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Abstract

We study out-of-distribution (OOD) prediction behavior of neural networks when they
classify images from unseen classes or corrupted images. To probe the OOD behavior, we
introduce a new measure, nearest category generalization (NCG), where we compute the
fraction of OOD inputs that are classified with the same label as their nearest neighbor
in the training set. Our motivation stems from understanding the prediction patterns of
adversarially robust networks, since previous work has identified unexpected consequences of
training to be robust to norm-bounded perturbations. We find that robust networks have
consistently higher NCG score than natural training, even when the OOD data is much
farther away than the robustness radius. This implies that the local regularization of robust
training has a significant impact on the network’s decision regions. We replicate our findings
using many datasets, comparing new and existing training methods. Overall, adversarially
robust networks resemble a nearest neighbor classifier when it comes to OOD datd[]

1 Introduction

Understanding how neural networks generalize is an ongoing endeavor for machine learning researchers.
Many generalization properties for in-distribution data have been discovered (Geirhos et al.l [2020; [Sagawa,
et al., [2020; [Dasgupta et al., |2022; |Chan et al., [2022]). However, how deep neural networks generalize on
out-of-distribution (OOD) data is less studied. In this context, OOD could mean that the inputs come from
previously unseen categories (Salehi et al.| 2021} [Yang et al., 2021)), or that the inputs have been adversarially
perturbed (Madry et al., [2017) or corrupted (Hendrycks & Dietterich, 2019). Studying OOD generalization
may improve the reliability of machine learning systems. Another goal comes from semi-supervised and
self-supervised learning, where the model propagates labels to unlabeled data (Van Engelen & Hoos) [2020)).
Identifying clear patterns in OOD behavior can aid engineers in choosing among many methods.

Unfortunately, predictions on OOD data can be mysterious. For example, adversarially robust training
methods often involve regularizing the network so that it predicts the same label on both a training example
and on all points in a small e-ball around the example (Madry et al., |2017; |Zhang et all 2019). Such
methods only specify a local constraint on prediction behavior. At first glance, it may be tempting to guess
that training to be robust in a small e-ball should not affect predictions on other parts of the input space.
However, it has become clear that robust training can cause substantial differences in global behavior. For
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example, it may lead to excessive invariances (Jacobsen et al.l 2018} Tramer et al., [2020]), improve transfer
learning (Salman et al., [2020), or change confidence on OOD data (Hein et al., [2019).

1.1 Nearest Category Generalization

In this work, we introduce a new metric that we call Nearest Category Generalization (NCG). Concretely, we
calculate how often the predicted label on OOD data matches the 1-nearest-neighbor (1-NN) label and call
this measure as the NCG score (see Figure [1| for a visual example). We explore whether neural networks
are more likely to classify OOD data with the class label of the nearest training input. We also study how
adversarial robust training and find that it encourages the network to predict the same label not just in an
e-ball but also much further away in the pixel space (Carlini et al., 2019).

Training example Input: OOD example

Nearest neighbor

<

Label: 4 NCG if predicted as 4

Figure 1: A visual example of nearest category generalization. Assume we have a model trained on MNIST
digits zero to eight, and we have images of a nine as OOD examples. In the figure, we see that the input
OOD example has the image of a four in the training set as the nearest neighbor. If this OOD example also
gets predicted as a four, we say the model is generalizing this OOD example to its nearest category. The
NCG score measures how often OOD examples are generalized this way on the given model.

Following prior work (Salehi et al.l [2021)), we consider two canonical types of OOD data (i) Unseen Classes:
during training, we hold out all images from one of the classes, but during testing, we predict labels for
images from this unseen class, (ii) Corrupted Data: we train on all classes, but we test on images that have
been corrupted. Importantly for us, both sources of OOD data have the property that the distance (e.g., £2)
is quite large between the OOD data and the standard train/test images. In particular, the distance is much
larger than the robustness radius used during robust training, and therefore, the training procedure does not
explicitly dictate the predictions on such OOD data. Hence, NCG score measures global resemblance to the
1-NN classifier for unseen or corrupted images.

Understanding NCG can shed new light on many research questions. First, if changes in the training method
lead to significant changes in NCG score, then this suggests the network’s decision boundaries have shifted to
extrapolate very differently on OOD data. Even for ReLU networks, understanding the decision regions far
away from training data is an active and important area of research (Arora et al. 2016} Hanin & Rolnick]
2019; |Williams et al. 2019). Second, NCG score provides a new way to understand a model’s prediction on
unlabeled data that cannot be labeled using other information. This is in contrast to transfer learning and
few-shot learning that require auxiliary data |Raghu et al.| (2019)); [Yosinski et al.| (2014); [Wang et al.| (2020)).
Overall, we emphasize that the NCG framework is not rooted in a standalone task, but instead, it highlights
new prediction patterns of networks on OOD data.

1.2 Contributions

Our result shed light on how to examples with unseen classes. Our first finding is that NCG score is
consistently higher than chance levels for many training methods and datasets. This means that the behavior
on OOD data is far from random. On both natural and corrupted OOD images, the network favors the
1-NN label. Surprisingly, this correlation with 1-NN happens in pixel space with ¢ distance. The network
converges to a classifier that depends heavily on the geometry of the input space, as opposed to making
predictions based on semantic or higher-level structures.
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Next, we show that robust networks indeed have much higher NCG scores than natural training methods.
This holds for a variety of held-out classes, corruption types, and robust training methods. OOD inputs that
are classified with the NCG label (1-NN in training set) are considerably further than from their closest
training examples. These training examples also have adversarial examples that are closer than the robustness
radius 7 (see Figure . This implies that the decision regions of adversarially robust methods extend in
certain directions, but not others, and that the local training constraints lead to globally different behavior.
We can identify these types of prediction patterns precisely because we examine the network with OOD data.

X 00D dist

Figure 2: Robust networks tend to predict the same at a large distance in some directions, e.g., toward
natural OOD examples (green), but are susceptible to adversarial examples that are closer in the worst-case
directions (red).

Besides unseen classes, we also look at corrupted data, such as CIFAR10-C, CIFAR100-C, and ImgNet100-
C [Hendrycks & Dietterich| (2019). The NCG scores for all networks (including natural and robust networks)
are above the chance levels, and robust networks often have much higher NCG score than natural training.
We also uncover an interesting correlation between NCG score and prediction accuracy for corrupted data.
Corrupted examples that are correct in terms of NCG score have a higher chance of being classified correctly
in terms of the semantic label as well. In other words, if the network matches the 1-NN prediction, then it is
more likely to predict the correct label for a corrupted image. This indicates that having higher NCG score
may be a desirable property, as it is positively correlated with better predictions on corrupted data.

Our work uncovers an intriguing OOD generalization property of neural networks, and we find that robust
networks have higher NCG score than naturally trained counterparts. However, robust training does
not inherently impose constraints on the OOD data that we consider (OOD data are far from perturbed
examples). We posit that the NCG behavior is a consequence of the inductive bias produced by neural
networks (especially for adversarially robust networks). Also, different forms of robustness (¢2 and corruptions)
may be interconnected with NCG at a deeper level.

1.3 Related Work

Many prior works have tried to understand how neural networks generalize. For instance, |Geirhos et al.| (2020)
show that certain types of features are learned more easily, |Sagawa et al. (2020) study how changing the
architecture could change the features that neural networks learned, and Dasgupta et al.| (2022); |Chan et al.
(2022)) study how neural networks generalize on in-distribution data and suggest that in some in-distribution
regions, neural networks behave like nearest neighbor classifiers. Our work is a valuable addition to this series
of studies.

To investigate the global behavior of robust networks, we explore patterns in how such networks predict on
OOD data. However, the dimensionality of the input space for deep neural networks is usually high, making
it hard to explore the entire input space. Prior human study shows that when human tends to categorize
stimuli that are relatively few and distinct based on other previously seen stimuli that are similar to the
current ones (e.g. exemplar-based prediction) (Shepard & Chang), (1963; Nosofskyl [1986; [Rouder & Ratcliff]
2004). |Dasgupta et al.| (2022); |Chan et al.[ (2022) follow this idea and study neural network generalization
on in-distribution image and language data. They first train neural networks on data w/ or w/o different
attributes (e.g. the existence of a specific word in a sentence). Then, they probe these models’ prediction
with inputs w/ or w/o these attributes to study the model’s generalization property. However, the scope
of these prior experiments is limited to in-distribution data or certain OOD data, such as random noise or
adversarial perturbations (Hein et all 2019)). Also, in this work, instead of focusing on human interpretable
attributes, we focus on the raw input space and the learned feature space.
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There has been much research on properties of robust networks beyond robustness. [Santurkar et al.| (2020)
study the performance of adversarially trained models on subpopulation shift. [Salman et al.| (2020) consider
transfer learning for robust models. Kireev et al.| (2021) look at accuracy on corrupted data for robust
training methods.

Our results on NCG strengthen and complement existing efforts in understanding the excessive invariances
that are induced by adversarial training (Jacobsen et al., |2018; |Ortiz-Jimenez et al. [2020; Tramer et al.|
2020). Another related area is extrapolation (Balestriero et al.l |2021} Xu et al.| 2020), where we provide a
theoretical result (Theorem [1]) that corroborates claims that higher diversity of the training distribution helps
extrapolation to linear target functions (Hein et al., 2019; | Xu et al., |2020)).

Data augmentation is an effective way to improve generalization and robustness (Cubuk et al.l |2020; |Shorten
& Khoshgoftaar] 2019)). The success of this approach is consistent with our findings. Local regularization can
lead to unexpected behavior, and hence, training on far-away images helps control the decision regions (e.g.,
for robustness and generalization, cf. Herrmann et al.| (2021))).

Connecting NCG with OOD detection is a nice direction for future work (Manevitz & Yousef, [2001} [Liang
et al.l [2018} [Ren et al., 2019). OOD detectors already work well for some tasks, such as detecting data
from another dataset (Sehwag et al., |2021; [Tack et al. |2020). Holding out a single class from the same
dataset provides a harder instance of OOD detection. Predictions on unseen data are also studied in the
area of open set recognition (Dhamija et al.,|2020). Another approach to OOD generalization involves the
confidence/uncertainty on OOD data (Kristiadi et all 2020; Meinke & Heinl [2019; [Van Amersfoort et al.l
2020). However, much of this work takes a Bayesian perspective and calibrates OOD predictions. We focus on
a geometric framework, looking at distances and 1-NN labels in the input space. The perceptual organization
of neural networks is another way to probe OOD behavior (Kim et al.l [2021)).

2 Preliminaries

OOD Data. We consider two standard types of OOD data. Unseen Classes: We hold out all examples
from one class during training time (e.g., MNIST without 9s). During test time, we evaluate test accuracy
on the remaining classes, and we evaluate NCG score on the held-out class (e.g., we predict 0-8 for the
9s). For each dataset, we hold out different classes, and we use the shorthand dataset-wo# to mean that
this class # is unseen. For example, MNIST-wo9 is MNIST with unseen digit 9, CIFAR10-wo0 is CIFAR10
with unseen airplane and CIFAR100-wo0 is CIFAR100 with unseen aquatic mammals. We shorten this as
M-9, C10-0, C100-0, etc. We use coarse labels for CIFAR100. For ImageNet, we subsample to 100 classes to
form ImgNet100. Corruptions: We train on all classes and evaluate standard corruptions, which includes
CIFAR10-C and CIFAR100-C (Hendrycks & Dietterich, |2019). Again, we measure NCG score by classifying
corrupted data and checking whether the label matches the 1-NN training label.

Adversarially Robust Training. Let B(x,r) be a ball of radius r > 0 around x in a metric space. A
classifier f is said to be robust at x with radius r if for all x’ € B(x,r), we have f(x') = f(x). Standard
adversarially robust training methods such as TRADES (Zhang et al.| 2019) work by minimizing a loss function
that is the sum of the cross-entropy loss plus a regularization term; this regularization term encourages that
the network is smooth in a ball of radius r around each training point x;, ensuring robustness in this ball.
Concretely, the TRADES loss is:

ﬂ(fe(xi%yi) +ﬂ£}g]§ DKL(fO(X;)va(Xi))ﬂ (1)

where (3 is a tradeoff parameter, ¢ is the cross-entropy loss, and P; = B(x;, ) is the ball of radius r around x;.

Distance Metrics for NCG. We use the /5 distance for two representations. Pixel Space: Robust methods
aim to have invariant predictions within a small norm ball in pixel space. Hence, we evaluate the distance in
pixel space (we believe the ¢, results would be similar). Feature Space: For another representation, we first
train a different neural network (fully connected MLP) on the in-distribution data (we omit the unseen class).
Then we compute the last layer embedding for all images, including those in the unseen class, giving us a
learned, latent embedding. This provides vectors for both in-distribution and OOD images, and we use these
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vectors as our “feature space” version of the datasets. Note that we do not claim that these representations
capture human-level or semantic similarity for the OOD data. Nonetheless, they both can be used by future
work to provide insight into the OOD prediction behavior of robust and normal networks.

NCG score. The NCG score is the fraction of OOD inputs that are labeled as their nearest neighbor in
the training set (i.e., we measure agreement with the 1-NN classifier). For corrupted data, we use the whole
training set. For unseen classes, we use the training set minus the held-out class. We measure the 1-NN
prediction in ¢5 distance in either the pixel space or the above-defined feature space.

3 NCG for Unseen Classes

Set-up. For natural/robust training, on MNIST, we evaluate a CNN; on CIFAR10/100, we use Wider
ResNet (WRN-40-10); on ImageNet, we use ResNet50. We consider natural training and mixup (Zhang et al.l
2017)) as baselines. For robust training, we consider two standard methods, Adversarial Training (Madry
et al., 2017)(AT) and TRADES (Zhang et al., [2019)). These methods are known to have high adversarial
robustness to ¢ perturbations, and hence, they serve as good baseline examples of robust networks. For
TRADES, we use robustness radii r € {2,4, 8} for the ¢5 ball in Equation . In the pixel space, we use r = 2
for AT. In the feature space, we set r = 1 for AT on CIFAR10/100, and r = .5 for AT on ImgNet100 (on
CIFAR10/100, AT failed to converge with r = 2 and on ImgNet100 with r € {1,2}). We denote TRADES
with r = 2 and AT with » = 1 as TRADES(2) and AT(1), respectively. Prior work observes that AT and
TRADES give similar results with parameter tuning (Yang et al., [2020; |Carmon et al., [2019), and hence we
expect them to behave similarly. Appendix [C] has more details.

Datasets. We consider all 10 classes as the unseen class for MNIST and three unseen classes for each of
CIFARI10, CIFAR100, and ImgNet100. CIFAR10, we consider removing the airplane, deer, and truck classes;
for CIFAR100, we remove the aquatic mammals, fruit and vegetables, and large man-made outdoor things
classes; for ImgNet100, we remove the American robin, Gila monster, and eastern hog-nosed snake classes.
These are denoted as CIFAR10-wo{0, 4, 9}, CIFAR100-wo{0, 4, 9}, ImgNet100-wo{0, 1, 2}.

Results. Table [1|shows the NCG score of natural and robust models averaged over unseen classes (in both
pixel and feature space). We perform a chi-squared test against the null hypothesis that the distribution of
the labels is uniform with the p-value threshold set to 0.01. We find that for all 80 models trained, there is
a significantly higher than chance level NCG score. Then, we perform a t-test between each robust model
vs. natural training, with the null hypothesis being that the robust model has lower NCG score. In Table [2]
we show the number of cases that pass this ¢-test. Adversarially robust models, TRADES and AT, almost
always have a higher NCG score than natural training with verified statistical significance. Meanwhile, mixup
have a higher NCG score than natural training in only less than half of the cases.

Adversarial robustness increases NCG score. The unseen class is absent at training, and this property
has been obtained simply by making the model adversarially robust. This is interesting because it suggests
that robust models extrapolate to OOD data in a way that is more likely to match 1-NN predictions. Prior
work on extrapolation (Xu et all 2020) has shown that MLPs tend to extrapolate as linear functions on
far OOD data. The 1-NN classifier is not a linear function in their sense. Specifically, the 1-NN label is
determined by the Voronoi decomposition of the training data, and the decision boundaries separate far away
points using hyperplanes. Hence, the higher NCG score of robust classifiers uncovers a new phenomenon
of OOD behavior. We next investigate whether we should expect higher NCG score for robust models by
measuring the distance to OOD examples.

3.1 OOD Data are Farther than Adversarial Examples

Why do robust models have a higher NCG score for unseen classes? One plausible explanation is that the
robust methods enforce the neural network to be locally smooth in a ball of radius r; if the OOD inputs are
closer than r from their nearest training example, then they would get classified accordingly. Next, we test if
this is the case by measuring the /5 distance between each OOD input x and its closest training example
x. Then, we calculate the closest adversarial example x’ to X using various attack algorithms. We measure
(i) the distance between OOD example and its closest training example (|x — x|2) and (ii) the empirical
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Table 1: The average and standard deviation of the NCG scores across different held-out class of each dataset.
There are 10 unseen classes for MNIST and 3 unseen classes for CIFAR10, CIFAR100, and ImgNet100. In
general robust methods have a higher average NCG than natural training. The chance level is /o for MNIST
and CIFARI10, 119 for CIFAR100, and /99 for ImgNet100.

MINST CIFAR10 CIFAR100 ImgNet100

pixel
natural 49+ .14 24+ .09 18 £.03 .04 £ .01
mixup A7+.14 23+.09 .20 £ .06 .04 £ .01

TRADES(2)  59+.12 .34+.12  29+.09  .04+.01
TRADES(4)  .59+.10 .37+.11 .294+.10 .05+ .01
TRADES(8)  .52+.12 .34+.10 .29+.13  .06+.01

AT(2) .60+ .10 .36+ .12 .26 + .07 .04 £+ .01
feature

natural b504+.18  .824.02 .66 + .03 12+ .01

mixup b6 +.16 .79 + .02 .66 £+ .03 144+ .01

TRADES(2)  58+.15 .82+.01 .72+.02  .16+.01
TRADES(4)  64+.10 85+.02 .71+.02  .13+.01
TRADES(S) 67+.11 85+.02 71+.02 .14+ .01

AT(2)/(1)/(5) 54+.17 85+.03 .73+.02 .16+ .01

Table 2: The number of robust models with higher NCG score than natural training. For MNIST we check
10 unseen classes, and for CIFAR10, CIFAR100, and ImgNet100, we use 3 unseen classes. 10/10 means that
out of the 10 unseen classes, all 10 models have a higher NCG score.

pixel feature
M Cl0o Cl0 I | M Cl0 C100 I
mixup 5/10 0/3 2/3 0/3| 0/10 0/3 2/3 3/3

TRADES(2)  10/10 3/3 3/3 3/3| 9/10 2/3 3/3 3/3
TRADES(4) 8/10 3/3 3/3 3/3|10/10 3/3 3/3 3/3
TRADES(S) 7/10 3/3 3/3 3/3|10/10 3/3 3/3 3/3

T(2)/(1)/(5) 10/10 3/3 3/3 3/3| 9/10 3/3 3/3 3/3

robustness radius (|x’ — X|2). We plot the histograms in Figure [3] We use the C&W attack [Carlini & Wagner
(2017) algorithm to find the closest adversarial example. Some of these attacks are slow, so we compute
adversarial examples for 300 randomly sampled training examples that are correctly predicted. Then, we
restrict to OOD examples that have one of these 300 training examples as their closest neighbor.

Figure [3a| reports a typical distance histogram in the pixel space (for C10-0). We find that the histograms
of OOD distances and the empirical robust radii have little to no overlap in the pixel space, while in the
feature space, there is some overlap but not much. To better understand what is happening, we measure
the percentage of OOD examples that are covered in the ball centered around the closest training example
with a radius of the empirical robust radius. We find that in both the pixel and feature space, for 186 out
of 190 models, this percentage is less than 2%, which is significantly smaller than the difference between
the NCG score of robust and naturally trained models in most cases (190 comes from having two metric
spaces, five models, and 19 datasets). This result shows that almost all OOD examples from unseen classes
are significantly further away from their closest training example than the empirical robust radius of these
training examples.
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Figure 3: Histograms: log of the empirical robust radius and OOD distance for TRADES(2) on CIFAR10-wo0
and ImgNet100-wo0. Adversarial examples are much closer than OOD examples.

3.2 The Role of the Training Procedure

We next ask whether changing the robustness regions P; when optimizing the loss in Equation can change
NCG score. TRADES enforces smoothness in a region P; that is to be a fixed radius r norm ball around
each training example. Enforcing smoothness on fixed radius norm balls may not ensure good NCG score.
Figure [4c| shows an example — here, the purple points are closer to the orange cluster on the left and further
from the orange cluster on the right. If we only enforce smoothness on a uniform ball (TRADES), the decision
boundary for the purple points does not extend right enough. We explore making the classifier smooth in
regions P; that adapt to the geometry of the dataset.

o +

. b

v
ellipsoid

— ball
R TRADES
Y L]
(a) region diagram (b) natural (¢) uniform ball (d) sub-Voronoi region

Figure 4: (a) A diagram showing the difference between the sub-Voronoi region (V) and the ball B used to
approximate it. In figure (b), (c¢), and (d), we plot the decision boundary of neural networks trained with
natural training, TRADES, and enforcement on the smoothness in V. The yellow examples are the OOD
examples, and they are closer to the purple examples. In (b) and (c), we see that the predictions on the
yellow examples are not consistent to the nearest neighbor; on the other hand, in (d), the yellow examples
are predicted as purple.

Sub-Voronoi Region. Can we use the 1-NN classifier as a guide to actively improve NCG score? While we
do not see OOD inputs at training, we can encourage all points x that are closer to a training point (x;,y;)
than to any other training point with a different label to be assigned to label y;. In other words, we could
set P; to be the Voronoi region of x; in the union of (x;,y;) and all other training points whose labels are
different from y;. We call this the sub-Voronoi region of (x;,y;). Figure shows an example.

Figures [4H] to show how different training methods change the decision regions. Note that the yellow
points are never seen during training or testing (they are just for illustration of hypothetical OOD inputs).
We draw the decision boundary for three methods — natural, TRADES, and training with P; set to the
sub-Voronoi region in Equation . All three perform well on in-distribution examples; however, unlike
TRADES, optimizing over the sub-Voronoi region classifies all of the OOD examples with their nearest
categories by putting the purple boundary in the correct location.

We note that in Figure [d] we do not claim that one decision boundary is better than the others. Our
motivation is to see how to increase NCG score through a new training method. NCG score measures how well
the decision boundary of a neural network matches the decision boundary of a 1-nearest neighbor classifier
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on OOD examples. Thus, the sub-Voronoi regions formed by the training examples are a natural choice of
the robust region (because if a classifier has a decision boundary that matches the sub-Voronoi region, and
the label of each region is the same as the training example in that region, then the classifier has a 100%
NCG score). The reason for examining this property is that if an OOD example is given with no assumption
made on these given examples. Then the best thing we can do is to predict this given example with the same
label as the closest training example.

3.3 Approximations to the sub-Voronoi region

The loss in Equation is minimized by an iterative procedure. At each iteration, we find the input in P;
that maximizes the regularization term. Running this requires being able to project onto P; efficiently. While
this can be done relatively fast when P; is a constant radius ball, it is considerably more challenging for
the sub-Voronoi region — which is a polytope with close to n constraints (one for each training point with
label # y;). Therefore, we consider three alternative approximations that are faster to project on and can be
efficiently implemented during training.

Sub-sampled sub-Voronoi. Here, instead of the sub-Voronoi region, of x; in the full training data, we
use the Voronoi cell of x; in the union of (x;,y;) and a subsample of the training data with labels not equal
to y;. Since the sub-sampled sub-Voronoi region can be large, which can cause the network to underfit, we
introduce a shrinkage parameter A € [0, 1] to scale down the size of the region.

Ellipsoid. An alternative method is to use an ellipsoidal approximation. Computing the maximum volume
ellipsoid inside the region is again challenging. To improve efficiency, we use the following approximation. We
pick k differently-labeled training examples that are closest to x;, learn a PCA on these k examples, and
pick the ellipsoid centered at x; and described by the top k/2 principal components. We use a shrinkage
parameter A to help generalization.

Non-uniform ball. A final approximation is to use an ¢ ball of radius r;, where r; is set to half the distance
between x; and its closest training point with a different label; this is the largest ball centered at x; that
is contained in the sub-Voronoi region. As with the previous methods, with finite training data, this may
overestimate the region where we should predict y; and hence lead to underfitting; to address this, we again
introduce a shrinkage parameter \, setting P; to B(x;, A\r;). More details about the minimization procedure
and each of these alternatives are given in Appendix [B]

3.4 Experiments on how the robust region affects NCG

We now empirically measure how the role of changing P; affects NCG score on real data. For this purpose,
we consider enforcing smoothness in the three types of regions discussed above — non-uniform ball, ellipsoid,
and sub-sampled sub-Voronoi. We also look at TRADES with three different radii and natural training as
baselines. A detailed discussion of the experimental setup is in Appendix [C] Note that we do not aim to
achieve the best performance in any given measure, so we mostly use standard parameter settings, and we do
not use data augmentation.

Results and Discussion. Table [3] shows the train, test, NCG score for MNIST, CIFAR10, CIFAR100 with
different unseen categories. All robust methods — TRADES and three approximations to sub-Voronoi — have
higher NCG score than the natural training. This agrees with our previous observations. Surprisingly, there
is a lot of variation in the results. This warrants investigation, but we do not have a clear conjecture as to
why certain classes have higher NCG score. For instance, in M-4, the NCG score can be up to 83%, while in
M-1, the best is 53%. Perhaps there is a visual similarity between some classes of images (e.g., 4s and 9s
look alike), or spurious correlations (Veitch et all 2021)), or only some datasets have sufficient diversity in
examples to “cover” the OOD class (Hein et al |2019; |[Xu et al., [2020)). In high dimensional space, it is hard
to measure whether some of the unseen classes are more like the training data than others. We later explore
the NCG score as a function of the distance to the training set. At least in pixel space and for color images,
we find that closer images are more likely to receive the NCG label. We next consider corrupted images as
another source of OOD data.
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Table 3: The training, testing and NCG score of networks trained by enforcing smoothness on different
regions (pixel space). We use MNIST with digits 0, 1, 4, and 9 as the unseen classes, CIFAR10 with airplane
and deer as the unseen classes, and CIFAR100 with aquatic mammals and fruit and vegetables as the unseen
classes.

trn acec. tst acc. NCG score trn acc. tst acc. NCG score

MNIST-wo0 (M-0) MNIST-wol (M-1)
sub-voronoi 0.981 0.981 0.474 0.982 0.981 0.376
ellipsoid 0.981 0.981 0.476 0.982 0.980 0.425
ball 0.975 0.973 0.510 0.976 0.973 0.338
TRADES 0.954 0.956 0.485 0.975 0.974 0.528
nat 1.000 0.995 0.390 1.000 0.995 0.273
MNIST-wo4 (M-4) MNIST-wo9 (M-9)
sub-voronoi 0.982 0.983 0.827 0.988 0.988 0.703
ellipsoid 0.982 0.982 0.820 0.988 0.988 0.725
ball 0.977 0.976 0.795 0.982 0.981 0.711
TRADES 0.988 0.987 0.810 0.962 0.964 0.703
nat 1.000 0.995 0.760 1.000 0.996 0.577
CIFAR10-wo0 (C10-0) CIFAR10-wo4 (C10-4)

sub-voronoi 0.735 0.658 0.452 0.486 0.482 0.417
ellipsoid 0.671 0.613 0.472 0.483 0.481 0.409
ball 0.794 0.618 0.530 0.871 0.664 0.317
TRADES 0.870 0.660 0.520 0.862 0.643 0.355
nat 1.000 0.900 0.362 1.000 0.886 0.222

CIFAR100-wo0 (C100-0) CIFAR100-wo4 (C100-4)
sub-voronoi 0.308 0.289 0.241 0.706 0.499 0.207
ellipsoid 0.633 0.478 0.255 0.466 0.385 0.198
ball 0.936 0.517 0.236 0.930 0.489 0.176
TRADES 0.891 0.534 0.264 0.995 0.534 0.193
nat 1.000 0.757 0.169 1.000 0.694 0.140

4 NCG for Corrupted Data

Do the trends that we have seen for NCG also hold for other OOD data besides unseen classes? We consider
images with Gaussian noise, blur, JPEG artifacts, snow, speckle, etc (Hendrycks & Dietterich, [2019)). We use
“-C” to denoted the corrupted version of a dataset, e.g., CIFAR10-C (C10-C), CIFAR100-C (C100-C), and
ImgNet100-C (I-C), which consists of corrupted images from the CIFAR10 (C10), CIFAR100 (C100), and
ImgNet100 (I) datasets. C10-C and C100-C have 18 kinds of corruption, each with 5 corruption levels. I-C
has 15 kinds of corruption, each with 5 levels. We consider models trained on regular datasets, C10, C100,
and I (instead of removing the unseen class). We use corrupted set to refer to a corruption type and intensity
level. For C10 and C100, there are 90 corrupted sets for each dataset; for I, there are 75 corrupted sets. We
consider NCG under /¢, distance for both the pixel and learned feature spaces. We train on C10, C100, and I
and measure NCG score on C10-C, C100-C, and I-C, respectively; each training method is measured on 255
corruption sets.

Results. In both pixel and feature space, we find that all the 255 corruption sets have an NCG score above
chance level. For robust models, we find that in the pixel space, TRADES(2) has an NCG score higher than
naturally trained models on all 255 corrupted sets. Quantitatively, on average (over the 90 and 75 corrupted
sets), TRADES has an NCG score that is 1.35 + .02, 1.36 + .03, and 1.66 + .04 times higher than naturally
trained models for CIFAR10, CIFAR100, and ImgNet100 respectively. Hence, in pixel space, the TRADES
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training procedure leads to much higher NCG score for corrupted data. On the other hand, in the feature
space, the results are much less conclusive. In particular, the robust models still have higher NCG score on
average, but this does not happen consistently across corruption types or datasets (see AppendiX.

Discussion. Our findings in Section [3| extend to these corruptions as the OOD data. In particular, the NCG
score of adversarially robust networks is higher on both unseen, natural images, and on corrupted versions of
seen classes. On the other hand, in the feature space, the robust models do not have much difference in NCG
score from the naturally trained models. The fact that we see less variation in the feature space compared
to the pixel space is consistent with our results on the unseen classes. The TRADES robust training does
not affect the decision regions as much when the smoothness is enforced in the feature space. This is likely
because the learned embedding has less variation in elements of the same class, and hence, the TRADES
training does not contribute as much.

4.1 NCG score vs. test accuracy

Next, we look at the interaction between the NCG and test accuracies, so we also measure the test accuracy
on the NCG correct data and NCG incorrect data. We first observe that NCG correct examples are more
likely to be correctly classified. To verify that this phenomenon is statistically significant across the board,
we perform the one-sided Welch’s t-test (which does not assume equal variance) with the null hypothesis
being that the accuracy of NCG correct example is not greater than the accuracy of NCG incorrect example.
We set the p-value threshold to 0.05, and the test results are in Table [dl For more details, please refer to

Appendix [D:3]

Table 4: Number of cases where the NCG correct examples have a significantly higher test accuracy than
the NCG incorrect examples. 87/90 means that out of the 90 corrupted sets, 87 of them pass the t-test.

pixel feature
C10 €100 I C10 €100 I
natural 87/90 87/90 57/75 88/90 90/90 73/75

TRADES(2) 84/90 88/90 60/75 89/90 90/90 73/75

5 Discussion and Connections

5.1 Sample complexity of NCG vs. OOD detection

We first observe that NCG is an easier problem in theory than OOD detection. Indeed, any time we can
detect an OOD example, then we can use the 1-NN classifier to label it. Thus, the NCG score should always
be at least as high as the true positive rate for OOD detection.

We next theoretically show that the converse is false in general. We prove that there exist cases where
maximizing NCG score can be significantly more sample efficient than solving detection problems. OOD
detection is hard when certain regions of space have low mass under the input distribution. In this case, it
takes many samples to see a representative covering of the support. Prior work has made similar high-level
observations in the context of data diversity for robustness and extrapolation (Hein et al. |2019; Xu et al.|
2020). In contrast, when the NCG label is the same for nearby regions, then it suffices to see samples
from fewer regions and generalize accordingly. We formalize this claim in the following theorem, which
identifies simple distributions where detection requires many more samples than NCG. While the proof is not
complicated, our result suggests that achieving a high NCG score can be much easier than achieving a good
detection rate in some case

Theorem 1 For any e € (0,1/2), d = 1, and C > 2, there exists distributions u on training examples from
C classes in R? and v on OOD test examples from outside of supp(u) such that (i) detecting whether an
example is from p or v requires Q(C/€) samples from u, while (ii) classifying examples from v with their
nearest neighbor label from the support of p requires only O(C'log C) samples.

10
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Figure [5] shows intuition for Theorem [I] in the binary case. OOD examples come from outside of the colored
cubes. Appendix [A| has the proof for C classes in R?.

-1, +1
€ 1—e€ 1—e€ €
Figure 5: An example for Theorem [I} The sample frequency is the size of the red/green shapes. With a few

samples from each large probability region, we determine the NCG label via a large margin solution, but
OOD detection requires samples from the small probability regions.

We sketch how to generalize Figure [5| for more classes and higher dimensional data. The idea is that we
translate and replicate the binary dataset and increase the regions to d-dimensional cubes. For the distribution
i, we have 4C' cubes with side length 1/+/d. There will be 2 cubes that have labels from each of the C' classes.
The high probability cubes emit samples with probability ~ (1 — ¢)/C and the lower probability with ~ ¢/C.
Due to the side lengths being 1/ V/d, the 1-nearest neighbor (1I-NN) in ¢ of the low probability region is paired
with an adjacent high probability box, and hence, it is easy to predict given samples from the high probability
region. By a coupon collector argument, we see all high probability regions after O(C'log C') samples. On the
other hand, by the construction of the probability distributions, we need Q(C/¢) samples for OOD detection,
where € is the sample probability from a low probability region. For the OOD distribution v, we strategically
sample points from outside of all of these cubes (while guaranteeing that the nearest neighbor labels are still
correct). Thus, O(C'log C') samples are sufficient for NCG, but 2(C/e) are needed for OOD detection.

This result suggests that there are cases where OOD detection is extremely sample inefficient and cannot be
done well. In these cases, the model will have to give a prediction on examples that it does not expect. Thus,
it would be crucial to understand how the model predicts these examples.

As a concrete example, we train a model on MNIST images of 0-8 and use the model for prediction on images
of 9s. We also train an OOD detector — ODIN (Liang et al., [2018) — which has a .951 true positive rate and
.875 false negative rate. In this example, many images of 9s cannot be easily picked out by OOD detectors
and will be treated as in-distribution examples. Thus, it is important to know what kind of prediction will
be given to these 9s. From our previous result, we find that many 9s are predicted as 4s, and this can be
explained by nearest category generalization.

5.2 When do we have higher NCG scores?

One hypothesis is that OOD examples that are further from the training set are less likely to be predicted
with the NCG label. To check this hypothesis, we conduct the following experiment. We bin the OOD
examples based on their distance to the closest training example into 5 equal size bins, and we evaluate the
NCG score in each bin. A typical result is shown in Figure |§| (additional results are in Appendix . We
find that the NCG score is generally higher when OOD examples are closer to the training examples. This is
true both for an unseen class and for corrupted data (in aggregate). While this is not surprising, it does give
more insight into the patterns of OOD data that are labeled with the 1-NN label. We also looked at MNIST,
but there was no clear connection between distance and NCG score.

It is known that OOD detectors perform well when in- and out-of-distribution data are far away from each
other (Liang et al., |2018]). This, along with our result, gives us an interesting dynamic, which is that neural
networks behave more like the nearest neighbor classifier when detectors perform worse. This also suggests
that many of the OOD examples that are misclassified as in-distribution examples could follow the NCG
property. It would allow the user to know that even when the OOD detector fails, the model would still
output something reasonable. Therefore, if one wants a robust and predictable prediction on OOD data, it
can be desirable to have a high NCG score.

Limitation: Choice of the distance metric. We only evaluate ¢5 distance in the pixel and feature space.
With ¢, distance, we already discovered interesting OOD behavior. However, an important direction is to
explore other distance measures to understand the prediction patterns. Some options include ¢4, or cosine

11
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Figure 6: We group OOD examples into five bins based on /5 distance to the closest training example in pixel
space. (a) and (b) show the NCG score of each bin on the unseen class of CIFAR10-wo0 and ImgNet100-wo0.
(c) and (d) the NCG score of each bin on the aggregate corrupted data of CIFAR10 and ImgNet100. The
downward trend seen here is not as apparent in the feature space (see Appendix .

distance or measuring distance in a embedding space of an auto-encoder. Ideally, the distance measure would
capture perceptual similarity of the images. This would imply that NCG score corresponds to how humans
may predict an unseen class. However, it is not clear if such a perceptual metric exists for images.

6 Conclusion

We examine out-of-distribution (OOD) properties of neural networks and uncover intriguing generalization
properties. Neural networks have a tendency of predicting OOD examples with the labels of their closest
training examples. We measure this via a new metric called NCG score. Robust networks consistently have
higher NCG score than naturally trained models. We replicate this result for two sources of OOD data
(unseen classes and corrupted images), and we experiment with a variety of new and existing robust training
methods. This is surprising because the OOD data are much further away in ¢y distance than both the
robustness radius and the nearest adversarial examples. Therefore, the robust training procedure is changing
the decision regions on parts of space that are not directly considered in the loss function. We posit that this
behavior and the higher NCG score is a consequence of the inductive bias of robust networks. In the future,
it would be interesting to evaluate NCG for other training methods, architectures, and sources of OOD data
like distribution shift or spurious correlations. Overall, NCG can be a valuable and scalable addition to the
toolbox of evaluation metrics for OOD generalization.
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A Proof of the Sample Complexity Separation Theorem

As a warm-up, we prove Theorem [I] for R and C = 2 classes. We will use this as a building block for the
general result.

A.1 Warm-up: binary case

For this special case, the universe for the examples will be the real line R, and we consider a binary classification
task with a third category that only appears in the testing distribution. Let € € (0,1/2) be a parameter. For
the training distribution u, we define four regions:

1. Positive, large probability. Let Py = [1,2], labeled as “+7.
Positive, small probability. Let P; = [3,4], labeled as “+”.

Negative, large probability. Let Ny = [—2,—1], labeled as “—".

)

=~ W N

Negative, small probability. Let A7 = [—4, —3], labeled as “—".

To sample from the training distribution u, we first set £ € {—1,1} randomly with equal probability. Then,
we choose i € {0, 1}, where ¢ = 0 with probability 1 — € and ¢ = 1 with probability e. If £ = 1, sample a point
2 uniformly from P;, and otherwise, if £ = —1, we sample uniformly from N;. Note that with probability
1 — ¢, we have that = € Py U Ny, while the probability of seeing any point in P; U N7 is only €. Finally, let v
be the uniform distribution on [—6, —5] U [5, 6], where for = ~ v, we label it as sign(z).

We first argue that nearest category generalization can be efficiently solved. During training time, if we see
at least 32 samples from g, then with probability at least 99%, we will see samples from both Py and N,
since 1 — € > 1/2, and we see samples from each class with equal probability. Therefore, once we have at least
one sample from each class, we can construct the classifier decides +1 based on the midpoint of the training
examples (which will be between —2 and +2 with good probability). Then, on the testing distribution v, we
see that all points will be classified correctly with the label of their nearest neighbor in the support of u.

Turning to out-of-distribution detection, we claim that (1/¢) samples are necessary. Indeed, to distinguish
whether a sample comes from v or from P; U N7, we must see at least one sample from each of P; and N7,
since the support of v is unknown at training time. As the probability of sampling from P; or N is only €,
we will miss one of these regions with probability 99% if we have fewer than ¢ = 1/(100¢) samples from pu.
Indeed, with probability (1 —€)! > e~ = 701 > 0.99, we have that all the samples come from Py U Nj.

A.2 General case

We now provide the proof of Theorem [lf for any number C' > 2 of classes and for any d > 1 dimensional
dataset in R? with nearest neighbors measured in ¢ distance.

For j € {1,2,...,C} we define the following centers
ab=1+10j and @] =3+10j and  a} =5+ 107

where we naturally embed them in d dimensions by using these as the value of the first coordinate and setting
the rest of the coordinates to be zero. In other words, we define af. = af - e1, where e is the standard basis
vector, so that a] € R%.

Then, for i € {0,1,2} and j € {1,2,...,C}, we define the following regions, which are cubes centered at the
points defined above and have side length 1/ Vd. Formally, we consider the d-dimensional cubes

A‘Z={af+($1,w27~-~>$d)|0<xk<1/\/3}'

To sample from the training distribution u, we first choose ¢ € {1,2,...,C} uniformly at random. Then, we
choose i € {0,1}, where 7 = 0 with probability 1 — e and ¢ = 1 with probability e. Given our choice of ¢, we
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sample a point x uniformly from Af. Note that with probability 1 — €, we have that x € UJC:1 .A%, while the
probability of seeing any point in Uf:l .A{ is only €. Finally, let v be the uniform distribution on Ule .A%.
For both distributions, we label x as j if it comes from A{ for any i € {0, 1, 2}.

Notice that this definition with j = 0 corresponds to the positively labeled regions ([1,2],[3,4], [5,6]) from
the proof of the binary case in the previous subsection. The probabilities are also the same when C' = 2.

We explain the key properties of these regions, and then we prove the sample complexity results claimed
in the theorem statement. First, for any i € {0,1,2} and j € {1,2,...,C}, if x,y € A/, then [x —y[2 <1
because each A} is a cube with side length 1 /\/E in R9,

Next, consider x € A%. We claim that x is closer to Aﬁ than to any point z € Af; ) .A{I for any j’ # j. To see
this, we can check that the triangle inequality implies that

min Jx— yls <4415
yeA)

while, since the centers satisfy |a} — a] | > |a}, — af,| = 6, we also have that for j' # j,

min ||x — z|2 = 6.
zeAg/u.A{/

As a consequence, we have that the nearest neighbor in ¢y distance for any point x € .A% has the same label
j as x does. In particular, this implies that we can solve the nearest category generalization problem for
points sampled from v. To do so, we first sample ©(C'log C') points from u, so that by a coupon collector
argument, we see at least one point from A} for each j € {1,2,...,C}. Then, recall that v is supported on
the union of Ag over j' € {1,2,...,C}. By the above calculations, we have that the nearest neighbor for
a point x € .Ag is some point from either .A% or .A{. Therefore, since we have sampled at least one point
from A%, we can correctly determine that x has label j by computing the nearest neighbor in our sampled
points. To be more precise, we can compute the multi-class large-margin classifier, where we have sequential
decision regions (corresponding roughly to the centers defined above), setting the decision boundaries to be
equally spaced between samples from adjacent regions (i.e., the natural generalization of the 1D large-margin
solution). Importantly, this solution does not require any extra knowledge of the support of u and v because
it can be computed directly from the samples (and we have argued that with ©(C'log C) samples, we will see
all C' classes at least once).

We turn our attention to our lower bound, which is that we need at least Q(C'/e) samples to solve the OOD
detection problem. More precisely, we provide a lower bound for the number of samples to guarantee that
we see that least one point from each region A} for each j € {1,2,...,C}. This is a prerequisite for solving
the OOD detection problem, because otherwise, we cannot tell whether a point comes from p or v without
prior knowledge of the regions. For the lower bound, we use the same argument as in the binary case in the
previous subsection. This implies that we need Q(C/¢) samples to see one from A7 for each fixed j since the
probability of sampling from this region is ¢/C by the definition of u.

A.3 Alternative generalizations

We could also use a “noisy one-hot encoding” to prove the theorem, replicating and rotating the 1D dataset
log, C times, to get a subset of R1°2¢ for C' classes. One dimension is non-zero for each point, and each
dimension has points from two possible labels (C total labels). Use 6C' regions to define the low probability,
high probability, and OOD regions (6 in each dimension with 3 for each class). Again, by a coupon collector
argument, we will see some point from each of the high probability regions after O(C'log C') samples. This
enables nearest category generalization. On the other hand, for OOD detection, we need 2(C/e) samples,
where € is the sample probability from a low probability region.

Instead of boxes, we could use Gaussian distributions with covariance o2I; and means shifted by increments
of a vector, spacing out the means by distance Q(o+/log(d/e)) to get analogous guarantees. Similar ideas
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work for Hamming distance on {0, 1}¢; embed regions as intervals in the partial order along a path from 07
to 1%, spacing them out to ensure 1-NN properties. In general, there are many metric spaces where we can
provide a separation between nearest category generalization and OOD detection by correctly setting up
the regions and sampling probabilities. Therefore, we believe it a general phenomena that nearest category
generalization is a more tractable goal, in terms of sample complexity, than OOD detection.

B More details for algorithm implementation

Minimizing Equation . Directly minimizing this loss function is challenging because of the second
term; therefore, we make some approximations. We compute the inner maximization using the projected
gradient descent algorithm (PGD) (Kurakin et all|2016). PGD is initialized as: xgl) = x;, where x; is the
i-th training example. For iteration ¢, we take a gradient step on x; with step size o towards maximizing
the KL divergence term (formally: xl(.t) = xgt_l) + aVyx Dxi(fo(x;), fo(x:))), and then project xgt) onto the
region P;. After T iterations, we use XET) as the solution to the inner maximization and update the parameter
6 by a stochastic gradient step on £(fo(x;), y;) + DKL(fg(ng)), fo(xi))-

Projecting onto different regions. The projection needs to be computationally efficient as we need to
project many points onto many regions for each update of the network. Projecting from a point to a ball is
efficient as we can divide the norm of the point and multiply the radius of the ball. The projection onto an
ellipsoid can be reduced to a second-order cone program, and the projection onto the sub-sampled sub-Voronoi
region is a quadratic program. Sophisticated solvers for these two types of programs exist, but it can still
be difficult when we have a large dataset or the data resides in a high-dimensional space. Fortunately, we
only need an approximated solution for these projections. We adopt a binary search method to solve these
programs approximately. We perform a binary search between the point that we want to project (x) and the
i-th training example (x; that is in P;). We use the point among all the points between x and x; that is the
closest to x but within the region P; as the projected point.

Step size of PGD. For both TRADES (uniform balls) and non-uniform balls, we set the step size of PGD
to the robust radius r and €]*** divided by 5. Different from balls, where the distance from the starting point
(x;) to the boundary of the region is exactly the same for all directions, deciding the step size for the ellipsoid
and sub-sampled sub-Voronoi region can be difficult. We heuristically set the step size for the ellipsoid to be
the longest axis of each ellipsoid is divided by 5 As for sub-sampled sub-Voronoi regions, we set the step size
as the distance from x; to the furthest linear constraint divided by 5.

B.1 Implementation details for each region

Sub-sampled sub-Voronoi region. We set the number of samples to 100 for MNIST and 50 for CIFAR10
and CIFAR100. Let W;x < h; be a linear constraint between example x; and an example x; where y; # y;,
we add the shrinkage parameter A to the constraint as W;x < h; % A = y;.

Non-uniform radius ball. The radius of the ball A\e]*** can be large when examples are far apart. |(Cheng
et al.|[ (2020); Sitawarin et al|(2020) report that enforcing smoothness in a large radius ball can be difficult
and proposed methods that can diffuse some of these challenges. We adopt two methods from these works.
First, for each example x;, we set its radius ¢; = 0 and then gradually increase €; with a step size 7 after
each epoch. Second, if the prediction within the ball centered at x; with radius ¢; is not smooth enough, we
decrease €; by n. We set a threshold thresh to determine whether it is smooth enough. The pseudocode is in
Algorithm [I]

Ellipsoid. In practice, we set the number of differently-labeled samples k£ = 100. Let s;, V; be the top %
singular values and principal components respectively, We search for the shrinkage parameter \; between
1 and 500 with binary search and find the largest \; such that the ellipsoid include at most 5% of the k
sampled examples. Then, we divide \; by 2 to make sure the ellipsoid from another point does not overlap
with the current ellipsoid.
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Algorithm 1 {x;,v;}}¥,,\, B,n, thresh, T

. 13-
6;"naa: =\ MmNy ey #u; §dISt(Xi,Xj)

for # epoch do
for i = 1..N do
€ — € +n
€; = max(e;, €
for j =1..T do
0; — a- sign(Vs, Dxr(fo(xi + 6;), fo(xi))
project §; onto B(0,¢;)
end for
if DKL(fg(Xj, + 57;), fo (Xz)) > thresh then
€ < € — 2 % n
end if
update 6 to minimize £(fo(x;), ;) + 8 * DxL(fo(x; + 0;), fo(x;))
end for
end for

max )
K2

C Detailed experiment setups

The experiments are performed on 6 NVIDIA GeForce RTX 2080 Ti and 2 RTX 3080 GPUs located on
three servers. Two of the servers have Intel Core i9 9940X and 128GB of RAM and the other one has AMD
Threadripper 3960X and 256GB of RAM. We compute nearest neighbors using FAISEE] (Johnson et al., 2017),
and all neural networks are implemented under the PyTorch frameworkE] (Paszke et al.,[2019). The code for all
the experiments can be found at https://github.com/yangarbiter/nearest-category-generalization.

Algorithm implementations. For C&W attack algorithm (Carlini & Wagner} 2017)), we use the implemen-
tation by foolboxE] (Rauber et al., [2017)). For TRADES (Zhang et al., [2019)), we also use the implementation
From the original authox{ﬂ

Datasets. All datasets used in our paper can be found in publicly available urls. MNIST can be found in
http://yann.lecun.com/exdb/mnist/, CIFAR10 and CIFAR100 can be found in https://www.cs.toronto,
edu/~kriz/cifar.html, ImgNet can be found in https://www.image-net.org/.

Architechtures. We consider the convolutional neural network (CNN)ﬂ wider residual network (WRN-40-
10) (Zagoruyko & Komodakis| 2016), ResNet50 (He et al.| [2016)) for our experiments in the pixel space.

Optimizers. We consider stochastic gradient descent (SGD) and Adam (Kingma & Bal [2014) as the
optimizers.

MNIST setup. We use the CNN used by |Zhang et al.| (2019) for training neural networks in the pixel space.
The learning rate is decreased by a factor of 0.1 on the 40-th, 50-th, and 60-th epoch. We use the output of
the last convolutional CNN output as the extracted feature.

CIFAR10, CIFAR100, ImgNet100 setup. For CIFAR10 and CIFAR100, we use Wider ResNet (WRN-
40-10) (Zagoruyko & Komodakis, [2016)) for training neural networks in the pixel space. For ImgNet100, we
use ResNet50 (He et al., [2016]) for training neural networks in the pixel space. The learning rate is decreased
by a factor of 0.1 on the 40-th, 50-th, and 60-th epoch. For ImgNet100, we normalize the data by subtracting
the mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225).

code and license can be found in https://github.com/facebookresearch/faiss
code and license can be found in https://github.com/pytorch/pytorch
code and license can be found in https://github.com/bethgelab/foolbox
5code and license can be found in https://github.com/yaodongyu/TRADES
6CNN is retrieved from the public repository of TRADES (Zhang et all [2019) https://github.com/yaodongyu/TRADES/
blob/master/models/small_cnn.py

2
3
4
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dataset MNIST CIFAR10 CIFAR100 ImgNet100
network structure CNN WRN-40-10 WRN-40-10  ResNet50
optimizer SGD Adam Adam Adam
batch size 128 64 64 128
momentum 0.9 - - -
epochs 70 70 70 70
initial learning rate 0.01 0.01 0.01 0.01
# train examples 60000 50000 50000 126689
# test examples 10000 10000 10000 5000
# classes 10 10 20 100

Table 5: Experimental setup for training in the pixel space. No weight decay is applied.

Adversarial attack algorithms. For the adversarial attack algorithms used to find the closest adversarial
examples, we use a mixture of projected gradient descent (PGD) (Madry et all, 2017)), Brendel Bethge
attack (Brendel et al., 2019), boundary attack (Brendel et al., |2017)), multi-targeted attack (Kwon et al.|
2018), Sign-Opt (Cheng et al., 2019) and C&W algorithm (Carlini & Wagner} 2017]).

C.0.1 Setups for experiments in the feature space

Architechtures. We use small networks to compute the embedding into the feature space (training without
the unseen class for the unseen class experiments). We continue to use a CNN or WRN for training
and prediction. For the feature space, for MNIST, CIFAR10, and CIFAR100, we train a multi-layer-
perceptron (MLP) with two hidden layers each with 256 neurons and ReLU as the activation function in the
feature space. For ImgNet100, we train an MLP with two hidden layers each with 1024 neurons and ReLLU
as the activation function in the feature space. For all four datasets, we use SGD as the optimizer with an
initial learning rate of 0.01 and a momentum of 0.9.

D Additional experiment results

D.1 Synthetic data

Here, we present several more results on synthetic data to showcase how enforcing smoothness onto different
regions can change the geometry of the decision boundary. From Figure [7] we see that natural training, in
general, has a more irregular decision boundary while the other methods that enforce local smoothing have
more vertically straight boundaries.

D.2 Extension of Table 3

Table [6] shows the result of four more dataset on top of Table[3] Similar conclusions can be made on these
datasets.

D.3 Interaction between NCG score and accuracy on corrupted data

Table [7|shows an example of the interaction between NCG score and accuracy on the Gaussian noise corrupted
data. From the table, we see three things: (1) NCG scores are above chance level, (2) test accuracies on
NCG correct examples are higher than the test accuracies on NCG incorrect examples, and (3) the difference
between natural training and TRADES are small in the feature space in comparison with the pixel space.
This is a typical result, and similar results can be found in other corruption types. These observations are
similar to those mentioned in the main text.
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) natural (b) TRADES ¢) ellipsoid (d) sub-Voronoi ) ball
) natural (g) TRADES h) ellipsoid (i) sub-Voronoi ) ball

Figure 7: The geometry of the decision boundary with different algorithms.

Table 6: The training, testing, and NCG score of neural networks trained by enforcing smoothness on different
regions. Here we consider MNIST with five and eight, CIFAR10 with truck, and CIFAR100 with large
man-made outdoor things as the unseen categories.

trn acc. tst acc. NCG score trn acc. tst acc. NCG score

MNIST-wo5 MNIST-wo8
sub-voronoi 0.982 0.982 0.628 0.982 0.981 0.513
ellipsoid 0.984 0.983 0.629 0.983 0.981 0.515
ball 0.978 0.976 0.625 0.979 0.976 0.513
TRADES 0.988 0.987 0.618 0.987 0.987 0.497
nat 1.000 0.995 0.505 1.000 0.994 0.416
CIFAR10-wo09 CIFAR100-wo9
sub-voronoi 0.414 0.409 0.296 0.582 0.455 0.517
ellipsoid 0.519 0.504 0.226 0.658 0.508 0.449
ball 0.813 0.639 0.244 0.896 0.472 0.473
TRADES 0.778 0.641 0.245 0.867 0.515 0.475
nat 1.000 0.885 0.145 1.000 0.703 0.235

D.3.1 Control for distance

From Figure [6] we observe that a closer distance to the closest training example leads to a higher NCG
score. However, the distance to the closest training example could be a confounding factor that leads to the
observation of “test accuracies on NCG correct examples are higher than the test accuracies on NCG incorrect
examples”. To test whether this is the case, we gathered all examples with the same corruption type but
different corruption levels, and we binned these examples into five equal-width bins based on their distance
to the closest training example. We then measure, in each bin, how many corruption sets have their test
accuracies on NCG correct examples significantly higher than the test accuracies on NCG incorrect examples.

The results are shown in Figure [ and we labeled each bin from one to five based on their average distance
to the closest training examples from the closest to farthest. From the result, we see that except ImgNet100
in the pixel space, in all other cases, the results are similar between different bins. This means that, in
general, the distance to the closest training examples does not affect whether “test accuracies on NCG correct
examples are higher than the test accuracies on NCG incorrect examples” or not.
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Table 7: Here we show models trained on CIFAR10 and CIFAR100 and evaluate them on the gaussian noise
corrupted data. The NCG score, test accuracy, the test accuracy on the NCG correct corrupted examples,
the test accuracy on the NCG incorrect corrupted examples, and the distance to the closest training example.

model natural TRADES(2)

corruption  tst . NCG NCG NCG | tst . NCG NCG NCG

dataset incorrect  correct incorrect  correct
level acc. score | acc. score

tst acc. tst acc. tst acc. tst acc.
1 0.76 0.70 0.88 0.34 | 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 | 0.71 0.66 0.78 0.39
C10 3 0.48 0.39 0.75 0.26 | 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 | 0.69 0.63 0.77 0.38
) 0.36 0.27 0.66 0.22 | 0.68 0.63 0.77 0.38
1 0.63 0.56 0.84 0.25 | 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 | 0.51 0.43 0.71 0.30
pixel C100 3 0.47 0.39 0.74 0.23 | 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 | 0.50 0.42 0.71 0.30
) 0.40 0.33 0.67 0.21 | 0.50 0.41 0.71 0.29
1 0.42 0.41 0.68 0.04 | 0.36 0.35 0.51 0.06
2 0.34 0.33 0.64 0.03 | 0.36 0.35 0.53 0.05
I 3 0.22 0.21 0.49 0.03 | 0.34 0.33 0.49 0.05
4 0.12 0.11 0.24 0.02 | 0.30 0.30 0.45 0.05
) 0.04 0.04 0.07 0.02 | 0.22 0.22 0.34 0.04
1 0.74 0.39 0.78 0.89 | 0.72 0.32 0.77 0.89
2 0.59 0.35 0.64 0.85 | 0.56 0.23 0.62 0.85
C10 3 0.45 0.33 0.48 0.82 | 0.40 0.19 0.45 0.83
4 0.39 0.33 0.40 0.81 | 0.35 0.20 0.38 0.83
) 0.34 0.28 0.35 0.82 | 0.31 0.18 0.33 0.83
1 0.60 0.25 0.72 0.74 | 0.62 0.29 0.71 0.78
2 0.51 0.24 0.63 0.68 | 0.53 0.29 0.62 0.74
feature C100 3 0.43 0.23 0.54 0.64 | 0.44 0.25 0.53 0.69
4 0.40 0.22 0.51 0.63 | 0.40 0.23 0.49 0.67
) 0.37 0.21 0.46 0.61 | 0.37 0.21 0.46 0.65
1 0.22 0.18 0.44 0.15 | 0.21 0.18 0.41 0.16
2 0.19 0.16 0.36 0.14 | 0.18 0.15 0.34 0.15
I 3 0.14 0.12 0.26 0.14 | 0.13 0.11 0.21 0.17
4 0.09 0.08 0.16 0.13 | 0.08 0.07 0.14 0.16
) 0.05 0.04 0.08 0.14 | 0.04 0.03 0.08 0.14

D.4 Ablation study

To showcases that our discovery are not only observed in our training setup but also extends in other scenarios,
we repeat our experiment with a different network architecture in Appendix and models trained by

other researchers in Appendix

D.4.1 A different architecture
We repeat the experiment with a different network architecture — DenseNet161 (Huang et al., [2017). Table @]

shows the training, testing, and NCG scores. We see that even with a different architecture, robust models
still have a higher NCG score than naturally trained models.
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Table 8: Number of cases where the NCG correct examples have a significantly higher test accuracy than
the NCG incorrect examples. 12/15 means that out of the 15 corrupted sets, 12 of them pass the t-test with
95% confidence level.

feature pixel
corrupt vl C10  C100 I | C10 €100 I

1 18/18 18/18 12/15 | 18/18 18/18 9/15
2 18/18 18/18 14/15 | 18/18 18/18 11/15
TRADES(2) 3 18/18 18/18 14/15 | 17/18 18/18 10/15
4 18/18 18/18 14/15 | 14/18 18/18 10/15
5 18/18 18/18 15/15 | 14/18 18/18 3/15
1 18/18 18/18 13/15 | 18/18 18/18 12/15
2 18/18 18/18 13/15 | 18/18 18/18 12/15
natural 3 18/18 18/18 13/15 | 18/18 18/18 12/15
4 18/18 18/18 14/15 | 17/18 18/18 12/15
5 18/18 18/18 15/15 | 18/18 18/18 9/15

Table 9: Results with DenseNet161 on CIFAR10 and CIFAR100.

natural AT(2) TRADES(2)

train acc. 1.000 0.781 0.876
CIFAR10-wo0 test acc. 0.839  0.637 0.640
NCG score 0.342  0.487 0.521
train acc. 1.000  0.886 0.557
CIFAR100-wo0 test acc. 0.608  0.500 0.441
NCG score 0.173  0.225 0.271

D.4.2 Pretrained models on corrupted data

To verify that our observations on corrupted data can also be observed by models trained by others, we
download pretrained models from https://github.com/MadryLab/robustness/tree/master/robustness
by [Engstrom et al.| (2019)). We cannot repeat the experiment for unseen classes since these models are trained
on the original CIFAR10.

For models in the features space, we follow the same setup as in the feature space of CIFAR10, which trains a
multi-layer perceptron on the CNN feature space, but in the feature space of the pretrained model. Table
shows three things: (1) the number of cases (out of 90 corrupted sets) where robust models that have an
NCG score higher than naturally trained models, (2) the average difference in NCG score between robust
networks and naturally trained networks (over the 90 corrupted sets), and (3) the average ratio in NCG score
between robust networks and naturally trained networks. From the table, we see that robust models with a
large enough robust radius in general have a larger NCG score than naturally trained models.

D.5 NCG score on in-distribution data

In Section 3] we claim that the robust networks are more likely to classify OOD data with the class label of
the nearest training input. One question is, does this phenomena also happen on in-distribution data? To
answer this question, we measures the NCG score on in-distribution data (which is the test accuracy of a
1-nearest neighbor classifier).

The results are in Table From the table, we see that robust training usually produces a model that has a
slightly higher NCG score. However, it seems that these increases on in-distribution NCG score is small. A
natural question is, compare to OOD data, these increases on in-distribution NCG score are larger or smaller.
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Table 10: In both pixel and feature space, among the 90 corrupted sets for CIFAR10, the first columns shows
the number of robust models that have an NCG score higher than naturally trained network. The second
and third column shows the average difference and ratio of the NCG score of the robust models and naturally
trained networks (average over the NCG scores on the 90 corrupted sets).

robust > natural counts  difference ratio
pixel
AT(0.25) 51/90 0.00+£0.05 1.14+0.04
CIFAR10 AT(0.5) 86/90 0.14 £0.10 3.27+0.55
AT(1.0) 88/90 0.18 £ 0.06 3.09 +0.22
feature
AT(1.0) 70/90 0.00 +£0.00 1.01 +0.00
CIFAR10 TRADES(2) 55/90 0.00 +0.00 1.00 £+ 0.00
TRADES(4) 52/90 0.00 +0.00 1.00 £ 0.00
TRADES(8) 55/90 0.00 +£0.00 1.00 £ 0.00

Table 11: The in-distribution NCG score on different dataset and training methods.

natural TRADES(2) TRADES(4) TRADES(8) AT(2)

M-0 0.969 0.971 0.947 0.969 0.970
M-1 0.969 0.970 0.967 0.971 0.971
M-2 0.971 0.972 0.954 0.972 0.973
M-3 0.975 0.976 0.960 0.976 0.976
M-4 0.973 0.976 0.963 0.974 0.975
M-5 0.973 0.975 0.963 0.975 0.974
M-6 0.968 0.971 0.951 0.969 0.970
M-7 0.973 0.974 0.955 0.974 0.974
M-8 0.974 0.974 0.962 0.975 0.975
in-dist NCG  M-9 0.975 0.977 0.960 0.976 0.977
C10-0 0.357 0.410 0.418 0.381 0.403
C10-4 0.379 0.412 0.408 0.352 0.423
C10-9 0.371 0.405 0.407 0.378 0.418
C100-0  0.271 0.316 0.302 0.292 0.311
C100-4  0.261 0.300 0.295 0.279 0.295
C100-9  0.267 0.313 0.302 0.291 0.307
I-0 0.038 0.059 0.058 0.055 0.059
I-1 0.043 0.058 0.060 0.075 0.057
I-2 0.048 0.057 0.058 0.066 0.057

In Table we make such comparison. We count the number of cases (same dataset with different held-out
classes) where the increase in NCG score for in-distribution data is large than the increase on OOD data by
switching from natural training to robust training. We then categorize these results by the dataset and robust
training method. From the result, we see that for most of the time, the increase in NCG score on OOD data
is larger than on in-distribution data. This suggest that the phenomenon of NCG is more prominent on OOD
than on in-distribution data.

D.6 Additional results

For completeness, we show additional results to the tables or figures in the main paper.
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Table 12: For both in- and out-of-distribution data, the NCG score increase as we switch the natural training
to robust training. However, the magnitude of the increase is larger for OOD data. This table shows the The
number of cases where the robust models with higher in-distribution NCG score than natural training. For
MNIST we check 10 unseen classes, and for CIFAR10, CIFAR100, and ImgNet100, we use 3 unseen classes.

10/10 means that out of the 10 unseen classes, all 10 models have higher NCG score.

M C10 C100 I
TRADES(2) 0/10 0/3 0/3 3/3
TRADES(4) 2/10 0/3 0/3 1/3
TRADES(8) 2/10 0/3 0/3 1/3
AT(2) 0/10 0/3 0/3 3/3

D.6.1 Distance to the closest training examples of corrupted data
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Figure 8: NCG score of a naturally trained model as a function of the /5 distance to the closest training
example for MNIST with different unseen classes.

Tables [13] to [15] show the average distance to the closest training examples for each corruption type and level.

D.6.2 NCG scores

In Figure [§] for each unseen class in MNIST with naturally trained models, we show the NCG score and
the average distance of the examples in the unseen class to the closest training example. Tables [T7] to [20]
extends Table [I] with the full table of different dataset unseen class pairs in MNIST, CIFAR10, CIFAR100,
and ImgNet100.

D.6.3 NCG score vs. the distance to the closest training example

Figures [9] and [I0] shows the NCG score and the distance to the closest training example for MNIST, CIFARI10,
and CIFAR100 in both pixel and feature space. We can see that, in general, the NCG score is higher when
in- and out-of-distribution examples are closer to each other.

D.7 Additional results for corrupted data

Robust models on corrupted data. In the pixel space, on average (over the 90 and 75 corrupted sets),
robust models have a NCG score that is 1.35 + .02, 1.36 + .03, and 1.66 + .04 times higher than naturally
trained models for CIFAR10, CIFAR100, and ImgNet100 respectively. In the feature space, we still find
that all the 255 corruption sets have an NCG score above chance level, but the NCG scores of the robust
models are closer to the naturally trained models. For CIFAR100, we still observe that all robust models
have an NCG score higher than the naturally trained models. But for CIFAR10, we find that on only 42 (out
of 90) corrupted sets, TRADES(2) models have a higher NCG score than naturally trained models. The
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Table 13: CIFAR10 The average /5 distance in the pixel space to the closest training example. A corruption
level 0 means no corruption is applied, which represents the original test data.

corruption level

0 1 2 3 4 5
gaussian 9.21 9.46 9.75 10.13 10.35 10.58
impulse 9.21 9.67 10.10 10.50 11.27 11.97
shot 9.21 9.35 9.49 9.89 10.10 10.49
defocus 9.21 9.01 8.73 8.51 8.38 8.08
motion 9.21 8.73 8.48 8.27 8.27 8.08
zoom 9.21 8.61 8.54 8.45 8.38 8.27
glass 9.21 9.29 9.21 8.85 9.28 8.87
Snow 9.21 9.48 9.76 10.02 10.15 10.03
fog 9.21 8.02 17.06 6.63 6.50 6.50
contrast 9.21 7.45 568 4.96 4.28 3.44
pixelate 9.21 9.14 9.07 9.04 8.94 8381
brightness 9.21 9.34 9.49 9.62 9.70 9.69
elastic transform 9.21 8.93 8.84 8.65 8.60 8.59
gaussian__blur 9.21 9.02 8.51 8.33 8.17 7.88
jpeg compression 9.21 9.20 9.17 9.16 9.14  9.13
saturate 9.21 9.03 9.11 9.68 10.18 10.59
spatter 9.21 9.36 9.59 9.92 9.73 10.02
speckle_noise 9.21 9.35 9.59 9.75 10.12 10.56

Table 14: CIFAR100 ¢5 distance in the pixel space. A corruption level 0 means no corruption is applied,
which represents the original test dat

0 1 2 3 4 5
gaussian 9.18 9.42 9.71 10.07 10.29 10.51
impulse 9.18 9.66 10.11 10.53 11.32 12.04
shot 9.18 932 946 9.84 10.04 10.42
defocus 9.18 899 872 852 840 8.12
motion 9.18 872 849 830 829 8.12
zoom 9.18 8.62 853 844 837 824
glass 9.18 928 921 886 9.30 8.90
Snow 9.18 940 9.62 986 993 9.72
fog 9.18 8.03 7.07 6.62 647 6.43
contrast 9.18 7.47 575 502 432 341
pixelate 9.18 9.12 9.06 9.03 893 8.8l
brightness 9.18 930 942 951 956  9.47
elastic_ transform 9.18 899 889 870 8.64 8.61
gaussian__blur 9.18 9.00 8.52 8.34  8.19 7.92
jpeg compression 9.18 9.17 9.13 9.12 9.10 9.08
saturate 9.18 888 895 9.69 10.13 1047
spatter 9.18 933 955 986 9.78 10.09
speckle_ noise 9.18 9.32 9.56 9.71 10.08 10.52

average improvement over the naturally trained models in NCG score goes down to 1.00 £+ .00, 1.07 + .00,
and 1.09 £ .01 times for CIFAR10, CIFAR100, and ImgNet100 respectively.
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Table 15: ImgNet100 ¢y distance in the pixel space. A corruption level 0 means no corruption is applied,
which represents the original test dat

corruption level

0 1 2 3 4 )
contrast 58.92 8152 6849  56.77  47.79  45.10
glass 58.92 157.96 154.18 149.79 145.57 138.42
shot 58.92 164.22 164.39 163.95 162.02 160.25
jpeg 58.92 163.96 163.95 163.85 163.82 163.98
impulse 58.92 162.38 160.93 159.38 154.99 149.85
elastic 58.92 162.32 16245 162.30 162.10 161.49
zoom 58.92 153.57 150.31 146.04 143.64 139.73
frost 58.92 153.25 131.21 12042 117.39 112.21

defocus 58.92 154.88 151.06 144.13 139.73 133.87
brightness 58.92 167.31 167.13 163.70 157.28 149.42
SNOW 58.92 169.97 163.99 169.25 166.42 145.04
pixelate 58.92 162.17 161.71 159.82 157.66 156.16
motion 58.92 157.85 152.94 146.59 140.29 135.60
gaussian 58.92 163.65 163.30 161.90 158.52 152.48
fog 58.92 9521 91.82  95.09 100.12 103.61

Table 16: The test accuracy of a 1-nearest neighbor classifier in the feature space 12 different datasets.

M-0 M-4 M9 | C10-0 C10-4 C10-9 | C100-0 C100-4 C100-9 | -0 I1  I-2
099 099 099 | 089 0.88 0.8 | 0.73 0.73 0.71 | 0.14 0.14 0.14

D.7.1 Additional results on the slope of corrupted test accuracy

NCG score. Repeating the same experiment with NCG score, we find similar results as well. In the pixel
space, for CIFAR10 and CIFAR100, the slope of naturally trained models are significantly smaller than
TRADES(2) on 15 and 14 (out of 18) corruption types. For ImgNet100, 6 out of 15 corruption types pass
the test. The other 9 corruption types are not significant (they did not accept or reject the hypothesis). In
the feature space, we also test whether the slopes of robust and naturally trained models are different. For
CIFARI10 and CIFAR100, 17 and 15 (out of 18) corruption types, respectively, are not significantly different.
For ImgNet100, 13 out of 15 corruption types are not significant.

For reference, we show four selected corruption types on each dataset in Figure
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Table 17: The train, test, and NCG scores of 10 MNIST datasets and 5 training methods in the pixel space.

natural AT(2) TRADES(2) TRADES(4) TRADES(8)

train acc. 1.000 0.993 0.987 0.954 0.997
MNIST-wo0 test acc. 0.995 0.990 0.985 0.956 0.995
NCG score  0.390 0.457 0.457 0.485 0.402
train acc. 1.000 0.994 0.987 0.975 0.997
MNIST-wol test acc. 0.995 0.991 0.987 0.974 0.994
NCG score  0.273 0.451 0.355 0.528 0.259
train acc. 1.000 0.993 0.988 0.958 0.997
MNIST-wo2 test acc. 0.994 0.990 0.987 0.962 0.994
NCG score  0.402 0.532 0.529 0.520 0.452
train acc. 1.000 0.994 0.989 0.962 0.997
MNIST-wo3 test acc. 0.995 0.992 0.988 0.964 0.994
NCG score  0.564 0.659 0.667 0.592 0.538
train acc. 1.000 0.994 0.988 0.963 0.997
MNIST-wo4 test acc. 0.995 0.991 0.987 0.966 0.995
NCG score  0.760 0.766 0.810 0.758 0.749
train acc. 1.000 0.993 0.988 0.965 0.997
MNIST-wo5 test acc. 0.995 0.990 0.987 0.965 0.995
NCG score  0.505 0.611 0.618 0.616 0.537
train acc. 1.000 0.993 0.987 0.959 0.997
MNIST-wo6 test acc. 0.995 0.991 0.987 0.962 0.995
NCG score  0.515 0.551 0.556 0.505 0.538
train acc. 1.000 0.994 0.989 0.962 0.997
MNIST-wo7 test acc. 0.995 0.992 0.990 0.967 0.994
NCG score  0.507 0.672 0.703 0.713 0.594
train acc. 1.000 0.993 0.987 0.966 0.997
MNIST-wo8 test acc. 0.994 0.990 0.987 0.966 0.995
NCG score  0.416 0.493 0.497 0.491 0.446
train acc. 1.000 0.996 0.992 0.962 0.997
MNIST-wo9 test acc. 0.996 0.994 0.992 0.964 0.995
NCG score  0.577 0.714 0.691 0.703 0.660
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Figure 9: The NCG score of examples from unseen classes and the distance to the closest training example
for MNIST, CIFAR10, CIFAR100, and ImageNet-100 in the pixel space.
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Table 18: The train, test, and NCG scores of nine different variations of CIFAR10, CIFAR100, and ImgNet100
datasets and five training methods in the pixel space.

natural AT(2) TRADES(2) TRADES(4) TRADES(S8)

train acc. 1.000 0.999 0.992 0.870 0.878

CIFAR10-wo0 test acc. 0.898 0.729 0.716 0.660 0.761
NCG score  0.355 0.494 0.492 0.520 0.483

train acc. 1.000 1.000 0.990 0.874 0.508

CIFAR10-wo4 test acc. 0.886 0.754 0.742 0.700 0.485
NCG score  0.222 0.361 0.333 0.331 0.289

train acc. 1.000 1.000 0.992 0.948 0.778

CIFAR10-wo9 test acc. 0.885 0.725 0.712 0.732 0.641
NCG score  0.145 0.212 0.192 0.247 0.245

train acc. 1.000 0.998 0.995 0.943 0.902

CIFAR100-wo0  test acc. 0.741 0.554 0.547 0.576 0.607
NCG score  0.175 0.240 0.252 0.252 0.206

train acc. 1.000 0.998 0.995 0.857 0.859

CIFAR100-wo4  test acc. 0.743 0.544 0.543 0.492 0.553
NCG score  0.137 0.192 0.191 0.187 0.185

train acc. 1.000 0.996 0.995 0.950 0.527

CIFAR100-w09  test acc. 0.727 0.547 0.537 0.585 0.431
NCG score  0.222 0.353 0.412 0.427 0.465

train acc. 1.000 0.999 0.994 0.983 0.704

ImgNet100-wo0 test acc. 0.529 0.417 0.393 0.354 0.320
NCG score  0.033 0.044 0.041 0.054 0.067

train acc. 1.000 0.999 0.995 0.972 0.783

ImgNet100-wol test acc. 0.534 0.414 0.385 0.356 0.316
NCG score  0.047 0.049 0.051 0.061 0.072

train acc. 1.000 0.999 0.994 0.971 0.695

ImgNet100-wo2 test acc. 0.537 0.394 0.388 0.353 0.320
NCG score  0.027 0.028 0.033 0.044 0.049
0.5 BN natural o8 BN natural BN natural X mm natural

04 m TRADES(2) - [ TRADES(2) e TRADES(2) W TRADES(2)

. AT(2) . AT(1) . AT(1) 50 . AT(1)

NCG score
o © o ©
Now

NCG score

S 9o

=~ o

-
o
N

.0 0.0 0.0 .00
49.18 54.99 58.10 61.18 65.63 1.08 1.23 133 1.42 1.59 139 1.54 163 1.72 1.90 117 144 162 181 214

Avg. £, dist. to the closest training example Avg. £, dist. to the closest training example Avg. £, dist. to the closest training example Avg. [ dist. to the closest training example

(a) M-0 (b) C10-0 (c) C100-0 (d) 1-0

Figure 10: The NCG score of examples from unseen classes and the distance to the closest training example
for MNIST, CIFAR10, CIFAR100, and ImageNet-100 in the feature space.
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natural AT(2) TRADES(2) TRADES(4) TRADES(8)

train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo0 test acc. 0.99 0.99 0.99 0.99 0.99
NCG score 0.28 0.32 0.39 0.49 0.55
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wol test acc. 0.99 0.99 0.99 0.99 0.99
NCG score 0.14 0.21 0.27 0.50 0.51
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo2 test acc. 0.99 0.99 0.99 0.99 1.00
NCG score 0.41 0.46 0.53 0.59 0.62
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo3 test acc. 0.99 0.99 0.99 1.00 0.99
NCG score 0.68 0.71 0.73 0.73 0.74
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo4 test acc. 0.99 0.99 0.99 1.00 1.00
NCG score 0.78 0.73 0.77 0.81 0.86
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo5 test acc. 0.99 0.99 1.00 1.00 0.99
NCG score 0.61 0.63 0.65 0.68 0.69
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo6 test acc. 0.99 1.00 1.00 1.00 1.00
NCG score 0.54 0.58 0.60 0.65 0.66
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo7 test acc. 0.99 0.99 1.00 1.00 1.00
NCG score 0.53 0.54 0.61 0.68 0.67
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo8 test acc. 0.99 0.99 0.99 1.00 0.99
NCG score 0.46 0.47 0.51 0.56 0.59
train acc. 1.00 1.00 1.00 1.00 1.00
MNIST-wo09 test acc. 0.99 1.00 1.00 1.00 1.00
NCG score 0.61 0.71 0.71 0.73 0.79

Table 19: The train, test, and NCG scores of 10 MNIST datasets and 5 training methods in the feature space.
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Table 20: The train, test, and NCG scores of nine different variations of CIFAR10, CIFAR100, and ImgNet100
datasets and five training methods in the feature space. We use different radius for AT since not all converge
well when the radius is large (r = 2) For CIFAR10 and CIFAR100, we use AT(1); for ImgNet100, we use
AT(.5).

natural AT(.5)/(1) TRADES(2) TRADES(4) TRADES(8)

train acc. 1.00 1.00 1.00 1.00 1.00
CIFAR10-wo0 test acc. 0.89 0.89 0.89 0.90 0.90
NCG score 0.80 0.83 0.81 0.83 0.83
train acc. 1.00 1.00 1.00 1.00 1.00
CIFAR10-wo4 test acc. 0.88 0.88 0.88 0.89 0.88
NCG score 0.82 0.84 0.82 0.85 0.85
train acc. 1.00 1.00 1.00 1.00 1.00
CIFAR10-wo9 test acc. 0.88 0.88 0.88 0.89 0.89
NCG score 0.84 0.89 0.83 0.88 0.87
train acc. 1.00 1.00 1.00 1.00 1.00
CIFAR100-wo0  test acc. 0.72 0.73 0.73 0.74 0.74
NCG score 0.63 0.70 0.69 0.68 0.68
train acc. 1.00 1.00 1.00 1.00 1.00
CIFAR100-wo4  test acc. 0.72 0.73 0.73 0.74 0.74
NCG score 0.69 0.74 0.75 0.73 0.74
train acc. 1.00 1.00 1.00 1.00 1.00
CIFAR100-w09  test acc. 0.70 0.72 0.72 0.73 0.73
NCG score 0.66 0.74 0.72 0.71 0.71
train acc. 0.99 0.57 0.33 0.98 0.98
ImgNet100-wo0 test acc. 0.22 0.25 0.26 0.26 0.26
NCG score 0.11 0.16 0.15 0.12 0.13
train acc. 1.00 0.56 0.32 0.98 0.98
ImgNet100-wol test acc. 0.22 0.24 0.27 0.26 0.25
NCG score 0.13 0.15 0.18 0.14 0.15
train acc. 1.00 0.60 0.33 0.98 0.98
ImgNet100-wo2  test acc. 0.22 0.25 0.26 0.26 0.26
NCG score 0.11 0.15 0.15 0.14 0.14
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Figure 11: The slopes of the test accuracy of naturally trained models and TRADES(2) on CIFARIO0 in the
pixel space.
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