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Abstract—In the field of meteorology, precipitation holds 
significant importance for human activities and environment. 
Extended-range precipitation forecasting, covering a 
timeframe of weeks to months, is crucial across various sectors, 
including water resource management, agriculture, and 
disaster prevention. However, the conventional meteorological 
forecasting models often fail to satisfy the precise demand for 
accurate and detailed precipitation predictions due to the 
inherent limitations in resolution and data collection frequency 
associated with these methods. 

Recently, super resolution technology has emerged as a 
promising solution with the potential to transform the 
resolution of meteorological data. By leveraging advanced 
algorithms and computational prowess, this technology can 
generate high-resolution images from low-resolution inputs. In 
this comprehensive review, we meticulously dissect the state-of-
the-art super resolution techniques utilized in extended-range 
precipitation forecasting tasks. By classifying and analyzing 
the literature based on various methodologies, including 
convolutional neural networks (CNNs), generative adversarial 
networks (GANs), and diffusion models, we uncover their 
performance characteristics, strengths, and limitations. Our in-
depth exploration reveals that while these methods have shown 
promise, they also face significant challenges. For example, 
CNNs struggle with capturing ultrafine details, GANs exhibit 
training instability, and diffusion models require further 
optimizations in terms of their computational efficiency. 

Future research efforts should focus on enhancing model 
architectures, seamlessly incorporating physical constraints to 
ensure the physical consistency of the generated data, and 
optimizing the current data utilization strategies. Furthermore, 
it is crucial to develop comprehensive evaluation metrics, 
conduct extensive long-term and regional validation studies, 
and establish effective uncertainty quantification methods. 
Additionally, the seamless integration of super resolution 
forecasts into practical applications such as decision support 
systems for flood prevention and water resource management, 
as well as their applications in climate change studies, will be 
pivotal for unlocking the full potential of this technology and 
addressing the longstanding challenges faces in precipitation 
forecasting scenarios. 

Keywords—Super resolution technology; Extended-range 
precipitation forecasting; CNNs; GANs; Diffusion models 

I. INTRODUCTION 
Precipitation is an important meteorological variable with 

profound impacts on various facets of human life and the 
environment [1]. Extended-range precipitation forecasting, 
which entails predicting rainfall amounts over a timeframe of 
weeks to months, plays a crucial role in various domains 
including water resource management, agriculture, and 
disaster prevention [1-2]. Nevertheless, the traditional 
meteorological forecasting models frequently falter in 
meeting the need for precise and detailed precipitation 
forecasts due to the inherent limitations in resolution and 
data collection frequency associated with these methods. 

In recent years, super resolution technology has emerged 
as a promising solution for increasing the resolution of 
meteorological data [3-6]. By leveraging advanced machine 
learning algorithms and robust computational power, these 
techniques can generate high-resolution images or datasets 
from low-resolution inputs. This methodology holds the 
potential to substantially improve the accuracy and reliability 
of precipitation forecasts, especially in extended-range cases. 

The application of super resolution technology in 
meteorology has been driven by the need to better 
understand and predict complex weather patterns. With the 
increasing availability of high-resolution satellite and 
ground-based observational data, as well as the continuous 
development of computational capabilities, it has become 
possible to explore the utilization of super resolution 
techniques in precipitation forecasting scenarios [3, 6]. This 
review aims to provide a comprehensive overview of the 
current state-of-the-art super resolution technology for 
extended-range precipitation forecasting, highlighting the 
different algorithms and techniques that have been proposed 
and their effectiveness in enhancing forecast accuracy. 

Furthermore, this review delves into the challenges and 
limitations associated with the application of super resolution 
technology in precipitation forecasting tasks, encompassing 
data quality concerns, computational complexity issues, and 
the necessity for precise physical models. By tackling these 
obstacles, future research can concentrate on creating more 
resilient and efficient super resolution models that can more 
accurately capture the intricate spatial and temporal patterns 
of precipitation. 
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Overall, the application of super resolution technology in 
extended-range precipitation forecasting situations holds 
immense potential for enhancing our comprehension and 
prediction of precipitation patterns [7]. Consequently, this 
advancement can facilitate more informed decision-making 
across various domains, ultimately aiding in the mitigation of 
extreme weather impacts and the efficient management of 
water resources. 

II. LITERATURE REVIEW 
In this section, we conduct a comprehensive review of 

the literature pertaining to the application of super resolution 
technology in precipitation forecasting, categorizing the 
relevant studies based on the techniques they utilize. 

A. CNN-Based Superresolution Methods for Precipitation 
Forecasting 
Convolutional neural networks (CNNs) have been 

extensively employed in super resolution tasks due to their 
capacity to learn intricate spatial patterns. Within the realm 
of precipitation forecasting, CNNs can be trained to enhance 
low-resolution precipitation data, thereby improving the 
precision of forecasts. 

1) Weather4cast Challenge and the Related Studies 
The Weather4cast 2022 NeurIPS competition was a 

pioneering machine learning challenge dedicated to 
advancing research on the application of machine learning 
techniques in high-resolution weather forecasting. During 
this competition, numerous studies delved into various 
precipitation forecasting methods. Notably, Li et al. [5] 
leveraged 3D U-Nets and EarthFormers to forecast rainfall 
using satellite data. They sought to tackle the challenges 
associated with precipitation prediction by effectively 
leveraging the synchronous-scale and mesoscale background 
information of variables in the visible, near-infrared, water 
vapour, and infrared bands. In the initial stage of the 
competition, which involved determining the presence of 
rain, they experimented with several neural network models, 
including U-Nets (U-Net, 3D U-Net, and U2Net), recurrent 
neural network (RNNs) (convolutional long short-term 
memory (ConvLSTM) and Trajectory GRU (trajGRU), and 
transformers (the Swin Transformer and EarthFormer). For 
the second stage, which involved predicting rainfall events 
with a rainfall rate threshold of 0.2 mm, they used 3D U-Nets 
and EarthFormers to conduct 8-hour probabilistic rainfall 
forecasts. Additionally, researchers employed multimodel 
integration with threshold optimization to generate the final 
probabilistic rainfall predictions. As shown in Fig 1, the 3D 
U-Net model consists of five encoder blocks, four decoder 
blocks and one output block. The encoder blocks perform 2-
fold down sampling and include a 3D convolutional layer, a 
maximum pooling layer, a BatchNorm layer, a rectified 
linear unit (ReLU) activation function, and a Dropout3d 
layer. The decoder module consists of 3D convolutional 
layers, layers that are unsampled via transposed convolution, 
BatchNorm and a ReLU activation function. Convolutional 
layers of different depths enable the extraction of spatial 
features at different resolutions, which is crucial for 
precipitation prediction because of the multiscale nature of 
weather phenomena [8]. As shown in Fig 2a, EarthFormer is 
a hierarchical transformer codec based on cuboid attention. 
The cuboid attention layer consists of three steps: 
'Decompose', 'Attend', and 'Merge', as shown in Fig 2b. The 
“Decompose” step decomposes the input spatiotemporal 

tensor into cuboid sequences; ‘Attend’ applies self-attention 
within each cuboid attention layer parallel to the overlapping 
cuboid sequences from the decomposition step; and “Merge” 
merges the cuboid sequences obtained after completing the 
attention step back into the original input shape to obtain the 
final cuboid attention output. 

 
Fig 1. Illustration of the 3D U-Net model. The 3D U-Net model consists of 
five encoder blocks, four decoder blocks, one output block and skip 
connections [5]. 

 The results of their study revealed that both 3D U-Net 
and EarthFormer exhibited commendable predictive prowess 
in scenarios featuring continuous and extensive precipitation. 
However, they encountered challenges in accurately 
forecasting localized, small-scale precipitation, particularly 
when dealing with longer lead times (e.g., 3 hours later). The 
study concluded that for shorter lead times (within 2 hours), 
an input spatial context that was equal to the target context 
(42×42) yielded better performance, whereas for longer lead 
times (3-8 hours), an input spatial context that was three 
times larger than the target context (126×126) was more 
favorable. This finding highlights the importance of 
considering different spatial and temporal scales in 
precipitation prediction tasks and the need for further 
explorations to determine the optimal input contexts for 
different lead times. Additionally, the authors put forth the 
notion that mesoscale and local-scale information are crucial 
for scenarios with brief lead times. In comparison, larger 
weather-scale and mesoscale information is necessary for 
situations with longer lead times [5]. Upon comparing 
rainfall forecasts generated across diverse durations, the 
authors noted that none of the models effectively anticipated 
localized, small-scale precipitation, especially over extended 
forecasting horizons. Upon comparing rainfall forecasts 
generated across diverse durations, the authors noted that 
none of the models effectively anticipated localized, small-
scale precipitation, especially over extended forecasting 
horizons.  
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Fig 2. Illustration of (a) the EarthFormer architecture and (b) the cuboid 
attention layer with global vectors. The EarthFormer is a hierarchical 
transformer encoder-decoder that is based on cuboid attention. The input 
sequence has a length if T, and the target sequence has a length of K. ”×D” 
denotes stacking D cuboid attention blocks with residual 
connections. ”×M” represents the case with M layers of hierarchies [5]. 

 Similarly, Moran et al. [6] also participated in this 
competition, introducing a physics-aware ConvLSTM 
network integrated with a U-Net architecture. They utilized 
coarser-resolution meteorological satellite images as inputs 
to predict high-resolution rainfall occurrences. As illustrated 
in Figure 3, the ConvLSTM network was designed to capture 
the temporal dynamics of those satellite images, while the U-
Net architecture facilitated spatial upscaling. The results of 
their study demonstrated that SR-PhyDNet outperformed the 
baseline 3D U-Net model in rainfall event prediction tasks. It 
achieved better scores in terms of recall, precision, the F1 
score, and the critical success index and the intersection over 
union. Furthermore, the predicted rainfall maps exhibited 
significantly reduced visual artefacts, underscoring the 
efficacy of the proposed method in generating more accurate 
and visually pleasing precipitation forecasts. While satellite 
data-driven deep learning models cannot replace weather 
radar-derived rainfall measurements, they are well-suited for 
precipitation prediction in areas lacking ground-based 
instruments [6]. This study emphasized the potential of 
CNNs in handling precipitation prediction tasks and 
showcased the advantage of incorporating physical 
constraints into the model to enhance its performance. 

 

Fig 3. Overview of the SR-PhyDNet architecture proposed for satellite 
image sequence prediction, superresolution and segmentation tasks. The 
input consists of satellite images, and a binary mask (with rain in yellow 
and no rain in purple) is the output [6]. 

2) ESM Data Downscaling Using CNNs 
A notable study by Pawar et al. [9], published in the 

realm of Energy Exascale Earth Systems Model (E3SM) data 
downscaling]. They evaluated five different CNN-based 
super resolution models, namely, the super resolution CNN 
(SRCNN), the fast super resolution CNN earth system model 

(FSRCNN-ESM), the efficient subpixel CNN (ESPCNN), 
the enhanced deep residual network (EDRN), and the super 
resolution GAN (SRGAN). The SRCNN model uses double 
cubic interpolation on its inputs and adopts a shallow 
structure [10]. In contrast, both the FSRCNN and ESPCNN 
techniques use coarse-resolution images directly as their 
inputs [11]. The also employs coarse-resolution images, but 
it features a deep architecture with skip connections to retain 
important features from earlier layers [10]. Lastly, the 
SRGAN architecture consists of a generator and a 
discriminator, where the generator uses coarse-resolution 
inputs to generate fine-resolution outputs [10]. The E3SM 
dataset, utilizing paired monthly data of fine-resolution 
(0.25°) and coarse-resolution (1°), served as the foundation 
for training and validation. Evaluation was conducted using 
various metrics, encompassing Mean Squared Error (MSE), 
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 
Index Measure (SSIM), LPIPS, and Absolute Percentage 
Error (APE). The results showed that the EDRN exhibited 
excellent performance in terms of the PSNR, SSIM, and 
MSE, indicating its proficiency in generating high-quality 
super-resolved images with minimal errors. However, it 
struggled to capture intricate details present in the data. 
Conversely, SRGAN, a generative model incorporating a 
perceptual loss, demonstrated an exceptional ability to 
capture fine details of boundaries and internal structures, 
evident from its lower LPIPS value compared to other 
methods. This demonstrated SRGAN's capacity to generate 
images that are perceptually closer to the ground truth. This 
comprehensive comparison provided valuable insights into 
the strengths and weaknesses of different CNN-based models 
for ESM data downscaling and precipitation forecasting, 
guiding future research in selecting the most suitable models 
for specific applications. 

B. GANs-Based Superresolution Methods for Precipitation 
Forecasting 
Generative adversarial networks (GANs) have also 

shown great potential for use in super resolution applications, 
where GAN-based super-resolution models typically excel 
over CNN-based models in numerous super-segmentation 
tasks, both in terms of performance and downscale range. A 
GAN consists of a generator and a discriminator that are 
adversarial trained to generate high-quality, high-resolution 
images. Below are some precipitation forecasting methods 
that leverage GANs. 

1) SRGAN for Precipitation Data Downscaling 
Kumar et al. [12] conducted a comparison of the SRGAN 

with other deep learning approaches, including the stacked 
SRCNN, U-Net, ConvLSTM, and DeepSD, for the purpose 
of precipitation data downscaling. The results indicated that 
the SRGAN outperformed the other methods, achieving a 
correlation coefficient of 0.8806, which was higher than that 
of U-Net (0.8399), ConvLSTM (0.8311), and DeepSD 
(0.8037). The SRGAN was capable of generating more 
precise and intricate precipitation patterns, thereby enhancing 
the resolution of the data and potentially refining the output 
precipitation forecasts. 

2) Physics-Informed SRGAN 
Oyama et al. [13] introduced two variants of SRGAN: the 

physics-informed SRGAN (πSRGAN) and the ψSRGAN. 
The πSRGAN incorporates a low-resolution pressure field 
and topographic information as auxiliary inputs to achieve 
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high-resolution temperature and precipitation downscaling 
with a factor of up to 50. As shown in Fig 4, the πSRGAN 
demonstrated comparable performance to the traditional 
CDFDM method in terms of basic statistical properties, such 
as precipitation probability density functions (PDFs). 
Furthermore, this method significantly enhanced the 
accuracy achieved when reproducing the natural spatial 
distribution of the precipitation correlation coefficient, which 
was a limitation of the conventional methods. However, the 
πSRGAN relies on topographic information that is specific to 
the training area, leading to a lack of generalizability, as 
evidenced by inferior performance in a generalization test 
where the downscaling computation area was shifted. 

The ψSRGAN, which solely utilizes low-resolution 
temperature and pressure data to generate high-resolution 
temperature and precipitation fields, surprisingly exhibited 
excellent downscaling performance in the precipitation field, 
particularly in regions like Shizuoka where pressure plays a 
pivotal role in determining precipitation. This indicates the 
robust ability of SRGAN-based methods to express natural 
results, even in cases with limited input information. 

Overall, the GAN-based methods examined in this study 
offer the advantage of generating more realistic and intricate 
precipitation patterns, as evidenced by their ability to capture 
fine structures such as localized heavy rain events. The 
integration of physical information into the πSRGAN 
enhances the physical consistency of its outputs. However, 
the generalization issue needs to be addressed before more 
broadly applying these models, and the computational cost 
and stability issues faced during training are also potential 
challenges that need to be considered in future research. 

 
Fig 4. Schematic diagram of the πSRGAN and the spatial correlation 
coefficient distribution. (A) High-resolution topography and low-resolution 
sea-level pressure data, in addition to the low-resolution data corresponding 
to the output, are supplied to GANs. (B) The reconstructed distributions of 
the spatial correlation coefficients, indicating the correlation strength with 
the reference site in Tokyo [35.735°N, 139.6683°E], obtained via the 
πSRGAN and a conventional CDFDM are compared with the ground truth 
(GT) [13]. 

C. Diffusion Models for Performing Superresolution in 
Precipitation Forecasting Tasks 
Diffusion models have recently emerged as powerful 

approaches in the field of super resolution, particularly in the 
context of weather data analysis. Their capacity to capture 
intricate patterns and detailed information has garnered 
significant attention. 

1) SR3 and ResDiff Models 
In a study conducted by Martin° et al. [4], the SR3 and 

ResDiff architectures were used for the super resolution of 

weather data, with a specific focus on the 2-m humidity 
variable. SR3 [14] , the pioneering diffusion model for super-
resolution tasks, operates by iteratively refining image details 
to yield high-resolution outputs. This study provided a 
foundation for exploring the potential of diffusion models to 
enhance the resolution of meteorological data. 

The ResDiff model [15], which is an enhanced version of 
SR3, combines a CNN with an improved diffusion model. 
Several innovative techniques have been introduced for this 
model. As shown in Fig. 5, for example, the high-frequency 
guided diffusion technique was designed to better capture 
and reconstruct fine details that are often crucial aspects of 
weather data, where small-scale variations can have 
significant implications. Additionally, the frequency-domain 
information splitting technique, which uses a two-
dimensional fast Fourier transform (FFT) to process 
interpolated and noisy images, enables the model to directly 
analyses and handle the frequency components of the input 
image data. This approach provides a deeper understanding 
and manipulation of the spectral characteristics of the data, 
potentially leading to more accurate reconstruction results. 

In the implemented experimental setup, the Weather 
Bench dataset was used, and the evaluation was carried out 
via metrics such as the MSE, SSIM, and PSNR. The study's 
results unequivocally demonstrated that SR3 was less 
effective than ResDiff. ResDiff was capable of generating 
more precise and detailed high-resolution images of the 2-
meter humidity variable, providing a superior representation 
of atmospheric conditions. This demonstrated the importance 
of the enhancements made in ResDiff, causing it to be 
superior to the basic SR3 model. 

 
Fig 5. Architecture of the ResDiff model used for climate variable 
downscaling [4]. 

2) ResDiff+Physics Model 
Another variant of SD3 is ResDiff+Physics [4], which 

integrates physically inspired convolutional filters. By doing 
so, it is able to focus on features that are related to fluid 
motion and atmospheric dynamics, which are essential 
components of weather systems. The integration of physical 
knowledge into the model marked a significant advancement, 
as it improved its capacity to produce results that are more 
consonant with the underlying physical processes governing 
the atmosphere. 

When comparing ResDiff and ResDiff+Physics, 
ResDiff+Physics exhibited better performance in terms of 
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most evaluation metrics, except for the PSNR. The 
incorporation of physical constraints into ResDiff+Physics 
enabled it to better capture the intricate relationships and 
dynamics within weather data, resulting in more reliable and 
physically coherent results. 

The primary strength of these diffusion models lies in 
their capacity to capture intricate details and complex 
patterns in weather data, which is crucial for precise 
precipitation forecasting. By leveraging the power of 
diffusion processes, they can generate high-resolution 
outputs that potentially provide more accurate 
representations of the atmosphere. However, a potential 
drawback is the relatively high computational cost associated 
with training and implementing these models. The iterative 
nature of diffusion models, combined with the complexity of 
techniques such as the frequency-domain processing scheme 
in ResDiff, can necessitate substantial computational 
resources. This may limit their practical application in 
scenarios where computational power is limited or real-time 
processing is required. 

In conclusion, diffusion models, especially when 
enhanced with physical knowledge such as in ResDiff + 
Physics, offer great potential for enhancing the resolution 
and quality of meteorological data. Future research could 
focus on further optimizing these models to reduce their 
computational costs and improve their performance under 
different weather conditions and in different regions. 

D. Other Related Studies 
Apart from the aforementioned mainstream super-

resolution techniques rooted in CNNs, GANs, and diffusion 
models, several studies have delved into alternative or 
complementary methodologies for extended-range 
precipitation forecasting, each presenting its own distinct 
advantages and constraints. 

1) Pattern-Based Forecasting Methods 
Mastrantonas et al. [1] adopted a pattern-based approach, 

focusing on the Mediterranean region. They conducted an in-
depth analysis of the relationship between large-scale 
atmospheric flow patterns and extreme precipitation events 
(EPEs). ERA5 [16], the latest ECMWF reanalysis dataset for 
1979-2020, was used here as a reference dataset. ERA5 
provides approximately 137 30 km × 30 km vertical 
horizontals in a horizontal grid at an hourly resolution from 
the surface up to an altitude of 80 km. In addition, the 
rainfall resolution of this dataset is 0.25° × 0.25°, and the 
rainfall data were generated from the ECMWF extension 
period model. The authors identified nine distinct 
atmospheric flow patterns by performing an empirical 
orthogonal function (EOF) analysis and K-means clustering 
on historical meteorological data. By leveraging the 
ECMWF model to predict these patterns and meticulously 
analyzing their associations with historical EPEs, they 
indirectly predicted the likelihood of future EPEs. The results 
showed that the ECMWF model effectively represented the 
Mediterranean region, with no significant deviation exhibited 
by its climatic frequency, even when advancing it by 44 days. 
In addition, a comparison with the available accuracy data 
showed that indirectly forecasting EPEs via predictive 
models can provide skillful forecasts up to 10 days in 
advance for many areas of the Mediterranean Sea [1]. This 
approach offers a novel perspective by emphasizing the 

significance of large-scale patterns in medium- and 
extended-range precipitation forecasting scenarios. The study 
provided profound insights into the potential precursors of 
extreme precipitation, which could be invaluable for early 
warning systems. However, it did not directly predict 
precipitation amounts, and the accuracy of the forecasts may 
have been contingent upon the reliability and temporal 
stability of the identified patterns. 

2) Data-Driven Models 
Araújo et al. [3] proposed a data-driven model (DDM) 

[17] leveraging long-term memory networks (LSTMs) for 
extreme precipitation prediction in southeastern Brazil, along 
with a method based on data mining (DM) techniques to 
forecast extreme rainfall events. They integrated a 
comprehensive set of reanalysis data, including isobaric-level, 
ground, and meteorological station data. The model aimed to 
identify and capture the atmospheric patterns associated with 
extreme rainfall events and subsequently predict future 
rainfall events on the basis of the historical patterns. The 
developed methodology demonstrated the possibility of 
using reanalysis data derived from global mathematical 
models to obtain regional models with lower computational 
costs [2]. One of the notable advantages of this DDM is its 
ability to handle entire time series without the need for 
elaborate preprocessing steps, thereby streamlining the 
prediction process. Additionally, it holds the potential to 
serve as a valuable decision support tool. Nevertheless, the 
model is not without its limitations. It lacks spatial 
abstraction capabilities, which means that it may not be 
directly applicable to different regions without significant 
modifications. Moreover, its performance is highly 
dependent on the historical data used for training, and the 
lack of a large amount of diverse data may limit its 
generalizability. 

III. FUTURE WORKS 
 The applications of super resolution technology in 
extended-range precipitation forecasting scenarios have 
shown great promise, but several areas still require further 
exploration and enhancement. 

A. Model Improvements 
Enhanced Network Architectures: More advanced 

CNNs, GANs, and diffusion models should be developed to 
more accurately capture the intricate spatial and temporal 
patterns of precipitation. This could involve deeper networks, 
novel layer designs, or improved connections between 
different components. 

Incorporation of Physical Constraints: Physical 
knowledge should be more comprehensively integrated into 
super-resolution models to guarantee the physical 
consistency of the generated high-resolution precipitation 
data. This could involve the use of better representations of 
atmospheric processes, such as convection, advection, and 
evaporation in the developed models. 

Multimodal and Multiscale Fusion: Different data 
sources and models should be combined to leverage the 
strengths of component. For example, satellite data can be 
fused with ground-based observations, or multiple super 
resolution models with different resolutions and 
characteristics can be integrated to improve the accuracy and 
reliability of precipitation forecasts. 
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B. Data Utilization 
 Big Data and High-Resolution Data: As high-
resolution satellite and ground-based observational data 
become increasingly available, methods should be developed 
to effectively handle and use these extensive datasets. This 
may necessitate the development of advanced data 
preprocessing techniques, effective data compression 
methods, and distributed computing strategies to manage the 
associated computational demands. 

 Data Augmentation: More advanced data augmentation 
techniques should be explored to increase the diversity and 
quantity of training data. This could improve the 
generalizability of models and reduce overfitting, especially 
in regions with limited data availability. 

 Real-Time Data Integration: Systems that can integrate 
real-time observational data into super resolution models 
should be developed to enable more timely and accurate 
precipitation forecasts. This requires efficient data 
transmission, processing, and assimilation techniques. 

C. Evaluation and Validation 
Comprehensive Evaluation Metrics: A more extensive 

suite of evaluation metrics should be developed that 
encompasses not only traditional measures like accuracy and 
correlation but also the physical characteristics and practical 
applications of precipitation forecasts. For example, the 
ability of models to predict extreme precipitation events, 
spatial patterns, and temporal variability can be evaluated. 

Long-Term and Regional Validations: More extensive 
long-term and regional validation studies should be 
conducted to assess the performance and stability of super 
resolution models across various climate regions and seasons. 
This will aid in identifying the limitations and applicability 
of different models and improving their robustness. 

Uncertainty Quantification: Methods should be 
developed to quantify the uncertainty associated with super 
resolution precipitation forecasts. This will provide users 
with more information about the reliability of forecasts and 
help decision-makers make more informed decisions. 

D. Applications and Impacts 
Decision Support Systems: Super resolution 

precipitation forecasts should be integrated into decision 
support systems for various applications, such as flood 
prevention, water resource management, and agriculture. 
User-friendly interfaces and tools that can help stakeholders 
easily access and utilize forecast information should be 
developed. 

Climate Change Studies: Super resolution technology 
should be applied to study the impact of climate change on 
precipitation patterns at finer spatial and temporal scales. 
This could improve our understanding of climate change 
mechanisms and lead to the development of more effective 
adaptation and mitigation strategies. 

Cross-Disciplinary Research: Encouraging cross-
disciplinary research among meteorology, computer science, 
mathematics, and other relevant fields can foster the 
advancement and implementation of super resolution 
technology in precipitation forecasting scenarios, potentially 
yielding novel insights and solutions to address the 
challenges in this domain. 

IV. CONCLUSTION 
This review comprehensively analyzed the applications 

of super resolution technology in extended-range 
precipitation forecasting scenarios. We categorized the 
existing research based on various techniques, including 
CNNs, GANs, and diffusion models, and discussed their 
performance, strengths, and limitations. CNN-based methods, 
exemplified by SR-PhyDNet and the EDRN, have exhibited 
impressive capabilities in processing precipitation data, 
achieving promising outcomes across diverse applications. 
GANs, particularly the SRGAN and its variants, have 
demonstrated the ability to generate high-quality, detailed 
precipitation patterns. Diffusion models, such as SR3 and 
ResDiff, have the potential to capture complex atmospheric 
details. However, each method also encounters challenges. 
CNNs may struggle to capture extremely fine features, 
GANs may exhibit instability during training, and diffusion 
models require additional optimization to improve their 
computational efficiency and reduce time costs. Future work 
should prioritize enhancing model architectures, 
integrating more physical constraints, and making more 
effective use of data. Moreover, comprehensive evaluations 
and validations, as well as the integration of super resolution 
forecasts into practical applications, are crucial for the 
development and application of this technology. In summary, 
super resolution technology holds great promise for 
improving the accuracy and resolution of extended-range 
precipitation forecasts, which has significant implications for 
various fields related to weather and climate. 
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