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Abstract—In the field of meteorology, precipitation holds
significant importance for human activities and environment.
Extended-range precipitation forecasting, covering a
timeframe of weeks to months, is crucial across various sectors,
including water resource management, agriculture, and
disaster prevention. However, the conventional meteorological
forecasting models often fail to satisfy the precise demand for
accurate and detailed precipitation predictions due to the
inherent limitations in resolution and data collection frequency
associated with these methods.

Recently, super resolution technology has emerged as a
promising solution with the potential to transform the
resolution of meteorological data. By leveraging advanced
algorithms and computational prowess, this technology can
generate high-resolution images from low-resolution inputs. In
this comprehensive review, we meticulously dissect the state-of-
the-art super resolution techniques utilized in extended-range
precipitation forecasting tasks. By classifying and analyzing
the literature based on various methodologies, including
convolutional neural networks (CNNs), generative adversarial
networks (GANs), and diffusion models, we uncover their
performance characteristics, strengths, and limitations. Our in-
depth exploration reveals that while these methods have shown
promise, they also face significant challenges. For example,
CNNs struggle with capturing ultrafine details, GANs exhibit
training instability, and diffusion models require further
optimizations in terms of their computational efficiency.

Future research efforts should focus on enhancing model
architectures, seamlessly incorporating physical constraints to
ensure the physical consistency of the generated data, and
optimizing the current data utilization strategies. Furthermore,
it is crucial to develop comprehensive evaluation metrics,
conduct extensive long-term and regional validation studies,
and establish effective uncertainty quantification methods.
Additionally, the seamless integration of super resolution
forecasts into practical applications such as decision support
systems for flood prevention and water resource management,
as well as their applications in climate change studies, will be
pivotal for unlocking the full potential of this technology and
addressing the longstanding challenges faces in precipitation
forecasting scenarios.
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I. INTRODUCTION

Precipitation is an important meteorological variable with
profound impacts on various facets of human life and the
environment [1]. Extended-range precipitation forecasting,
which entails predicting rainfall amounts over a timeframe of
weeks to months, plays a crucial role in various domains
including water resource management, agriculture, and
disaster prevention [1-2]. Nevertheless, the traditional
meteorological forecasting models frequently falter in
meeting the need for precise and detailed precipitation
forecasts due to the inherent limitations in resolution and
data collection frequency associated with these methods.

In recent years, super resolution technology has emerged
as a promising solution for increasing the resolution of
meteorological data [3-6]. By leveraging advanced machine
learning algorithms and robust computational power, these
techniques can generate high-resolution images or datasets
from low-resolution inputs. This methodology holds the
potential to substantially improve the accuracy and reliability
of precipitation forecasts, especially in extended-range cases.

The application of super resolution technology in
meteorology has been driven by the need to better
understand and predict complex weather patterns. With the
increasing availability of high-resolution satellite and
ground-based observational data, as well as the continuous
development of computational capabilities, it has become
possible to explore the utilization of super resolution
techniques in precipitation forecasting scenarios [3, 6]. This
review aims to provide a comprehensive overview of the
current state-of-the-art super resolution technology for
extended-range precipitation forecasting, highlighting the
different algorithms and techniques that have been proposed
and their effectiveness in enhancing forecast accuracy.

Furthermore, this review delves into the challenges and
limitations associated with the application of super resolution
technology in precipitation forecasting tasks, encompassing
data quality concerns, computational complexity issues, and
the necessity for precise physical models. By tackling these
obstacles, future research can concentrate on creating more
resilient and efficient super resolution models that can more
accurately capture the intricate spatial and temporal patterns
of precipitation.
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Overall, the application of super resolution technology in
extended-range precipitation forecasting situations holds
immense potential for enhancing our comprehension and
prediction of precipitation patterns [7]. Consequently, this
advancement can facilitate more informed decision-making
across various domains, ultimately aiding in the mitigation of
extreme weather impacts and the efficient management of
water resources.

II. LITERATURE REVIEW

In this section, we conduct a comprehensive review of
the literature pertaining to the application of super resolution
technology in precipitation forecasting, categorizing the
relevant studies based on the techniques they utilize.

A. CNN-Based Superresolution Methods for Precipitation
Forecasting

Convolutional neural networks (CNNs) have been
extensively employed in super resolution tasks due to their
capacity to learn intricate spatial patterns. Within the realm
of precipitation forecasting, CNNs can be trained to enhance
low-resolution precipitation data, thereby improving the
precision of forecasts.

1) Weatherdcast Challenge and the Related Studies

The Weather4cast 2022 NeurIPS competition was a
pioneering machine learning challenge dedicated to
advancing research on the application of machine learning
techniques in high-resolution weather forecasting. During
this competition, numerous studies delved into various
precipitation forecasting methods. Notably, Li et al. [5]
leveraged 3D U-Nets and EarthFormers to forecast rainfall
using satellite data. They sought to tackle the challenges
associated with precipitation prediction by effectively
leveraging the synchronous-scale and mesoscale background
information of variables in the visible, near-infrared, water
vapour, and infrared bands. In the initial stage of the
competition, which involved determining the presence of
rain, they experimented with several neural network models,
including U-Nets (U-Net, 3D U-Net, and U2Net), recurrent
neural network (RNNs) (convolutional long short-term
memory (ConvLSTM) and Trajectory GRU (trajGRU), and
transformers (the Swin Transformer and EarthFormer). For
the second stage, which involved predicting rainfall events
with a rainfall rate threshold of 0.2 mm, they used 3D U-Nets
and EarthFormers to conduct 8-hour probabilistic rainfall
forecasts. Additionally, researchers employed multimodel
integration with threshold optimization to generate the final
probabilistic rainfall predictions. As shown in Fig 1, the 3D
U-Net model consists of five encoder blocks, four decoder
blocks and one output block. The encoder blocks perform 2-
fold down sampling and include a 3D convolutional layer, a
maximum pooling layer, a BatchNorm layer, a rectified
linear unit (ReLU) activation function, and a Dropout3d
layer. The decoder module consists of 3D convolutional
layers, layers that are unsampled via transposed convolution,
BatchNorm and a ReLU activation function. Convolutional
layers of different depths enable the extraction of spatial
features at different resolutions, which is crucial for
precipitation prediction because of the multiscale nature of
weather phenomena [8]. As shown in Fig 2a, EarthFormer is
a hierarchical transformer codec based on cuboid attention.
The cuboid attention layer consists of three steps:
'Decompose’, 'Attend’, and 'Merge', as shown in Fig 2b. The
“Decompose” step decomposes the input spatiotemporal

tensor into cuboid sequences; ‘Attend’ applies self-attention
within each cuboid attention layer parallel to the overlapping
cuboid sequences from the decomposition step; and “Merge”
merges the cuboid sequences obtained after completing the
attention step back into the original input shape to obtain the
final cuboid attention output.
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Fig 1. Illustration of the 3D U-Net model. The 3D U-Net model consists of
five encoder blocks, four decoder blocks, one output block and skip
connections [5].

The results of their study revealed that both 3D U-Net
and EarthFormer exhibited commendable predictive prowess
in scenarios featuring continuous and extensive precipitation.
However, they encountered challenges in accurately
forecasting localized, small-scale precipitation, particularly
when dealing with longer lead times (e.g., 3 hours later). The
study concluded that for shorter lead times (within 2 hours),
an input spatial context that was equal to the target context
(42x42) yielded better performance, whereas for longer lead
times (3-8 hours), an input spatial context that was three
times larger than the target context (126x126) was more
favorable. This finding highlights the importance of
considering different spatial and temporal scales in
precipitation prediction tasks and the need for further
explorations to determine the optimal input contexts for
different lead times. Additionally, the authors put forth the
notion that mesoscale and local-scale information are crucial
for scenarios with brief lead times. In comparison, larger
weather-scale and mesoscale information is necessary for
situations with longer lead times [5]. Upon comparing
rainfall forecasts generated across diverse durations, the
authors noted that none of the models effectively anticipated
localized, small-scale precipitation, especially over extended
forecasting horizons. Upon comparing rainfall forecasts
generated across diverse durations, the authors noted that
none of the models effectively anticipated localized, small-
scale precipitation, especially over extended forecasting
horizons.
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Fig 2. Illustration of (a) the EarthFormer architecture and (b) the cuboid
attention layer with global vectors. The EarthFormer is a hierarchical
transformer encoder-decoder that is based on cuboid attention. The input
sequence has a length if T, and the target sequence has a length of K. ”xD”
denotes  stacking D  cuboid attention blocks with residual
connections. ”xM” represents the case with M layers of hierarchies [5].

Similarly, Moran et al. [6] also participated in this
competition, introducing a physics-aware ConvLSTM
network integrated with a U-Net architecture. They utilized
coarser-resolution meteorological satellite images as inputs
to predict high-resolution rainfall occurrences. As illustrated
in Figure 3, the ConvLSTM network was designed to capture
the temporal dynamics of those satellite images, while the U-
Net architecture facilitated spatial upscaling. The results of
their study demonstrated that SR-PhyDNet outperformed the
baseline 3D U-Net model in rainfall event prediction tasks. It
achieved better scores in terms of recall, precision, the F1
score, and the critical success index and the intersection over
union. Furthermore, the predicted rainfall maps exhibited
significantly reduced visual artefacts, underscoring the
efficacy of the proposed method in generating more accurate
and visually pleasing precipitation forecasts. While satellite
data-driven deep learning models cannot replace weather
radar-derived rainfall measurements, they are well-suited for
precipitation prediction in areas lacking ground-based
instruments [6]. This study emphasized the potential of
CNNs in handling precipitation prediction tasks and
showcased the advantage of incorporating physical
constraints into the model to enhance its performance.

Super Resolution S

Input Sequence Prediction Sequence

Fig 3. Overview of the SR-PhyDNet architecture proposed for satellite
image sequence prediction, superresolution and segmentation tasks. The
input consists of satellite images, and a binary mask (with rain in yellow
and no rain in purple) is the output [6].

2) ESM Data Downscaling Using CNNs

A notable study by Pawar et al. [9], published in the
realm of Energy Exascale Earth Systems Model (E3SM) data
downscaling]. They evaluated five different CNN-based
super resolution models, namely, the super resolution CNN
(SRCNN), the fast super resolution CNN earth system model

(FSRCNN-ESM), the efficient subpixel CNN (ESPCNN),
the enhanced deep residual network (EDRN), and the super
resolution GAN (SRGAN). The SRCNN model uses double
cubic interpolation on its inputs and adopts a shallow
structure [10]. In contrast, both the FSRCNN and ESPCNN
techniques use coarse-resolution images directly as their
inputs [11]. The also employs coarse-resolution images, but
it features a deep architecture with skip connections to retain
important features from earlier layers [10]. Lastly, the
SRGAN architecture consists of a generator and a
discriminator, where the generator uses coarse-resolution
inputs to generate fine-resolution outputs [10]. The E3SM
dataset, utilizing paired monthly data of fine-resolution
(0.25°) and coarse-resolution (1°), served as the foundation
for training and validation. Evaluation was conducted using
various metrics, encompassing Mean Squared Error (MSE),
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), LPIPS, and Absolute Percentage
Error (APE). The results showed that the EDRN exhibited
excellent performance in terms of the PSNR, SSIM, and
MSE, indicating its proficiency in generating high-quality
super-resolved images with minimal errors. However, it
struggled to capture intricate details present in the data.
Conversely, SRGAN, a generative model incorporating a
perceptual loss, demonstrated an exceptional ability to
capture fine details of boundaries and internal structures,
evident from its lower LPIPS value compared to other
methods. This demonstrated SRGAN's capacity to generate
images that are perceptually closer to the ground truth. This
comprehensive comparison provided valuable insights into
the strengths and weaknesses of different CNN-based models
for ESM data downscaling and precipitation forecasting,
guiding future research in selecting the most suitable models
for specific applications.

B. GANs-Based Superresolution Methods for Precipitation
Forecasting

Generative adversarial networks (GANs) have also
shown great potential for use in super resolution applications,
where GAN-based super-resolution models typically excel
over CNN-based models in numerous super-segmentation
tasks, both in terms of performance and downscale range. A
GAN consists of a generator and a discriminator that are
adversarial trained to generate high-quality, high-resolution
images. Below are some precipitation forecasting methods
that leverage GANSs.

1) SRGAN for Precipitation Data Downscaling

Kumar et al. [12] conducted a comparison of the SRGAN
with other deep learning approaches, including the stacked
SRCNN, U-Net, ConvLSTM, and DeepSD, for the purpose
of precipitation data downscaling. The results indicated that
the SRGAN outperformed the other methods, achieving a
correlation coefficient of 0.8806, which was higher than that
of U-Net (0.8399), ConvLSTM (0.8311), and DeepSD
(0.8037). The SRGAN was capable of generating more
precise and intricate precipitation patterns, thereby enhancing
the resolution of the data and potentially refining the output
precipitation forecasts.

2) Physics-Informed SRGAN

Oyama et al. [13] introduced two variants of SRGAN: the
physics-informed SRGAN (nSRGAN) and the ySRGAN.
The nSRGAN incorporates a low-resolution pressure field
and topographic information as auxiliary inputs to achieve
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high-resolution temperature and precipitation downscaling
with a factor of up to 50. As shown in Fig 4, the fSRGAN
demonstrated comparable performance to the traditional
CDFDM method in terms of basic statistical properties, such
as precipitation probability density functions (PDFs).
Furthermore, this method significantly enhanced the
accuracy achieved when reproducing the natural spatial
distribution of the precipitation correlation coefficient, which
was a limitation of the conventional methods. However, the
nSRGAN relies on topographic information that is specific to
the training area, leading to a lack of generalizability, as
evidenced by inferior performance in a generalization test
where the downscaling computation area was shifted.

The wSRGAN, which solely utilizes low-resolution
temperature and pressure data to generate high-resolution
temperature and precipitation fields, surprisingly exhibited
excellent downscaling performance in the precipitation field,
particularly in regions like Shizuoka where pressure plays a
pivotal role in determining precipitation. This indicates the
robust ability of SRGAN-based methods to express natural
results, even in cases with limited input information.

Overall, the GAN-based methods examined in this study
offer the advantage of generating more realistic and intricate
precipitation patterns, as evidenced by their ability to capture
fine structures such as localized heavy rain events. The
integration of physical information into the nSRGAN
enhances the physical consistency of its outputs. However,
the generalization issue needs to be addressed before more
broadly applying these models, and the computational cost
and stability issues faced during training are also potential
challenges that need to be considered in future research.
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Fig 4. Schematic diagram of the tSRGAN and the spatial correlation
coefficient distribution. (A) High-resolution topography and low-resolution
sea-level pressure data, in addition to the low-resolution data corresponding
to the output, are supplied to GANs. (B) The reconstructed distributions of
the spatial correlation coefficients, indicating the correlation strength with
the reference site in Tokyo [35.735°N, 139.6683°E], obtained via the
nSRGAN and a conventional CDFDM are compared with the ground truth
(GT) [13].

C. Diffusion Models for Performing Superresolution in
Precipitation Forecasting Tasks

Diffusion models have recently emerged as powerful
approaches in the field of super resolution, particularly in the
context of weather data analysis. Their capacity to capture
intricate patterns and detailed information has garnered
significant attention.

1) SR3 and ResDiff Models

In a study conducted by Martin® et al. [4], the SR3 and
ResDiff architectures were used for the super resolution of

weather data, with a specific focus on the 2-m humidity
variable. SR3 [14], the pioneering diffusion model for super-
resolution tasks, operates by iteratively refining image details
to yield high-resolution outputs. This study provided a
foundation for exploring the potential of diffusion models to
enhance the resolution of meteorological data.

The ResDiff model [15], which is an enhanced version of
SR3, combines a CNN with an improved diffusion model.
Several innovative techniques have been introduced for this
model. As shown in Fig. 5, for example, the high-frequency
guided diffusion technique was designed to better capture
and reconstruct fine details that are often crucial aspects of
weather data, where small-scale variations can have
significant implications. Additionally, the frequency-domain
information splitting technique, which wuses a two-
dimensional fast Fourier transform (FFT) to process
interpolated and noisy images, enables the model to directly
analyses and handle the frequency components of the input
image data. This approach provides a deeper understanding
and manipulation of the spectral characteristics of the data,
potentially leading to more accurate reconstruction results.

In the implemented experimental setup, the Weather
Bench dataset was used, and the evaluation was carried out
via metrics such as the MSE, SSIM, and PSNR. The study's
results unequivocally demonstrated that SR3 was less
effective than ResDiff. ResDiff was capable of generating
more precise and detailed high-resolution images of the 2-
meter humidity variable, providing a superior representation
of atmospheric conditions. This demonstrated the importance
of the enhancements made in ResDiff, causing it to be
superior to the basic SR3 model.
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Fig 5. Architecture of the ResDiff model used for climate variable
downscaling [4].

2) ResDiff+Physics Model

Another variant of SD3 is ResDiff+Physics [4], which
integrates physically inspired convolutional filters. By doing
so, it is able to focus on features that are related to fluid
motion and atmospheric dynamics, which are essential
components of weather systems. The integration of physical
knowledge into the model marked a significant advancement,
as it improved its capacity to produce results that are more
consonant with the underlying physical processes governing
the atmosphere.

When comparing ResDiff and ResDiff+Physics,
ResDiff+Physics exhibited better performance in terms of
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most evaluation metrics, except for the PSNR. The
incorporation of physical constraints into ResDiff+Physics
enabled it to better capture the intricate relationships and
dynamics within weather data, resulting in more reliable and
physically coherent results.

The primary strength of these diffusion models lies in
their capacity to capture intricate details and complex
patterns in weather data, which is crucial for precise
precipitation forecasting. By leveraging the power of
diffusion processes, they can generate high-resolution
outputs  that potentially provide more accurate
representations of the atmosphere. However, a potential
drawback is the relatively high computational cost associated
with training and implementing these models. The iterative
nature of diffusion models, combined with the complexity of
techniques such as the frequency-domain processing scheme
in ResDiff, can necessitate substantial computational
resources. This may limit their practical application in
scenarios where computational power is limited or real-time
processing is required.

In conclusion, diffusion models, especially when
enhanced with physical knowledge such as in ResDiff +
Physics, offer great potential for enhancing the resolution
and quality of meteorological data. Future research could
focus on further optimizing these models to reduce their
computational costs and improve their performance under
different weather conditions and in different regions.

D. Other Related Studies

Apart from the aforementioned mainstream super-
resolution techniques rooted in CNNs, GANSs, and diffusion
models, several studies have delved into alternative or
complementary ~ methodologies  for  extended-range
precipitation forecasting, each presenting its own distinct
advantages and constraints.

1) Pattern-Based Forecasting Methods

Mastrantonas et al. [1] adopted a pattern-based approach,
focusing on the Mediterranean region. They conducted an in-
depth analysis of the relationship between large-scale
atmospheric flow patterns and extreme precipitation events
(EPEs). ERAS [16], the latest ECMWF reanalysis dataset for
1979-2020, was used here as a reference dataset. ERAS
provides approximately 137 30 km x 30 km vertical
horizontals in a horizontal grid at an hourly resolution from
the surface up to an altitude of 80 km. In addition, the
rainfall resolution of this dataset is 0.25° x 0.25°, and the
rainfall data were generated from the ECMWF extension
period model. The authors identified nine distinct
atmospheric flow patterns by performing an empirical
orthogonal function (EOF) analysis and K-means clustering
on historical meteorological data. By leveraging the
ECMWF model to predict these patterns and meticulously
analyzing their associations with historical EPEs, they
indirectly predicted the likelihood of future EPEs. The results
showed that the ECMWF model effectively represented the
Mediterranean region, with no significant deviation exhibited

by its climatic frequency, even when advancing it by 44 days.

In addition, a comparison with the available accuracy data
showed that indirectly forecasting EPEs via predictive
models can provide skillful forecasts up to 10 days in
advance for many areas of the Mediterranean Sea [1]. This
approach offers a novel perspective by emphasizing the

significance of large-scale patterns in medium- and
extended-range precipitation forecasting scenarios. The study
provided profound insights into the potential precursors of
extreme precipitation, which could be invaluable for early
warning systems. However, it did not directly predict
precipitation amounts, and the accuracy of the forecasts may
have been contingent upon the reliability and temporal
stability of the identified patterns.

2) Data-Driven Models

Aragjo et al. [3] proposed a data-driven model (DDM)
[17] leveraging long-term memory networks (LSTMs) for
extreme precipitation prediction in southeastern Brazil, along
with a method based on data mining (DM) techniques to
forecast extreme rainfall events. They integrated a
comprehensive set of reanalysis data, including isobaric-level,
ground, and meteorological station data. The model aimed to
identify and capture the atmospheric patterns associated with
extreme rainfall events and subsequently predict future
rainfall events on the basis of the historical patterns. The
developed methodology demonstrated the possibility of
using reanalysis data derived from global mathematical
models to obtain regional models with lower computational
costs [2]. One of the notable advantages of this DDM is its
ability to handle entire time series without the need for
elaborate preprocessing steps, thereby streamlining the
prediction process. Additionally, it holds the potential to
serve as a valuable decision support tool. Nevertheless, the
model is not without its limitations. It lacks spatial
abstraction capabilities, which means that it may not be
directly applicable to different regions without significant
modifications. Moreover, its performance is highly
dependent on the historical data used for training, and the
lack of a large amount of diverse data may limit its
generalizability.

III. FUTURE WORKS

The applications of super resolution technology in
extended-range precipitation forecasting scenarios have
shown great promise, but several areas still require further
exploration and enhancement.

A. Model Improvements

Enhanced Network Architectures: More advanced
CNNs, GANs, and diffusion models should be developed to
more accurately capture the intricate spatial and temporal
patterns of precipitation. This could involve deeper networks,
novel layer designs, or improved connections between
different components.

Incorporation of Physical Constraints: Physical
knowledge should be more comprehensively integrated into
super-resolution models to guarantee the physical
consistency of the generated high-resolution precipitation
data. This could involve the use of better representations of
atmospheric processes, such as convection, advection, and
evaporation in the developed models.

Multimodal and Multiscale Fusion: Different data
sources and models should be combined to leverage the
strengths of component. For example, satellite data can be
fused with ground-based observations, or multiple super
resolution models with different resolutions and
characteristics can be integrated to improve the accuracy and
reliability of precipitation forecasts.
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B. Data Utilization

Big Data and High-Resolution Data: As high-
resolution satellite and ground-based observational data
become increasingly available, methods should be developed
to effectively handle and use these extensive datasets. This
may necessitate the development of advanced data
preprocessing techniques, effective data compression
methods, and distributed computing strategies to manage the
associated computational demands.

Data Augmentation: More advanced data augmentation
techniques should be explored to increase the diversity and
quantity of training data. This could improve the
generalizability of models and reduce overfitting, especially
in regions with limited data availability.

Real-Time Data Integration: Systems that can integrate
real-time observational data into super resolution models
should be developed to enable more timely and accurate
precipitation forecasts. This requires efficient data
transmission, processing, and assimilation techniques.

C. Evaluation and Validation

Comprehensive Evaluation Metrics: A more extensive
suite of evaluation metrics should be developed that
encompasses not only traditional measures like accuracy and
correlation but also the physical characteristics and practical
applications of precipitation forecasts. For example, the
ability of models to predict extreme precipitation events,
spatial patterns, and temporal variability can be evaluated.

Long-Term and Regional Validations: More extensive
long-term and regional validation studies should be
conducted to assess the performance and stability of super

resolution models across various climate regions and seasons.

This will aid in identifying the limitations and applicability
of different models and improving their robustness.

Uncertainty Quantification: Methods should be
developed to quantify the uncertainty associated with super
resolution precipitation forecasts. This will provide users
with more information about the reliability of forecasts and
help decision-makers make more informed decisions.

D. Applications and Impacts

Decision  Support Systems: Super resolution
precipitation forecasts should be integrated into decision
support systems for various applications, such as flood
prevention, water resource management, and agriculture.
User-friendly interfaces and tools that can help stakeholders
easily access and utilize forecast information should be
developed.

Climate Change Studies: Super resolution technology
should be applied to study the impact of climate change on
precipitation patterns at finer spatial and temporal scales.
This could improve our understanding of climate change
mechanisms and lead to the development of more effective
adaptation and mitigation strategies.

Cross-Disciplinary Research: Encouraging cross-
disciplinary research among meteorology, computer science,
mathematics, and other relevant fields can foster the
advancement and implementation of super resolution
technology in precipitation forecasting scenarios, potentially
yielding novel insights and solutions to address the
challenges in this domain.

IV. CONCLUSTION

This review comprehensively analyzed the applications
of super resolution technology in extended-range
precipitation forecasting scenarios. We categorized the
existing research based on various techniques, including
CNNs, GANs, and diffusion models, and discussed their
performance, strengths, and limitations. CNN-based methods,
exemplified by SR-PhyDNet and the EDRN, have exhibited
impressive capabilities in processing precipitation data,
achieving promising outcomes across diverse applications.
GANS, particularly the SRGAN and its variants, have
demonstrated the ability to generate high-quality, detailed
precipitation patterns. Diffusion models, such as SR3 and
ResDiff, have the potential to capture complex atmospheric
details. However, each method also encounters challenges.
CNNs may struggle to capture extremely fine features,
GANs may exhibit instability during training, and diffusion
models require additional optimization to improve their
computational efficiency and reduce time costs. Future work
should prioritize enhancing model architectures,
integrating more physical constraints, and making more
effective use of data. Moreover, comprehensive evaluations
and validations, as well as the integration of super resolution
forecasts into practical applications, are crucial for the
development and application of this technology. In summary,
super resolution technology holds great promise for
improving the accuracy and resolution of extended-range
precipitation forecasts, which has significant implications for
various fields related to weather and climate.
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