imaging by Time Of Flight (MIBI-ToF) [9] and categorized
microenvironments into three types based on the spatial organization of tumor and immune cells and
further demonstrated that these microenvironments stratified patient survival in their cohort. Similarly,
Mccaffrey et al.[13] identified specific immuno-suppressive microenvironments in Tuberculosis
granulomas which were associated with patient outcomes. Both examples demonstrate the potential
for spatial analysis to yield prognostically relevant markers of disease.

While there exist various techniques to delineate cellular microenvironments [8, [15]], in our work we
focus on accelerating Spatial Latent Dirichlet Allocation (Spatial LDA) [5] which models cellular
microenvironments in a probabilistic manner using topic models that incorporate a spatial prior - that
neighboring microenvironments are more likely to have similar distribution of cell types. The current
implementation of Spatial LDA uses mean field variational inference for determining the posterior
distribution of the parameters of the generative model and does not leverage modern accelerators like
GPUs or TPUs. As a result it takes hours to fit a model to even moderately sized datasets today.
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In this work, we propose an encoder-decoder style network based on auto-encoding Variational Bayes
LDA |18 with spatial regularization of discovered topics, which we call Neural Spatial LDA. Our
implementation of Neural Spatial LDA runs on GPUs / TPUs and we show on several previously
published datasets that the microenvironments detected by Neural Spatial LDA are similar to Spatial
LDA but with significantly faster training and inference times. Finally, reformulating Spatial LDA
as Neural Spatial LDA also opens the possibility of further extensions to the Spatial LDA family of
models, for example enabling supervised variants to specifically find microenvironments that are
predictive of patient outcomes or regional annotations, extensions that we are currently exploring.

2 Neural Spatial LDA

As in Spatial LDA[S], we cast the identification of micro-environments from multiplexed images as
a topic modeling problem, where a microenvironment is considered a document, unordered set of
cells that belong to a microenvironment are analogous to words in a document. The task then is to
identify both distribution cells / words per topic and distribution of fopics for each microenvironment
/ document using cell counts. First, we briefly review LDA [2] and Spatial LDA, we then describe the
auto-encoding Variational Bayes version of Spatial LDA. Spatial LDA assumes the data to have a
generative process as follows,
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Let us consider each in-situ profiled image to be a graph G with vertices V = {v;, ...vy } representing
microenvironments and edges £ with each e;; € £ denoting an edge from vertex v; to v;. Spatial
LDA adds a Laplacian constraint over every pair of c; & a; of microenvironments v; & v; that are
connected by an edge e;; and introduces a hyperparameter o controling the strength of this prior
over topic distributions of microenvironments. Intuitively, the graph G defines neighborhoods that
should have similar topic distributions and ¢ controls how strongly that inductive bias is enforced.
The rest of the generative process is a standard LDA model with each cell w,, being sampled by first
choosing a topic distribution @, from a Dirichlet prior parameterized by «, then choosing a topic
z,, and then further choosing a cell from the categorical distribution of cells parameterized by 3, .
Here, K represents the number of topics and V' represents the size of the vocabulary.

Note that, in the limit where the graph G is a fully connected graph (i.e.) £ = {e;; | V(4,7) €
{1,..,N},i # j} and 0 — 0, all &’s are constrained to be the same and Spatial LDA reduces to
classical LDA. In that scenario, all microenvironments are assumed to have the same cell distributions
and spatial information is lost. In order to capture spatial structure in multiplexed images Spatial
LDA defines a graph that captures spatial relationships between local neighborhood of cells. In the
original paper, the authors suggest defining £ by taking the Voronoi partitioning of neighborhood
positions and connecting neighborhoods that share a facet in Voronoi partitions.

Spatial LDA then uses mean field variational inference for learning the parameters of the model by
optimizing the Evidence Lower BOund (ELBO) shown in (1) where -y, ¢, & are variational parameters
for approximating distributions parametrized by 0, z, o respectively.
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Figure 2: Comparison of KL-divergence of topic distributions between pairs of cells inferred using
Spatial LDA and Neural Spatial LDA for Simulated (left) using 50k random pairs, Mouse spleen
(center) using 50k random pairs & TB (right) using 10k random pairs.

Owing to the conjugacy of categorical and Dirichlet distributions, the coordinate update steps have
a closed form in classical LDA, while Spatial LDA involves optimizing a non-smooth function
for the variational parameter £, due to the presence of the Laplacian prior. This was overcome by
using alternating direction method of multipliers (ADMM) + primal-dual interior point optimization
approaches (we refer the reader to Spatial LDA[S]] for the exact update steps). We observe that these
optimization steps do not scale well with the number of data points compared to gradient based
methods for training modern deep neural networks. In addition, parameter updates of Spatial LDA
are not optimized to run on GPUs / TPUs. Therefore, to enable faster training and inference, we
propose to use auto-encoding Variational Bayes (AEVB)[10] for Spatial LDA.

Srivastava et al.[18]] proposed two key ingredients that made it possible to apply the re-parametrization
trick to classical LDA. Specifically, 1) Marginalize out the discrete variables z’s 2) Replace Dirichlet
prior with Logistic Normal with diagonal covariance in softmax basis. Logistic normal could be easily
re-parametrized by sampling from the standard normal as, B, zxr(u,5)[f(2)] = Eenro,n)[f (01 +

> €))] where p represents the softmax function. Neural Spatial LDA uses these two ideas along
with spatial regularization as given below,

2.1 Spatial Regularization

The final piece in the puzzle and our main contribution is to enforce spatial regularization on topic
distribution of microenvironments. This could be done through two different ways, 1) sample
a’s such that they obey p(a) Heﬁes Laplace(o; — a5, 0) and compute prior p(f|a, o) =
LN (8|, 0; p, X) that will impose the constraint through the KL-term of the ELBO or 2) apply
the Laplacian constraint directly on p’s. Since VAEs learn variational posteriors are far away
from the original priors they start with after training, we opted to apply L1 constraint on p’s of
microenvironments that are connected via an edge in G. The final objective function for our proposed
Neural Spatial LDA is the following,
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3 Experiments

We applied Neural Spatial LDA to three different datasets - 1) Simulated: A simulated dataset with
known ground truth topic distribution and "cell" distribution under each topic (details in Appendix).
2) Mouse spleen: A dataset of CODEX images of mouse spleen with a panel of 30 different antibodies
from [7]. 3) TB: A dataset of MIBI images of granulomas in Tuberculosis patients from [13]].

As in the original Spatial LDA paper, we preprocess CODEX and MIBI-ToF multichannel images to
segment cells using DeepCell [1]. Then we get mean expression profiles of each cell and then cluster
these profiles using FlowSOM [20]. We then associate cell index to each cluster and then get the
count of different types of cells in a spatial neighborhood of each cell. The cell counts of different
cell types around a spatial neighborhood constitute a microenvironment and we use them as input
features.
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Figure 3: Qualitative comparison of the most probable topic for each cell between Spatial LDA and
Neural Spatial LDA on (a) Simulated data () Mouse spleen (c¢) Tuberculosis data with number of
topics set to three.
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Figure 4: Training (Left) & Inference (Right) time difference between Spatial LDA and Neural Spatial
LDA on all three datasets for different number of topics.

To qualitatively evaluate whether Spatial LDA and Neural Spatial LDA infer similar topic distributions
to various microenvironments, we run Spatial LDA, & Neural Spatial LDA on all three datasets and
color each cell by its most probable topic. From Fig.[[3]], we observe that Spatial LDA and Neural
Spatial LDA groups similar regions of cells into similar topics across all three datasets. (note: the
topics are matched manually after training since the order of the topics is not guaranteed to match)

To quantitatively measure the similarity between topic distributions learnt by both methods, we
randomly sample pairs of cells from each image without replacement, compute the KL-divergence
between the topic distributions of pairs of cells and report the Spearman correlation between Spatial
LDA and Neural Spatial LDA. Our intuition is that this KL divergence should capture the similarity
between 2 neighborhoods under each model and a high correlation indicates that Spatial and Neural
Spatial LDA both capture similar notions of similarity / differences in neighborhoods. This also
allows us to evaluate the agreement between Spatial and Neural Spatial LDA in a way that is agnostic
to reordering of topics. We see from Fig.[2]], that Spatial LDA and Neural Spatial LDA yields highly
correlated KL-divergences between topic distributions for the same pairs of cells indicating good
agreement between the two methods. We note that we expect some differences in KL-divergence
due to the approximations described above - marginalizing z’s & replacing Dirichlet with Logistic
Normal, as well as differences - in optimization co-ordinate ascent vs gradient descent - used for
inference.

Next, we measure the time it takes for Spatial LDA and Neural Spatial LDA to train using the same
machine, with Spatial LDA was run on the CPU as it was not optimized to run on GPUs while
Neural Spatial LDA was run a single Titan RTX. The stopping criteria for Spatial LDA is set to be
the same number of iterations used in the original work while Neural Spatial LDA was trained til
convergence of the ELBO. From Fig.[d]l, we could see that AEVB version of Spatial LDA achieves
~84%, ~95% & ~90% reduction in training times on Mouse spleen, Simulated & Tuberculosis
datasets respectively.

4 Conclusion

Spatial LDA is a probabilistic model used to identify TMEs in an unsupervised way but its inability to
utilize GPUs / TPUs and slow training and inference limits its use in large data domain applications.
We propose Neural Spatial LDA and show on previously published datasets that we recover similar
microenvironments while acclerating training and inference significantly.
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A Simulated Dataset

We create a simulated dataset according to the p(@) and p(3) shown in @) & (3), given (z,y)
co-ordinate of a "cell".

Cat [1.,0.,0.,0] ifz < H//2,y <W//2
) Cat [0.,1.,0.,0.] ifz>H//2,y<W//2
POWY) =3 Car [0.0.1.0] ifz < H//2.y > W/)2 @
Cat 10.,0.,0.,1.] ife>H//2,y>W//2
1. .. 0.
pBlz)=| .. | erR¥V (3)
0. .. 1.

We set H = 32, W = 32 & V = 4 for our experiments on this simulated dataset. Fig.[3]] shows the
topic distribution for a 32 x 32 grid of cells.
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Figure 5: Topic distribution for the simulated dataset
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