

EFFICIENT RL TRAINING FOR REASONING MODELS VIA LENGTH-AWARE OPTIMIZATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Long reasoning models have demonstrated remarkable performance on reasoning
012 tasks but often incur a long reasoning path with significant memory and time
013 costs. Existing methods primarily aim to shorten reasoning paths by introducing
014 additional training data and stages. In this paper, we propose three critical reward
015 designs integrated directly into the rule-based reinforcement learning process of
016 long reasoning models, which reduce the response length without extra training
017 stages. Experiments on four settings show that our method significantly decreases
018 response length while maintaining or even improving performance. Specifically, in
019 a logic reasoning setting, we achieve a 40% reduction in response length averaged
020 by steps alongside a 14% gain in performance. For math problems, we reduce
021 response length averaged by steps by 33% while preserving performance.
022

1 INTRODUCTION

023 Recent advancements in long reasoning models (LRMs) have demonstrated exceptional performance
024 across diverse reasoning tasks. Leveraging large-scale, rule-based reinforcement learning (RL), these
025 models have developed advanced cognitive capabilities, including self-reflection, self-critique, and
026 self-correction Chen et al. (2025a); DeepSeek-AI et al. (2025); OpenAI et al. (2024) A defining
027 feature of reasoning models is the progressive increase of reasoning length during training, which
028 often correlates with improved reasoning abilities DeepSeek-AI et al. (2025). Longer reasoning
029 length enables models to explore intricate solution paths, decompose complex problems, and arrive at
030 more accurate conclusions.
031

032 However, increased reasoning length introduces significant challenges. During inference, longer
033 responses lead to higher computational costs and heavier KV caches, drastically slowing down
034 the decoding process. During training, the growing response length considerably slows down the
035 training process, and may even make large-scale training on specific tasks impractical DeepSeek-AI
036 et al. (2025). Despite the advantages of longer reasoning paths, recent studies have shown that
037 longer reasoning paths do not necessarily lead to better performance Fatemi et al. (2025); Chen et al.
038 (2025b); Team et al. (2025); Yang et al. (2025). In some cases, overly long reasoning paths can
039 lead to inefficiencies or even degraded performance, as models may overthink or generate redundant
040 steps Chen et al. (2025b); Sui et al. (2025).
041

042 Existing methods for reducing redundant response length in LRMs have primarily relied on supervised
043 fine-tuning or off-policy RL strategies Xia et al. (2025); Kang et al. (2024); Ma et al. (2025b);
044 Munkhbat et al. (2025); Yu et al. (2024); Liu et al. (2024); Cui et al. (2025); Luo et al. (2025a);
045 Shen et al. (2025). However, these approaches are not directly applicable to the on-policy RL
046 frameworks commonly used in LRMs training. One promising approach, the direct length-reward
047 method proposed by Kimi Team et al. (2025), incorporates response length as a factor in the RL
048 reward function. While this method shows potential, our reproduction of Kimi's length reward
049 reveals significant limitations. When applied early in the RL training process, it drastically shortens
050 response length but disrupts the model's exploratory behavior, leading to suboptimal performance.
051 Moreover, other works Arora & Zanette (2025); Hou et al. (2025) also show degraded performance.
052 This highlights the need for a approach that can be directly applied in the on-policy RL training.
053

054 To address this challenge, we propose a novel method, Short-RL, designed to regulate response length
055 during RL training without compromising model performance. Through a detailed analysis of the
056 Kimi length-reward approach, we identify its adverse effects on learning dynamics, particularly its
057

054 tendency to suppress reasoning diversity in the early stages of training. Motivated by these findings,
 055 we introduce three innovative enhancements to the length-reward framework, each aimed at balancing
 056 efficiency and reasoning quality:

- 058 • **Correctness-Conditioned Length Reward:** reward computation is restricted to correctly an-
 059 swered samples. This design aims to minimize the impact of length penalties on the exploration
 060 behaviors of model reasoning.
- 061 • **Neutral Length Zone:** exempts responses within an acceptable length range from length penalties,
 062 allowing the model to retain flexibility in exploring responses with appropriate lengths.
- 063 • **Accuracy-Aware Length Reward:** automatically disables length rewards when batch accuracy
 064 falls below a specified threshold.

065 Our approach effectively regulates response length during training without compromising—and in
 066 some cases enhancing—model performance. Experimental results on logical reasoning tasks show a
 067 40% average reduction in response length during training, alongside a 14% improvement in evaluation
 068 scores. In the mathematical reasoning setting, our method achieves a 33% reduction in average
 069 response length while maintaining performance comparable to standard RL training.

071 2 RELATED WORK

073 2.1 REASONING MODELS TRAINED WITH RULE-BASED RL

075 Large reasoning models are renowned for their exceptional performance across various reasoning
 076 tasks. By engaging in extensive deliberation before generating a final answer, these models exhibit
 077 human-like complex reasoning capabilities DeepSeek-AI et al. (2025); OpenAI et al. (2024). Notably,
 078 DeepSeek-AI et al. (2025) demonstrated that large-scale, rule-based reinforcement learning (RL)
 079 can significantly enhance the reasoning abilities of large language models (LLMs). However, the
 080 growing response length during training introduces substantial memory and computational overhead,
 081 hindering both training and inference efficiency—and in some cases, even rendering large-scale RL
 082 infeasible for specific tasks DeepSeek-AI et al. (2025).

083 Existing efforts to replicate the RL process of DeepSeek-R1 have primarily focused on domain-
 084 specific datasets. For instance, Xie et al. (2025) achieved promising results on a logic puzzle
 085 dataset Xie et al. (2024), while other works have explored rule-based RL training in mathematical
 086 domains Zeng et al. (2025); Luo et al. (2025b); Hu et al. (2025); Yu et al. (2025). These studies
 087 observe a trend of increasing response lengths during training, further underscoring the need for
 088 efficient optimization methods.

090 2.2 LONG TO SHORT LLM REASONING

091 The lengthy reasoning processes of language models incur significant memory and time costs,
 092 prompting numerous approaches to reduce the reasoning length.

093 Existing methods for shortening responses primarily operate in either supervised fine-tuning settings
 094 Xia et al. (2025); Kang et al. (2024); Ma et al. (2025b); Munkhbat et al. (2025); Yu et al. (2024); Liu
 095 et al. (2024); Cui et al. (2025) or off-policy reinforcement learning frameworks Luo et al. (2025a);
 096 Shen et al. (2025). However, these techniques demand additional training stages and curated datasets,
 097 making them incompatible with the in-process reinforcement learning of long-reasoning models.
 098 Furthermore, their efficacy on post-trained models remains unverified. There is also active research on
 099 prompt-guided efficient reasoning, which seeks to reduce response length through prompt engineering
 100 Han et al. (2025); Renze & Guven (2024); Xu et al. (2025); Ma et al. (2025a). While promising,
 101 these methods tend to be task-specific and often degrade overall model performance.

102 Other lines of work investigate shortening reasoning through model merging or collaborative agent
 103 frameworks She et al. (2025); Wu et al. (2025). Additionally, some approaches propose dynamically
 104 routing reasoning behavior based on the input question or user intent Anthropic (2025); Aytes et al.
 105 (2025); Chuang et al. (2025); Ong et al. (2025); Pu et al. (2025); Aggarwal & Welleck (2025).

106 Direct length-based rewards for on-policy RL, first proposed by Kimi 1.5 Team et al. (2025), are
 107 restricted to post-RL applications. As noted by Kimi, applying such rewards during initial training

108 impedes training convergence—a finding corroborated by our experiments, which reveal further
 109 limitations of this approach. Arora & Zanette (2025) proposes to scale the correct answer reward
 110 based on response length. Nonetheless, their approach reveals a trade-off between response length
 111 and model performance. Additionally, their experiments are confined to only around 100 training
 112 steps, leaving the long-term implications unexplored. Hou et al. (2025) proposes penalizing correct
 113 responses that exceed a length limit, though their method highlights an inherent trade-off between
 114 response brevity and model accuracy. In this work, we will demonstrate the severe shortcomings of
 115 such length-based rewards under extended training regimes.

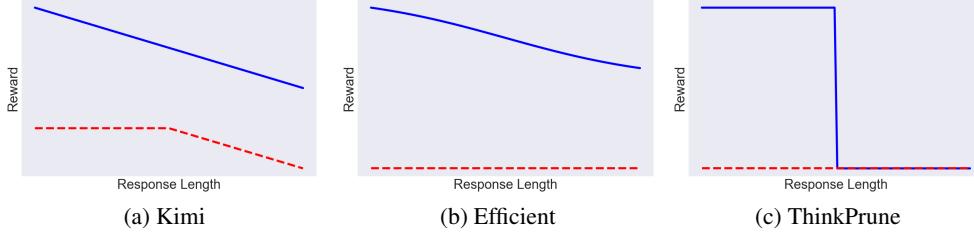
117 3 METHODOLOGY

119 3.1 LENGTH-AWARE OPTIMIZATION

121 A straightforward approach to reducing reasoning length is to incorporate a length penalty into the
 122 original reward function. Generally, the length reward can be incorporated into the rule-based reward
 123 as follows:

$$124 R(x, y) = C(y) + \alpha \cdot S(y), \quad (1)$$

125 where $C(y)$ denotes the rule-based reward and $S(y)$ denotes the length reward. α is a coefficient.



135 Figure 1: Reward values as a function of response length, where blue lines indicate rewards for
 136 correct responses and red lines represent rewards for incorrect responses.

138 Kimi Team et al. (2025) initially proposes their length reward function. However, Kimi’s length
 139 reward mechanism cannot be directly applied during the early stages of the reinforcement learning
 140 training process. Instead, the reward is only introduced during a post-RL training phase.

142 Subsequently, two other length-based reward functions were proposed (Efficient Arora & Zanette
 143 (2025); ThinkPrune Hou et al. (2025)). While these approaches differ in their usage settings, they
 144 exhibit similar limitations that can hinder the performance of RL training. A brief visualization of
 145 those rewards (combined with rule-based rewards) is plotted in Figure 1.

146 In this work, we primarily focus on the Kimi length reward, though the reward design we propose is
 147 broadly applicable to other length-based reward functions as well.

148 3.1.1 LENGTH REWARD IN KIMI

150 Suppose a response is defined by (y_i, z_i) , where y_i represents the answer and z_i the reasoning process.
 151 Given a set of sampled responses $(y_1, z_1), \dots, (y_k, z_k)$ for a problem x with the correct answer y^* , let
 152 ℓ_i denote the length of response (y_i, z_i) . Define $\ell_{\min} = \min_i \ell_i$ and $\ell_{\max} = \max_i \ell_i$. If $\ell_{\max} = \ell_{\min}$,
 153 the length reward is set to zero for all responses. Otherwise, the length reward is defined as:

$$154 \text{reward}_{\text{len}}(i) = \begin{cases} \lambda & \text{if } r(x, y_i, y^*) = 1 \\ \min(0, \lambda) & \text{if } r(x, y_i, y^*) = 0 \end{cases}, \quad \text{where } \lambda = 0.5 - \frac{\ell_i - \ell_{\min}}{\ell_{\max} - \ell_{\min}}. \quad (2)$$

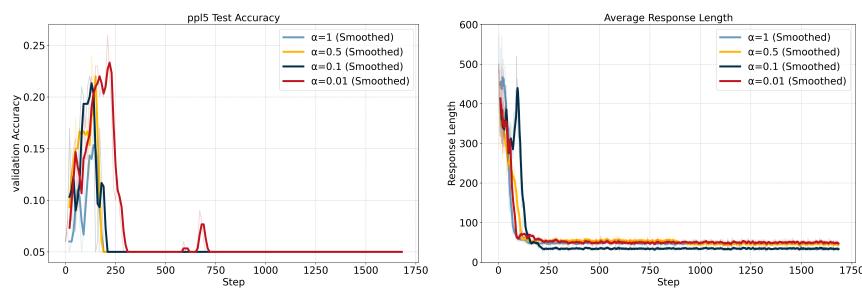
156 Kimi introduces a weighted adjustment to this reward by scaling it with a factor α before adding it to
 157 the rule-based reward.

159 3.1.2 LIMITATIONS OF LENGTH REWARD IN EARLY TRAINING

161 In the original Kimi 1.5 paper Team et al. (2025), the length reward is not applied during the initial
 162 stage of reinforcement learning training. Instead, standard policy optimization is performed first,

162 and a constant length penalty is introduced only in the later training phase. The authors claim that
 163 applying the length reward too early negatively affects training stability and convergence.
 164

165 To investigate this claim, we reproduced the experimental setup of Logic-RL Xie et al. (2025) and
 166 modified it to include the Kimi length reward from the beginning of training. Specifically, we varied
 167 the weight coefficient α across the values $[1, 0.5, 0.1, 0.01]$, keeping all other hyperparameters fixed.
 168 We then evaluated the resulting models on the pp15 dataset (logic puzzles with 5 people) Xie et al.
 169 (2024), measuring both test accuracy and average response length. All models were trained from
 170 scratch for 3 epochs. As shown in Figure 2, directly incorporating the length reward from the start
 171 results in a reward hacking phenomenon, with response lengths rapidly collapsing to very short
 172 outputs.



183 Figure 2: Test accuracy (left) and average response length (right) across different values of α .
 184

185 3.2 SHORT-RL

186 In this subsection, we identify two major issues with the direct length reward proposed by Kimi
 187 and introduce three key reward design principles that are critical for optimizing model performance.
 188 The first two focus on preserving model exploration and output diversity, while the third is aimed at
 189 maintaining overall task performance.
 190

192 3.2.1 PROBLEM 1: LENGTH REWARD BIAS AS A BARRIER TO EXPLORATORY BEHAVIOR

193 The ℓ_{\min} and ℓ_{\max} values defined by Kimi are computed based on all responses to a given problem
 194 x . Furthermore, Kimi applies the length reward function $\text{reward}_{\text{len}} = \min(0, \lambda)$ when the answer is
 195 incorrect. This leads to longer incorrect responses being penalized more severely than shorter ones.
 196 Additionally, the reward function is formulated as a linear function that favors shorter responses,
 197 assigning them higher rewards while penalizing longer ones. This design incentivizes convergence
 198 toward the shortest possible outputs, thereby diminishing response diversity.
 199

200 These two aspects of the reward function suppress model exploration and increase the risk of the
 201 model converging to suboptimal local minima. Notably, a similar limitation is observed in the reward
 202 formulation proposed by Arora & Zanette (2025).

203 To evaluate this effect, we track the diversity metric associated with the Kimi length reward ($\alpha = 0.1$)
 204 during training over the course of one epoch. The diversity metric is computed as the average of
 205 semantic diversity Guo et al. (2024a), lexical diversity (measured using the distinct-n metric Li
 206 et al. (2016); Guo et al. (2024a)) and syntactic diversity (measured using a graph-based metric Guo
 207 et al. (2024b;a)). We track the diversity metric on pp15 test dataset each 50 steps. As illustrated in
 208 Figure 3 (blue line), the Kimi length reward leads to a gradual reduction in output diversity.

209 To address this issue, we propose two reward design modifications that help preserve model diversity:
 210

211 **Reward Design I: Correctness-Conditioned Length Reward**

212 We propose that length-based rewards should be applied only to correct responses. Specifically, the
 213 length reward is computed exclusively for correct answers, with ℓ_{\min} and ℓ_{\max} calculated solely from
 214 correct responses to each question. This approach is similar to the reward scaling strategy adopted by
 215 Arora & Zanette (2025) and Hou et al. (2025), who similarly restrict reward adjustments to correct
 216 outputs.

216 **Reward Design II: Neutral Length Zone**
 217

218 To avoid penalizing responses that fall within an acceptable length range, we introduce a hyperpa-
 219 rameter τ_ℓ , referred to as the *length tolerance*. For correct responses, the length reward is defined as
 220 follows:

221 • If the response length $\ell(i)$ satisfies $\ell(i) \leq \ell_{\min} + \tau_\ell$, the length reward is set to 0.5, matching the
 222 reward for the shortest correct response.
 223 • For responses exceeding this threshold, the length reward is set to the value λ as defined earlier.
 224

225 We evaluate the effectiveness of our reward modifications—using $\tau_\ell = 200$ and
 226 $\alpha = 1$ —during training. As illustrated in Figure 3, the Kimi length reward reduces
 227 model output diversity, while design I and design II (red line) successfully preserve it.
 228

229 **3.2.2 PROBLEM 2: INSTABILITY**
 230 **PERFORMANCE DUE TO LENGTH PENALTY**
 231

232 In the Kimi setting, the length reward is applied at every
 233 training step, regardless of model performance or pre-
 234 diction quality. That is, each gradient update includes a
 235 penalty on longer responses. In our experiments, we find
 236 that although Design I and Design II help retain response
 237 diversity, in some cases, model performance is still de-
 238 graded. As shown in Figure 4b, the red curve (D1+D2),
 239 corresponding to our proposed Design I and Design II
 240 combination, exhibits unstable performance across train-
 241 ing. We hypothesize that this inconsistency arises from
 242 the complex and dynamic relationship between output ac-
 243 curacy and reasoning length. Specifically, while Designs I and II encourage concise outputs, the
 244 model may, at particular training stages, require extended reasoning paths to arrive at correct answers
 245 and to develop new reasoning capabilities. In such cases, penalizing longer outputs too aggressively
 246 may hinder the learning process.

247 To address this issue, we propose to stop the application of the length reward until the training process
 248 has stabilized—namely, when batch accuracy shows consistent improvement. This ensures that the
 249 model first learns to produce correct and robust outputs before being incentivized to optimize for
 250 brevity.

251 **Reward Design III: Accuracy-Aware Length Reward**

252 We define a hyperparameter τ_{acc} that controls the accuracy threshold. For each training batch,
 253 we compute the batch accuracy acc over all rollout samples, and maintain acc_{\max} , the maximum
 254 accuracy achieved up to that point in training. The length reward is applied only when the condition
 255 $\text{acc} \geq \text{acc}_{\max} - \tau_{\text{acc}}$ is satisfied.

256 **3.3 SHORT-RL LENGTH REWARD**

257 Based on the above analysis and our proposed three reward designs, we integrate their key insights
 258 into a unified reward formulation. Specifically, we combine the advantages of conditional reward
 259 application (Design III), adaptive reward strength based on output length (Design II), and correctness
 260 filtering (Design I) to construct a robust length reward function. This design ensures that rewards
 261 are only provided when predictions are correct, model accuracy is stable, and output length deviates
 262 meaningfully from the minimal correct length. The final length reward function is defined as:
 263

$$\begin{aligned}
 \text{reward}_{\text{len}}(i) &= \begin{cases} \beta, & \text{if } r(x, y_i, y^*) > 0 \text{ and } \text{acc} \geq \text{acc}_{\max} - \tau_{\text{acc}}, \\ 0, & \text{otherwise} \end{cases}, \\
 \text{where } \beta &= \begin{cases} \lambda, & \text{if } \ell(i) > \ell_{\min} + \tau_\ell, \\ 0.5, & \text{otherwise} \end{cases}, \\
 \lambda &= 0.5 - \frac{\ell(i) - \ell_{\min}}{\ell_{\max} - \ell_{\min}},
 \end{aligned} \tag{3}$$

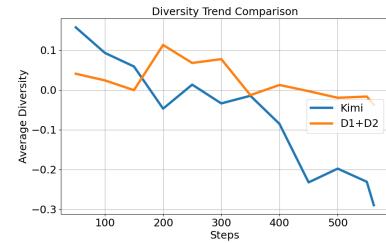


Figure 3: The diversity metric on pp15 test dataset.

$$270 \quad \ell_{\min} = \min_j \ell(j), \quad \ell_{\max} = \max_j \ell(j), \quad \text{where } j \in \{j \mid y_j = y^*\}.$$

$$271$$

272 Here, τ_{acc} controls the sparsity of the reward: a smaller value results in a sparser reward signal. When
 273 $\tau_{\text{acc}} = 1$, the scheme reduces to a dense reward. Meanwhile, τ_{ℓ} determines the allowed deviation
 274 from the minimum correct response length ℓ_{\min} ; when $\tau_{\ell} = 0$, the function simplifies to the linear
 275 reward used in Kimi.

277 4 EXPERIMENTS

$$278$$

279 4.1 EXPERIMENTAL SETTINGS

$$280$$

281 We evaluate our method across two distinct domains: logic reasoning and mathematical reasoning.
 282 The logic reasoning domain is represented by the Logic-RL project Xie et al. (2025), while the
 283 mathematical reasoning domain includes three settings: DeepScaleR Luo et al. (2025b), SimpleRL-
 284 Reason Zeng et al. (2025), and Open-Reasoner-Zero Hu et al. (2025). In all experiments, we employ
 285 the same model architecture and training framework Sheng et al. (2024) as used in the original projects.
 286 For the three mathematical reasoning settings, we use a prompt template similar to DeepSeek-R1,
 287 and a format reward is also included in the standard reward. Details can be found in Training Details.

$$288$$

289 4.1.1 LOGIC REASONING

$$290$$

290 We use the same dataset as Logic-RL and initialize the model from the Qwen2.5-7B base model
 291 Qwen et al. (2025). The hyperparameters for Short-RL are set as $\tau_{\ell} = 200$, $\tau_{\text{acc}} = 0.05$, and $\alpha = 1$.
 292 Additional implementation details are provided in Appendix Training Details.

293 We evaluate the final accuracy on 2- to 8-person tasks using Logic-RL’s evaluation script.

$$294$$

295 To assess generalization, we also evaluate out-of-domain performance on the AIME and AMC
 296 benchmarks following Logic-RL’s protocol. Additionally, we report two token-length metrics: (1)
 297 step-wise average response length during training, reflecting training speed, and (2) average response
 298 length at the final step, indicating inference speed after training.

299 4.1.2 MATH REASONING

$$300$$

301 We conduct comparative experiments on three settings. Nearly all hyperparameters are retained from
 302 the original implementation. For Short-RL, the hyperparameters settings can be found in Table 3
 303 of Appendix Training Details. Further implementation details are available in Appendix Training
 304 Details.

305 Evaluation is carried out across five benchmark datasets: AIME2024invitational mathematics exami-
 306 nation (2024), AMC23AI-MO (2025), MATH-500Lightman et al. (2023), Minerva MathHendrycks
 307 et al. (2021), and Olympiad BenchHe et al. (2024). We also report two token-length metrics: (1) the
 308 step-wise average response length during training, and (2) the average token length at the final step.

$$309$$

310 4.1.3 BASELINES

$$311$$

312 We compare our method with the following baselines:

- 313 • **Standard:** Reinforcement learning with standard rule-based rewards.
- 314 • **Kimi:** Rule-based rewards augmented with the Kimi length reward ($\alpha = 1$). **Note that the Kimi**
315 length reward was originally applied in a post-RL stage after a standard RL stage. Directly
316 applying this reward function may lead to issues and varying the choice of α remains
317 susceptible to reward hacking (discussed in Section 3.1.2). Thus we provide a Kimi (post)
318 baseline to show the best performance of Kimi reward function applied after the standard RL. For
319 this two-stage approach, we report the step-wise average response length during the first (standard
320 RL) stage in the tables.
- 322 • **Efficient:** A length-aware scaling reward from (Arora & Zanette, 2025), where we select optimal
 323 α values from 0.02, 0.05, 0.08, 0.10 for each method: Logic-RL ($\alpha = 0.05$), DeepScaleR ($\alpha =$
 0.10), and both SimpleRL-Reason and Open-Reasoner-Zero ($\alpha = 0.02$). Note that the α used in

324
325
326 Table 1: Logic-RL valuation on the final checkpoint.
327
328

Method	In Domain								Out of Domain		Average Response Length	
	ppl2	ppl3	ppl4	ppl5	ppl6	ppl7	ppl8	Average	AMC	AIME	Averaged by Steps	Last
Standard	82	87	88	81	76	69	70	79	39.76	7.77	1477	2632
Kimi (post)	84	88	89	84	79	74	76	82	39.89	8.13	1477	763
Efficient	76	81	79	77	62	48	51	68	37.35	7.77	772	843
ThinkPrune	80	84	86	82	70	66	64	76	38.47	7.35	832	793
Short-RL	97	97	99	95	92	83	87	93	42.17	8.74	889	535

333
334 Table 2: Evaluation of math reasoning.
335

Model	Math Benchmarks						Average Response Length		
	AIME2024	AMC23	MATH500	Minerva Math	Olympiad	Bench	Average	Averaged by Steps	Last
<i>DeepScaler</i>									
Standard	26.67	59.04	81.40	26.10		42.65	47.17	2523	3072
Kimi (post)	23.33	61.45	81.00	25.37	42.79	46.79	2523	1678	
Efficient	20.00	49.40	57.8	16.54	33.73	35.49	1517	1537	
ThinkPrune	26.67	56.63	78.40	25.74	41.31	45.75	1589	1621	
Short-RL	30.00	60.24	80.60	26.47	42.65	47.99	1692	1700	
<i>Open Reasoner Zero</i>									
Standard	16.67	50.60	78.80	30.88	38.04	43.00	746	840	
Kimi (post)	20.00	49.40	77.40	31.25	38.63	43.34	746	621	
Efficient	13.33	46.99	66.40	26.47	35.96	37.83	578	655	
ThinkPrune	13.33	48.19	76.80	27.57	37.15	40.61	677	682	
Short-RL	16.67	50.60	78.60	30.52	38.19	42.92	660	670	
<i>SimpleRL-Reason</i>									
Standard	13.33	48.19	77.00	32.72	39.97	42.24	703	791	
Kimi (post)	16.67	48.19	77.40	31.99	39.67	42.78	703	601	
Efficient	6.67	38.55	64.8	22.06	28.68	32.15	492	532	
ThinkPrune	10.00	46.99	69.40	31.62	37.30	39.06	613	598	
Short-RL	20.00	49.40	78.20	32.72	39.23	43.91	554	620	

354
355
356 Efficient (as a scaling factor) differs from the α used in our method. Additionally, the experimental
357 results in their paper already show an obvious trade-off between accuracy and response length.
358359

- **ThinkPrune**: A length-aware cosine reward proposed by (Hou et al., 2025). We select the length
360 limit that yields a comparable average response length to our method: 1700 for Logic-RL, 2500
361 for DeepScaler, 1500 for OpenReasonerZero and SimpleRL-Reason. Similarly, the experimental
362 results in their paper show a performance trade-off.

363
364 4.2 MAIN RESULTS365
366 4.2.1 LOGIC REASONING367
368 As is shown in Table 1, our proposed Short-RL method effectively regulates response length while
369 consistently outperforming standard RL approaches in terms of accuracy. Specifically, Short-RL
370 achieves a 40% reduction in step-wise average response length while delivering statistically significant
371 accuracy gains across all evaluated tasks. In contrast, the Efficient and ThinkPrune baselines exhibit
372 inferior performance. Although Kimi (post) eventually achieves strong accuracy and inference
373 length.374
375 4.2.2 MATH REASONING376
377 Quantitative evaluation in Table 2 reveals that Short-RL achieves 33% , 11% , 21% reduction
378 in step-averaged response length compared to standard RL approaches across the three settings
379 respectively. In contrast, Efficient and ThinkPrune baselines demonstrate poorer performance. Kimi
380 also underperforms in training efficiency despite achieving similar accuracy.

378

5 ABLATION STUDY

380

5.1 COMPONENT ABLATION

382 We conduct an ablation study to evaluate the impact of our proposed designs. All experiments are
 383 performed on the Logic-RL dataset and use the same length reward weight $\alpha = 1$.

384 We compare the accuracy and average response length curves across several configurations. D1
 385 applies standard RL using our proposed length reward design I. D1+D2 incorporates both design I and
 386 design II, while D1+D3 combines design I and design III. Finally, our proposed method, Short-RL,
 387 integrates all three designs: I, II, and III.

388 As shown in Figure 4, our proposed reward designs significantly improve both response length
 389 control and validation accuracy. The subfigure 4a shows that the Standard baseline generates overly
 390 long responses, while the Kimi baseline collapses to very short outputs. In contrast, our designs
 391 (D1, D1+D2, D1+D3) progressively stabilize length generation, with Short-RL achieving the most
 392 balanced outcome. The subfigure 4a illustrates consistent accuracy gains from our designs. Short-RL
 393 consistently achieving the highest accuracy. Even partial configurations (D1+D2, D1+D3) outperform
 394 Kimi, underscoring the effectiveness and complementarity of each design component. Note that the
 395 ppl5 test set here differs from the final evaluation set, following the practice of Logic-RL.

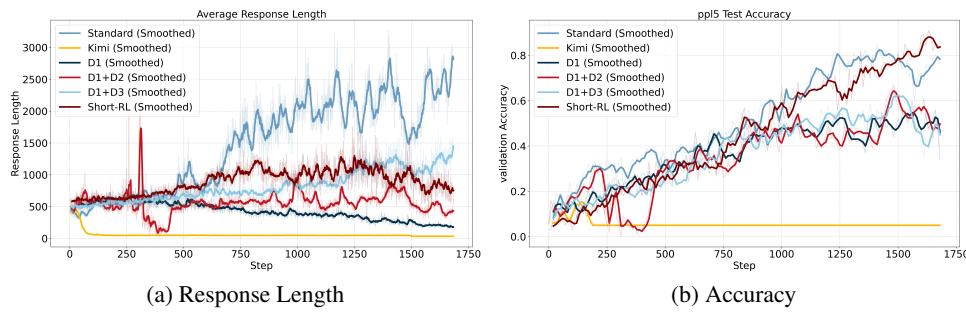
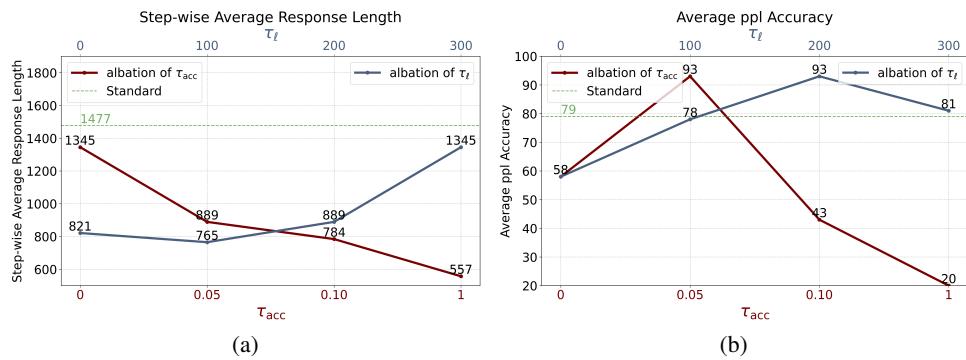
408

Figure 4: Ablation study on three reward designs



423

Figure 5: Ablation study on the impact of length tolerance and accuracy tolerance, with both factors
 424 plotted on a shared y-axis. The upper x-axis represents the length tolerance, while the lower x-axis
 425 represents the accuracy tolerance.

428

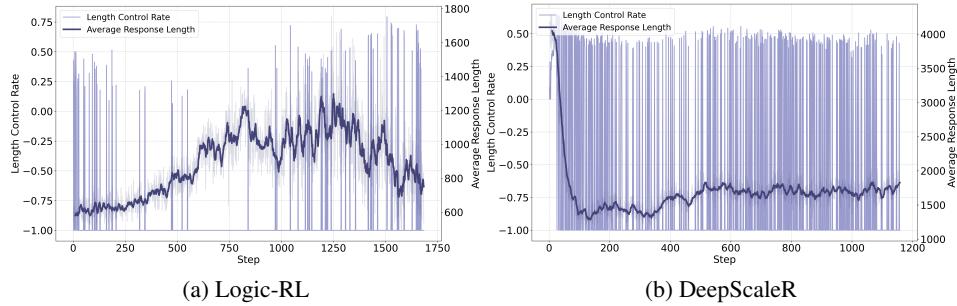
5.2 IMPACT OF LENGTH AND ACCURACY TOLERANCE

430 We vary the τ_ℓ among 0, 100, 200, and 300, while fixing the τ_{acc} to 0.05. The comparisons of
 431 step-wise average response length and average accuracy on ppl tasks are shown in Figure 5. We
 observe that an overly small length tolerance (e.g., 0) leads to shorter average responses and degraded

432 performance. But the model is not too sensitive to the choice of length tolerance. Varying the choice
 433 among 100, 200, 300 still achieves good performance. Larger length tolerance may result in longer
 434 average response length. For this setting, a length tolerance of around 200 achieves the best balance.
 435

436 We vary τ_{acc} among 0, 0.05, 0.10, and 1.0, while fixing the τ_{ℓ} to 200. Figure 5 shows that model
 437 performance is sensitive to this parameter. Specifically, higher τ_{acc} (e.g., 1.0) leads to shorter response
 438 lengths and degraded performance. A good choice in this setting may be around 0.05.
 439

440 6 TRACK THE LENGTH REWARD



453 Figure 6: Tracking the length reward during training
 454

455 During training, we monitor the application of length rewards. We introduce a batch-wise metric
 456 called length control rate (γ_{ℓ}). For each batch, let N be the number of correct responses. Among
 457 these, R denotes the number of responses with $\text{reward}_{\text{len}} < 0.5$. We then define:
 458

$$\gamma_{\ell} = \begin{cases} \frac{R}{N}, & \text{if } N \neq 0 \text{ and } \text{acc} \geq \text{acc}_{\text{max}} - \tau_{\text{acc}} \\ 0, & \text{if } N = 0 \\ -1, & \text{if } \text{acc} < \text{acc}_{\text{max}} - \tau_{\text{acc}} \end{cases}, \quad (4)$$

462 We track the proposed metrics and the average response length during training in two experiments, as
 463 shown in Figure 6. We observe that the length reward is distributed throughout the training process.
 464 In DeepScaleR, length rewards are applied more frequently. The curves for SimpleRL-Reason and
 465 Open-Reasoner-Zero can be found in Appendix Track the Length Reward.
 466

467 7 LIMITATIONS

470 Our method is designed for tasks where responses consist of a reasoning process followed by a short
 471 definitive answer (e.g., math, logic). In such settings, lengthy reasoning often contains redundant steps,
 472 making efficiency improvements viable. However, for tasks like creative writing, where reasoning is
 473 minimal or stylistic variation is valuable, favoring shorter outputs may not be appropriate.
 474

475 Moreover, reward designs II and III rely on manual hyperparameter tuning, which may require
 476 adaptation across different tasks or models.
 477
 478
 479
 480
 481
 482
 483
 484
 485

486 REFERENCES
487

488 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
489 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.04697>.

490 AI-MO. Aimo validation amc, 2025. URL <https://huggingface.co/datasets/AI-MO/aimo-validation-amc>. 2025, February 2025.

491

492 Anthropic. Anthropic. claude 3.7 sonnet, 2025. URL <https://www.anthropic.com/news/claude-3-7-sonnet>. Accessed on March 10, 2025.

493

494 Daman Arora and Andrea Zanette. Training language models to reason efficiently. *ArXiv*,
495 abs/2502.04463, 2025. URL <https://api.semanticscholar.org/CorpusID:276235717>.

496

497 Simon A. Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning
498 with adaptive cognitive-inspired sketching, 2025. URL <https://arxiv.org/abs/2503.05179>.

499

500 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
501 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
502 thought for reasoning large language models, 2025a. URL <https://arxiv.org/abs/2503.09567>.

503

504 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuizhi
505 Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
506 Do not think that much for 2+3=? on the overthinking of o1-like llms, 2025b. URL <https://arxiv.org/abs/2412.21187>.

507

508 Yu-Neng Chuang, Helen Zhou, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio,
509 Sara Bolouki, and Xia Hu. Learning to route llms with confidence tokens, 2025. URL <https://arxiv.org/abs/2410.13284>.

510

511 Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen
512 Luo, Jing Huang, Zhen Li, Suhang Wang, Yue Xing, Jiliang Tang, and Qi He. Stepwise perplexity-
513 guided refinement for efficient chain-of-thought reasoning in large language models, 2025. URL
514 <https://arxiv.org/abs/2502.13260>.

515

516 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
517 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
518 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
519 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
520 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
521 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
522 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
523 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
524 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
525 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
526 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
527 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
528 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
529 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
530 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
531 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
532 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
533 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
534 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
535 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
536 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
537 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
538 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
539 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,

540 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 541 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 542 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 543 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 544 URL <https://arxiv.org/abs/2501.12948>.

545 Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
 546 reinforcement learning, 2025. URL <https://arxiv.org/abs/2504.05185>.

548 Yanzhu Guo, Guokan Shang, and Chloé Clavel. Benchmarking linguistic diversity of large language
 549 models, 2024a. URL <https://arxiv.org/abs/2412.10271>.

551 Yanzhu Guo, Guokan Shang, Michalis Vazirgiannis, and Chloé Clavel. The curious decline of
 552 linguistic diversity: Training language models on synthetic text. In Kevin Duh, Helena Gómez-
 553 Adorno, and Steven Bethard (eds.), *Findings of the Association for Computational Linguis-
 554 tics: NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 3589–3604. Association for
 555 Computational Linguistics, 2024b. doi: 10.18653/V1/2024.FINDINGS-NAACL.228. URL
 556 <https://doi.org/10.18653/v1/2024.findings-naacl.228>.

557 Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
 558 budget-aware llm reasoning, 2025. URL <https://arxiv.org/abs/2412.18547>.

560 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
 561 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
 562 Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual
 563 multimodal scientific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 564 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 565 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 3828–3850. Asso-
 566 ciation for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.211. URL
 567 <https://doi.org/10.18653/v1/2024.acl-long.211>.

568 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 569 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
 570 dataset. In J. Vanschoren and S. Yeung (eds.), *Proceedings of the Neural Information
 571 Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021. URL https:///datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf.

575 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 576 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025. URL
 577 <https://arxiv.org/abs/2504.01296>.

580 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, and Heung-Yeung Shum Xiangyu Zhang. Open-
 581 reasoner-zero: An open source approach to scaling reinforcement learning on the base model.
 582 URL <https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero>, 2025.

586 MAA. American invitational mathematics examination. In american invitational math-
 587 ematics examination, 2024. URL <https://maa.org/math-competitions/american-invitational-mathematics-examination-aime>. 2024, February
 588 2024.

592 Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
 593 without compromising effectiveness, 2024. URL <https://arxiv.org/abs/2412.11664>.

597 Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
 600 objective function for neural conversation models. In Kevin Knight, Ani Nenkova, and Owen
 601 Rambow (eds.), *NAACL HLT 2016, The 2016 Conference of the North American Chapter of the
 602 Association for Computational Linguistics: Human Language Technologies, San Diego California,
 603 USA, June 12-17, 2016*, pp. 110–119. The Association for Computational Linguistics, 2016. doi:
 604 10.18653/V1/N16-1014. URL <https://doi.org/10.18653/v1/n16-1014>.

594 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 595 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 596 *arXiv:2305.20050*, 2023.

597 Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
 598 Can language models learn to skip steps?, 2024. URL <https://arxiv.org/abs/2411.01855>.

600 Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
 601 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
 602 2025a. URL <https://arxiv.org/abs/2501.12570>.

603 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan
 604 Roongta, Colin Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada Popa,
 605 and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b model by scaling
 606 rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2>, 2025b. Notion Blog.

607 Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
 608 models can be effective without thinking, 2025a. URL <https://arxiv.org/abs/2504.09858>.

609 Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
 610 compressible chain-of-thought tuning, 2025b. URL <https://arxiv.org/abs/2502.09601>.

611 Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun.
 612 Self-training elicits concise reasoning in large language models, 2025. URL <https://arxiv.org/abs/2502.20122>.

613 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
 614 M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2025.
 615 URL <https://arxiv.org/abs/2406.18665>.

616 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
 617 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
 618 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
 619 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
 620 Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 621 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
 622 Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
 623 Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
 624 Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
 625 Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
 626 Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
 627 Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
 628 Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
 629 von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
 630 Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
 631 Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
 632 O'Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
 633 Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
 634 Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
 635 Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
 636 Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
 637 Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin
 638 Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
 639 Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk,
 640 Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
 641 Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
 642 Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe,

648 Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang,
 649 Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
 650 hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg
 651 Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,
 652 Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
 653 Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
 654 Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
 655 Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
 656 Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir
 657 Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted
 658 Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
 659 Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie
 660 Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,
 661 Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai,
 662 Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card,
 663 2024. URL <https://arxiv.org/abs/2412.16720>.

664 Xiao Pu, Michael Saxon, Wenyue Hua, and William Yang Wang. Thoughtterminator: Benchmarking,
 665 calibrating, and mitigating overthinking in reasoning models, 2025. URL <https://arxiv.org/abs/2504.13367>.

666 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 667 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 668 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 669 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 670 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 671 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 672 <https://arxiv.org/abs/2412.15115>.

673 Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
 674 large language models. In *2024 2nd International Conference on Foundation and Large Language
 675 Models (FLLM)*, pp. 476–483. IEEE, November 2024. doi: 10.1109/fllm63129.2024.10852493.
 676 URL <http://dx.doi.org/10.1109/FLLM63129.2024.10852493>.

677 Jianshu She, Zhuohao Li, Zhemin Huang, Qi Li, Peiran Xu, Haonan Li, and Qirong Ho. Hawk-
 678 eye:efficient reasoning with model collaboration, 2025. URL <https://arxiv.org/abs/2504.00424>.

679 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
 680 Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models, 2025.
 681 URL <https://arxiv.org/abs/2503.04472>.

682 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 683 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 684 arXiv: 2409.19256*, 2024.

685 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 686 Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on efficient
 687 reasoning for large language models, 2025. URL <https://arxiv.org/abs/2503.16419>.

688 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 689 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 690 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 691 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
 692 Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
 693 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
 694 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
 695 Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
 696 Weiran He, Weixiao Huang, Wenhai Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
 697 Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
 698 Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
 699 700 701

702 Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
 703 Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
 704 reinforcement learning with llms, 2025. URL <https://arxiv.org/abs/2501.12599>.

705 Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
 706 Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
 707 merging, 2025. URL <https://arxiv.org/abs/2503.20641>.

708 Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Control-
 709 lable chain-of-thought compression in llms, 2025. URL <https://arxiv.org/abs/2502.12067>.

710 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li,
 711 Badih Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning.
 712 *ArXiv*, abs/2410.23123, 2024. URL <https://api.semanticscholar.org/CorpusID:273695832>.

713 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 714 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 715 learning, 2025. URL <https://arxiv.org/abs/2502.14768>.

716 Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
 717 less, 2025. URL <https://arxiv.org/abs/2502.18600>.

718 Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin,
 719 Li Cao, and Weiping Wang. Dynamic early exit in reasoning models, 2025. URL <https://arxiv.org/abs/2504.15895>.

720 Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1, 2024. URL
 721 <https://arxiv.org/abs/2407.06023>.

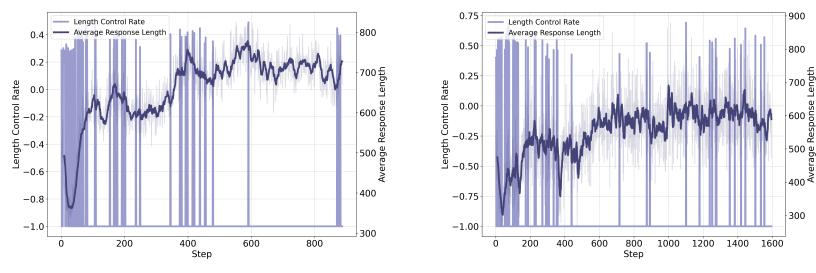
722 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 723 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 724 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 725 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 726 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
 727 llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

728 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 729 zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
 730 URL <https://arxiv.org/abs/2503.18892>.

731

732 A APPENDIX

733 A.1 ADDITIONAL EXPERIMENTS



734 Figure 7: Visualization of the length control rate during train-
 735 ing.

756	Setting	Logic-RL	DeepScaleR	Open Reasoner Zero	SimpleRL-Reason
757	learning rate	1e-6	1e-6	5e-7	5e-7
758	batch size	8	128	64	16
759	ppo_mini_batch_size	32	64	256	64
760	ppo_micro_batch_size	8	32	64	2
761	rollout_n	8	8	8	8
762	temperature	0.7	0.6	1.0	1.0
763	kl_loss_coeff	0.001	0.001	0.001	0.0001
764	epochs	3	3	1	3
765	max_response_length	4096	8192	4096	8192
766	algorithm	reinforce++	grpo	grpo	grpo
767	τ_ℓ	200	100	100	50
768	τ_{acc}	0.05	0.05	0.02	0.05
769	α	1	1	1	1
770	Model	Qwen2.5-7B	DeepSeek Distill Qwen-1.5B	Qwen2.5-7B	Qwen2.5-7B

Table 3: Training details.

A.1.1 TRACK THE LENGTH REWARD

We also track the metric defined in Section Track the Length Reward in Figure 7 (Open Reasoner Zero and SimpleRL-Reason).

```

777 <|im_start|>system\nYou are a helpful assistant. The
778 assistant first thinks about the reasoning process in
779 the mind and then provides the user with the answer. The
780 reasoning process and answer are enclosed within <think>
781 </think> and <answer> </answer> tags, respectively, i.e.,
782 <think> reasoning process here </think> <answer> answer
783 here </answers>. Now the user asks you to solve a
784 logical reasoning problem. After thinking, when you
785 finally reach a conclusion, clearly state the identity
786 of each character within <answers> </answer> tags. i.e.,
787 <answer> (1) Zoey is a knight\n(2) ...
788 </answer>.\n<|im_end|>\n<|im_start|>user\n{quiz}\n<|im_e
789 nd|>\n<|im_start|>assistant\n<|think>

```

(a)

(b)

Figure 8: The prompt template for Logic-RL and Math-RL.

A.2 TRAINING DETAILS

Our experiments were conducted using a compute node equipped with 8 NVIDIA H100 GPUs. The CUDA version we use is 12.3.

A.2.1 LOGIC-RL TRAINING AND EVALUATION DETAILS

The training and evaluation prompt template (Figure 8a) used in Logic-RL remains the same as in the original GitHub project. The training hyperparameters are listed in Table 3. During evaluation, we directly use the code from Logic-RL, which applies a temperature of 1.0 and top_p=1.0 for logic tasks, and a temperature of 0.8 with top_p= 0.95 for math tasks.

A.2.2 TRAINING AND EVALUATION DETAILS FOR MATH

The training and evaluation prompt template for three math settings is shown in Figure 8b. The training hyperparameters are listed in Table 3. During evaluation, we directly use the code from DeepScaleR, which employs a temperature of 1.0.

A.2.3 REWARD DETAILS

In all the math experiments, the standard reward employs a format and outcome-based reward scheme. That is:

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

$$\text{reward} = \begin{cases} 3 & , \text{ the format is correct and the answer is right} \\ -0.5 & , \text{ the format is correct and the answer is wrong} \\ -3 & , \text{ the format is wrong} \end{cases} . \quad (5)$$

In Logic-RL experiments, we directly use their original standard reward design.