
Under review as a conference paper at ICLR 2023

TABREPO: A LARGE SCALE REPOSITORY OF TABULAR
MODEL EVALUATIONS AND ITS AUTOML APPLICA-
TIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce TabRepo, a new dataset of tabular model evaluations and predictions.
TabRepo contains the predictions and metrics of 1206 models evaluated on 200
classification and regression datasets. We illustrate the benefit of our dataset in
multiple ways. First, we show that it allows to perform analysis such as comparing
Hyperparameter Optimization against current AutoML systems while also consider-
ing ensembling at marginal cost by using precomputed model predictions. Second,
we show that our dataset can be readily leveraged to perform transfer-learning.
In particular, we show that applying standard transfer-learning techniques allows
to outperform current state-of-the-art tabular systems in accuracy, runtime and
latency.

1 INTRODUCTION

Machine learning on structured tabular data has a long history due to its wide range of practical
applications. Significant progress has been achieved through improving supervised learning models,
with key method landmarks including SVM (Hearst et al., 1998), Random Forest (Breiman, 2001) and
Gradient Boosted Trees (Friedman, 2001). The performance of base models is still being improved
by a steady stream of research, for instance using new paradigms such as pretraining of transformer
models (Hollmann et al., 2022) or combining non-parametric and deep-learning methods (Gorishniy
et al., 2023) which also improves the performance of downstream AutoML systems (Gijsbers et al.,
2022; He et al., 2021).

AutoML solutions were shown to perform best in the large scale benchmarks performed by (Erickson
et al., 2020; Gijsbers et al., 2022). Auto-Sklearn (Feurer et al., 2015a; 2020) was an early approach that
proposed to select pipelines to ensemble from the Sklearn library and meta-learn the hyperparameter-
optimization (HPO) with offline evaluations. The approach was successful and won several AutoML
competitions. Several frameworks followed with other AutoML approaches such as TPOT (Olson
& Moore, 2016), H2O AutoML (LeDell & Poirier, 2020), and AutoGluon (Erickson et al., 2020).
AutoGluon particularly showed strong performance by combining ensembling (Caruana et al., 2004),
stacking (Wolpert, 1992) and bagging (Breiman, 1996). While all techniques were shown to be
important to reach good accuracy, they also bear a significant cost in terms of training time as models
are fitted on several folds of the training data and the stacking of models strongly impacts inference
latency.

The proliferation of AutoML and supervised learning methods led to several works focusing on
benchmarking tabular methods. Recently, Gijsbers et al. (2022) proposed a unified benchmark called
the AutoMLBenchmark to compare tabular methods. However, the cost of running such comparisons
for new methods becomes quickly prohibitive. Evaluating a single method in the AutoMLBenchmark
requires 40000 CPU hours of compute 1. This limits the number of methods present in the benchmark
and restricts research and experimentation to those with access to sufficient computational resources.
For instance, measuring the impact of ensembling requires retraining the base models which can
easily become too expensive in particular given many datasets and seeds.

*Equal contribution
1The CPU hour requirement is based on running the full 104 datasets in AutoMLBenchmark across 10 folds

for both 1 hour and 4 hour time limits on an 8 CPU machine.

1

Under review as a conference paper at ICLR 2023

To address this issue, we introduce TabRepo , a dataset of model evaluations and predictions. The
main contributions of this paper are:

• A large scale evaluation of tabular models comprising 723600 model predictions with 1206
models from 6 different families which are evaluated across 200 datasets and 3 seeds.

• We show how the repository can be used to study at marginal cost the performance of tuning
models while considering ensembles by leveraging precomputed model predictions.

• We show that our dataset combined with transfer learning achieves a result competitive with
state-of-the-art AutoML systems and outperforms others by a significant amount in accuracy
and training time.

• We study the performance of transfer learning techniques on tabular methods across several
novel angles such as data efficiency, training time, and prediction latency.

This paper first reviews related work before describing the TabRepo dataset. We then illustrate how
TabRepo can be leveraged to compare HPO with ensemble against current state-of-the-art tabular
systems and finally show how transfer-learning can be used to outperform current systems.

2 RELATED WORK

Acquiring and re-using offline evaluations to eliminate redundant computation has been proposed in
multiple compute intensive fields of machine learning. In HPO, several works proposed to acquire a
large number of evaluations to simulate the performance of different optimizers across many seeds
which can easily become prohibitive otherwise, in particular when the blackbox function optimized
involves training a large neural network (Klein & Hutter, 2019; Eggensperger et al., 2021). Similarly,
tabular benchmarks were acquired for Neural Architecture Search (Ying et al., 2019; Dong & Yang,
2020) as it was observed that, due to the large cost of comparisons, not enough seeds were used to
distinguish methods properly from random-search (Yang et al., 2020).

While the cost of tabular methods can be orders of magnitude lower than training large neural
networks, it can still be significant in particular when considering many methods, datasets, and seeds.
Several works proposed to provide benchmarks with precomputed results, in particular Gorishniy
et al. (2021) and Grinsztajn et al. (2022). One key differentiator with those works is that our work
exposes model predictions and prediction probabilities which enables to simulate instantaneously not
only the errors of single models but also ensembles of any subset of available models. To the best of
our knowledge, the only prior works that considered providing a dataset compatible with ensemble
predictions is Borchert et al. (2022) in the context of time-series and Purucker & Beel (2022) in
the context of tabular prediction. Our work differs from Purucker & Beel (2022) in several ways.
First, they consider 31 classification datasets whereas we include 200 datasets both from regression
and classification. Also, they only considered base models whereas our dataset contains AutoML
system evaluations that allows to compare different strategies with state-of-the-art systems. Finally,
another limitation is that different models were evaluated on each dataset, making it hard to learn
fixed portfolios or model selections strategies and simulate their performance on a holdout dataset
without the use of imputation.

Another important advantage of acquiring offline evaluations is that it allows to perform transfer-
learning, e.g. to make use of the offline data to speed up the tuning of model hyperparameters. In
particular, a popular transfer-learning approach is called Portfolio learning, or Zeroshot HPO, and
consists in selecting greedily a set of models that are complementary and are then likely to perform
well on a new dataset (Xu et al., 2010). Due to its performance and simplicity, the method has
been applied in a wide range of applications ranging from HPO (Wistuba et al., 2015), time-series
(Borchert et al., 2022), computer vision (Arango et al., 2023), tabular deep-learning (Zimmer et al.,
2021), and AutoML (Feurer et al., 2015a; 2020).

The current state-of-the-art for tabular predictions in terms of accuracy is arguably AutoGluon
(Erickson et al., 2020) in light of recent large scale benchmarks (Gijsbers et al., 2022). The method
trains models from different families with bagging: each model is trained on several distinct non-
overlapping random splits of the training dataset to generate out-of-fold predictions whose scores
are likely to align well with performance on the test set. Then, another layer of models is trained
whose inputs are both the original inputs concatenated with the predictions of the models in the

2

Under review as a conference paper at ICLR 2023

previous layers. Finally, an ensemble is built on top of the last layer model predictions using ensemble
selection (Caruana et al., 2004). Interestingly, this work showed that excellent performance could
be achieved without performing HPO and instead using a fixed list of manually selected model
configurations. However, the obtained model can be expensive for inference due to the use of model
stacking and requires human experts to select default model configurations. Our work shows that
using TabRepo, one can alleviate both caveats by learning default configurations which improves
accuracy and latency when matching compute budget.

3 TABREPO

We now describe TabRepo and our notations to define its set of evaluations and predictions. In what
follows, we denote [n] = {1, . . . , n} to be the set of the first n integers.

Model bagging. All models are trained with bagging to better estimate their hold-out performance
and improve their accuracy. Given a dataset split into a training set (X(train), y(train)) and a test
set (X(test), y(test)) and a model fλ with parameters λ, we train B models on B non-overlapping
cross-validation splits of the training set denoted {(X(train)[b], y(train)[b]), (X(val)[b], y(val)[b])}Bb=1.
Each of the B model parameters are fitted by ERM, i.e. by minimizing the loss

λb = argmin
λ

L(fλ(X(train)[b]), y(train)[b]), for b ∈ [B].

where the loss L is calculated via root mean-squared error (RMSE) for regression, the area under the
receiver operating characteristic curve (AUC) for binary classification and log loss for multi-class
classification. We choose these evaluation metrics to be consistent with the AutoMLBenchmark
defaults (Gijsbers et al., 2022).

One can then construct out-of-fold predictions2 denoted as ỹ(train) that are computed on unseen data
for each bagged model, i.e. predictions are obtained by applying the model on the validation set of
each split i.e. fλb(X(val)[b]) which allows to estimate the performance on the training set for unseen
data. To predict on a test dataset X(test), we average the predictions of the B fitted models,

ỹ(test) =
1

B

B∑
b=1

fλb(X(test)). (1)

Datasets, predictions and evaluations. We collect evaluations on D = 200 datasets from OpenML
(Vanschoren et al., 2014). For selecting the datasets, we combined two prior tabular dataset suites. The
first is from the AutoMLBenchmark (Gijsbers et al., 2022), and the second is from the Auto-Sklearn
2 paper (Feurer et al., 2020). Refer to Appendix C for a detailed description of the datasets.

For each dataset, we generate S = 3 tasks by selecting the first three of ten cross-validation fold as
defined in OpenML’s evaluation procedure, resulting in T = D×S tasks in total. The list of T tasks’
features and labels are denoted

{((Xi
(train), yi

(train)), (Xi
(test), yi

(test)))}Ti=1

where Xs
i ∈ RN s

i ×di and yi ∈ RN s
i ×oi for each split s ∈ {train, test}, N s

i denotes the number of
rows available in each split. Feature and label dimensions are denoted with di and oi respectively. We
use a loss Li for each task depending on its type, in particular we use AUC for binary classification,
log loss for multi-class classification and RMSE for regression.

For each task, we fit each model on B = 8 cross-validation splits before generating predictions with
Eq. 1. The predictions on the training and test splits for any task i ∈ [T] and model j ∈ [M] are
denoted as

ỹ
(train)
ij ∈ RNi

(train)×oi , ỹ
(test)
ij ∈ RNi

(test)×oi . (2)

We can then obtain losses for all tasks and models with
ℓij

(train) = Li(ỹ
(train)
ij , yi

(train)), ℓij
(test) = Li(ỹ

(test)
ij , yi

(test)). (3)

For all tasks and models, we use the AutoGluon featurizer to preprocess the raw data prior to fitting
the models (Erickson et al., 2020).

2Note that for classification tasks, we refer to prediction probabilities as simply predictions for convenience.

3

Under review as a conference paper at ICLR 2023

Models available. For base models, we consider RandomForest (Breiman, 2001), ExtraTrees
(Geurts et al., 2006), XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost
(Prokhorenkova et al., 2018), and Multi-layer perceptron (MLP) 3 We evaluate all default configura-
tions used by AutoGluon for those base models together with 200 random configurations for each
family yielding M = 1206 configurations in total. All configurations are run for one hour. For the
models that are not finished in one hour, we early stop them and use the best checkpoint according to
the validation score to generate predictions.

In addition, we evaluate 6 AutoML frameworks: Auto-Sklearn 1 and 2 (Feurer et al., 2015a; 2020),
FLAML (Wang et al., 2021), LightAutoML (Vakhrushev et al., 2021), H2O AutoML (LeDell &
Poirier, 2020) and AutoGluon (Erickson et al., 2020). AutoGluon is evaluated for the three presets
”medium”, ”high” and ”best” and all frameworks are evaluated for both 1h and 4h fitting time budget.
We run all model configurations and AutoML frameworks via the AutoMLBenchmark (Gijsbers
et al., 2022), using the implementations provided by the AutoML system authors.

For every task and model combination, we store losses defined in Eq. 3 and predictions defined in
Eq. 2. Storing evaluations for every ensemble would be clearly infeasible given the large set of base
models considered. However, given that we also store base model predictions, an ensemble can be
fit and evaluated on the fly for any set of configurations by querying lookup tables as we will now
describe.

Ensembling. Given the predictions from a set of models on a given task, we build ensembles by
using the Caruana et al. (2004) approach 4 The procedure selects models by iteratively picking the
model such that the average of selected models’ predictions minimizes the error. Formally, given M
model predictions {ỹ1, . . . , ỹM} ∈ RM, the strategy selects C models j1, ..., jC iteratively as follows

j1 = argmin
j1∈M

L(ỹj1 , y(train)), jn = argmin
jn∈M

L(1
n

n∑
c=1

ỹjc , y
(train)).

The final predictions are obtained by averaging the selected models j1, . . . , jC :

1

C

C∑
c=1

ỹjc . (4)

Note that the sum is performed over the vector of model indices which allow to potentially select a
model multiple times and justifies the term ”weight”. In practice, the number of selected models C is
selected by early-stopping, i.e. by adding models as long as the validation error decreases.

Critically, the performance of any ensemble of configurations can be calculated by summing the
predictions of base models obtained from lookup tables. This is particularly fast as it does not require
any retraining but only recomputing losses between weighted predictions and target labels.

4 COMPARING HPO AND AUTOML SYSTEMS

We now show how TabRepo can be used to analyze the performance of base model families and
the effect of tuning hyperparameters with ensembling against recent AutoML systems. All experi-
ments are done at marginal costs given that they just require querying precomputed evaluations and
predictions.

4.1 MODEL ERROR AND RUNTIME DISTRIBUTIONS

In Fig. 1, we start by analyzing the performance of different base models. In particular, the rank
of model losses over datasets shows that while some model families dominate in performance on

3TabRepo also contains other families of models such as K-Nearest-Neighbors, TabPFN and FT-transformer
(Gorishniy et al., 2021). Due to these models not running successfully for all tasks and some requiring GPU or
pretraining, we run our main evaluations without them and share the results with those models in appendix F.

4We consider only simple ensembling methods since our goal is to illustrate how TabRepo can be leveraged
to evaluate state-of-the-art systems, see (Purucker & Beel, 2023) for ensembling methods that can outperform
(Caruana et al., 2004).

4

Under review as a conference paper at ICLR 2023

Datasets

RandomForest-1
RandomForest-4

ExtraTrees-1
ExtraTrees-4
ExtraTrees-5
ExtraTrees-2
ExtraTrees-3

RandomForest-5
RandomForest-2
RandomForest-3

MLP-1
MLP-3
MLP-5
MLP-2
MLP-4

LightGBM-1
XGBoost-4
XGBoost-1
XGBoost-2
XGBoost-3
CatBoost-1
CatBoost-3
CatBoost-5
CatBoost-2
CatBoost-4
LightGBM-2
LightGBM-4
XGBoost-5

LightGBM-3
LightGBM-5

Ranks of models per dataset

Ra
nd

om
Fo

re
st

-1
Ex

tra
Tr

ee
s-

1
Ex

tra
Tr

ee
s-

5
Ex

tra
Tr

ee
s-

3
Ra

nd
om

Fo
re

st
-2

M
LP

-1
M

LP
-5

M
LP

-4
XG

Bo
os

t-4
XG

Bo
os

t-2
Ca

tB
oo

st
-1

Ca
tB

oo
st

-5
Ca

tB
oo

st
-4

Lig
ht

GB
M

-4
Lig

ht
GB

M
-3

RandomForest-1
RandomForest-4

ExtraTrees-1
ExtraTrees-4
ExtraTrees-5
ExtraTrees-2
ExtraTrees-3

RandomForest-5
RandomForest-2
RandomForest-3

MLP-1
MLP-3
MLP-5
MLP-2
MLP-4

LightGBM-1
XGBoost-4
XGBoost-1
XGBoost-2
XGBoost-3
CatBoost-1
CatBoost-3
CatBoost-5
CatBoost-2
CatBoost-4
LightGBM-2
LightGBM-4
XGBoost-5

LightGBM-3
LightGBM-5

Model rank correlation

0 25 50 75 100 125 150 175 200

Datasets

100

101

102

103

Tr
ai

ni
ng

 ru
nt

im
e

(s
)

Training runtime distribution
CatBoost
ExtraTrees
LightGBM
NeuralNetTorch
RandomForest
XGBoost

0.0

0.2

0.4

0.6

0.8

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 1: Cluster map of model rank for all datasets (left), correlation of model ranks (middle) and
average runtime distribution over every dataset (right). For readability, only the first 5 configurations
of each model family are displayed in the left and middle figures.

aggregate such as gradient boosted methods CatBoost and LightGBM, in some tasks MLP are
better suited. Looking at model correlations, we see interesting patterns as some model families are
negatively correlated between each other such as MLP and XGBoost which hints at the potential
benefit of ensembling.

Next, we plot the distribution of runtime configurations over all 600 tasks. We see that an order
of magnitude separates respectively the training runtime of CatBoost from MLP, XGBoost and
LightGBM, with the remaining methods being faster still. Importantly, while CatBoost obtains the
strongest average rank among model families, it is also the most expensive which is an important
aspect to take into account when considering possible training runtime constraints as we will see later
in our experiments.

4.2 EFFECT OF TUNING AND ENSEMBLING ON MODEL ERROR

We now compare methods across all tasks by using both ranks and normalized errors. Ranks are
computed over the M different models and all AutoML frameworks. Normalized errors are computed
by reporting the relative distance to a topline loss compared to a baseline with

lmethod − ltopline

lbaseline − ltopline

while clipping the denominator to 1e-5 and the final score value to [0, 1]. We use respectively the top
and median score among all scores to set the topline and baseline. The median allows to avoid having
scores collapse when one model loss becomes very high which can happen frequently for regression
cases in presence of overfitting or numerical instabilities.

Comparison. In Fig. 2 and Tab. 1, we show respectively the whole distribution and the aggregate
of our two metrics across all tasks.

For each model family, we evaluate the default hyperparameter, the best hyperparameter obtained
after a random search of 4 hours and an ensemble built on top of the best 20 configurations obtained
by this search. As previously seen in Fig. 1, CatBoost dominates other models and LightGBM is the
runner-up.

In Fig. 2, we see that tuning model hyperparameters improves all models while ensembling allows
LightGBM to match CatBoost. No model is able to beat state-of-the-art AutoML systems even
with tuning and ensembling. This is unsurprising as all state-of-the-art tabular methods considered
multiple model families in order to reach good performance and echoes the finding of Erickson et al.
(2020).

5

Under review as a conference paper at ICLR 2023

Table 1: Normalized-error, rank, training and inference time averaged over all tasks given 4h training
budget. Inference time is calculated as the prediction time on the test data divided by the number of
rows in the test data.

normalized-error rank time fit (s) time infer (s)
method

Portfolio (ensemble) 0.394 172.0 6715.5 0.050
AutoGluon best 0.406 203.6 5565.3 0.062
Portfolio 0.462 230.7 6715.3 0.012
Autosklearn2 0.476 238.6 14415.9 0.013
AutoGluon high 0.482 276.6 5435.3 0.002
Lightautoml 0.490 240.8 9188.0 0.298
Flaml 0.531 310.1 14269.8 0.002
H2oautoml 0.544 329.9 13920.0 0.002
AutoGluon medium 0.549 304.7 367.7 0.001
CatBoost (tuned + ensemble) 0.557 260.6 9120.8 0.011
LightGBM (tuned + ensemble) 0.559 257.5 3507.5 0.009
CatBoost (tuned) 0.562 272.9 9124.4 0.002
LightGBM (tuned) 0.591 294.6 3527.2 0.001
MLP (tuned + ensemble) 0.610 394.5 5781.3 0.101
CatBoost (default) 0.614 332.4 443.7 0.002
MLP (tuned) 0.646 441.1 5775.5 0.014
XGBoost (tuned + ensemble) 0.657 346.7 4973.8 0.013
XGBoost (tuned) 0.670 368.4 4964.7 0.002
LightGBM (default) 0.747 478.7 54.2 0.001
XGBoost (default) 0.768 509.4 73.2 0.002
MLP (default) 0.782 611.3 39.7 0.015
ExtraTrees (tuned + ensemble) 0.800 526.1 597.4 0.001
ExtraTrees (tuned) 0.818 553.5 597.6 0.000
RandomForest (tuned + ensemble) 0.819 558.7 1507.9 0.001
RandomForest (tuned) 0.830 575.8 1507.3 0.000
ExtraTrees (default) 0.889 762.3 3.8 0.000
RandomForest (default) 0.896 749.4 17.5 0.000

Table 2: Win rate comparison for 4 hour time limit with the same methodology as Erickson et al.
(2020). Win rate is computed against a portfolio ensemble (ties count as 0.5). The re-scaled loss
is calculated by setting the best solution to 0 and the worst solution to 1 on each dataset, and then
normalizing and taking the mean across all datasets. Rank, fit time, and infer time are averaged over
all tasks.

method winrate > < = time fit (s) time infer (s) loss (rescaled) rank

Portfolio (ensemble) (4h) 0.500 200 6722.4 0.050 0.253 3.192
AutoGluon best (4h) 0.465 91 105 4 5565.3 0.062 0.287 3.433
Autosklearn2 (4h) 0.378 74 123 3 14415.9 0.013 0.395 4.330
Lightautoml (4h) 0.270 52 144 4 9188.0 0.298 0.429 4.638
CatBoost (tuned + ensemble) (4h) 0.235 46 152 2 9128.3 0.009 0.508 4.995
Autosklearn (4h) 0.302 59 138 3 14413.6 0.009 0.509 5.053
Flaml (4h) 0.310 60 136 4 14269.8 0.002 0.530 5.055
H2oautoml (4h) 0.233 45 152 3 13920.0 0.002 0.555 5.305

6

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
normalized-error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 200 400 600 800 1000 1200
rank

AG best (4h)
CatBoost
LightGBM
RandomForest
ExtraTrees
XGBoost
MLP

Effect of tuning configurations

0.0 0.2 0.4 0.6 0.8 1.0
normalized-error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 200 400 600 800 1000 1200
rank

AG best (4h)

Effect of tuning & ensembling

Figure 2: Cumulative distribution function of normalized-errors (left) and ranks (right) for all model
families. The line-style denotes respectively the performance of the default configuration (top, solid),
of the best configuration after 4h of tuning (top and bottom, dotted) and of an ensemble built on top
of the best tuned configurations for the same budget (bottom, dashed).

5 PORTFOLIO LEARNING WITH TABREPO

In the previous section, we saw how TabRepo can be leveraged to analyze the performance of
frameworks when performing tuning and ensembling. In particular, we saw that ensembling a model
family after tuning does not outperform current AutoML systems. We now show how TabRepo can
be combined with transfer learning techniques to perform the tuning search offline and outperform
current AutoML methods.

Portfolio learning. To leverage offline data and speed-up model selection, Xu et al. (2010) proposed
an approach to learn a portfolio of complementary configurations that performs well on average when
evaluating all the configurations of the portfolio and selecting the best one.

Similarly to Caruana ensemble selection described in Eq. 4, the method iteratively selects N < M
configurations as follows

j1 = argmin
j1∈[M]

Ei∼[T][ℓij1
(train)], jn = argmin

jn∈[M]

Ei∼[T][min
k∈[n]

ℓijk
(train)].

At each iteration, the method greedily picks the configuration that has the lowest average error when
combined with previously selected portfolio configuration.

Anytime portfolio. Fitting portfolio configurations can be done in an any-time fashion given a
fitting time budget. To do so, we evaluate portfolio configurations sequentially until the budget is
exhausted and use only models trained up to this point to select an ensemble. In cases where the first
configuration selected by the portfolio takes longer to run than the constraint, we instead report the
result of a fast baseline as in Gijsbers et al. (2019).

7

Under review as a conference paper at ICLR 2023

1h 4h 24h
Fitting budget (time)

0.40

0.45

0.50

0.55
no

rm
al

ize
d-

er
ro

r

1h 4h 24h
Fitting budget (time)

200

250

300

350

ra
nk

CatBoost (tuned + ens)
Autosklearn

Autosklearn2
Flaml

Lightautoml
H2oautoml

AutoGluon best
Portfolio

12345678

AutosklearnH2oautomlFlamlCatBoost (tuned + ens) LightautomlAutosklearn2AutoGluon bestPortfolio (ens)

CD
1h

12345678

H2oautomlAutosklearnFlamlCatBoost (tuned + ens) LightautomlAutosklearn2AutoGluon bestPortfolio (ens)

CD
4h

Figure 3: Top: scatter plot of average normalized error (left) and rank (right) against fitting training
time budget. Bottom: Critical difference (CD) diagram showing average rank between method
selected and which methods are tied statistically by a horizontal bar.

Evaluations. We evaluate the anytime portfolio approach in a standard leave-one-out setting. When
evaluating on the i-th dataset, we compute portfolio configurations on D − 1 training datasets by
excluding the i-th test dataset to avoid potential leakage.

Results are reported in Tab. 1 when considering a 4h fitting budget constraint. We report both the
performance of the best model according to validation error (”Portfolio”) and when ensembling the
selected portfolio configurations (”Portfolio (ensemble)”). The portfolio combined with ensembling
outperforms AutoGluon for accuracy and latency given the same 4h fitting budget even without
stacking. When only picking the best model without ensembling, the portfolio still retains good
performance and outperforms all frameworks other than AutoGluon while having a very low latency.
We also report win rate following the methodology of Erickson et al. (2020) in Tab. 2 which confirms
the same result, namely the portfolio obtained from TabRepo outperforms other AutoML methods.

In Fig. 3, we report the performance for different fitting budgets. Ensembles of portfolio configura-
tions can beat all AutoML frameworks for all metrics for 1h, 4h and 24h budget without requiring
stacking which allows to obtain a lower latency compared to AutoGluon. Critical difference (CD)
diagrams from Demšar (2006) show that while portfolio has better aggregate performance than other
methods, AutoGluon and Portfolio are tied statistically. Those two methods are the only methods that
are statistically better than all baselines. Interestingly among AutoML systems besides AutoGluon,
only AutoSklearn 2 and LightAutoML are better than a baseline consisting of tuning and ensembling
CatBoost models although the methods are tied statistically to this baseline.

As in the previous section, all evaluations are obtained from pre-computed results in TabRepo. This
demonstrates another potential use of TabRepo, namely to be able to design a system combining
transfer learning and ensembling that can reach state-of-the-art performance and compare against a
wide variety of methods at marginal compute cost.

How much data is needed? We have seen that TabRepo allows to learn portfolio configurations
that can outperform state-of-the-art AutoML systems. Next, we analyze the question of how much
data is needed for transfer learning to achieve strong results in two dimensions, namely: how many
offline configurations and datasets are required to reach good performance? While important, these
dimensions are rarely analyzed in previous transfer learning studies due to their significant cost,
however they can be obtained in a cheap fashion with TabRepo.

In Fig. 4, we vary both of those dimensions independently. When evaluating on a test dataset, we
pick a random subset of configurations M′ per model family in the first case and a random subset
of D′ < D datasets in the second case and report mean and standard error over 10 different seeds.

8

Under review as a conference paper at ICLR 2023

0.38

0.40

0.42

0.44

no
rm

al
ize

d-
er

ro
r AutoGluon

Portfolio

0 25 50 75 100 125 150 175 200
Number of configuration per family

160

170

180

190

200

ra
nk

0 25 50 75 100 125 150 175 200
Number of training datasets to fit portfolios

Figure 4: Effect of number of configuration per family (left) and number of training dataset (right) on
normalized-error (top) and rank (bottom). All methods are fitted under a 4h fitting budget.

Portfolio with ensembling starts outperforming AutoGluon at around 50 configurations or datasets.
Having more datasets or more configurations in offline data both improve the final performance up to
a certain point with a saturating effect around 100 offline configurations or offline datasets.

6 LIMITATIONS

Cost. Evaluating offline configurations is expensive. In total, 26592 hours on a m6i.2xlarge instance
on AWS were needed to complete all model evaluations of TabRepo which translates to 212736
CPU hours. However, performing the analysis done in this paper without leveraging precomputed
evaluations and predictions would have costed 86415 hours on a m6i.2xlarge which translates to
691320 CPU hours which is ∼ 3.2 times more expensive. We hope that the repository can be used to
test more research ideas which would further amortize its cost.

Dataset features. While previous works were able to demonstrate improvements when taking
dataset features (Feurer et al., 2015b; Jomaa et al., 2021), we were not able to obtain similar
improvement over simple portfolio methods. We postulate this may be due to a need of human feature
engineering or it may also be that the large number of datasets used to learn the portfolios makes
conditioning on dataset features less critical as seen in (Feurer et al., 2020).

Transformers. We did not include transformer models e.g. (Gorishniy et al., 2021) as their training
cost can be significantly higher and their performance against other tabular methods such as Gradient
Boosted Trees is still being investigated (Grinsztajn et al., 2022).

7 CONCLUSION

In this paper, we introduced TabRepo, a benchmark of tabular models on a large number of datasets.
Critically, the repository contains not only model evaluations but also predictions which allows to
efficiently evaluate ensemble strategies. We showed that the benchmark can be used to analyze the
performance of different tuning strategies combined with ensembling at marginal cost. We also
showed how the dataset can be used to learn portfolio configurations that outperforms state-of-the-art
tabular methods for accuracy, training time and latency.

The code for accessing evaluations from TabRepo and evaluating any ensemble will be made available
with the camera ready together with the scripts used to generate all the paper results. We hope this
paper will facilitate future research on new methods combining ideas from CASH, multi-fidelity and
transfer-learning to further improve the state-of-the-art in tabular predictions.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, and Frank Hutter Josif Grabocka. Quick-tune:
Quickly learning which pretrained model to finetune and how. arXiv preprint arXiv:2306.03828,
2023.

Oliver Borchert, David Salinas, Valentin Flunkert, Tim Januschowski, and Stephan Günnemann.
Multi-objective model selection for time series forecasting, 2022.

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection
from libraries of models. In Proceedings of the twenty-first international conference on Machine
learning, pp. 18, 2004.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
learning research, 7:1–30, 2006.

X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. Technical Report arXiv:2001.00326 [cs.CV], 2020.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron Klein,
Noor H. Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of reproducible
multi-fidelity benchmark problems for HPO. CoRR, abs/2109.06716, 2021. URL https:
//arxiv.org/abs/2109.06716.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data. 2020.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and
Frank Hutter. Efficient and robust automated machine learning. Advances in neural information
processing systems, 28, 2015a.

Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian hyperparameter opti-
mization via meta-learning. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1),
Feb. 2015b. doi: 10.1609/aaai.v29i1.9354. URL https://ojs.aaai.org/index.php/
AAAI/article/view/9354.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: The next generation. arXiv preprint arXiv:2007.04074, 24, 2020.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning,
63:3–42, 2006.

Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin Vanschoren.
An open source automl benchmark. arXiv preprint arXiv:1907.00909, 2019.

Pieter Gijsbers, Marcos LP Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd
Bischl, and Joaquin Vanschoren. Amlb: an automl benchmark. arXiv preprint arXiv:2207.12560,
2022.

10

https://arxiv.org/abs/2109.06716
https://arxiv.org/abs/2109.06716
https://ojs.aaai.org/index.php/AAAI/article/view/9354
https://ojs.aaai.org/index.php/AAAI/article/view/9354

Under review as a conference paper at ICLR 2023

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
Babenko. Tabr: Tabular deep learning meets nearest neighbors in 2023, 2023.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on tabular data?, 2022.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector
machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

Steffen Herbold. Autorank: A python package for automated ranking of classifiers. Journal of Open
Source Software, 5(48):2173, 2020. doi: 10.21105/joss.02173. URL https://doi.org/10.
21105/joss.02173.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,
2022.

Hadi S Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. Dataset2vec: Learning dataset meta-
features. Data Mining and Knowledge Discovery, 35:964–985, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

A. Klein and F. Hutter. Tabular benchmarks for joint architecture and hyperparameter optimization.
Technical Report arXiv:1905.04970 [cs.LG], 2019.

Erin LeDell and Sebastien Poirier. H2o automl: Scalable automatic machine learning. In Proceedings
of the AutoML Workshop at ICML, volume 2020. ICML, 2020.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Lennart Purucker and Joeran Beel. Assembled-openML: Creating efficient benchmarks for ensembles
in autoML with openML. In First International Conference on Automated Machine Learning
(Late-Breaking Workshop), 2022.

Lennart Purucker and Joeran Beel. Cma-es for post hoc ensembling in automl: A great success and
salvageable failure. arXiv preprint arXiv:2307.00286, 2023.

Anton Vakhrushev, Alexander Ryzhkov, Maxim Savchenko, Dmitry Simakov, Rinchin Damdinov,
and Alexander Tuzhilin. Lightautoml: Automl solution for a large financial services ecosystem.
arXiv preprint arXiv:2109.01528, 2021.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science
in machine learning. SIGKDD Explor. Newsl., 15(2):49–60, jun 2014. ISSN 1931-0145. doi:
10.1145/2641190.2641198. URL https://doi.org/10.1145/2641190.2641198.

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. Flaml: A fast and lightweight automl
library. Proceedings of Machine Learning and Systems, 3:434–447, 2021.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning hyperparameter optimization
initializations. In 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pp. 1–10, 2015. doi: 10.1109/DSAA.2015.7344817.

11

https://doi.org/10.21105/joss.02173
https://doi.org/10.21105/joss.02173
https://doi.org/10.1145/2641190.2641198

Under review as a conference paper at ICLR 2023

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically configuring algorithms
for portfolio-based selection. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 24, pp. 210–216, 2010.

Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. Nas evaluation is frustratingly hard,
2020.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
bench-101: Towards reproducible neural architecture search. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 7105–7114. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/ying19a.html.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch tabular: Multi-fidelity metalearning
for efficient and robust autodl, 2021.

A ADDITIONAL EXPERIMENT DETAILS

Number of Caruana Steps. In all our experiments, we set the number of Caruana steps to C = 40
when building ensembles of base models or portfolio configurations. We observe that values beyond
40 provide negligible benefit while linearly increasing the runtime of simulations in TabRepo.

Fallback method. We use the default configuration of Extra-trees as a backup when the first
configuration of a portfolio does not finish under the constraint which takes just a few seconds to
evaluate.

Number of portfolio configurations. When reporting results on a portfolio, we apply the anytime
procedure described in Sec 5 and run at most N = 200 portfolio configurations. Setting this bound
serves mostly as an upper-bound as all configurations are almost never evaluated given that all
configurations have to be trained under the fitting budget. We investigate the effect of increasing the
number of portfolio configurations in Fig. 5.

Hardware details. All model configuration and AutoML framework results were obtained on
AWS EC2 machines via AutoMLBenchmark’s AWS mode functionality. For all model and AutoML
evaluations, we used m6i.2xlarge EC2 instances with 100 GB of gp3 storage. These instances
have 8 virtual CPUs (4 physical CPUs) and 32 GB of memory. The Python version used for all
experiments was 3.9.18. We chose m6i.2xlarge instances to align with the AutoMLBenchmark’s
choice of m5.2xlarge instances. m5 instances have the same number of CPUs and memory, but the
m6i instances were more cost-efficient due to faster CPUs.

All simulation paper experiments in Sec. 4 and 5 were done on a m6i.32xlarge to avoid memory
issues and take less than one hour.

Critical difference diagrams. We use Autorank (Herbold, 2020) to compute critical difference
diagrams.

Data-structure. TabRepo takes 107 GB on disk. To avoid requiring large memory cost, we use a
memmap data-structure which loads model evaluations on the fly from disk to memory when needed.
This allows to reduce the RAM requirement to 20GB of RAM.

B API

In Listing 1, we show an example of calling TabRepo to retrieve the ensemble performance of a list
of models. Because we store all model predictions, we are able to reconstruct the metrics of any
ensemble among the M = 1206 models considered.

12

https://proceedings.mlr.press/v97/ying19a.html

Under review as a conference paper at ICLR 2023

1 from tabrepo import EvaluationRepository
2

3 # load TabRepo with 200 datasets, 3 folds and 1416 configurations
4 repository = EvaluationRepository.from_context(version="D244_F3_C1416_200

")
5

6 # returns in ˜2s the tensor of metrics for each dataset/fold obtained
after ensembling the given configurations

7 metrics = repository.evaluate_ensemble(
8 datasets=["balance-scale", "page-blocks"], # dataset to report

results on
9 folds=[0, 1, 2], # which folds to consider for each dataset

10 configs=["CatBoost_r42_BAG_L1", "NeuralNetTorch_r40_BAG_L1"], #
configs that are ensembled

11 ensemble_size=40, # maximum number of Caruana steps
12)
13

14 # returns the predictions on the val data for a given task and config
15 val_predictions = repository.predict_val(
16 dataset="page-blocks", fold=2, config="ExtraTrees_r7_BAG_L1"
17)
18

19 # returns the predictions on the test data for a given task and config
20 test_predictions = repository.predict_test(
21 dataset="page-blocks", fold=2, config="ExtraTrees_r7_BAG_L1"
22)

Listing 1: Example of calling TabRepo to obtain performance scores on an ensemble configuration or
model predictions on validation/test splits.

C DATASET DETAILS

For selecting the datasets, we combined two prior tabular dataset suites. The first is from the
AutoMLBenchmark (Gijsbers et al., 2022), containing 104 datasets. The second is from the Auto-
Sklearn 2 paper (Feurer et al., 2020), containing 208 datasets.

All datasets are publicly available via OpenML. After de-duplicating, the union contains 289 datasets.
The AutoMLBenchmark datasets have been previously filtered from a larger set via a specific
inclusion criteria detailed in section 5.1.1 of Gijsbers et al. (2022). Notably, they filter out datasets
that are trivial, such that simple methods such as a random forest cannot perfectly solve them. We
perform a similar operation by fitting a default Random Forest configuration on all 289 datasets and
filtering any dataset that is trivial (AUC > 0.999, log loss < 0.001, or r2 > 0.999). After filtering
trivial datasets, we are left with 244 datasets.

We then run all AutoML baselines and model configurations on the 244 datasets (3 folds, for a total
of 732 tasks). We performed re-runs on failed tasks when necessary to attempt to get results on all
models and AutoML systems for every dataset, but sometimes this was not possible due to problems
such as out-of-memory errors or AutoML system implementation errors outside our control. For
datasets with model or AutoML system failures, we exclude them. We exclude datasets rather than
impute missing values to ensure the results being computed are fully verifiable and replicable in
practice. After excluding datasets with model or AutoML system failures, we have 211 datasets
remaining.

Finally, we filter out the 11 largest datasets for practical usability purposes of TabRepo. This is
because loading the prediction probabilities of 1206 model configurations on large (multi-class)
datasets leads to significant challenges. As an example, the total size of the predictions for 211
datasets is 455 GB. By reducing to 200 datasets, the size decreases dramatically to 107 GB (The full
244 datasets is 4.5 TB).

In total, we use 105 binary classification datasets, 67 multi-class classification datasets and 28
regression datasets. We provide a table of dataset summary statistics in Tab. 3 and an exhaustive list
of the 200 datasets used in TabRepo separated by problem type in Tab. 4, Tab. 5 and Tab. 6 where

13

Under review as a conference paper at ICLR 2023

Table 3: Statistics of the 200 datasets in TabRepo

n f

mean 17722 570
std 55270 2161
min 100 3
5% 500 3
10% 575 5
25% 1107 10
50% 3800 20
75% 10027 60
90% 41173 506
95% 73134 1787
max 583250 10936

we list for each dataset the TaskID OpenML identifier, the dataset name, the number of rows n, the
number of features f and the number of classes C which is always 2 for binary classification.

C.1 TRAIN-TEST SPLITS

For all datasets we use the OpenML 10-fold Cross-validation estimation procedure and select the
first 3 folds for our experiments. For each task (a particular dataset fold), we use 90% of the data as
training and 10% as test. We use identical splits to Gijsbers et al. (2022).

D MODEL DETAILS

For each model type, we used the latest available package versions when possible. The precise
versions used for each model are documented in Tab. 7.

For each model family, we choose 201 configurations, 1 being the default hyperparameters, as well
as 200 randomly selected hyperparameter configs.

The search spaces used are based on the search spaces defined in AutoGluon. We expanded the search
range of various hyperparameters for increased model variety. Note that selecting the appropriate
search space is a complex problem, and is not the focus of this work. TabRepo is built to work with
arbitrary model configurations, and we welcome the research community to improve upon our initial
baselines.

For all models we re-use the AutoGluon implementation for data pre-processing, initial hyperparame-
ters, training, and prediction. We do this because choosing the appropriate pre-processing logic for
an individual model is complex and introduces a myriad of design questions and potential pitfalls.

For maximum training epochs / iterations, instead of searching for an optimal value directly, we
instead rely on the early stopping logic implemented in AutoGluon which sets the iterations to 10,000
for gradient boosting models and epochs to 500 for MLP.

D.1 MODEL CONFIG FULL RESULTS

Refer to the supplementary file results ranked configs.csv for the complete set of results for all model
configs on all tasks. This file includes the training runtime, inference time (per row), and metric error
for all models on each task.

D.2 MODEL CONFIG HYPERPARAMETERS

Refer to the supplementary files located in the folder configs/ for the hyperparameters used for each
model config.

14

Under review as a conference paper at ICLR 2023

Table 4: Binary classification datasets used in TabRepo.

Task ID name n f C Task ID name n f C

3593 2dplanes 40768 10 2 3783 fri c2 500 50 500 50 2
168868 APSFailure 76000 170 2 3606 fri c3 1000 10 1000 10 2
359979 Amazon employee acce 32769 9 2 3581 fri c3 1000 25 1000 25 2
146818 Australian 690 14 2 3799 fri c3 500 10 500 10 2
359967 Bioresponse 3751 1776 2 3800 fri c3 500 50 500 50 2
359992 Click prediction sma 39948 11 2 3608 fri c4 500 100 500 100 2
361331 GAMETES Epistasis 2- 1600 1000 2 3764 fried 40768 10 2
361332 GAMETES Epistasis 2- 1600 20 2 189922 gina 3153 970 2
361333 GAMETES Epistasis 2- 1600 20 2 9970 hill-valley 1212 100 2
361334 GAMETES Epistasis 3- 1600 20 2 3892 hiva agnostic 4229 1617 2
361335 GAMETES Heterogeneit 1600 20 2 3688 houses 20640 8 2
361336 GAMETES Heterogeneit 1600 20 2 9971 ilpd 583 10 2
359966 Internet-Advertiseme 3279 1558 2 168911 jasmine 2984 144 2
359990 MiniBooNE 130064 50 2 3904 jm1 10885 21 2

3995 OVA Colon 1545 10935 2 359962 kc1 2109 21 2
3976 OVA Endometrium 1545 10935 2 3913 kc2 522 21 2
3968 OVA Kidney 1545 10935 2 3704 kdd el nino-small 782 8 2
3964 OVA Lung 1545 10935 2 3844 kdd internet usage 10108 68 2
4000 OVA Ovary 1545 10935 2 359991 kick 72983 32 2
3980 OVA Prostate 1545 10936 2 3672 kin8nm 8192 8 2

359971 PhishingWebsites 11055 30 2 190392 madeline 3140 259 2
361342 Run or walk informat 88588 6 2 9976 madelon 2600 500 2
359975 Satellite 5100 36 2 3483 mammography 11183 6 2
125968 SpeedDating 8378 120 2 3907 mc1 9466 38 2
361339 Titanic 2201 3 2 3623 meta 528 21 2
190411 ada 4147 48 2 3899 mozilla4 15545 5 2
359983 adult 48842 14 2 3749 no2 500 7 2

3600 ailerons 13750 40 2 359980 nomao 34465 118 2
190412 arcene 100 10000 2 167120 numerai28.6 96320 21 2

3812 arsenic-female-bladd 559 4 2 190137 ozone-level-8hr 2534 72 2
9909 autoUniv-au1-1000 1000 20 2 361341 parity5 plus 5 1124 10 2

359982 bank-marketing 45211 16 2 3667 pbcseq 1945 18 2
3698 bank32nh 8192 32 2 3918 pc1 1109 21 2
3591 bank8FM 8192 8 2 3919 pc2 5589 36 2

359955 blood-transfusion-se 748 4 2 3903 pc3 1563 37 2
3690 boston corrected 506 20 2 359958 pc4 1458 37 2

359968 churn 5000 20 2 190410 philippine 5832 308 2
146819 climate-model-simula 540 20 2 168350 phoneme 5404 5 2

3793 colleges usnews 1302 33 2 3616 pm10 500 7 2
3627 cpu act 8192 21 2 3735 pollen 3848 5 2
3601 cpu small 8192 12 2 3618 puma32H 8192 32 2

168757 credit-g 1000 20 2 3681 puma8NH 8192 8 2
14954 cylinder-bands 540 39 2 359956 qsar-biodeg 1055 41 2
3668 delta ailerons 7129 5 2 9959 ringnorm 7400 20 2
3684 delta elevators 9517 6 2 3583 rmftsa ladata 508 10 2

37 diabetes 768 8 2 43 spambase 4601 57 2
125920 dresses-sales 500 12 2 359972 sylvine 5124 20 2

9983 eeg-eye-state 14980 14 2 361340 tokyo1 959 44 2
219 electricity 45312 8 2 9943 twonorm 7400 20 2

3664 fri c0 1000 5 1000 5 2 3786 visualizing soil 8641 4 2
3747 fri c0 500 5 500 5 2 146820 wilt 4839 5 2
3702 fri c1 1000 50 1000 50 2 3712 wind 6574 14 2
3766 fri c2 1000 25 1000 25 2

15

Under review as a conference paper at ICLR 2023

Table 5: Multi-class classification datasets used in TabRepo.

Task ID name n f C Task ID name n f C

211986 Diabetes130US 101766 49 3 6 letter 20000 16 26
359970 GesturePhaseSegmenta 9873 32 5 359961 mfeat-factors 2000 216 10
360859 Indian pines 9144 220 8 359953 micro-mass 571 1300 20
125921 LED-display-domain-7 500 7 10 189773 microaggregation2 20000 20 5
146800 MiceProtein 1080 81 8 359993 okcupid-stem 50789 19 3
361330 Traffic violations 70340 20 3 28 optdigits 5620 64 10
168300 UMIST Faces Cropped 575 10304 20 30 page-blocks 5473 10 5

3549 analcatdata authorsh 841 70 4 32 pendigits 10992 16 10
3560 analcatdata dmft 797 4 6 359986 robert 10000 7200 10

14963 artificial-character 10218 7 10 2074 satimage 6430 36 6
9904 autoUniv-au6-750 750 40 8 359963 segment 2310 19 7
9906 autoUniv-au7-1100 1100 12 5 9964 semeion 1593 256 10
9905 autoUniv-au7-700 700 12 3 359987 shuttle 58000 9 7

11 balance-scale 625 4 3 41 soybean 683 35 19
2077 baseball 1340 16 3 45 splice 3190 60 3

359960 car 1728 6 4 168784 steel-plates-fault 1941 27 7
9979 cardiotocography 2126 35 10 3512 synthetic control 600 60 6

359959 cmc 1473 9 3 125922 texture 5500 40 11
359957 cnae-9 1080 856 9 190146 vehicle 846 18 4
146802 collins 1000 23 30 9924 volcanoes-a2 1623 3 5
359977 connect-4 67557 42 3 9925 volcanoes-a3 1521 3 5
168909 dilbert 10000 2000 5 9926 volcanoes-a4 1515 3 5
359964 dna 3186 180 3 9927 volcanoes-b1 10176 3 5
359954 eucalyptus 736 19 5 9928 volcanoes-b2 10668 3 5

3897 eye movements 10936 27 3 9931 volcanoes-b5 9989 3 5
168910 fabert 8237 800 7 9932 volcanoes-b6 10130 3 5
359969 first-order-theorem- 6118 51 6 9920 volcanoes-d1 8753 3 5
14970 har 10299 561 6 9923 volcanoes-d4 8654 3 5

3481 isolet 7797 617 26 9915 volcanoes-e1 1183 3 5
211979 jannis 83733 54 4 9960 wall-robot-navigatio 5456 24 4
359981 jungle chess 2pcs ra 44819 6 3 58 waveform-5000 5000 40 3

9972 kr-vs-k 28056 6 18 361345 wine-quality-red 1599 11 6
2076 kropt 28056 6 18 359974 wine-quality-white 4898 11 7

361344 led24 3200 24 10

Table 6: Regression datasets used in TabRepo.

Task ID name n f Task ID name n f

233212 Allstate Claims Seve 188318 130 359936 elevators 16599 18
359938 Brazilian houses 10692 12 359952 house 16H 22784 16
233213 Buzzinsocialmedia Tw 583250 77 359951 house prices nominal 1460 79
360945 MIP-2016-regression 1090 144 359949 house sales 21613 21
233215 Mercedes Benz Greene 4209 376 359946 pol 15000 48
167210 Moneyball 1232 14 359930 quake 2178 3
359941 OnlineNewsPopularity 39644 59 359931 sensory 576 11
359948 SAT11-HAND-runtime-r 4440 116 359932 socmob 1156 5
317614 Yolanda 400000 100 359933 space ga 3107 6
359944 abalone 4177 8 359934 tecator 240 124
359937 black friday 166821 9 359939 topo 2 1 8885 266
359950 boston 506 13 359945 us crime 1994 126
359942 colleges 7063 44 359935 wine quality 6497 11
233211 diamonds 53940 9 359940 yprop 4 1 8885 251

Table 7: Model versions.

model benchmarked latest package

LightGBM 3.3.5 4.0.0 lightgbm
XGBoost 1.7.6 2.0.0 xgboost
CatBoost 1.2.1 1.2.2 catboost
RandomForest 1.1.1 1.3.1 scikit-learn
ExtraTrees 1.1.1 1.3.1 scikit-learn
MLP 2.0.1 2.0.1 torch

16

Under review as a conference paper at ICLR 2023

D.3 MLP

1 {
2 ’learning_rate’: Real(1e-4, 3e-2, default=3e-4, log=True),
3 ’weight_decay’: Real(1e-12, 0.1, default=1e-6, log=True),
4 ’dropout_prob’: Real(0.0, 0.4, default=0.1),
5 ’use_batchnorm’: Categorical(False, True),
6 ’num_layers’: Int(1, 5, default=2),
7 ’hidden_size’: Int(8, 256, default=128),
8 ’activation’: Categorical(’relu’, ’elu’),
9 }

D.4 CATBOOST

1 {
2 ’learning_rate’: Real(lower=5e-3, upper=0.1, default=0.05, log=True),
3 ’depth’: Int(lower=4, upper=8, default=6),
4 ’l2_leaf_reg’: Real(lower=1, upper=5, default=3),
5 ’max_ctr_complexity’: Int(lower=1, upper=5, default=4),
6 ’one_hot_max_size’: Categorical(2, 3, 5, 10),
7 ’grow_policy’: Categorical("SymmetricTree", "Depthwise")
8 }

D.5 LIGHTGBM

1 {
2 ’learning_rate’: Real(lower=5e-3, upper=0.1, default=0.05, log=True),
3 ’feature_fraction’: Real(lower=0.4, upper=1.0, default=1.0),
4 ’min_data_in_leaf’: Int(lower=2, upper=60, default=20),
5 ’num_leaves’: Int(lower=16, upper=255, default=31),
6 ’extra_trees’: Categorical(False, True),
7 }

D.6 XGBOOST

1 {
2 ’learning_rate’: Real(lower=5e-3, upper=0.1, default=0.1, log=True),
3 ’max_depth’: Int(lower=4, upper=10, default=6),
4 ’min_child_weight’: Real(0.5, 1.5, default=1.0),
5 ’colsample_bytree’: Real(0.5, 1.0, default=1.0),
6 ’enable_categorical’: Categorical(True, False),
7 }

D.7 EXTRA-TREES

For all Extra Trees models we use 300 trees.
1 {
2 ’max_leaf_nodes’: Int(5000, 50000),
3 ’min_samples_leaf’: Categorical(1, 2, 3, 4, 5, 10, 20, 40, 80),
4 ’max_features’: Categorical(’sqrt’, ’log2’, 0.5, 0.75, 1.0)
5 }

D.8 RANDOM-FOREST

For all Random Forest models we use 300 trees.
1 {
2 ’max_leaf_nodes’: Int(5000, 50000),
3 ’min_samples_leaf’: Categorical(1, 2, 3, 4, 5, 10, 20, 40, 80),
4 ’max_features’: Categorical(’sqrt’, ’log2’, 0.5, 0.75, 1.0)
5 }

17

Under review as a conference paper at ICLR 2023

Table 8: AutoML framework versions.

framework benchmarked latest package

AutoGluon 0.8.2 0.8.2 autogluon
auto-sklearn 0.15.0 0.15.0 auto-sklearn
auto-sklearn 2 0.15.0 0.15.0 auto-sklearn
FLAML 1.2.4 2.1.0 flaml
H2O AutoML 3.40.0.4 3.42.0.3 h2o
LightAutoML 0.3.7.3 0.3.7.3 lightautoml

E AUTOML FRAMEWORK DETAILS

For each AutoML framework we attempted to use the latest available versions where possible. The
precise versions used for each framework are documented in Tab. 8. For FLAML, version 2.0
released after we had ran the experiments.

E.1 AUTOML FRAMEWORK FULL RESULTS

Refer to the supplementary file results ranked automl.csv for the complete set of results for all
AutoML systems on all tasks. This file includes the training runtime, inference time (per row), and
metric error for each task.

E.2 AUTO-SKLEARN 2

Meta-Learning. Auto-Sklearn 2 uses meta-learning to improve the quality of its results. Since
the datasets used to train its meta-learning algorithm are present in TabRepo, the performance of
Auto-Sklearn 2 may be overly optimistic as it may be choosing to train model hyperparameters known
to achieve strong test scores on a given dataset. This issue is detailed in section 5.3.3 of Gijsbers et al.
(2022). Following Gijsbers et al. (2022), we ultimately decide to keep Auto-Sklearn 2’s results as a
useful comparison point.

Regression. Auto-Sklearn 2 is incompatible with regression tasks. For regression tasks, we use the
result from Auto-Sklearn 1.

F ADDITIONAL RESULTS WITH MORE MODELS

Here, we report results for additional models. In particular, we consider:

• A linear model

• A K-nearest neighbor model (Cover & Hart, 1967)

• TabPFN model (Hollmann et al., 2022) which is transformer model for tabular data pretrained
on a collection of artificial datasets that performs attention over rows

• FT-Transformer (Gorishniy et al., 2021) which is a transformer trained on a dataset at hand
and performs attention over columns

For TabPFN and FT-Transformer, we measure results on a g4.2xlarge instance. We run only the
default configuration for FT-transformer due to the large training cost to obtain results on all tasks on
a GPU machine, we also ran a single configuration for TabPFN.

We report those results separately because 1) as opposed to the previous collection of models, some
models in this collection fail and requires imputation 2) some models requires an additional GPU as
opposed to the models presented in the main sections which pose different hardware constraint cost.

Some of the models fails because of algorithm errors (for instance TabPFN only supports 100 features
currently) or hardware errors (out-of-memory errors in case of KNN for instance). In case of failure,
we impute the model predictions with the baseline used when portfolio configuration times out (e.g.
the default configuration of Extra-trees), this baseline always take less than 5 seconds to run.

18

Under review as a conference paper at ICLR 2023

Table 9: Results with additional models defined in Section F. Normalized-error, rank, training and
inference time are averaged over all tasks given 4h training budget.

normalized-error rank time fit (s) time infer (s)
method

Portfolio (ensemble) 0.362 174.6 6597.5 0.061
AutoGluon best 0.389 208.2 5583.1 0.062
Portfolio 0.437 236.6 6597.5 0.013
Autosklearn2 0.455 243.5 14415.9 0.013
AutoGluon high 0.463 283.3 5460.8 0.002
Lightautoml 0.466 246.1 9173.9 0.298
Flaml 0.513 317.8 14267.0 0.002
CatBoost (tuned + ensemble) 0.524 267.3 9065.2 0.012
H2oautoml 0.526 337.0 13920.1 0.002
AutoGluon medium 0.527 311.0 371.8 0.001
CatBoost (tuned) 0.534 284.7 9065.2 0.002
LightGBM (tuned + ensemble) 0.534 268.7 3528.9 0.010
LightGBM (tuned) 0.566 304.2 3528.9 0.001
CatBoost (default) 0.586 341.2 456.8 0.002
MLP (tuned + ensemble) 0.594 402.5 5771.8 0.098
XGBoost (tuned + ensemble) 0.628 357.9 4972.7 0.013
MLP (tuned) 0.634 451.9 5771.8 0.014
XGBoost (tuned) 0.638 376.5 4972.7 0.002
FTTransformer (default) 0.690 532.1 567.4 0.003
LightGBM (default) 0.714 491.5 55.7 0.001
XGBoost (default) 0.734 522.2 75.1 0.002
MLP (default) 0.772 629.4 38.2 0.015
ExtraTrees (tuned + ensemble) 0.782 544.2 538.3 0.001
ExtraTrees (tuned) 0.802 572.5 538.3 0.000
RandomForest (tuned + ensemble) 0.803 578.3 1512.2 0.001
RandomForest (tuned) 0.816 598.0 1512.2 0.000
TabPFN (default) 0.837 731.9 3.8 0.016
LinearModel (tuned + ensemble) 0.855 873.8 612.4 0.038
LinearModel (tuned) 0.862 891.6 612.4 0.006
ExtraTrees (default) 0.883 788.6 3.0 0.000
RandomForest (default) 0.887 773.9 13.8 0.000
LinearModel (default) 0.899 940.1 7.1 0.014
KNeighbors (tuned + ensemble) 0.928 980.8 12.0 0.001
KNeighbors (tuned) 0.937 1016.5 12.0 0.000
KNeighbors (default) 0.973 1149.1 0.6 0.000

Table 10: Win rate comparison with additional models defined in Section F for 4 hour time limit.

method winrate > < = time fit (s) time infer (s) loss (rescaled) rank

Portfolio (ensemble) 0.500 0 0 200 6597.5 0.061 0.239 3.115
AutoGluon best 0.425 80 110 10 5583.1 0.062 0.290 3.442
Autosklearn2 0.350 68 128 4 14415.9 0.013 0.404 4.360
Lightautoml 0.287 56 141 3 9173.9 0.298 0.434 4.625
CatBoost (tuned + ensemble) 0.245 47 149 4 9065.2 0.012 0.506 5.008
Autosklearn 0.290 56 140 4 14413.6 0.009 0.515 5.045
Flaml 0.295 56 138 6 14267.0 0.002 0.533 5.090
H2oautoml 0.223 41 152 7 13920.1 0.002 0.565 5.315

As one can see in Tab. 9, FT-Transformer performs in-between MLPs and the best boosted trees
methods. Regarding TabPFN, the method does not reach the performance of top methods yet which
is due to high failure rates due to current method limitations on large datasets5 and also due to the
method not being able to currently exploit well large number of rows.

The results of portfolio improves given the additional model diversity which can be seen by looking at
Tab. 10 which reports the win-rate against AutoML baselines. In particular, the win rate is improved
from 53.5% to 57.5%.

5The failure rate is ≈ 30% as the method only supports 100 features and 10 classes.

19

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
normalized-error

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

0 200 400 600 800 1000 1200
rank

AG best (4h)
5m
10m
30m
1h
4h
24h

Effect of training time limit

0.0 0.2 0.4 0.6 0.8 1.0
normalized-error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 200 400 600 800 1000 1200
rank

AG best (4h)
= 5
= 10
= 50
= 100
= 200

Effect of number of portfolio configurations

Figure 5: Effect on performance of fitting time (top) and number of portfolio configurations (bottom).
In the second case, portfolios are fitted with a 4h fitting budget.

G ADDITIONAL RESULTS PORTFOLIOS

G.1 PORTFOLIO WIN-RATE COMPARISON

We calculate win-rates, re-scaled loss, and average ranks between the Portfolio and the AutoML
systems in Tab. 12 and Tab. 2 for 1 and 4 hour time limits respectively with the same evaluation
protocol as Erickson et al. (2020). In both cases, Portfolio achieves the best win-rate, re-scaled loss,
and average rank across all methods at the given time constraint.

G.2 EFFECT OF RUNTIME AND NUMBER OF PORTFOLIO CONFIGURATIONS

In Fig. 5, we show the effect of increasing the time budget bound and the number of portfolio
configuration bound N . Increasing the fitting time limit yields constant improvement however
increasing the number of portfolio configurations provides quickly diminishing returns given that a
large number of configurations can rarely be evaluated given a reasonable time limit except for very
small datasets.

G.3 PERFORMANCE ON LOWER FITTING BUDGETS

In section 5, we reported results for 1h, 4h fitting budgets which are standard settings (Erickson et al.,
2020; Gijsbers et al., 2022). Given space constraint, we only showed the full table for 4h results in
the main, the results for 1h results is shown in Tab. 11. Here the anytime portfolio strategy matches
AutoGluon on normalized-error and outperforms it on rank while having around 30% lower latency.

In Fig. 7, we also report the performance for 5m, 10m, 30m budgets in addition to 1h, 4h and
24h for both portfolio ensembles and AutoGluon. For budgets lower than 1h, we select portfolio
configurations only among configurations whose runtime are under the constraint at least 95% of the
time on available training datasets. For budgets lower than 1h, the performance of portfolio drops
significantly. However, this result is overly pessimistic. Indeed, whenever the first configuration
selected by the portfolio does not finish before the constraint, we return the result of a cheap baseline

20

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
normalized-error

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

0 200 400 600 800 1000 1200
rank

AG best (4h)
′ = 1
′ = 5
′ = 10
′ = 25
′ = 50
′ = 75
′ = 100
′ = 125
′ = 150
′ = 175
′ = 199

Effect of number of training tasks

0.0 0.2 0.4 0.6 0.8 1.0
normalized-error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 200 400 600 800 1000 1200
rank

AG best (4h)
′ = 1
′ = 5
′ = 10
′ = 25
′ = 50
′ = 75
′ = 100
′ = 125
′ = 150
′ = 175
′ = 200

Effect of number of offline configurations

Figure 6: From top to bottom, effect of the number of training datasets and offline configurations per
model family on distribution performance. All methods are fitted under a 4h fitting budget.

5m10m 30m1h 4h 24h
Fitting budget (time)

0.40

0.42

0.44

0.46

no
rm

al
ize

d-
er

ro
r

5m10m 30m1h 4h 24h
Fitting budget (time)

180

200

220

ra
nk

AutoGluon best
Portfolio

AutoGluon best Portfolio

Figure 7: Scatter plot of average normalized error (left) and rank (right) against fitting smaller training
time budget for portfolio and AutoGluon.

21

Under review as a conference paper at ICLR 2023

Table 11: Normalized-error, rank, training and inference time averaged over all tasks given 1h training
budget.

normalized-error rank time fit (s) time infer (s)
method

Portfolio (ensemble) 0.408 178.3 2435.0 0.023
AutoGluon best 0.409 201.6 2283.6 0.033
AutoGluon high 0.477 273.1 2201.2 0.002
Autosklearn2 0.494 254.1 3611.2 0.010
Lightautoml 0.503 246.4 3007.9 0.099
H2oautoml 0.547 316.5 3572.8 0.002
Flaml 0.550 330.1 3622.9 0.001
AutoGluon medium 0.551 306.5 270.5 0.001
LightGBM (tuned + ensemble) 0.563 260.5 1622.5 0.009
CatBoost (tuned + ensemble) 0.576 281.8 2873.5 0.005
CatBoost (tuned) 0.588 296.0 2884.7 0.002
LightGBM (tuned) 0.597 300.7 1627.9 0.002
CatBoost (default) 0.614 332.4 443.7 0.002
MLP (tuned + ensemble) 0.622 405.1 2560.2 0.107
MLP (tuned) 0.653 447.2 2559.8 0.014
XGBoost (tuned + ensemble) 0.662 356.5 1860.1 0.012
XGBoost (tuned) 0.675 379.1 1856.6 0.002
LightGBM (default) 0.747 478.7 54.2 0.001
XGBoost (default) 0.768 509.4 73.2 0.002
MLP (default) 0.782 611.3 39.7 0.015
ExtraTrees (tuned + ensemble) 0.799 525.4 386.9 0.001
ExtraTrees (tuned) 0.818 553.7 386.8 0.000
RandomForest (tuned + ensemble) 0.818 559.0 676.4 0.001
RandomForest (tuned) 0.830 575.6 671.8 0.000
ExtraTrees (default) 0.889 762.3 3.8 0.000
RandomForest (default) 0.896 749.4 17.5 0.000

Table 12: Win rate comparison for 1 hour time limit with the same approach used as for Tab. 2.

method winrate > < = time fit (s) time infer (s) loss (rescaled) rank

Portfolio (ensemble) (1h) 0.500 200 2434.9 0.023 0.250 3.257
AutoGluon best (1h) 0.487 95 100 5 2283.6 0.033 0.273 3.308
Autosklearn2 (1h) 0.380 74 122 4 3611.2 0.010 0.392 4.280
Lightautoml (1h) 0.307 59 136 5 3007.9 0.099 0.411 4.423
CatBoost (tuned + ensemble) (1h) 0.233 45 152 3 2876.2 0.004 0.518 5.122
H2oautoml (1h) 0.263 51 146 3 3572.8 0.002 0.513 5.128
Autosklearn (1h) 0.310 60 136 4 3612.0 0.007 0.545 5.185
Flaml (1h) 0.278 53 142 5 3622.9 0.001 0.559 5.298

22

Under review as a conference paper at ICLR 2023

as we do not store all model checkpoints whereas AutoGluon instead uses the best checkpoint found
until that point. To allow simulation under those cheaper settings, one would have to store more
checkpoints per model (for instance at a 10 minute frequency or at 5m, 10m, 30m and 1h time points
as done in Borchert et al. (2022)) but we decided against this option as the storage cost of TabRepo is
already significant (roughly 107 GB).

23

	Introduction
	Related work
	TabRepo
	Comparing HPO and AutoML systems
	Model error and runtime distributions
	Effect of tuning and ensembling on model error

	Portfolio learning with TabRepo
	Limitations
	Conclusion
	Additional experiment details
	API
	Dataset details
	Train-test splits

	Model details
	Model Config Full Results
	Model Config Hyperparameters
	MLP
	CatBoost
	LightGBM
	XGBoost
	Extra-trees
	Random-forest

	AutoML Framework Details
	AutoML Framework Full Results
	Auto-Sklearn 2

	Additional results with more models
	Additional results Portfolios
	Portfolio win-rate comparison
	Effect of runtime and number of portfolio configurations
	Performance on lower fitting budgets

