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ABSTRACT

Many real-world datasets include multiple distinct types of entities and relations,
and so they are naturally best represented by heterogeneous graphs. However, the
most common forms of neural networks operating on graphs either assume that
their input graphs are homogeneous, or they convert heterogeneous graphs into
homogeneous ones, losing valuable information in the process. Any neural net-
work that acts on graph data should be equivariant or invariant to permutations
of nodes, but this is complicated when there are multiple distinct node and edge
types. With this as motivation, we design graph neural networks that are com-
posed of linear layers that are maximally expressive while being equivariant only
to permutations of nodes within each type. We demonstrate their effectiveness on
heterogeneous graph node classification and link prediction benchmarks.

1 INTRODUCTION

Many real-world datasets and problems can be modelled as sets of objects with different relation-
ships between them, and so graphs are a natural choice for representing these problems. Common
examples include modelling interactions between users in a social network, properties of molecules,
or modelling connections between entities in a knowledge base.

Figure 1: Left: An example heterogeneous graph, with 3 node types and 4 edge types. repre-
sents AUTHORS, represents PUBLICATIONS, and represents VENUES. This heterogeneous graph
can be represented as a set of adjacency matrices, one for each edge type. In this paper, we design
linear mappings between each adjacency matrix, allowing us to learn, for example, how AUTHOR-
colleagues-with-AUTHOR relationships and PUBLICATION-published-at-VENUE relationships can in-
fluence AUTHOR-associated-with-VENUE relationships.
Right: The effect of applying separate permutations π1 and π2 to the AUTHOR and VENUE nodes.
While the graph itself is unaffected, with nodes simply relabelled, the adjacency matrices are mod-
ified. We characterize linear maps that are equivariant to such permutations as pooling and broad-
casting operations.

Graph neural networks (GNNs) have become a popular technique for node and graph-level prop-
erty predictions. These models have mostly focused on standard homogeneous graphs, wherein all
nodes and edges are treated the same, with any differences encoded as feature vectors. However,
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in practical application settings, data is often complex and multi-typed, necessitating the use of het-
erogeneous graphs, where nodes and edges can be of different types, with potentially completely
different semantics. Typical ways to apply GNNs to heterogeneous networks involve preprocessing
techniques such as encoding node and edge types into feature vectors or collapsing heterogeneous
networks into homogeneous ones by replacing paths along multiple different edge types with single
edges. These techniques reduce the structural information available for any network to learn from
and often require domain knowledge and hand-engineered features.

In this paper, we design a neural network that can operate directly on entire heterogeneous graphs
while fully respecting the independence and relationships between different node and edge types.
We model a heterogeneous graph as a collection of node-node adjacency matrices, one for each
edge type, and create mappings from each edge type to every other edge type. For example, in
a heterogeneous network that includes PUBLICATIONS, AUTHORS, and VENUES, and the relationships
between these entities, our model can learn how PUBLICATION-published-at-VENUE relationships may
influence AUTHOR-associated-with-VENUE relationships by constructing a linear mapping between
their adjacency matrices; see Fig. 1.

A key property of any neural network that operates on graphs is that they must be invariant or
equivariant to permutations of nodes. That is to say, if a graph is represented by an adjacency
matrix A ∈ Rn×n, for any permutation matrix π ∈ {0,1}n×n, a neural network f ∶ Rn×n → Rn×n
must have the property that f(πAπ⊺) = πf(A)π⊺) (equivariance), or when making graph-level
predictions with f ∶ Rn×n → R, we require invariance f(πAπ⊺) = f(A).
For heterogeneous graphs, this invariance or equivariance constraint is to permutations within each
node type. We identify all linear operations that map one adjacency matrix to another while main-
taining permutation equivariance within each separate node type. By combining these operations,
we are able to construct maximally expressive linear equivariant layers that can then be stacked
together to produce a heterogeneous graph neural network. We create two different architectures,
and apply them to two common heterogeneous graph tasks: node classification, and link prediction.
Finally, we extend our treatment to the general case of relationships involving hyperedges between
more than two node types, providing a general prescription of how to efficiently implement linear
layers that act on heterogeneous hypergraphs.

2 RELATED WORK

2.1 HETEROGENEOUS GRAPH NETWORKS

The ubiquity of complex multi-typed data in real-world problems has caused heterogeneous graph
learning to attract a lot of attention in applied settings. Heterogeneous graph networks have been
applied to such diverse tasks as text classification (Linmei et al., 2019), disease diagnosis (Wang
et al., 2021), and malicious account detection (Liu et al., 2018).

The majority of heterogeneous graph learning techniques rely on meta-paths: sequences of different
node and edge types (Sun & Han, 2012; Shi et al., 2017). For example, in a citation network
with AUTHORS, PAPERS, AND VENUES, the “path” AUTHOR – PUBLICATION – VENUE – PUBLICATION

– AUTHOR represents one meta-path between two AUTHORS that have published at the same venue.
These meta-paths are usually hand-designed, requiring domain knowledge.

Heterogeneous graph learning techniques can be broadly classified into either “shallow” embedding
models, or “deep” neural models (Dong et al., 2020; Yang et al., 2020). Shallow methods (such as
Dong et al. (2017); Tang et al. (2015); Fu et al. (2017)) aggregate node attributes using techniques
such as random walks over different edge types, in order to obtain structure-preserving embeddings
for each node, which are then passed on to other machine learning models for downstream tasks.
These are limited to transductive settings.

Deep methods extend conventional GNNs, but learn parameters or embeddings specific to each
node or edge type; see Wu et al. (2020) for a survey of homogeneous GNNs. Examples include
R-GCN (Schlichtkrull et al., 2018) which extends GCN by learning edge-specific weight matrices,
Heterogeneous Graph Attention Network (HAN, Wang et al., 2019) and Metapath Aggregated Graph
Neural Network (MAGNN; Fu et al., 2020), which extend graph attention to attend over different
meta-paths. Some methods, such as Heterogeneous Graph Transformer (HGT, Hu et al., 2020)
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and Graph Transformer Network (GTN, Yun et al., 2019) can automatically discover what meta-
paths are worth using, but even then they are not able to capture as much information as if they
were to directly use the full heterogeneous graph. For two recent surveys of heterogeneous graph
representation learning techniques, see Yang et al. (2020) and Dong et al. (2020).

Lv et al. (2021) recently called into question whether most heterogeneous graphs neural networks
are able to properly exploit the information provided by node and edge types. They show that under
fair comparisons, they are often outperformed by conventional graph neural networks that simply
ignore node and edge type information, such as GCN (Kipf & Welling, 2016) and GAT (Veličković
et al., 2017).

2.2 EQUIVARIANT AND INVARIANT LEARNING

A fundamental property that all graph neural networks share is an equivariance or invariance to
node permutations. The general requirement that neural networks must be equivariant and invariant
to certain symmetries of their input data has been a very active area of research and has motivated
models for a diverse set of data types. Examples include models equivariant to the translational sym-
metries of images (LeCun et al., 1989), the permutation symmetry of sets (Zaheer et al., 2017), and
symmetry to 3D rotations on a sphere (Cohen et al., 2018). As an inductive bias, equivariance of the
network to a set of transformations is intuitively equivalent to having seen all such transformations
of each training data-point. Since the set of such permutation is exponentially large for graph data,
equivariance is essential for any graph neural network.

Several works directly seek the set of operations with this property to use them as building blocks
in graph neural networks. Of particular relevance is the work of Kondor et al. (2018), which in-
troduces permutation equivariant operations that can be applied to tensor representations of graphs,
and Maron et al. (2018), which characterizes a basis for equivariant linear operations on tensor
representations of graphs and hypergraphs. Our work extends this work to the more general case
of heterogeneous graphs, where we are presented with a set of different edge types. Furthermore,
while they characterise the set of equivariant linear bases, their analysis does not give a practical
algorithm since such large matrices that form the linear bases are too large to store in memory for
any large graph. While Maron et al. (2018) give an efficient implementation based on pooling and
broadcasting for standard homogeneous graphs, they do not provide a general implementation for
arbitrary node and edge types. Albooyeh et al. (2019) give a pooling and broadcasting view of op-
erations for hyper-graphs and incidence structures of other geometric entities. However, all such
structures have a single node type that is assumed exchangeable. Some other related works that have
a symmetry-based approach to GNNs include Maron et al. (2019); de Haan et al. (2020); Azizian &
Lelarge (2020).

3 OUR MODEL

3.1 NOTATION

A heterogeneous graph G = ⟨D,R,V,X⟩ is a four tuple, where D = {1, . . . , d} is the set of node
types. For each node type i ∈ D we have a set of ni nodes Vi = {v1, . . . , vni}. We use V = ⋃iVi
for the set of all n = ∑i∈D ni nodes. R = {r1, . . . , r`} is the set of edge types, where r = ⟨r, r⟩ for
r, r ∈ D is a pair of node types that appear in the edge type r. X is a set of node adjacency matrices
X = {X r ∈ Rnr×nr ∣ r ∈ R}, one for each edge type r ∈ R. Such matrices can represent both
node and edge attributes using diagonal and off-diagonal elements respectively. For simplicity, we
initially assume scalar node and edge attributes, later we show generalization of this to vectors using
multiple channels. In the definition above, D,R, and V contain the blueprint of the heterogeneous
graph, while X contains the actual data.

3.2 EQUIVARIANCE FOR HETEROGENEOUS GRAPHS

Given the heterogeneous graph G our goal is to identify all equivariant linear operators that
map the set of matrices X = {X1, . . . ,X`} to another set of matrices Y = {Y1, . . . ,Y`} of the
same form. For this, it is sufficient to identify all such maps from one edge type to another
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Lr→r′ ∶ Rnr×nr → Rnr′×nr′ . The overall equivariant map LR→R can be built from the collection
Lr1→r1 ,Lr1→r2 , . . . ,Lr1→r` , . . . ,Lr`→r` .

The equivariance condition on the linear operator Lr→r′ ensures that any permutation of the input
nodes of the same type leads to the same permutation of the nodes in the output for that node type.
Let πi ∈ S(ni) be a permutation matrix acting on ni nodes of type i. Equivariance constraint
requires

Lr→r′(πrX rπ⊺r ) = πr′ Lr→r′(X r)π⊺r′ ∀πr, πr, πr′ , πr ∈ S(nr) × S(nr) × S(n′r) × S(n′r) (1)

where the permutation matrices correspond to two pairs of node types that appear in the input (r)
and output edge types (r′).

As also observed in related contexts (Kondor et al., 2018; Albooyeh et al., 2019) such linear opera-
tors often involve pooling and broadcasting over input and output matrices. Our plan is to enumerate
all such operations and prove that these are indeed the only linear operations with the desired equiv-
ariance property Eq. (1).

Example 1. To build an intuition for these operations, consider two relations between
⟨AUTHOR, VENUE⟩ and ⟨PUBLICATION, AUTHOR⟩. Let r = ⟨1,2⟩ denote the former and r′ = ⟨3,1⟩
be the latter, noting that these two edge types have a node type in common. The desired linear map
Lr→r′ should be equivariant to independent permutation of AUTHOR nodes, PUBLICATION nodes and
VENUE nodes in our graph. The results that follow this example show that any equivariant Lr→r′ has
the following form:

Lr→r′(X) = w1(X1nr1n′r)
⊺ +w21n′

r
(1⊺nr

X1nr)1⊺n′r (2)

where w1,w2 ∈ R are arbitrary weights and 1n is the identity vector of length n. Here, following
Zaheer et al. (2017) we are performing pooling and broadcasting operations using multiplication
by identity vectors. The first operation (X1nr1n′r)

⊺ pools over the columns of X (i.e., VENUES),
and broadcasts the resulting column vector to create a nr′ × nr′ matrix which is then transposed
to match the dimensions of the target edge type. We can think of the pooling operation above as
collecting edge attributes from all the VENUES that are adjacent to each AUTHOR. Similarly, the
broadcasting operation disperses this pooled information over all the PUBLICATION nodes adjacent
to each AUTHOR. This example shows that an equivariant linear map is able to propagate relevant
information across different edge types (within a single layer of a deep network).

3.3 CHARACTERIZING EQUIVARIANT LINEAR MAPS

The question is how to identify all equivariant linear operations for a given pair of edge types r, r′? In
addition to the pooling, broadcasting, and transpose operation used in the example above, we need
one additional operation, namely diag. We overload this operation so that for a square matrix diag ∶
Rn×n → Rn extracts the diagonal, and for a vector input diag ∶ Rn → Rn×n the output is a square
matrix with that vector on its diagonal – this means diag(diag(x)) = x and diag(diag(X)) =X⊙I
(where ⊙ is the Hadamard product and I is an identity matrix).

The idea is to create all possible combinations of the linear operations above that take us from a
nr × nr matrix to a nr′ × nr′ matrix. These operations vary based on the equality of some of these
dimension – for example if r = r then the operation diag(X) is well-defined, and otherwise it is not
feasible. To help with this enumeration, we break any such linear operation into parts:

Contraction operations These include pooling over the rows, columns, both rows and columns,
extraction of diagonal and pooling over the diagonal, as well as the identity operation. The
result could be a scalar, a vector, or a matrix. Below, we use z,z, and Z to denote these
intermediate products, and identify the condition under which we can perform each of these
contraction operations:
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Operation Condition
1. Identity operation Z⟨r,r⟩ = X⟨r,r⟩ -
2. Pooling over columns zr =X⟨r,r⟩1nr -
3. Pooling over rows zr =X⟨r,r⟩⊺1nr

-
4. Pooling over rows and columns z = 1⊺nr

X⟨r,r⟩1nr -
5. Extracting the diagonal zr = diag(X⟨r,r⟩) r = r
6. Pooling the diagonal z = diag(X⟨r,r⟩)⊺1nr

r = r
Expansion operations These operations expand the intermediate value to produce the target ma-

trix. The operations include broadcasting over rows, columns, both rows and columns,
diagonal placement, diagonal broadcasting, as well as the identity operation and matrix
transpose.

1. Identity operation Y ⟨r
′,r′⟩ = Z⟨r,r⟩ r′ = r, r′ = r

2. Transpose Y ⟨r
′,r′⟩ = Z⟨r,r⟩

⊺
r′ = r, r′ = r

3,4. Broadcasting over columns Y ⟨r
′,r′⟩ = zr1⊺nr′ r = r′

Y ⟨r
′,r′⟩ = zr1⊺nr′ r = r′

5,6. Broadcasting over rows Y ⟨r
′,r′⟩ = 1nr′z

r⊺ r = r′
Y ⟨r

′,r′⟩ = 1nr′z
r⊺ r = r′

7. Broadcast over rows and cols Y ⟨r
′,r′⟩ = 1nr′ z1

⊺
nr′ -

8,9. Placing the diagonal Y ⟨r
′,r′⟩ = diag(zr) r′ = r′ = r

Y ⟨r
′,r′⟩ = diag(zr) r′ = r′ = r

10. Broadcasting over the diagonal Y ⟨r
′,r′⟩ = diag(z1nr′ ) r′ = r′

Theorem 3.1. Given two edge types r, r′, all the linear maps Lr→r′ ∶ Rnr×nr → Rnr′×nr′ that satisfy
the equivariance condition of Eq. (1) are produced using the contraction and expansion operations
above.

Proof. This is a special case of Theorem 6.1.

3.4 THE FEEDFORWARD LAYER

Now that we have enumerated all possibilities for permutation equivariant linear mappings Lr→r′ ,
we can combine them to form a linear layer that acts on a set of adjacency matrices:

LR→R(X) =
⎧⎪⎪⎨⎪⎪⎩
∑

X r∈X
∑
j

wj L
r→r′
j (X r) ∣ r′ ∈ R

⎫⎪⎪⎬⎪⎪⎭
(3)

Here, j indexes all valid combinations of contraction and expansion operations, and wj ∈ R is a
weight for that combination that may be learned. In practice, both the inner and outer sum can be
replaced by any permutation invariant aggregation function, such as taking the maximum or taking
the mean.

3.4.1 MULTIPLE CHANNELS

We can extend the above definitions to include edge feature vectors in a straightforward way, if we
instead replace the matrix X r with the tensor Xr ∈ Rnr×nr×f where f is some feature dimension.
Now, instead of having scalar weights wj in Eq. (3), we have a collection of weight matrices Wj ∈
Rf

′×f . Each equivariant layer can then specify the number of feature dimensions in their input and
output.

3.4.2 SPARSE IMPLEMENTATION

In practice, graphs tend to be very sparse, making it impractical to deal with full adjacency matrices.
We instead represent an adjacency matrix with m nonzero entries as a tuple X = ⟨I,V ⟩, where
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I ∈ Z2×m are the indices of nonzero values, and V ∈ Rm×f are the nonzero values. Each of the
contraction and expansion operations of Section 3.3 for a mapping Lr→r′ can be implemented using
sparse operations with a space complexity ofO(m+m′ +nr +nr +n′r +n′r) and a time complexity
of O ((m +m′) log(m +m′) + nr + nr + n′r + n′r).

The log-factor is because the Identity and Transpose expansion operations require that we match
the nonzero indices of the input and output adjacency matrices, an operation that involves sorting,
giving it a time complexity ofO((m+m′) log(m+m′)). However, this only needs to be computed
once for a given input and output sparsity mask, rather than for every pass through a layer.

This means that the feedforward layer effectively has a linear complexity in the number of nodes
and edges of the graph, making it efficient for large datasets. However, inducing the sparsity on
the output of the feedforward layer should be seen as an non-linear operation. Since permutation of
node types also permutes the sparsity patterns, this non-linear operation is equivariant.

3.4.3 ENCODING AND DECODING LAYERS

It is also useful to have matrix-to-vector encoding and vector-to-matrix decoding layers. For exam-
ple, an encoding layer can take in a set of adjacency matrices and output embeddings for each node
of each type, while a decoding layer can take in node embeddings and output values for each possi-
ble edge, which may be used for link prediction. Maximally expressive linear encoding (decoding)
layers can be constructed by combining all valid contraction (expansion) operations that are of the
form Rnr×nr → Rnr′ (Rnr → Rnr′×nr′ ). Their explicit form is left to Appendix C.

4 TASKS AND ARCHITECTURES

Our heterogeneous graph layers, just like regular linear layers in a multilayer perceptron, can be
stacked together and alternated with nonlinear activations to form a variety of neural network ar-
chitectures. We describe here two conventional graph learning tasks, and what architectures we
designed for them.

4.1 NODE CLASSIFICATION

For the task of node classification, we are provided with a heterogeneous graph, where a subset of
nodes of one target type are labelled. We are tasked with predicting the labels of the other nodes of
the target type.

We use an architecture consisting of a stack of equivariant heterogeneous graph layers separated
by nonlinear activation functions. We apply batch normalization over the nonzero entries for each
of the matrices at each layer, and we use channel-wise dropout at each layer to prevent overfitting.
Following our stack of equivariant heterogeneous graph layers, we add an encoding layer. This
encoding layer can either be used to directly predict classes for each node, or they can be used to
get an embedding vector for each node which is then fed into a conventional linear classifier to get
predictions. The network is trained using a negative log loss over labels.

4.2 LINK PREDICTION

For the task of node classification, we are provided with a heterogeneous graph where a subset of
edges of one target type have been removed. Given a set of candidate edges, half of which are real
and half of which have one node with the tail node randomly replaced with another 2-hop neighbour,
we are tasked with assigning a confidence score to each potential edge.

To accomplish this task, we use an autoencoder architecture. We create a stack of equivariant het-
erogeneous graph layers separated by nonlinearities, followed by an encoding layer that produces
node embeddings for each node of each node type. This makes up the encoding module of our
autoencoder. These node embeddings are then passed into a decoding layer, producing matrices
for each edge type. These matrices are passed through another stack of equivariant heterogeneous
graph layers, outputting a confidence score for each potential edge for the target edge type. The
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neural network is trained using binary cross-entropy loss over a 1:1 mix of positive samples of real
edges of the target edge type, and randomly sampled negative edges.

5 EVALUATION

We evaluate our architectures using the recently created Heterogeneous Graph Benchmark (HGB)
(Lv et al., 2021), which gives a set of standardized datasets and training/test splits in node classi-
fication and link prediction. To prevent any possible test set leakage, test set labels are withheld,
and evaluation metrics are obtained by submitting predictions to the HGB website1. We make com-
parisons against the heterogeneous graph neural networks Simple-HGN (Lv et al., 2021), RGCN
(Schlichtkrull et al., 2018), HAN (Wang et al., 2019), GTN (Yun et al., 2019), RSHN (Zhu et al.,
2019), HetGNN (Zhang et al., 2019), MAGNN (Fu et al., 2020), HetSANN (Hong et al., 2020),
HGT (Hu et al., 2020), GCN (Kipf & Welling, 2016), and GAT (Veličković et al., 2017). All eval-
uation scores listed here are taken from Lv et al. (2021). Details on the specific hyperparameters
searched over and used for each dataset, are included in Appendix B. A link to our anonymized code
is included here: https://github.com/equivariant-hgn/equivariant_hgn.

Table 1: Characteristics of each of the datasets tested (Lv et al., 2021).
Node
Classification

Nodes Node
Types

Edges Edge
Types

Node
Attributes

Target Classes

DBLP 26,128 4 239,566 6 Yes Author 4
IMDB 21,420 4 86,642 6 Yes Movie 5
ACM 10,942 4 547,872 8 Yes Paper 3
FREEBASE 180,098 8 1,057,688 36 No Book 7

Link Prediction Target

AMAZON 10,099 1 148,659 2 Yes Product-product
LASTFM 20,612 3 141,521 3 No user-artist
PUBMED 63,109 4 244,986 10 Yes disease-disease

5.1 NODE CLASSIFICATION

We look at four datasets: DBLP, IMDB, ACM, and Freebase. DBLP, ACM, and Freebase are
multi-class classification tasks, and IMDB is a multi-label task. All datasets except for Freebase
additionally include node attributes, and 24% of target nodes labels are used for training, 6% for
validation, and 70% for testing. Further information is included in Table 1, which is adapted directly
from Lv et al. (2021). The task is evaluated using the metrics of Micro-F1 and Macro-F1 scores (F1
scores that have been averaged over all nodes and all labels respectively).

A comparison between our results and competing methods is shown in Table 2. It can be seen that
our method generally performs comparably with other top methods, and yields higher performance
than the state of the art for two particular metrics.

5.2 LINK PREDICTION

We look at three datasets: Amazon, LastFM, and PubMed. Amazon and PubMed additionally
include node attributes, and PubMed also includes edge attributes. While our method is easily
able to incorporate edge attributes, we ignored them in the case of PubMed in order to make a fair
comparison with other methods that do not use them. For each dataset, 81% of edges of the target
edge type are used for training, 9% are used for validation, and 10% are withheld for the test set.
Further information on these datasets is included in Table 1.

Edge predictions are evaluated using two metrics: The area under the Receiver Operating Charac-
teristic curve (ROC-AUC), and the Mean Reciprocal Rank (MRR). The ROC-AUC score evaluates

1https://www.biendata.xyz/hgb/
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Table 2: Comparison of our method on the node classification task.
DBLP IMDB

Method Macro-F1 Micro-F1 Macro-F1 Micro-F1
Simple-HGN 94.01±0.24 94.46±0.22 62.05±1.36 67.36±1.36
RGCN 91.52±0.50 92.07±0.50 58.85 ± 0.26 62.05±0.15
HAN 91.67±0.49 92.05±0.62 57.74±0.96 64.63±0.58
GTN 93.52±0.55 93.97±0.54 60.47±0.98 65.14±0.45
RSHN 93.34±0.58 93.81±0.55 59.85±3.21 64.22±1.03
HetGNN 91.76±0.43 92.33±0.41 48.25±0.67 51.16±0.65
MAGNN 93.28±0.51 93.76±0.45 56.49±3.20 64.67±1.67
HetSANN 78.55±2.42 80.56±1.50 49.47±1.21 57.68±0.44
HGT 93.01±0.23 93.49±0.25 63.00±1.19 67.20±0.57
GCN 90.84±0.32 91.47±0.34 57.88±1.18 64.82±0.64
GAT 93.83±0.27 93.39±0.30 58.94±1.35 64.86±0.43
Equivariant HGN (ours) 92.79±0.33 93.29±0.3 63.15±1.06 66.67 ±0.92

ACM FREEBASE
Method Macro-F1 Micro-F1 Macro-F1 Micro-F1
Simple-HGN 93.42±0.44 93.35±0.45 47.72±1.48 66.29±0.45
RGCN 91.55±0.74 91.41±0.75 46.78±0.77 58.33±1.57
HAN 90.89±0.43 90.79±0.43 21.31±1.68 54.77±1.40
GTN 91.31±0.70 91.20±0.71 - -
RSHN 90.50±1.51 90.32±1.54 - -
HetGNN 85.91±0.25 86.05±0.25 - -
MAGNN 90.88±0.64 90.77±0.65 - -
HetSANN 90.02±0.35 89.91±0.37 - -
HGT 91.12±0.76 91.00±0.76 29.28±2.52 60.51±1.16
GCN 92.17±0.24 92.12±0.23 27.84±3.13 60.23±0.92
GAT 92.26±0.94 92.19±0.93 40.74±2.58 65.26±0.80
Equivariant HGN (ours) 92.26±0.44 92.17 ±0.45 48.35±1.57 63.42±0.29

the model’s ability to discriminate between real and fake edges over different sensitivity thresholds.
The MRR score evaluates the ability’s model to rank real candidate edges higher than false edges.

A comparison between our results and competing methods is shown in Table 3. Our method per-
forms comparably to other leading methods on the LastFM benchmark, outcompetes all other meth-
ods on the Amazon benchmark, and for the PubMed benchmark it outcompetes all other methods
by a very large margin. The PubMed dataset contains many node and edge types, and we believe
that our model is able to perform so well by learning the interactions between each of these relation-
ships.2

Table 3: Comparison of our method on the link prediction task.
AMAZON LASTFM PUBMED

Method ROC AUC MRR ROC AUC MRR ROC AUC MRR

Simple-HGN 93.40±0.62 96.94±0.29 67.59±0.23 90.81±0.32 83.39±0.39 92.07±0.26
RGCN 86.34±0.28 93.92±0.16 57.21±0.09 77.68±0.17 78.29±0.18 90.26±0.24
GATNE 77.39±0.50 92.04±0.36 66.87±0.16 85.93±0.63 63.39±0.65 80.05±0.22
HetGNN 77.74±0.24 91.79±0.03 62.09±0.01 83.56±0.14 73.63±0.01 84.00±0.04
MAGNN - - 56.81±0.05 72.93±0.59 - -
HGT 88.26±2.06 93.87±0.65 54.99±0.28 74.96±1.46 80.12±0.93 90.85±0.33
GCN 92.84±0.34 97.05±0.12 59.17±0.31 79.38±0.65 80.48±0.81 90.99±0.56
GAT 91.65±0.80 96.58±0.26 58.56±0.66 77.04±2.11 78.05±1.77 90.02±0.53
Equivariant HGN (ours) 96.75±0.16 97.78±0.15 60.94±0.36 82.36±0.71 99.89±0.01 99.86±0.03

2While our results for the PubMed dataset are suspiciously strong, because the test-set is withheld by the
curators of the dataset and also used by other methods in this table, we see no obvious reason to doubt the
performance of our model. However, we have communicated this to the curators in case there is any issue with
data processing and split.
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6 HETEROGENEOUS HYPERGRAPHS

In this section, we extend the theory of Section 3 to hypergraphs, where a hyperedge type r =
⟨r(1), . . . , r(m)⟩ relates m node types. What was previously a set of matrices is now a set of
tensors X = {Xr ∈ Rnr(1)×...×nr(m) ∣ r ∈ R}.
Similar to Eq. (3) in heterogeneous graphs, the linear map for this setup also decomposes into blocks,
and it is sufficient to identify the form of equivariant linear maps Lr→r′ ∶ Xr ↦ Yr′ . To characterize
all such equivariant linear maps, we consider all combinations of pool and broadcast operations with
extraction and placement of hyper-diagonals. To facilitate this, we introduce the following notation
for these four operations:

Pooling poolP(X) pools over all the node indices P of its input – e.g., pool{1}X
⟨2,1⟩ = 1⊺n2

X⟨2,1⟩

and pool{1,2}X
⟨2,1⟩ = 1⊺n2

X⟨2,1⟩1n1 .

Broadcasting broadcastr′(Zr) broadcasts the input tensor Zr into a tensor corresponding to hyper-
edge type r′. For example broadcast⟨2,1⟩x⟨2⟩ = x1⊺n1

. This requires the elements of r to
appear in r′ – more accurately multi-set(r) ⊆ multi-set(r′), where multi-set returns its
input tuple as a multi-set.

Extracting a hyper-diagonal A hyper-diagonal generalizes the notion of diagonal of a matrix.
Given a tensor X⟨r(1),...,r(m)⟩, a hyper-diagonal is identified by a partitioning H of the
set {1, . . . ,m} where r(i) = r(j) whenever i, j are in the same partition. With this defi-
nition of hyperdiagonal, the extraction operation extract-diagH(Xr) reproduces the effect
of diag operation for a matrix by simply using H = {{1,2}}. In the extreme case where
H = {{1}, . . . ,{m}} identifies the entire input tensor as the hyper-diagonal, this operation
becomes the identity operation.

Placing a hyper-diagonal place-diagr′,K(Z
r) places the tensor Zr over the hyper-diagonal of a ten-

sor Yr′ identified by the partition K.

We can write any equivariant linear operation: Lr→r′ ∶ Rnr(1)×...×nr(m) → Rnr′(1)×...×nr′(m′) as a linear
combination of different “compatible” choices for these four operations:

Yr′ = Lr→r′(Xr) =∑wH,P,r′′,K place-diagr,K (broadcastr′′ (poolP (extract-diagH (X
r)))) (4)

This composition of operations is first extracting a hyper-diagonal using H, pooling over a subset
of indices identified by P, broadcasting some of these dimensions and permuting them according to
r′′, and finally placing the resulting tensor over a hyper-diagonal of the output tensor, identified by
K. Next, we show that these are the only operations needed to create an equivariant linear layer for
homogeneous hyper-graphs.

Theorem 6.1. All equivariant linear maps Lr→r′ ∶ Rnr(1)×...×nr(m) → Rnr′(1)×...×nr′(m′) between two
hyperedge types in a hypergraph are of the form Eq. (4).

Proof. The full proof of this theorem is included in Appendix A.

7 CONCLUSIONS

By enumerating all equivariant linear operations that can be applied to the data structure of heteroge-
neous graphs, we have demonstrated how they may be combined to create effective heterogeneous
graph neural networks. We demonstrated their effectiveness in the task of link prediction, their
competitiveness for node classification, and give an efficient implementation that can be used for
any collection of arbitrary interactions between nodes of different types. Further work is possible
to evaluate the effectiveness of equivariant heterogeneous graph networks on the task of heteroge-
neous graph classification (a task where the expressive abilities of a network are very important),
and learning of heterogeneous hypergraphs (an underexplored area). While we only created two rel-
atively simple architectures using these equivariant layers, in principle we could create much more
sophisticated models in the same way that sophisticated neural networks are based on simple linear
layers.
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A PROOF OF THEOREM 6.1

Proof. It is easy to see that all the four operations used in Eq. (4) are equivariant. In order to
show that these operations exhaust all possibilities, we count the number of compatible choices for
H,P, r′′,K for a given input/output pair of edge types r and r′. Through this counting, we arrive
at the same number of operations as what is given by (Maron et al., 2018)’s Theorem 3, where the
maximality is also established. A related problem for equivariant linear maps for incidence networks
appears in Albooyeh et al. (2019), and the following proof is inspired by the combinatorial counting
arguments in that paper.

Let {p
q
} be the number of ways we can partition a set of size p into q non-empty partitions. This is

also known as the Stirling partition number. Moreover, we use κ(r, i) for i ∈ D to denote the number
of occurrences of node type i in edge type r. Now we claim that the total number of compatible
choices for H,P, r′′,K is given by

d

∏
i=1

min{κ(r,i),κ(r′,i)}
∑

m,m′=1
{κ(r, i)

m
}{κ(r

′, i)
m′ }

min{m,m′}
∑
l=0

(m
l
)(m

′

l
)l! (5)

Because our operations for each node type are independent, the first product is over all possible node
types. In the next summation, we only consider the occurrences of node type i, and partition these
in both r and r′ into m and m′ non-empty partitions respectively. The subsequent Stirling numbers
count the number of ways in which we can produce these partitions. In the inner summation, we
select l of these m and m′ partitions to match them against each other. The number of such possible
choices is given by the number of ways we can select l out of m and m′ partitions (given by the
Binomial coefficients), times all the possible pairings over these l partitions for the matching purpose
(l!).

Now that we know what the expression above is counting, let us explain the connection to Eq. (4).
The intuitive motivation is that we want to enumerate all possible pairings of outputs of extract-diag
with inputs of place-diag. In Eq. (6), the number m represents the order of the output tensor of
extract-diag with node type i, and m′ represents the order of the input tensor to place-diag. The
Stirling numbers are counting the number of different hyper-diagonals of the input and output tensors
Xr and Yr′ respectively. Once we identify l of these partitions on hyper-diagonals to match, the
remaining dimensions from the input hyper-diagonal are pooled, while we broadcast over those of
the output hyper-diagonal.

Now we write the combinatorial expression of Eq. (4) in an alternate form:

d

∏
i=1

min{κ(r,i),κ(r′,i)}
∑

m,m′=1
{κ(r, i)

m
}{κ(r

′, i)
m′ }

min{m,m′}
∑
l=0

(m
l
)(m

′

l
)l! (6)

=
d

∏
i=1

min{κ(r,i),κ(r′,i)}
∑
l=0

κ(r,i)
∑
m=l

κ(r,i)
∑
m′=l
((m

l
){κ(r, i)

m
})((m

′

l
){κ(r

′, i)
m′ }) l! (7)

=
d

∏
i=1
Bell(κ(r, i) + κ(r′, i)) (8)

where in Eq. (7), we simply re-arrange the summations in Eq. (6). In arriving at Eq. (8) from Eq. (7)
we use a combinatorial argument: recall that the Bell number Bell(k) is the number of different
ways we can partition k objects into non-empty partitions. To see why Eq. (7) is counting the same
number of partitions of κ(r, i)+κ(r′, i) objects, first partition each of these two sets into any number
m,m′ ≥ l partitions. Next, merge l of those partitions from the first and second set in all possible
ways to create a partitioning of κ(r, i) + κ(r′, i) into m +m′ − l partitions. It is easy to see that this
procedure does not produce the same partitioning twice and all different partitions of κ(r, i)+κ(r′, i)
are produced in this way. This last expression is what appears in Maron et al. (2018) in Theorem 3.
The argument above shows that the number of different ways we can perform Eq. (4) is equal to this
Bell number and therefore all equivariant linear maps of interest have this form.
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B HYPERPARAMETERS

For both the link prediction and the node classification task, we used the Adam Optimizer with
weight decay. We also optionally apply a fully connected layer to the graph node attributes before
passing it on to the rest of our network. For each dataset, we ran sweeps on a range of hyperparam-
eters, evaluating their performance against a held-out validation set. The hyperparameters used and
the range we tested over are included in Table 4. The sets of hyperparameter values that yielded the
best performance on the validation set for each dataset are included in Table 5.

Table 4: Hyperparameters tested for each task.
Task Hyperparameter Description Sweep Range

B
ot

h

ACT FN Nonlinear activation function ReLU, LeakyReLU, Tanh
DROPOUT Channel-wise dropout 0, 0.1, 0.3, 0.5
LR Optimizer learning rate 1e-3, 5e-4, 1e-4
POOL OP Pooling operation used instead of the

inner summation in Eq. (3)
mean, max

WEIGHT DECAY Optimizer weight decay 1e-3, 1e-4, 1e-5, 1e-6
WIDTH Number of feature dimensions for each

equivariant layer
16, 32, 64

N
od

e
C

la
ss

ifi
ca

tio
n

DEPTH Number of equivariant layers + op-
tional input fully connected layer

1, 2, 3, 4, 5, 6

FC LAYER Input dimension of optional additional
fully connected layer after obtaining
node embeddings

0, 16, 32, 64, 128

FEATS TYPE If True, ignore node features of non-
target nodes

True, False

IN FC LAYER If true, the first layer of the network is
set to be a fully connected layer instead
of an equivariant layer

True, False

L
in

k
Pr

ed
ic

tio
n

DEPTH Number of equivariant and fully con-
nected layers in both the encoding and
decoding modules

2, 3, 4, 5, 6

EMBEDDING DIM Dimensions of node embeddings 32, 64, 128
IN FC LAYER If true, the first layer of the encoding

module and the last layer of the decod-
ing module are set to be fully connected
layers instead of equivariant layers

True, False

Table 5: Hyperparameters selected for each dataset for both tasks.
Node Classification Link Prediction

DBLP IMDB ACM FREEBASE AMAZON LASTFM PUBMED

ACT FN LeakyReLU LeakyReLU ReLU Tanh ReLU ReLU ReLU
DEPTH 6 6 3 6 5 4 3
DROPOUT 0 0.3 0.3 0 0.1 0 0
EMBEDDING DIM - - - - 64 64 32
FC LAYER 32 128 64 16 - - -
FEATS TYPE 1 1 0 1 - - -
IN FC LAYER False False False True True True True
LR 0.001 0.0001 0.001 0.0005 0.001 0.001 0.0001
POOL OP max mean mean mean mean mean max
WEIGHT DECAY 0.001 0.0001 1.00E-05 1.00E-06 0.001 0.0001 0.0001
WIDTH 64 64 64 16 128 128 32
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C ENCODING AND DECODING LAYERS

We define here an equivariant encoding mapping Pr→r′ ∶ Rnr×nr → Rn′r and an equivariant decoding
mapping Br→r′ ∶ Rnr → Rnr′×nr′ . The equivariance conditions on these mappings are:

Pr→r′(πrX rπ⊺r ) = πr′Pr→r′(X r) ∀πr, πr, πr′ ∈ S(r) × S(r) × S(r′) (9)

Br→r′(πrzr) = πr′Br→r′(zr)π⊺r′ ∀πr, πr′ , πr′ ∈ S(r′) × S(r′) × S(r′) (10)

Theorem C.1. Given an edge type r′ = ⟨r′, r′⟩ and a node type r, all the linear maps Pr′→r ∶
Rnr×nr → Rnr that satisfy the equivariance condition of Eq. (9) are produced using the valid
contractions of the formRnr×nr → Rnr′ in Section 3.3. All linear maps Br→r′ ∶ Rnr → Rnr×nr that
satisfy the equivariance condition of Eq. (10) are produced using the valid expansions of the form
Rnr→Rnr′ ×nr′

in Section 3.3.

Proof. As with Theorem 3.1, these are also special cases of Theorem 6.1.

As with the standard equivariant layers we’ve defined, these equivariant mappings can be combined
together to form layers:

PR→D(X) =
⎧⎪⎪⎨⎪⎪⎩
∑

X r∈X
∑
j

Pr→d
j (X r) ∣ d′ ∈ D

⎫⎪⎪⎬⎪⎪⎭
(11)

BD→R(Z) =
⎧⎪⎪⎨⎪⎪⎩
∑
zd∈Z

∑
j

Bd→r
j (zd) ∣ r ∈ R

⎫⎪⎪⎬⎪⎪⎭
(12)

where for P, j indexes each valid contraction operation, and for B, j indexes each valid expansion
operation.
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