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Abstract

With the ability to learn from static datasets, Offline Reinforcement Learning (RL)1

emerges as a compelling avenue for real-world applications. However, state-of-the-2

art offline RL algorithms perform sub-optimally when confronted with limited data3

confined to specific regions within the state space. The performance degradation4

is attributed to the inability of offline RL algorithms to learn appropriate actions5

for rare or unseen observations. This paper proposes a novel domain knowledge-6

based regularization technique and adaptively refines the initial domain knowledge7

to considerably boost performance in limited data with partially omitted states.8

The key insight is that the regularization term mitigates erroneous actions for9

sparse samples and unobserved states covered by domain knowledge. Empirical10

evaluations on standard discrete environment datasets demonstrate a substantial11

average performance increase compared to ensemble of domain knowledge and12

existing offline RL algorithms operating on limited data.13

1 Introduction14

Offline RL [9, 1], also referred to as batch RL, is a learning approach that focuses on extracting15

knowledge solely from static datasets. This class of algorithms has a wider range of applications being16

particularly appealing to real-world data sets from business [46], healthcare [25], and robotics [35].17

However, offline RL poses unique challenges, including over-fitting and the need for generalization18

to data not present in the dataset. To surpass the behavior policy, offline RL algorithms need to19

query Q values of actions not in the dataset, causing extrapolation errors [21]. Most offline RL20

algorithms address this problem by enforcing constraints that ensure that the learned policy does not21

deviate too far away from the data set’s state action distribution [13, 11] or is conservative towards22

Out-of-Distribution (OOD) actions [21, 20]. However, such approaches are designed on coherent23

batches [13], which do not account for OOD states.24

In many domains, such as business and healthcare, available data is scarce and often confined to expert25

behaviors within a limited state space. For example, a sales recommendation system, where historic26

data may not contain details about many active users and operator gives coupon of higher value to27

attract sales. Learning on such limited data sets can curtail the generalization capabilities of state-of-28

the-art (SOTA) offline RL algorithms, resulting in sub-optimal performance [23]. We illustrate this29

limitation via Fig 1. In Fig 1a) the state action space of a simple Mountain Car environment [27] is30

plotted for an expert dataset [32] and a partial dataset with first 10% samples from the entire dataset.31

Fig 1b) shows the average reward obtained over these data sets and the average difference between32

the Q value of action taken by the under-performing Conservative Q Learning (CQL) [21] agent and33

the action in the full expert dataset for unseen states. It can be observed that the performance of the34

offline RL agent considerably drops. This is attributed to the critic overestimating the Q value of35

non-optimal actions for states that do not occur in the dataset while training.36
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Figure 1: a) Full expert, Mountain Car dataset, and reduced dataset with first 10% samples showing
distribution of state (position, velocity) and action b) CQL agent converging to a sub-optimal policy
for reduced dataset exhibiting high Q values for actions different from actions in the expert dataset
for unseen states.

In numerous real-world applications, expert insights regarding the general behavior of a policy are37

often accessible [33]. For example, sales operators often distribute lower discount coupons to active38

users to maximize profit. While these insights may not be optimal, they serve as valuable guidelines39

for understanding the overall behavior of the policy. A rich literature in knowledge distillation [18]40

has shown that teacher networks trained on domain knowledge can transfer knowledge to another41

network unaware of it. This work aims to leverage a teacher network mimicking simple decision42

tree-based domain knowledge to help offline RL generalize in limited data settings.43

The paper makes the following novel contributions:44

• We introduce an algorithm dubbed ExID, leveraging intuitive human obtainable expert45

insights. The domain expertise is incorporated into a teacher policy, which improves offline46

RL in limited-data settings through regularization.47

• The teacher based on expected performance improvement of the offline policy during48

training, improving the teacher network beyond initial heuristics.49

• We demonstrate the effectiveness of our methodology on real sales promotion dataset,50

several discrete OpenAI gym and Minigrid environments with standard offline RL data sets51

and show that ExID significantly exceeds the performance when faced with limited data.52

2 Related Work53

This work improves offline RL learning on batches sampled from static datasets using domain54

expertise. One of the major concerns in offline RL is the erroneous extrapolation of OOD actions55

[13]. Two techniques have been studied in the literature to prevent such errors. 1) Constraining the56

policy to be close to the behavior policy 2) Penalizing overly optimistic Q values [24]. We discuss a57

few relevant algorithms following these principles. In Batch-Constrained deep Q-learning (BCQ)58

[13] candidate actions sampled from an adversarial generative model are considered, aiming to59

balance proximity to the batch while enhancing action diversity. Algorithms like Random Ensemble60

Mixture Model (REM) [2], Ensemble-Diversified Actor-Critic (EDAC) [3] and Uncertainty Weighted61

Actor-Critic (UWAC) [42] penalize the Q value according to uncertainty by either using Q ensemble62

networks or directly weighting the loss with uncertainty. CQL [21] enforces regularization on Q-63

functions by incorporating a term that reduces Q-values for OOD actions while increasing Q-values64

for actions within the expected distribution. However, these algorithms do not handle OOD actions65

for states not in the static dataset and can have errors induced by changes in transition probability.66

Integration of domain knowledge in offline RL, though an important avenue, has not yet been67
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extensively explored. Domain knowledge incorporation has improved online RL with tight regret68

bounds [33, 4]. In offline RL, bootstrapping via blending heuristics computed using Monte-Carlo69

returns with rewards has shown to outperform SOTA algorithms by 9% [15]. Recent works improve70

offline RL by incorporating a safety expert [40] and preference query [44], contrary to our work71

which improves imperfect domain knowledge. The closest to our work is Domain Knowledge guided72

Q learning (DKQ) [46] where domain knowledge is represented in terms of action importance and73

the Q value is weighted according to importance. However, obtaining action importance in practical74

scenarios is nontrivial.75

3 Preliminaries76

A DRL setting is represented by a Markov Decision Process (MDP) formalized as (S,A, T, r, ρ0, γ).77

Here, S denotes the state space, A signifies the action space, T (s′|s, a) represents the transition prob-78

ability distribution, r : S ×A→ R is the reward function, ρ0 represents the initial state distribution,79

and γ ∈ (0, 1] is the discount factor. The primary objective of any DRL algorithm is to identify an80

optimal policy π(a|s) that maximizes Est,at [
∑∞

t=0 γ
tr(st, at)] where, s0 ∼ d0(.), at ∼ π(.|st), and81

s′ ∼ T (.|st, at). Deep Q networks (DQNs) [26] learn this objective by minimizing the Bellman resid-82

ual (Qθ(s, a) − BπθQθ(s, a))
2 where BπθQθ(s, a) = Es′∼T [r(s, a) + γEa′∼πθ(.|s′)[Qθ′(s′, a′)]].83

The policy πθ chooses actions that maximize the Q value maxa′∈AQθ(s
′, a′). However, in offline84

RL where transitions are sampled from a pre-collected dataset B, the chosen action a′ may exhibit a85

bias towards OOD actions with inaccurately high Q-values. To handle the erroneous propagation86

from OOD actions, CQL [22] learns conservative Q values by penalizing OOD actions. The CQL87

loss for discrete action space is given by88

Lcql(θ) = min
Q

α Es∼B[log
∑
a

exp(Qθ(s, a))−

Ea∼B|s[Qθ(s, a)]] +
1

2
Es,a,s′∼B[Qθ −Qθ′ ]2 (1)

Eq. 1 encourages the policy to be close to the actions seen in the dataset. However, CQL works on the89

assumption of coherent batches, i.e., if (s, a, s′) ∈ B, then s′ ∈ B. There is no provision for handling90

OOD actions for s /∈ B, which can lead to policy failure when data is limited. In the next sections, we91

present ExID, a domain knowledge-based approach to improve performance in data-scarce scenarios.92

4 Problem Setting and Methodology93

In our problem setting, the RL agent learns the policy on a limited dataset with rare and unseen94

demonstrations. We define the characteristics of this dataset as follows:95

Definition 4.1. A reduced buffer Br is a proper subset of the full dataset B i.e., Br ⊂ B satisfying96

the following conditions:97

• Some states in B are not present in Br, i.e., ∃s′ ∈ B ∧ ∀(s, a, s′) : (s, a, s′) /∈ Br98

• The number of samples N(s, a, s′) for some transitions in B are less in Br i.e, ∃(s, a, s′) ∈99

B : N(s, a, s′)Br < N(s, a, s′)B100

We observe, performing Q − Learning by sampling from a limited buffer Br may not converge101

to an optimal policy for the MDP MB representing the full buffer. This can be shown as a special102

case of (Theorem 1,[13]) as pB(s′|s, a) ̸= pBr
(s′|s, a) and no Q updates for (s, a) /∈ Br leading to103

sub-optimal policy. Please refer to the App. B for analysis and example.104

We also assume a set of common sense rules in the form of domain knowledge is available. Domain105

knowledge D is defined as hierarchical decision nodes capturing S → A as represented by Eq. 2.106

Each decision node Tηi
is represented by a constraint ϕηi

and Boolean indicator µηi
function selects107

the branch to be traversed based on ϕηi
.108

Action =

{
aηi

if leaf
µηi

Tηi↙(s) + (1− µηi
)Tηi↘(s) o/w

µηi
(s) =

{
1 if s |= ϕηi

0 o/w (2)
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Figure 2: Overview of the proposed methodology (a) Training a teacher policy network with domain
knowledge and synthetic data (b) Updating the offline RL critic network with teacher network

We assume thatD gives heuristically reasonable actions for s |= D and SD∩SBr ̸= ∅ where SD, SBr109

are the state coverage of D and Br.110

Training Teacher: An overview of our methodology is depicted in Fig 2. We first construct a111

trainable actor network πω
t parameterized by ω from D, Fig 2 step 1. For training πω

t synthetic112

data Ŝ is generated by sampling states from a uniform random distribution over state boundaries113

B(s), Ŝ = U(B(S)). Note that this does not represent the true state distribution and may have state114

combinations that will never occur. We train πω
t using behavior cloning where state ŝ ∼ Ŝ is checked115

with root decision node in Eq. 2. A random action is chosen if ŝ does not satisfy decision node Tη0
116

or leaf action is absent. If ŝ satisfies a Tηi
, Tηi

is traversed and action aηi
is returned from the leaf117

node. This is illustrated in Fig 2 (a). We term the pre-trained actor network πω
t as the teacher policy.118

Regularizing Critic: We now introduce Algo 1 (App C) to train an offline RL agent on Br. Algo 1119

takes Br and pretrained πω
t as input. The algorithm uses two hyper-parameters, warm start parameter120

k and mixing parameter λ. A critic network Qθ
s with Monte-Carlo (MC) dropout and target network121

Qθ′

s are initialized. ExID is divided into two phases. In the first phase, we aim to warm start the critic122

network Qθ
s with actions from πω

t as shown in Fig 2b( i). However, this must be done selectively123

as the teacher’s policy is random around the states that do not satisfy domain knowledge. In each124

iteration, we first check the states sampled from a mini-batch of Br with D. For the states which125

satisfy D we compute the teacher action πω
t (s) and critic’s action argmaxa(Q

θ
s(s, a)) and collect it126

in lists at, as, Algo 1 lines 4-10. Our main objective is to keep actions chosen by the critic network127

for s |= D close to the teacher’s policy. To achieve this, we introduce a regularization term:128

Lr(θ) = Es∼Br∧s|=D︸ ︷︷ ︸
states matching domain rule

[Qθ
s(s, as)−Qθ

s(s, at)]
2︸ ︷︷ ︸

Q regularizer

(3)

Eq 3 incentivizes the critic to increase Q values for actions from πω
t and decreases Q values for other129

actions when argmaxa(Q
θ
s(s, a)) ̸= πω

t (s) for states that satisfy domain knowledge. Note that Eq 3130

will only be 0 when argmaxa(Q
θ
s(s, a)) = πω

t (s) for s |= D. It is also set to 0 for s ̸|= D. However,131

since πω
t mimicking heuristic rules is sub-optimal, it is also important to incorporate learning from132

the data. The final loss is a combination of Eq. 1 and Eq. 3 with a mixing parameter λ ∈ [0, 1]:133
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L(θ) = Lcql(θ) + λEs∼Br∧s|=D[Q
θ
s(s, as)−Qθ

s(s, at)]
2 (4)

The choice of λ and the warm start parameter k depends on the quality of D. In the case of perfect134

domain knowledge, λ would be set to 1, and setting λ to 0 would lead to the vanilla CQL loss. Mixing135

both the losses allows the critic to learn both from the data in Br and knowledge in D.136

Updating Teacher: Given a reasonable warm start, the critic is expected to give higher Q values137

for optimal actions for s ∈ D ∩ Br as it learns from data. We aim to leverage this knowledge138

to enhance the initial teacher policy πω
t trained on heuristic domain knowledge. For s ∼ B and139

s |= D, we calculate the average Q values over critic actions and teacher actions and check which140

one is higher in Algo 1 line 11 which refers to Cond. 6. For brevity Es∼Br∧s|=D is written as E.141

If E(Qθ
s(s, as)) > E(Qθ

s(s, at)) it denotes the critic expects a better return on an average over its142

own policy than the teacher’s policy. Hence, we can use the critic’s policy to update πω
t , making143

it better over D. However, only checking the critic’s value can be erroneous as the critic can have144

high values for OOD actions. We check the average uncertainty of the predicted Q values to prevent145

the teacher from getting updated by OOD actions. Uncertainty has been shown to be a good metric146

for OOD action detection by [42, 3]. A well-established methodology to capture uncertainty is147

predictive variance, which takes inspiration from Bayesian formulation for the critic function and148

aims to maximize p(θ|X,Y ) = p(Y |X, θ)p(θ)/p(Y |X) where X = (s, a) and Y represents the true149

Q value of the states. However, p(Y |X) is generally intractable and is approximated using Monte150

Carlo (MC) dropout, which involves including dropout before every layer of the critic network and151

using it during inference [14]. Following [42], we measure the uncertainty of prediction using Eq 5.152

V arT [Q(s, a)] ≈ 1

T

T∑
t=1

[Q(s, a)− Q̄(s, a)]2 (5)

Eq 5 estimates the variance of Q value Q(s, a) for an action a using T forward passes on the Qθ
s(s, a)153

with dropout where Q̄(s, a) represents the predictive mean. We check the average uncertainty of154

the Q value for action chosen by the critic and teacher policy over the states that match domain155

knowledge in a batch. The teacher network is updated using the critic’s action only when the policy156

expects a higher average Q return on its action and the average uncertainty of taking this action is157

lower than the teacher action. E(V arTQθ
s(sr, as)) < E(V arTQθ

s(sr, at)) indicates the actions were158

learned from the expert data in the buffer and are not OOD samples. The condition is summarized in159

cond. 6:160

E(Qθ
s(sr, as)) > E(Qθ

s(sr, at))∧
E(V arTQθ

s(sr, as)) < E(V arTQθ
s(sr, at)) (6)

We update the teacher with cross-entropy described in Eq 7:161

L(ω) = −
∑
s|=D

(πω
t (s)log(πs(s))) (7)

where, πs(s, a) =
eQ(s,a)∑
a′ Q(s,a′) . When the critic’s policy is better than the teacher’s policy, Lr(θ) is162

set to 0 Algo 1 Lines 11 to 13. Finally, the critic network is updated using calculated loss L(θ) Algo163

1 Lines 17-18. We theoretically analyse the implications of using ExID in propositions 4.2 and 4.3.164

Proposition 4.2. Denote π̂ as the policy learned by ExID, πu as any offline RL policy learned on Br165

and optimal Q function as Q∗ and V function as V ∗. Then it holds that166

η(π̂)− η(πu) ≥ Es∼O|πu
[V ∗(s)−Q∗(s, πu(s))]− ρ̄π̂α

Where α = Es∼O[V
∗(s)−Q∗(s, π̂(s))], ρ̄π(s) = [ 1

|Sπ̂|(1−γ) ,
1

1−γ ] (| Sπ̂ | is the number of different167

states observed by π̂) and O /∈ Br. Here α denotes the quality of regularized action for s /∈ Br. Hence,168

updating πω
t is important as high divergence of action from the optimal can lead to performance169

degradation. In offline RL, the extrapolation error for non optimal action is usually high for states not170

observed in dataset (as illustrated in 1b), regularization can lead performance improvement when πω
t171

is reasonable. Furthermore, in ExID coarse actions from πω
t are updated driving them closer to the172

optimal actions, improving the performance lower bound. Additionally πω
t increases | Sπ̂ | making173

ρ̄π ≪ 1 in practice further improving the performance lower bound. Proof is deferred to App. A.174
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Proposition 4.3. ExID reduces generalization error if Q∗(s, πω
t (s)) > Q∗(s, πu(s)) for s ∈ D∩Br.175

Proof is deferred to App. A. In the next section, we discuss our empirical evaluations.176

5 Empirical Evaluations177

We investigate the following through our empirical evaluations: 1. Does ExID perform better than178

combining D and offline RL algos on different environments with datasets exhibiting rare and OOD179

states Sec 5.2? 2. Does ExID generalize to OOD states covered by D Sec 5.4? 3. What is the effect of180

varying k, λ and updating πω
t Sec 5.5? 4. How does performance vary with the quality of D Sec 5.6?181

5.1 Experimental Setting182

We evaluate our methodology on open-AI gym [5], MiniGrid [6] and real sales promotion (SP) [30]183

offline data sets. All our data sets are generated using standard methodologies defined in [32, 31]184

except SP which is generated by human operators. All experiments have been conducted on a185

Ubuntu 22.04.2 LTS system with 1 NVIDIA K80 GPU, 4 CPUs, and 61GiB RAM. App. F notes the186

hyperparameter values and network architectures.187

Dataset: We experiment on three types of data sets. Expert Data-set [10, 16, 22] generated using188

an optimal policy without any exploration with high trajectory quality but low state action coverage.189

Replay Data-set [2, 13] generated from a policy while training it online, exhibiting a mixture of190

multiple behavioral policies with high trajectory quality and state action coverage. Noisy Data-set191

[12, 13, 22, 16] generated using an optimal policy that also selects random actions with ϵ greedy192

strategy where ϵ = 0.2 having low trajectory quality and high state action coverage. Additionally we193

also experiment on human generated dataset for sales promotion task.194

Baselines: We do comparative studies on 10 baselines for OpenAI gym datasets. The first baseline195

simply checks the conditions of D and applies corresponding actions in execution. The performance196

of this baseline shows that D is imperfect and does not achieve the optimal reward. CQL SE is197

from [40] where the expert is replaced by D. The other baselines are an ensemble of D and eight198

algorithms popular in the Offline RL literature for discrete environments. These algorithms include199

Behavior Cloning (BC) [29], Behaviour Value Estimation (BVE) [16], Quantile Regression DQN200

(QRDQN) [7], REM, MCE, BCQ, CQL and Critic Regularized Regression Q-Learning (CRR) [41].201

For a fair comparison, we use actions from domain knowledge for states not in the buffer and actions202

from the trained policy for other states to obtain the final reward. Hence, each algorithm is renamed203

with the suffix D in Table 5.1.204

Limiting Data: To create limited-data settings for benchmark datasets, we first extract a small205

percentage of samples from the full dataset and remove some of the samples based on state conditions.206

This is done to ensure the reduced buffer satisfies the conditions defined in Def 4.1. We describe207

the specific conditions of removal in the next section. Further insights and the state visualizations208

for selected reduced datasets are in App H. Note : no data reduction has been performed on SP209

dataset to demonstrate a real dataset exhibits characteristics of reduced buffer.210

5.2 Performance across Different Datasets211

Our results for OpenAI gym environments are summarised in Table 5.1 and Minigrid in Table 3 (App212

D). We observe the performance of offline RL algorithms degrades substantially when part of the data213

is not seen and trajectory ratios change. For these cases with only 10% partial data, ExID surpasses214

the performance by at least 27% in the presence of reasonable domain knowledge. The proposed215

method performs strongest on the replay dataset where the contribution of Lr(θ) is significant due216

to state coverage, and the teacher learns from high-quality trajectories. Environment details are217

described in the App. D. All domain knowledge trees are shown in the App. D Fig 10. We describe218

limiting data conditions and domain knowledge specific to the environment as follows:219

Mountain Car Environment: [27] We use simple, intuitive domain knowledge in this environment220

shown in the App. D Fig 10 (c), which represents taking a left action when the car is at the bottom of221

the valley with low velocity to gain momentum; otherwise, taking the right action to drive the car up.222

Fig 6 (c) shows the state action pairs this rule generates on states sampled from a uniform random223

distribution over the state boundaries. It can be observed that the states of D cover part of the missing224
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Table 1: Average reward [↑] obtained during online evaluation over 3 seeds on openAI gym envs

ENV
DATA

DATA
TYPE

D QRDQN
D

REM
D

BVE
D

CRR
D

MCE
D

BC
D

BCQ
D

CQL
D

CQL
SE

CQL
(FULL)

EXID
(OURS)

MOUNTAIN
CAR

EXPERT

-159.9
±

52.28

-168.2
±

33.71

-147.7
±

21.54

-175.36
±

25.16

-157.2
±

39.09

-152
±

37.41

-181.38
±

28.60

-172.9
±

27.5

-167.49
±

12.3

-161.33
±

18.57

-128.63
±

10.94

-125.5
±

2.60

REPLAY
-137.14

±
39.27

-136.26
±

40.15

-152.0
±

35.06

-137.23
±

42.79

-139.91
±

40.01

-137.26
±

43.04

-136.29
±

36.15

-140.38
±

33.58

-150.67
±

16.68

-135.4
±

3.74

-105.79
±

11.38

NOISY
-141.61

±
33.04

-134.99
±

32.60

-173.95
±

39.60

-178.99
±

23.58

-168.69
±

38.78

-140.0
±

28.5

-144.52
±

43.04

-179.8
±

29.99

-126.96
±

17.84

-107.06
±

12.73

-109.9
±

13.45

CART
POLE

EXPERT

57.0
±

5.35

33.23
±

3.17

41.31
±

8.76

16.16
±

9.41

15.24
±

5.62

16.1
±

4.4

225.76
±

74.39

165.36
±

15.01

121.8
±

14.0

155.78
±

26.47

364.1
±

22.15

307.18
±

137.72

REPLAY
149.09

±
14.05

180.70
±

62.79

11.1
±

2.13

11.24
±

2.71

9.16
±

0.25

144.43
±

2.41

144.76
±

6.04

131.97
±

23.23

113.37
±

5.88

250.02
±

55.02

340.26
±

30.58

NOISY
161
±

6.40

15.33
±

0.58

11.53
±

3.77

13.68
±

7.49

10.66
±

2.04

68.4
±

14.67

63.53
±

14.08

92.6
±

22.05

92.6
±

22.05

93.72
±

37.79

228.61
±

38.64

LUNAR
LANDER

EXPERT

52.48
±

26.51

5.14
±

25.10

-184.84
±

26.45

-681.67
±

34.86

8.79
±

25.38

19.71
±

10.52

38.40
±

23.21

-45.99
±

30.47

65.43
±

71.37

53.22
±

78.85

167.74
±

29.4

161.34
±

17.10

REPLAY
-444.20

±
12.20

-556.81
±

21.39

-572
±

27.93

-131.21
±

31.97

-115.23
±

18.16

136.63
±

12.40

111.47
±

54.67

61.83
±

45.57

87.70
±

18.20

187.72
±

25.62

156.03
±

56.67

NOISY
-4.81
±

97.28

21.41
±

14.71

28.65
±

12.26

-158.27
±

7.71

-50.47
±

15.78

98.62
±

28.01

101.59
±

30.83

5.01
±

128.63

40.35
±

65.72

111
±

52.32

163.57
±

49.24

Figure 3: Performance of (a) CQL and (b) EXID on all datasets for Mountain Car during online
evaluation (c) Evaluation curves for the sales promotion dataset

data in Fig 1 (a). For limiting datasets, we remove states with position > -0.8. The performance of225

CQLD and ExID are shown in Fig 3 (a),(b) where ExID surpasses CQLD for all three datasets.226

Cart-pole Environment: For this environment, we use domain knowledge from [33], which aims to227

move in the direction opposite to the lean of the pole, keeping the cart close enough to the center. If228

the cart is close to an edge, the domain knowledge attempts to account for the cart’s velocity and229

recenter the cart. The full tree is given in the App. D Fig 10 (a). We remove states with cart velocity230

> -1.5 to create the reduced buffer.231

Lunar-Lander Environment: We borrow the decision nodes from [34] and get actions from a232

sub-optimal policy trained online with an average reward of 52.48. The full set of decision nodes is233

shown in the App. D Fig 10 (b). D focuses on keeping the lander balanced when the lander is above234

ground. When the lander is near the surface, D focuses on keeping the y velocity lower. To create the235

reduced datasets, we remove data of lander angle < -0.04.236

Mini-Grid Environments: For our experiments, we choose two environments: Random Dynamic237

Obstacles 6X6 and LavaGapS 7X7. We use intuitive domain knowledge which avoids crashing into238

obstacles in front, left, or right of agent ref. App. D Fig 10 (d), (e). We remove states with obstacles239

on the right for creating limited data settings. Due to limitation of space we report the results of the240

best-performing algorithms on the replay dataset in Table 3 (App D).241

5.3 Case study on real human generated Sales Promotion (SP) dataset242

SP dataset and environment [30] simulates a real-world sales promotion platform. The number of243

coupons and the discount the user received will affect his behavior. A higher discount will promote244

7



the sales, but the cost will also increase. The goal for the platform operator is to maximize the245

total profit. The horizon of the dataset is 50 days for the training and 30 days for the test. Domain246

knowledge ([30], App A] : Active users can be given more coupons with lower discount to maximize247

profit. We model this as ordernumber > 60∧Avgfee > 0.8 =⇒ [5, 0.95] where action 1 is number248

of coupons range [0,5] and action 2 is coupon value (discount value = (1-coupon value)) range249

[0.6,0.95]. The dataset exhibits the properties in Def 4.1 as first 50 days of sales does not contain250

many active users as reported in the coverage column of Tab 2 depicting scarcity. The domain rule is251

imperfect as coupon value and number depend on multiple factors such as user purchase history and252

behavior. As illustrated in the table 2 and Fig 3 (c) the intuitive domain rule enhances performance253

by 10.49% in the real dataset.254

Table 2: Results on human generated Sales Promotion dataset

Dataset D coverage D CQL + D CQLSE EXID Performance
gain

Sales
Promotion

654.68
± 20.06

20.32% 722.06 ± 71.40 727.03 ±
49.56

802.91
± 41.69

10.49%

5.4 Generalization to OOD states and contribution of Lr(θ)255

Figure 4: Q value difference between CQL and EXID for expert and policy action on states not
present in the buffer for a) expert b) noisy in log scale c) contribution of Lr(θ)

In Fig 4 (a), (b), we plot Qθ
s(s, aexpert)−Qθ

s(s, aθ) for CQL and EXID policies for different datasets256

of Mountain-Car environments. Action aexpert is obtained from the full expert dataset where position257

> −0.8. We observe that the Q value for actions of CQL policy diverges from the expert policy258

actions with high values for the states not in the reduced buffer, whereas ExID stays close to the259

expert actions for the unseen states. This empirically shows generalization to OOD states not in the260

dataset but covered by domain knowledge. In Fig 4 (d), we plot the contribution by Lr(θ) during the261

training and observe the contribution is higher for replay data sets with more state coverage.262

5.5 Performance on varying λ, k, and ablation of πω
t263

We study the effect of varying λ on the algorithm for the given domain knowledge. We empirically264

observe setting a high or a low λ can yield sub-optimal performance, and λ = 0.5 generally gives265

good performance. In Fig 5 (a), we show this effect for LunarLander. Plots for other environments266

are in the App. G Fig 11. For k we observe setting the warm start parameter to 0 yields a sub-optimal267

policy, as the critic may update πω
t without completely learning from it. The starting performance268

increases with an increase in k as shown in Fig 5 (b) for LunarLander. k = 30 works best according269

to empirical evaluations. Plots for other environments are in the App. G Fig 12. We show two270

ablations for Cart-pole in Fig 5 (c) with no teacher update after the warm start and no inclusion of271

Lr(θ) after the warm start. The warm start in this environment is set to 30 episodes. Fig 5 c) shows272

without teacher updated, the sub-optimal teacher drags down the performance of the policy beyond273

the warm start, exhibiting the necessity of πω
t update. Also, the student converges to a sub-optimal274

policy if no Lr(θ) is included beyond the warm start.275

8



Figure 5: (a) Effect of different λ on the performance of ExID on Lunar Lander (b) Effect of different
k on the performance of EXID on Lunar Lander (c) Performance of EXID with teacher update, no
teacher update, and just warm start on Cart-pole.

Figure 6: (a) D with different average rewards (b) Performance effect on Lunar-lander (c) State
distribution generated for training the teacher network for mountain-car

5.6 Effect of varying D quality276

We show the effect of choosing policies as D with different average rewards for Lunar-Lander expert277

data in Fig 6 (a) and (b). Rule 1 is optimal and has almost the same effect as Rule 3, which is the D278

used in our experiments exhibiting that updating a sub-optimal D can lead to equivalent performance279

as optimal D. Using a rule with high uncertainty, as Rule 2, induces high uncertainty in the learned280

policy but performs slightly better than the baseline. Rule 4, which has a lower average reward, also281

causes gains on average performance with slower convergence. Finally, Rule 5, with very bad actions,282

affects policy performance adversely and leads to a performance lower than baseline CQL.283

6 Conclusion and Limitation284

In this paper, we study the effect of limited and partial data on offline RL and observe that the285

performance of SOTA offline RL algorithms is sub-optimal in such settings. The paper proposes a286

methodology to handle offline RL’s performance degradation using domain insights. We incorporate287

a regularization loss in the CQL training using a teacher policy and refine the initial teacher policy288

while training. We show that incorporating reasonable domain knowledge in offline RL enhances289

performance, achieving a performance close to full data. However, this method is limited by the290

quality of the domain knowledge and the overlap between domain knowledge states and reduced291

buffer data. The study is also limited to discrete domains. In the future, the authors would like to292

improve on capturing domain knowledge into the policy network without dependence on data and293

extending the methodology to algorithms that handle continuous action space.294

7 Broader Impact295

During the trial-and-error training phase, RL agents may exhibit irrational behavior, which can be296

risky and costly in real-world scenarios. As a more practical alternative to online RL, offline RL297

9



utilizes pre-existing collected data to eliminate the need for real-time interactions during training.298

However, a drawback of offline RL is its dependence on the quality and quantity of historical data,299

which, when sub-optimal, could adversely affect overall performance. Therefore, through this work,300

we use domain knowledge to suppress erroneous actions when available data is limited. However, this301

inclusion may facilitate harmful behavior in the presence of biased domain knowledge. Therefore,302

we advocate the use of well-regulated domain knowledge obtained from experts. Beyond this, we do303

not foresee any ethical impact on our work.304
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A Theoretical Analysis427

Notations428

For any deterministic policy π the performance return is formulated as η(π) = Eτ∼π[
∑∞

t=0 γ
tr(st, at)]429

For any policy π, ρπ is the (unormalized) discounted visitation frequency given by ρπ(s) =
∑∞

t=0 γ
tP (st = s)430

where s0 ∼ ρ0(s0) and the trajectory (s0, s1, . . . ) is sampled from the policy π and ρπ(s) ∈ [0, 1
1−γ

].431

ρ̄π(s) = sup{ρπ(s), s ∈ S} ∈ [ 1
|Sπ|(1−γ)

, 1
(1−γ)

]432

We denote the regularized policy learned by ExID on Br as π̂ and the unregularized policy as πu.433

Lemmas434

We introduce the following Lemma required for our theoretical analysis.435

Lemma A.1. ([44]) Given two policies π1 and π2436

η(π1)− η(π2) =

∫
s∈S

ρπ1(s)(Q
∗(s, π1(s)− V ∗(s))ds−

∫
s∈S

ρπ2(s)(Q
∗(s, π2(s)− V ∗(s))ds

Proof. Please refer to Lemma A.1 Eq 17 in [44]437

Proposition A.2. (4.2) Denote π̂ as the policy learned by ExID, πu as any offline RL policy learned on Br and438

optimal Q function as Q∗ and V function as V ∗. Then it holds that439

η(π̂)− η(πu) ≥ Es∼O|πu [V
∗(s)−Q∗(s, πu(s))]− ρ̄π̂α

Proof. According to [19] performance improvement between two policies if given by440

η(π1) = η(π2) + Eτ∼π1

[
∞∑
t=0

γtQπ2(st, at)− Vπ2(st)

]
(8)

Replacing π1 by π̂ and π2 by πu and by following Lemma A.1441

η(π̂)− η(πu) =

∫
s∈S

ρπ̂(s)(Q
∗(s, π̂(s))− V ∗(s))ds−

∫
s∈S

ρπu(s)(Q
∗(s, πu(s))− V ∗(s))ds (9)

=

∫
s∈S

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈S

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds (10)

Dividing the state space into in dataset domain states (I) and OOD states (O). The442

(11)[∫
s∈I

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈I

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds

]
︸ ︷︷ ︸

a

+

[∫
s∈O

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈O

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds

]
︸ ︷︷ ︸

b

(12)

Since the regularization loss facilitates visitation to OOD states via knowledge distillation we assume
ρπ̂ = ρπu −∆i for s ∈ i and ρπ̂ = ρπu +∆o for s ∈ o where ∆i ∈ [0, ρπu(s)] and ∆o ∈ [0, 1

1−γ
− ρπu(s)]443

a =

∫
s∈I

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈I

(ρπu −∆i)(s)(V
∗(s)−Q∗(s, π̂(s)))ds (13)

=

∫
s∈I

ρπu(s)(Q
∗(s, π̂(s))−Q∗(s, πu(s)))ds+

∫
s∈I

∆i(s)(V
∗(s)−Q∗(s, π̂(s)))ds (14)
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Under assumption in distribution action can be learned from the dataset due to conservatism of offline RL
(Q∗(s, π̂(s))−Q∗(s, πu(s))) ≈ 0, a ≥ 0444

b =

∫
s∈O

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈O

(ρπu +∆o)(s)(V
∗(s)−Q∗(s, π̂(s)))ds (15)

≥
∫
s∈O

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈O

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds (16)

≥ Es∼O|πu [V
∗(s)−Q∗(s, πu(s))]− Es∼O|π̂[V

∗(s)−Q∗(s, π̂(s))] (17)

Further loosening the lower bound445

= Es∼O|πu [V
∗(s)−Q∗(s, πu(s))]− ρ̄π̂

∫
s∈O

ρπ̂
ρ̄π̂

(V ∗(s)−Q∗(s, π̂(s)))ds (18)

≥ Es∼O|πu [V
∗(s)−Q∗(s, πu(s))]− ρ̄π̂

∫
s∈O

(V ∗(s)−Q∗(s, π̂(s)))ds (19)

Combining Eq 14, 17 and 19, and denoting α = Es∼O[V
∗(s)−Q∗(s, π̂(s))]446

η(π̂)− η(πu) ≥ Es∼O|πu [V
∗(s)−Q∗(s, πu(s))]− ρ̄π̂α (20)

Hence, Proposition 4.2 follows Q.E.D447

448

Proposition A.3. (4.3) Algo 1 reduces generalization error if Q∗(s, πω
t (s)) > Q∗(s, π(s)) for s ∈ D ∩ Br ,449

where π is vanilla offline RL policy learnt on Br .450

Proof. Generalization error for any policy π as defined by [28] can be written as:451

Gπ = V ∗(s0)− Vπ(s0) = −Eτ∼π[

T∑
t=0

γtQ∗(st, π(st))− V ∗(st)] (21)

Here, Eτ∼π represents sampling trajectories with policy π. Since the state space is continuous, we can represent
the expectation as an integral over the state space452

= −
T∑

t=0

γt

∫
s∈S

P (st = s|π)(Q∗(st, π(st))− V ∗(st))ds (22)

= −
∫
s∈S

T∑
t=0

γtP (st = s|π)(Q∗(st, π(st))− V ∗(st))ds (23)

Analysing with respect to s ∈ D ∩ Br we can break the integration into two parts453

= −

[∫
s∈S/D

T∑
t=0

γtP (st = s|π)(Q∗(st, π(st))− V ∗(st))ds+

∫
s∈D

T∑
t=0

γtP (st = s|π)(Q∗(st, π(st))− V ∗(st))

]
(24)

= −

[
f(s|π) +

∫
s∈D

T∑
t=0

γtP (st = s|π)(Q∗(st, π(st))− V ∗(st))

]
(25)

For a policy π̂ learnt in Algo 1 the action for st = s ∈ D is regularized to be close to πω
t which either follows

domain knowledge or expert demonstrations. Hence, it is reasonable to assume Q∗(st, π
ω
t (st)) > Q∗(st, π(st)).

It follows454 ∫
s∈D

T∑
t=0

γtP (st = s|π̂)(Q∗(st, π̂(st))− V ∗(st)) <

∫
s∈D

T∑
t=0

γtP (st = s|π)(Q∗(st, π(st))− V ∗(st))

(26)
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Note for s /∈ D, f(s|π̂) ≈ f(s|π). This is because the regularization term assigns max Q value to a different
action for s ∈ D but maxa(Q(s, a)) remains same455

∴ −

[
f(s|π̂) +

∫
s∈D

T∑
t=0

γtP (st = s|π̂)(Q∗(st, π̂(st))− V ∗(st))

]

< −

[
f(s|π) +

∫
s∈D

T∑
t=0

γtP (st = s|π)(Q∗(st, π(st))− V ∗(st))

]
(27)

Hence, Gπ̂ < Gπ Proposition 2 follows Q.E.D456

457

15



B Missing Examples458

Performing Q− Learning by sampling from a reduced batch Br may not converge to an optimal policy for the459

MDP MB representing the full buffer.460

Example (Theorem 1,[13]) defines MDP MB of B from same state action space of the original MDP M with461

transition probabilities pB(s′|s, a) = N(s,a,s′)∑
s̃ N(s,a,s̃)

where N(s, a, s′) is the number of times (s, a, s′) occurs in B462

and an terminal state sinit. It states pB(sinit|s, a) = 1 when
∑

s̃ N(s, a, s̃) = 0. This happens when transitions463

of some s′ of (s, a, s′) are missing from the buffer, which may occur in Br when Br ⊂ B. r(sinit, s, a) is464

initialized to Q(s, a). We assume that a policy learned on reduced dataset Br converges to optimal value function465

and disprove it using the following counterexample:466

Figure 7: Example MDP, sampled buffer MDP and reduced buffer with Q tables

Figure 8: We hypothesize the suboptimal perfor-
mance of offline RL for limited data can be ad-
dressed via domain knowledge via action regular-
ization and knowledge distillation.

We take a simple MDP illustrated in Fig 7 with 3467

states and 2 actions (0,1). The reward of each ac-468

tion is marked along the transition. The sampled469

MDP is constructed the following samples (1,0,2)-470

2,(1,1,2)-3, (2,0,3)-3, and (2,1,3)-2 and the reduced471

buffer MDP with samples (1,0,2)-2 and (1,1,2)-1.472

The probabilities are marked along the transition.473

It is easy to see that the policy learned under the474

reduced MDP converges to a nonoptimal policy af-475

ter one step of the Q table update with Q(s, a) =476

r(s, a) + p(s′|s, a) ∗ maxa′(Q(s′, a′)). This hap-477

pens because of transition probability shift on reduc-478

ing samples pB(s
′|s, a) ̸= pBr (s

′|s, a) and no Q479

updates for (s, a) /∈ Br .480

Our methodology addresses these issues as follows:481

• For s ∈ D ∩Br better actions are enforced482

through regularization using πω
t even when483

the transition probabilities are low for op-484

timal transitions.485

• Incorporating regularization distills the486

teacher’s knowledge in the critic-enhancing487

generalization.488

A visualization is shown in Fig 8.489

C Algorithm490

The pseudo code of the algorithm is described in Algo 1.491
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Algorithm 1 Pseudo code for EXID
1: Input: Reduced buffer Br, Initial teacher network πω

t , Training steps N , Warm-up steps k, Soft
update τ , hyperparameters: λ, α

2: Initialize Critic with MC dropout and Target Critic Qθ
s, Q

θ′

s
3: for n← 1 to N do
4: Sample mini-batch b of transitions (s, a, r, s′) ∼ Br at = [], as = [], sr = []
5: for s ∈ b do
6: if s |= D and πω

t (s) ̸= argmaxa(Q
θ
s(s, a)) then

7: at.append(π
ω
t (s))

8: as.append(argmaxa(Q
θ
s(s, a)))

9: sr.append(s)
10: end if
11: end for
12: if n > k∧ Cond. 6 then
13: Update πω

t (s) using Eq 7
14: Lr(θ) = 0
15: else
16: Calculate Lr(θ) using Eq 3
17: end if
18: Calculate L(θ) using Eq 4
19: Update Qθ

s with L(θ) and softy update Qθ′

s and τ
20: end for

D Environments and Domain Knowledge Trees492

Figure 9: Graphical visualizations of environments used in the experiments. These environments are
a) MountainCar-v0 b) CartPole-v1 c) LunarLander-v2 d) MiniGrid-LavaGapS7-v0 e) MiniGrid-
Dynamic-Obstacles-Random-6x6-v0

The graphical visualization of each environment is depicted in Fig 9. The choice of environment in this paper493

depended on two factors: a) Pre-existing standard methods of generating offline RL datasets. b) Possibility of494

creating intuitive decision tree-based domain knowledge. All datasets have been created via [31]. We explain the495

environments in detail as follows:496
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Mountain-car Environment: This environment Fig 9 a) has two state variables, position and velocity, and three497

discrete actions: left push, right push, and no action [27]. The goal is to drive a car up a valley to reach the flag.498

This environment is challenging for offline RL because of sparse rewards, which are only obtained on reaching499

the flag.500

Cart-pole Environment The environment Fig 9 b) has 4 states and 2 actions representing left force and right501

force. The objective is to balance a pole on a moving cart.502

Lunar-Lander Environment: The task is to land a lunar rover between two flags Fig 9 c) by observing 8 states503

and applying one of 4 actions.504

Minigrid Environments: Mini-grid [6] is an environment suite containing 2D grid-worlds with goal oriented505

tasks. As explained in the main text, we experiment using MiniGrid-LavaGapS7-v0 and MiniGrid-Dynamic-506

Obstacles-Random-6x6-v0 from this environment suite is shown in Fig 9 d) and e). In MiniGrid-LavaGapS7-v0,507

the agent has to avoid Lava and pass through the gap to reach the goal. Dynamic obstacles are similar; however,508

the agent can start at a random position and has to avoid dynamically moving balls to reach the goal. The509

environment has image observation with 3 channels (OBJECT_ID, COLOR_ID, STATE). Following [31]510

experiments, we flatten the image to an array of 98 observations and restrict action space to three actions: Turn511

left, Turn Right, and Move forward. The results of minigrid environment are reported in Table 3. Since this512

environment uses a semantic map from image observation, we collect states from a fixed policy with random513

actions to generate the teacher’s state distribution. CQL on the full dataset achieves the average reward of514

0.92± 0.1 for DynamicObstacles and 0.53± 0.01 for LavaGapS.515

The domain knowledge trees for all the environments are shown in Fig 10. The cart pole domain knowledge516

tree Fig 10 a) is taken from [33] (Fig 7). The Lunar Lander decision nodes Fig 10 b) have been taken from [34]517

(Fig4). For the mini-grid environments, we construct intuitive decision trees shown in Fig 10 d) and Fig 10 e).518

Positions 52, 40, and 68 represent positions front, right, and left of the agent. Value 0.2 represents a wall, 0.9519

represents Lava, and 0.6 represents a ball. We check positions 52, 40, and 68 for these obstacles and choose the520

recommended actions as domain knowledge.521

Figure 10: Domain knowledge trees for a) CartPole-v1 b) LunarLander-v2 c) MountainCar-v0 d)
MiniGrid-LavaGapS7-v0 e) MiniGrid-Dynamic-Obstacles-Random-6x6-v0 environments

E Related Work: Knowledge Distillation522

Knowledge distillation is a well-embraced technique of incorporating additional information in neural networks523

and has been applied to various fields like computer vision [43, 36], natural language processing [8, 38], and524

recommendation systems [37]. [17] introduced the concept of distilling knowledge from a complex, pre-trained525

model (teacher) into a smaller model (student). In recent years, researchers have explored the integration526

of rule-based regularization techniques within the context of knowledge distillation. Rule regularization527

introduces additional constraints based on predefined rules, guiding the learning process of the student model528
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Table 3: Average reward [↑] obtained during online evaluation over 3 seeds on Minigrid environments

ENVIRONMENT D BC
D

BCQ
D

CQL
D

EXID

MINIGRID
DYNAMIC

RANDOM6X6

0.50
±

0.08

0.59
±

0.07

0.24
±

0.22

0.14
±
0.1

0.79
±

0.07

MINIGRID
LAVAGAPS

7X7

0.27
±

0.09

0.29
±

0.11

0.26
±
0.1

0.28
±

0.12

0.46
±

0.13

[18, 45]. These techniques have shown to reduce overfitting and enhance generalization [38]. Knowledge529

distillation is also prevalent in the field of RL [47] and offline RL [39]. Contrary to prevalent teacher-student530

knowledge distillation techniques, our work does not enforce parameter sharing among the networks. Through531

experiments, we demonstrate that a simple regularization loss and expected performance-based updates can532

improve generalization to unobserved states covered by domain knowledge. There are also no constraints on533

keeping the same network structure for the teacher, paving ways for capturing the domain knowledge into more534

structured networks such as Differentiable Decision Trees (DDTs).535

F Network Architecture and Hyper-parameters536

We follow the network architecture and hyper-parameters proposed by [31] for all our networks, including the537

baseline networks. The teacher BC network πt
ω and Critic network Qθ

s(s, a) consists of 3 linear layers, each538

having a hidden size of 256 neurons. The number of input and output neurons depends on the environment’s state539

and action size. All layers except the last are SELU activation functions; the final layer uses linear activation.540

πt
ω uses a softmax activation function in the last layer for producing action probabilities. A learning rate of541

0.0001 with batch size 32 and α = 0.1 is used for all environments. MC dropout probability of 0.5 and542

number of stochastic passes T=10 have been used for the critic network. The uncertainty check is performed543

every 15 episodes after the warm start to avoid computational overhead. The hyper-parameters specific to our544

algorithm for OpenAI gym are reported in Table F. The hyper-parameters specific to our algorithm for Minigrid545

environments are reported in Table 5.546

Table 4: Hyperparameters for openAI gym environments

HYPERPARAM MOUNTAINCAR CARTPOLE LUNAR-
LANDER

DATA TYPE EXPERT REPLAY NOISY EXPERT REPLAY NOISY EXPERT REPLAY NOISY

λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

k 30 30 30 30 30 30 30 30 30

πt
ω LR 1e5 1e5 1e5 1e2 1e2 1e2 1e4 1e4 1e4

TRAINING
STEPS

42000 36000 36000 30000 17000 17000 18000 18000 18000

Table 5: Hyper-parameters for Mini-grid environments for replay dataset

Environment DynamicObstRandom6x6-
v0

LavaGapS7v0

λ 0.1 0.1
k 30 30

πt
ω lr 1e4 1e4

training steps 5000 10000
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Figure 11: Effect of λ on the performance of ExID for different environments expert datasets.

G Effect of k and λ and Evaluation Plots547

We empirically evaluate the effect of λ In Fig 11 and k in Fig 12. We believe these parameters depend on the548

quality of D. For the given D in the environments we empirically observe, λ = 0.5 generally performs well,549

except for Minigrid environments where λ = 0.1 works better. Increasing the warm start parameter k generally550

increases the initial performance of the policy, allowing it to learn from the teacher. Meanwhile, no warm start551

adversely affects policy performance as the critic may erroneously update the teacher. From empirical evaluation,552

we observe that k = 30 gives a reasonable start to the policy. All the evaluation plots are shown in Fig 13, where553

it can be observed that ExID performs better than baseline CQL.554

Figure 12: Effect of k on the performance of ExID for different environments expert datasets.

H Data reduction design and data distribution visualization of reduced555

dataset556

In this section, we discuss the intuition behind our data-limiting choices. We also visually represent selected557

reduced datasets for the OpenAI gym environments.558
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Figure 13: Evaluation plots of CQL and EXID algorithms for Cartpole, Lunar-Lander, and Minigrid
environments using different data types and seeds reported in the main paper Table 5.1.

Figure 14: (a) The effect of data reduction and removal on baseline CQL visualized on Mountain Car
Environment (b) Performance of ExID on removing different parts of the data based on nodes of Fig
10 (c) from Mountain Car expert dataset

Reducing transitions from the dataset: For all datasets, 10% of the data samples were extracted from the full559

dataset. This experimental design choice is based on the observation shown in Fig 14 (a). Performance degrades560

on reducing samples to 0.1% of the dataset and reduces further on reducing samples to 0.05% of the dataset.561

However, this drop is not substantial. The performance also reduces on removing part of the dataset from the562

full dataset with states > −0.8. However, the worst performance is observed when both samples are reduced563

and data is omitted, attributing to accumulated errors from probability ratio shift contributing to an increase in564

generalization error. Our methodology aims to address this gap in performance.565

Removing part of the state space: Due to the simplicity of the Mountain-Car environment, we analyze the566

Mountain-Car expert dataset to show the effect of removing data matching state conditions of the different nodes567

in the decision tree in Fig 10 (c). The performance for each condition is summarised in Table 6. The most568

informative node in the tree is position > −0.5; removing states matching this condition causes a performance569

drop in the algorithm as the domain knowledge regularization does not contribute significant information to the570

policy. Similarly, removing data with velocity < 0.01 causes a performance drop. However, both performances571

are higher than the baseline CQL trained on reduced data. Based on this observation, we choose state removal572

conditions that preserve states matching part of the information in the tree such that the regularization term573

contributes substantially to the policy. Fig 15 shows the data distribution plot of 10% samples extracted from574

mountain car replay and noisy data with states > −0.8 removed. Fig 16 shows visualizations for 10% samples575
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extracted from expert data with velocity > −1.5 removed. Fig 17 shows visualizations for 10% samples576

extracted from expert data with lander angle < −0.04 removed.577

Table 6: Performance of ExID on removing different parts of the data based on nodes of Fig 10 (c)
from Mountain Car expert dataset

Position>-0.5 Position<-0.5 Velocity>0.01 Velocity<0.01

-121.89 ± 7.69 -151 ± 13.6 -128.48 ± 11.84 -147.80 ± 5.01

Figure 15: Data distribution of reduced dataset compared to the full dataset for mountain replay and
noisy data

Figure 16: Data distribution of reduced cart pole expert dataset compared to the full dataset
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Figure 17: Data distribution of reduced LunarLander expert dataset compared to the full dataset
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NeurIPS Paper Checklist578

1. Claims579

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s580

contributions and scope?581

Answer: [Yes]582

Justification: The claims made in the paper have been experimented on different settings for validity583

and generalization. Please refer to sec 5.2.584

Guidelines:585

• The answer NA means that the abstract and introduction do not include the claims made in the586

paper.587

• The abstract and/or introduction should clearly state the claims made, including the contributions588

made in the paper and important assumptions and limitations. A No or NA answer to this589

question will not be perceived well by the reviewers.590

• The claims made should match theoretical and experimental results, and reflect how much the591

results can be expected to generalize to other settings.592

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not593

attained by the paper.594

2. Limitations595

Question: Does the paper discuss the limitations of the work performed by the authors?596

Answer: [Yes]597

Justification: The paper acknowledges the dependency on reasonable domain knowledge and coverage598

please refer to sec 6599

Guidelines:600

• The answer NA means that the paper has no limitation while the answer No means that the paper601

has limitations, but those are not discussed in the paper.602

• The authors are encouraged to create a separate "Limitations" section in their paper.603

• The paper should point out any strong assumptions and how robust the results are to violations of604

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,605

asymptotic approximations only holding locally). The authors should reflect on how these606

assumptions might be violated in practice and what the implications would be.607

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested608

on a few datasets or with a few runs. In general, empirical results often depend on implicit609

assumptions, which should be articulated.610

• The authors should reflect on the factors that influence the performance of the approach. For611

example, a facial recognition algorithm may perform poorly when image resolution is low or612

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide613

closed captions for online lectures because it fails to handle technical jargon.614

• The authors should discuss the computational efficiency of the proposed algorithms and how615

they scale with dataset size.616

• If applicable, the authors should discuss possible limitations of their approach to address problems617

of privacy and fairness.618

• While the authors might fear that complete honesty about limitations might be used by reviewers619

as grounds for rejection, a worse outcome might be that reviewers discover limitations that620

aren’t acknowledged in the paper. The authors should use their best judgment and recognize621

that individual actions in favor of transparency play an important role in developing norms that622

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize623

honesty concerning limitations.624

3. Theory Assumptions and Proofs625

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete626

(and correct) proof?627

Answer: [Yes]628

Justification: Please refer to App A in the supplement material for theoretical analysis and proofs.629

Guidelines:630

• The answer NA means that the paper does not include theoretical results.631

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.632
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• All assumptions should be clearly stated or referenced in the statement of any theorems.633

• The proofs can either appear in the main paper or the supplemental material, but if they appear in634

the supplemental material, the authors are encouraged to provide a short proof sketch to provide635

intuition.636

• Inversely, any informal proof provided in the core of the paper should be complemented by637

formal proofs provided in appendix or supplemental material.638

• Theorems and Lemmas that the proof relies upon should be properly referenced.639

4. Experimental Result Reproducibility640

Question: Does the paper fully disclose all the information needed to reproduce the main experimental641

results of the paper to the extent that it affects the main claims and/or conclusions of the paper642

(regardless of whether the code and data are provided or not)?643

Answer: [Yes]644

Justification: Yes all hyper-parameters and experimental setting have been clearly listed in the paper.645

Please refer to App F and sec 5.1.646

Guidelines:647

• The answer NA means that the paper does not include experiments.648

• If the paper includes experiments, a No answer to this question will not be perceived well by the649

reviewers: Making the paper reproducible is important, regardless of whether the code and data650

are provided or not.651

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make652

their results reproducible or verifiable.653

• Depending on the contribution, reproducibility can be accomplished in various ways. For654

example, if the contribution is a novel architecture, describing the architecture fully might suffice,655

or if the contribution is a specific model and empirical evaluation, it may be necessary to either656

make it possible for others to replicate the model with the same dataset, or provide access to657

the model. In general. releasing code and data is often one good way to accomplish this, but658

reproducibility can also be provided via detailed instructions for how to replicate the results,659

access to a hosted model (e.g., in the case of a large language model), releasing of a model660

checkpoint, or other means that are appropriate to the research performed.661

• While NeurIPS does not require releasing code, the conference does require all submissions662

to provide some reasonable avenue for reproducibility, which may depend on the nature of the663

contribution. For example664

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to665

reproduce that algorithm.666

(b) If the contribution is primarily a new model architecture, the paper should describe the667

architecture clearly and fully.668

(c) If the contribution is a new model (e.g., a large language model), then there should either be669

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,670

with an open-source dataset or instructions for how to construct the dataset).671

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are672

welcome to describe the particular way they provide for reproducibility. In the case of673

closed-source models, it may be that access to the model is limited in some way (e.g.,674

to registered users), but it should be possible for other researchers to have some path to675

reproducing or verifying the results.676

5. Open access to data and code677

Question: Does the paper provide open access to the data and code, with sufficient instructions to678

faithfully reproduce the main experimental results, as described in supplemental material?679

Answer: [Yes]680

Justification: The code is provided with the submission in a zip file with Readme for instructions.681

Guidelines:682

• The answer NA means that paper does not include experiments requiring code.683

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/684

guides/CodeSubmissionPolicy) for more details.685

• While we encourage the release of code and data, we understand that this might not be possible,686

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless687

this is central to the contribution (e.g., for a new open-source benchmark).688

• The instructions should contain the exact command and environment needed to run to reproduce689

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/690

guides/CodeSubmissionPolicy) for more details.691
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• The authors should provide instructions on data access and preparation, including how to access692

the raw data, preprocessed data, intermediate data, and generated data, etc.693

• The authors should provide scripts to reproduce all experimental results for the new proposed694

method and baselines. If only a subset of experiments are reproducible, they should state which695

ones are omitted from the script and why.696

• At submission time, to preserve anonymity, the authors should release anonymized versions (if697

applicable).698

• Providing as much information as possible in supplemental material (appended to the paper) is699

recommended, but including URLs to data and code is permitted.700

6. Experimental Setting/Details701

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,702

how they were chosen, type of optimizer, etc.) necessary to understand the results?703

Answer: [Yes]704

Justification: The paper uses open source code to create the dataset and lists the modifications in705

details in the main paper and supplement material. Please refer to App F and sec 5.1.706

Guidelines:707

• The answer NA means that the paper does not include experiments.708

• The experimental setting should be presented in the core of the paper to a level of detail that is709

necessary to appreciate the results and make sense of them.710

• The full details can be provided either with the code, in appendix, or as supplemental material.711

7. Experiment Statistical Significance712

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-713

tion about the statistical significance of the experiments?714

Answer: [Yes]715

Justification: All experiments have been run on 3 random seeds and the error bounds have been716

reported in Table 5.1, Table 2 and Table 3.717

Guidelines:718

• The answer NA means that the paper does not include experiments.719

• The authors should answer "Yes" if the results are accompanied by error bars, confidence720

intervals, or statistical significance tests, at least for the experiments that support the main claims721

of the paper.722

• The factors of variability that the error bars are capturing should be clearly stated (for example,723

train/test split, initialization, random drawing of some parameter, or overall run with given724

experimental conditions).725

• The method for calculating the error bars should be explained (closed form formula, call to a726

library function, bootstrap, etc.)727

• The assumptions made should be given (e.g., Normally distributed errors).728

• It should be clear whether the error bar is the standard deviation or the standard error of the729

mean.730

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report731

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is732

not verified.733

• For asymmetric distributions, the authors should be careful not to show in tables or figures734

symmetric error bars that would yield results that are out of range (e.g. negative error rates).735

• If error bars are reported in tables or plots, The authors should explain in the text how they were736

calculated and reference the corresponding figures or tables in the text.737

8. Experiments Compute Resources738

Question: For each experiment, does the paper provide sufficient information on the computer739

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?740

Answer: [Yes]741

Justification: Please refer to the Experimental setup section in the main paper sec 5.1.742

Guidelines:743

• The answer NA means that the paper does not include experiments.744

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud745

provider, including relevant memory and storage.746
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• The paper should provide the amount of compute required for each of the individual experimental747

runs as well as estimate the total compute.748

• The paper should disclose whether the full research project required more compute than the749

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into750

the paper).751

9. Code Of Ethics752

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code753

of Ethics https://neurips.cc/public/EthicsGuidelines?754

Answer: [Yes]755

Justification: The authors have reviewed the code of ethics and the paper adheres to it.756

Guidelines:757

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.758

• If the authors answer No, they should explain the special circumstances that require a deviation759

from the Code of Ethics.760

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due761

to laws or regulations in their jurisdiction).762

10. Broader Impacts763

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts764

of the work performed?765

Answer: [Yes]766

Justification: Please refer to the section broader impacts 7.767

Guidelines:768

• The answer NA means that there is no societal impact of the work performed.769

• If the authors answer NA or No, they should explain why their work has no societal impact or770

why the paper does not address societal impact.771

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,772

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-773

ment of technologies that could make decisions that unfairly impact specific groups), privacy774

considerations, and security considerations.775

• The conference expects that many papers will be foundational research and not tied to particular776

applications, let alone deployments. However, if there is a direct path to any negative applications,777

the authors should point it out. For example, it is legitimate to point out that an improvement in778

the quality of generative models could be used to generate deepfakes for disinformation. On the779

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks780

could enable people to train models that generate Deepfakes faster.781

• The authors should consider possible harms that could arise when the technology is being used782

as intended and functioning correctly, harms that could arise when the technology is being used783

as intended but gives incorrect results, and harms following from (intentional or unintentional)784

misuse of the technology.785

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies786

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-787

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the788

efficiency and accessibility of ML).789

11. Safeguards790

Question: Does the paper describe safeguards that have been put in place for responsible release of791

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or792

scraped datasets)?793

Answer: [NA]794

Justification: The algorithm proposed in this paper does not not pose any such risk of misuse.795

Guidelines:796

• The answer NA means that the paper poses no such risks.797

• Released models that have a high risk for misuse or dual-use should be released with necessary798

safeguards to allow for controlled use of the model, for example by requiring that users adhere to799

usage guidelines or restrictions to access the model or implementing safety filters.800

• Datasets that have been scraped from the Internet could pose safety risks. The authors should801

describe how they avoided releasing unsafe images.802
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• We recognize that providing effective safeguards is challenging, and many papers do not require803

this, but we encourage authors to take this into account and make a best faith effort.804

12. Licenses for existing assets805

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,806

properly credited and are the license and terms of use explicitly mentioned and properly respected?807

Answer: [Yes]808

Justification: All codes and datasets used in this paper are under MIT licence and the original owners809

have been cited.810

Guidelines:811

• The answer NA means that the paper does not use existing assets.812

• The authors should cite the original paper that produced the code package or dataset.813

• The authors should state which version of the asset is used and, if possible, include a URL.814

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.815

• For scraped data from a particular source (e.g., website), the copyright and terms of service of816

that source should be provided.817

• If assets are released, the license, copyright information, and terms of use in the package should818

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for819

some datasets. Their licensing guide can help determine the license of a dataset.820

• For existing datasets that are re-packaged, both the original license and the license of the derived821

asset (if it has changed) should be provided.822

• If this information is not available online, the authors are encouraged to reach out to the asset’s823

creators.824

13. New Assets825

Question: Are new assets introduced in the paper well documented and is the documentation provided826

alongside the assets?827

Answer: [NA]828

Justification: No new assets have been introduced in this paper.829

Guidelines:830

• The answer NA means that the paper does not release new assets.831

• Researchers should communicate the details of the dataset/code/model as part of their sub-832

missions via structured templates. This includes details about training, license, limitations,833

etc.834

• The paper should discuss whether and how consent was obtained from people whose asset is835

used.836

• At submission time, remember to anonymize your assets (if applicable). You can either create an837

anonymized URL or include an anonymized zip file.838

14. Crowdsourcing and Research with Human Subjects839

Question: For crowdsourcing experiments and research with human subjects, does the paper include840

the full text of instructions given to participants and screenshots, if applicable, as well as details about841

compensation (if any)?842

Answer: [NA]843

Justification: The paper did not require any crowdsourcing or human subject for experimentation.844

Guidelines:845

• The answer NA means that the paper does not involve crowdsourcing nor research with human846

subjects.847

• Including this information in the supplemental material is fine, but if the main contribution of the848

paper involves human subjects, then as much detail as possible should be included in the main849

paper.850

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other851

labor should be paid at least the minimum wage in the country of the data collector.852

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects853

Question: Does the paper describe potential risks incurred by study participants, whether such854

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an855

equivalent approval/review based on the requirements of your country or institution) were obtained?856
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Answer: [NA]857

Justification: The paper did not require any crowdsourcing or human subject for experimentation.858

Guidelines:859

• The answer NA means that the paper does not involve crowdsourcing nor research with human860

subjects.861

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be862

required for any human subjects research. If you obtained IRB approval, you should clearly state863

this in the paper.864

• We recognize that the procedures for this may vary significantly between institutions and865

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for866

their institution.867

• For initial submissions, do not include any information that would break anonymity (if applica-868

ble), such as the institution conducting the review.869
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