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Abstract

This paper presents Particle Rendering (PR), a new im-
plicit rendering approach that extends Neural Radiance
Fields (NeRF) by incorporating incident light along with
traditional outgoing light modeling. In our framework, a
3D scene consists of a mass of particles, each offering a
deeper understanding of light interactions by reflecting and
emitting light in all directions. Our methodology involves
a three-phase training pipeline: 1) Estimating the outgoing
light field through a NeRF model; 2) Distilling the incident
light field. A simple metric is introduced to assess the quality
of the ray for better supervision; 3) Implicit rendering. We
propose an implicit method to aggregate incident and out-
going fields that leverages Multilayer Perceptrons (MLP) to
directly infer final pixel values, thus avoiding the limitation
of traditional physically-based rendering techniques. The
effectiveness of PR is demonstrated through state-of-the-art
results in various challenging indoor and outdoor scenes,
emphasizing its capability to handle complex lighting and
reflective materials.

1. Introduction
Recently, remarkable advances have been made in the field
of implicit functions with regard to computer vision and
graphics, resulting in the generation of point-level scene
comprehension and the production of realistic images in the
form of novel view synthesis. Among these techniques, a
pioneering method, called Neural Radiance Fields (NeRF)
[17], has become increasingly popular due to its ability to
synthesize ground-breaking high-quality images by optimiz-
ing implicit functions and volume rendering to map 3D ge-
ometry to color. Currently, NeRF-based methods have been
widely applied to 3D visualization [3, 5, 8, 10, 29], 3D object
reconstruction [9, 25, 28], and 3D AIGC [14, 21].
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Figure 1. In comparison to NeRF’s outgoing light (or radiance)
field [17], our particle has an additional incident light field. More-
over, our PR adopt implicit rendering which enables us to render
challenging scenes with more complex lighting and materials.

However, there are a number of reflective surfaces, such
as glass, whose outgoing light is highly correlated to the
incident light. Most existing implicit rendering approaches
[12, 17] focus only on modeling the emitted light (or radi-
ance) from each point of the scene but omits the effect of
incident light. This limitation is especially noticeable when
dealing with scenes with complicated lighting conditions
and materials. For example, it is difficult to precisely rep-
resent and render an indoor scene with a large number of
light sources and reflective mirrors. Some recent methods
[6, 27, 31] combine Physically-based Rendering (PBR) [11],
which uses the Bidirectional Reflectance Distribution Func-
tion (BRDF) to explain how materials interact with light.
BRDF links outgoing light to incident light, providing a
valuable connection to understand light transport. However,
estimating BRDFs in a complex scene requires the imprac-
tical acquisition of precise normal directions, which can
be difficult and computationally expensive for scene-level
applications when only multi-view images can be accessed.
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In this paper, we introduce Particle Rendering (PR), a
novel implicit rendering approach that overcomes the limi-
tations of existing methods when dealing with lighting and
materials during rendering. Specifically, we represent a 3D
scene with a mass of particles in our framework. Our repre-
sentation is geometrically equivalent to the sampled points
in NeRF, while each particle can receive incident light, apart
from emitting outgoing light from and to all directions. Par-
ticle representation allows for a more comprehensive under-
standing of light transport in intricate environments. Our
proposed PR builds upon the success of NeRF and advances
by extending its implicit rendering paradigm. Instead of
focusing solely on modeling the outgoing light distribution,
our PR optimizes neural networks to map scene parame-
ters to both outgoing and incident light information. This
makes our PR a promising framework for generating realistic
images in challenging scenarios. The essential differences
between NeRF and ours are illustrated in Fig. 1.

Our PR follows a three-phase training pipeline designed
to enhance the rendering quality of novel views. The first
phase is dedicated to estimating the outgoing light field. A
NeRF model is optimized to initially fit the density and out-
going light fields. This is accomplished using only multiple
posed images as input data, relying on the power of implicit
functions and volume rendering [15]. Consequently, we lay
the foundation for a comprehensive understanding of the
scene elements and their interaction with light. The second
phase of our pipeline focuses on distilling the incident light
field. Building on the knowledge acquired during the first
phase, where the density and outgoing parameters of each
particle were obtained, we now possess the essential informa-
tion required to calculate the incident light from all possible
directions for each particle. This is achieved through the
utilization of the volumetric rendering capabilities of NeRF.
We treat the rendered incident light as the teacher and the
one using implicit function as the student, which allows us to
distill the incident light environment for each particle. In the
final phase, the incident and outgoing light fields are implic-
itly aggregated. This process enables us to render an image
that faithfully captures the intricacies of the original environ-
ment by encompassing the collective interplay of light rays
as they traverse the scene and hit the particles. Through this
three-phase training pipeline, our PR emerges as a powerful
framework for generating photo-realistic images in the real
world.

There are two essential problems that need to be ad-
dressed during the three phases of our framework. 1) Qual-
ity of Distillation. In the first phase, only the outgoing
directions that point towards the camera center are fully su-
pervised, and thus leading to the under-fitting problem for
outgoing rays along other directions. This affects the quality
of incident light and subsequent distillation. This is also a
limitation of previous NeRF-based methods. To circumvent

the under-fitting issue, we propose a metric in the second
phase to assess the quality of each incident ray and assign
the appropriate weights to distill the incident light field. Our
motivation is that high-quality incident rays should have a
concentrated distribution considering their rendered weights.
For example, the quality of the ray is usually poor when
the variance in the weight distribution of an incident ray is
large [1, 2]. 2) Strategy of Aggregation. During the final
stage, adopting the conventional PBR method to aggregate
the incident and outgoing light field involves predicting the
directions of surface normal and material parameters and
then employing conventional graphics-based rendering to
determine the color of outgoing light. This complicates the
process and significantly increases the computational com-
plexity as we only aim to predict the final color without
reconstructing additional physical parameters. Instead of
relying on traditional PBR methods to connect outgoing and
incident light, our approach takes an implicit route. It just
combines the embeddings of the incident and outgoing light
from the particles, and uses an MLP to directly calculate the
final RGB values for each ray. This approach improves com-
putational efficiency and accessibility, eliminating the need
to estimate physical parameters, and thus achieves better
performance.
Contributions. Our contributions can be summarized as:
1. We propose a Particle Rendering to take account of inci-

dent light during novel-view image rendering. It extended
the outgoing paradigm of NeRF in favor of a scene of
complex lighting and reflective materials.

2. We introduce a metric to evaluate the quality of incident
rays, improving the distillation of incident light fields.

3. We propose an implicit while effect method to aggregate
the incident light field and outgoing light field to render
the final pixel colors.

4. Experiments conducted on various datasets demonstrate
that our PR is capable of achieving state-of-the-art per-
formance in both indoor and outdoor datasets and scenes
with challenging lighting and materials.

2. Related Work

Our work is related to previous research on implicit func-
tion in 3D vision, NeRF-based Novel View Synthesis, and
rendering complex lighting effects.

Implicit Function in 3D Vision. The implicit function
in 3D computer vision represents a neural mapping from
3D geometry that includes location and direction to asso-
ciated attributes such as shape and appearance. The con-
cept is initially explored in the Occupancy Network [16],
which utilizes an MLP to determine the occupancy status
of a point based on its location. However, this method re-
quires ground-truth point-occupancy pairs that are costly to
annotate. Subsequently, DVR [20] introduces training of



implicit functions through differentiable rendering modules,
but is mainly confined to object-level performance. Further
developments in implicit rendering involved the use of Con-
volutional Networks (ConvNet) [13] or Transformer [23]
to synthesize images directly [19, 33], bypassing complex
physical rendering processes. However, these methods often
overfit to training images or views, limiting their general-
ization. In our work, we follow the principle of implicit
function and propose the integration of both incident and
outgoing light into a rendering pipeline. Our approach is
particularly effective for realistically rendering real-world
scenes with reflective properties, marking a significant step
forward in the field of implicit rendering.

NeRF-based Novel View Synthesis. NeRF [17] utilizes
MLPs to compute color and density in continuous 5D coor-
dinates, enhanced through differentiable volume rendering
[15] based on input views. Researchers have made several
advances to refine NeRF, focusing on image quality and
rendering efficiency. Mip-NeRF [1] improves fine-detail
rendering and anti-aliasing through prefiltering of input im-
ages. Mip-NeRF 360 [2] extends the concept to 360-degree
scene rendering, effectively utilizing input images covering
the entire environment. Zip-NeRF [3] combines Mip-NeRF
360 [2] with grid-based neural radiance fields (as in Instant-
NGP), with the aim of improving performance and accelerat-
ing training. Nerfacto [22] integrates the strengths of various
NeRF methodologies such as hash encoding [18], fast MLP
inference, and advanced regularization of Mip-NeRF 360 [2].
Despite the advances, these state-of-the-art methods have
not fully addressed the impact of environmental lighting and
surface materials simultaneously, making it challenging to
synthesize scenes with reflective qualities accurately. This
gap indicates a potential area for future research and devel-
opment in NeRF technology, with the aim of producing even
more realistic and photorealistic renderings in challenging
lighting and material scenarios.

Rendering Complex Lighting. Achieving photorealistic
rendering typically involves replicating complex lighting
interactions and material properties. Classical approaches
utilize rasterization or ray tracing with analytical BRDFs for
this purpose. NeILF [27] represents a significant advance
for rendering high-quality images, particularly for reflec-
tive objects, but requires pre-existing ground-truth mesh
data. To address this limitation, NeILF++ [31] is developed
for the object-level, which can predict both the surface and
the appearance at the same time. Ref-NeRF [24] incorpo-
rates diffuse and specular color relative to surface normal
in the rendering process, substantially enhancing the ren-
dering quality of scenes with reflective materials. However,
both NeILF++ and Ref-NeRF struggle with scene-level ren-
dering during application because due to the inaccuracies
in getting so many surface normals and various materials.

Mirror-NeRF [30] from Zeng et al. took on the challenge of
rendering scenes containing mirrors, a task complicated by
the difficulty in discerning the inside and outside of mirrors
to create photorealistic images. Unlike previous methods,
Mirror-NeRF required access to the ground-truth mask of
the mirrors. In contrast, our approach simplifies the pro-
cess by requiring only input images and avoiding predicting
additional physical parameters.

In summary, compared with previous work on novel view
synthesis using implicit functions, our particle rendering
framework extends the NeRF-based paradigm to address
detailed lighting and material effects in rendered images.
We distinguish ourselves as the first to concurrently model
incident and outgoing radiance within an implicit neural
framework, marking a significant advancement in the field
of photorealistic rendering.

3. Approach
In this paper, our goal is to design a renderer that is sensitive
to incident and outgoing light and can generate high-fidelity
images from novel views, given multi-view images with
calibrated cameras. In this section, we elaborate on the
details of our proposed framework. As outlined previously,
our PR consists of three phases: estimating outgoing light
field, distilling incident light field, and implicit rendering.

Definition of a Particle. Formally, we define a particle
as one of the minimal units that receives and emits light in
a 3D scene. For simplicity, it is geometrically equal to a
point sampled in the NeRF [17], which usually indicates the
points around the surface of the objects. The same multi-
stage sampling strategy as NeRF is adopted to select particles
for each ray. In contrast to the sampled points in NeRF that
only emit outgoing light, our particle takes into account both
incident and outgoing light during rendering.

3.1. Outgoing Light Field

The first phase focuses on optimizing implicit functions to
predict the outgoing light color o of any particle at 3D loca-
tion x and direction d, which is also the objective of NeRF
[17]. Since vanilla NeRF is not efficient in both training and
rendering compared to subsequent methods [5, 8, 10, 22, 29],
we adopt the recently widely used method called Nerfacto
[22] as our backbone. Nerfacto shares the same principle
and pipeline as NeRF, but it is significantly more efficient in
representing the scene as continuous implicit functions with
the introduction of more advanced techniques [2, 18]. These
implicit functions map a 3D coordinate x and a 2D direction
d to the density σ and the outgoing light o, i.e.:

σ, eo = Fo(x), o = O(eo,d) (1)

where eo is the embedding for outgoing light that represents
the extracted feature. Fo(x) and O(eo,d) are trained by
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Figure 2. Overview of our proposed Particle Rendering. There are three phases: (a) Outgoing Light Field. we optimize a neural outgoing
light field using the principle of NeRF [17], which allows us to predict the initial emitted light color and embedding of all particles. (b)
Incident Light Field. We then distill the incident light and embedding out via the frozen volume rendering of (a). (c) Implicit Rendering.
We concatenate the basic light embeddings ei and eo as representations of the ray and render them to the final color of the pixels. The brown
and green arrows indicate the outgoing and incident direction, respectively.

minimizing the volume rendering loss between the rendered
and input pixel colors. Specifically, for each camera ray r,
we sample N particles along the ray and accumulate the
color Cv(r) using volume rendering:

Cv(r) =

N∑
n=1

wnon,

wn = Tn(1− exp(−σnδn)),

Tn = exp(−
n−1∑
j=1

σjδj), (2)

where Tn is the transmittance, δn is the distance between
the sample particles, wn indicates the weight during color
rendering, and σn,on are the predicted density and outgoing
light color in the sample location x. The loss function is
defined as:

Lo =
∑
r∈R

||Cv(r)−Cgt(r)||2, (3)

where R denotes the set of rays casted from camera and
Cgt(r) is the ground truth color. Through optimizing this
loss, the implicit functions learn to map spatial locations and
viewing directions to outgoing light for novel views.

3.2. Incident Light Field

The next phase aims to predict the incident light i of each
particle at location x along the incident direction ω. Inspired

by the outgoing radiance field, we adopt implicit functions
Fi and I to obtain the incident embedding ei and incident
light i, respectively:

ei = Fi(x), i = I(ei, ω). (4)

Distillation. To guide the learning process, the rendered
color Cv(t) along incident ray is treated as the teacher
iteacher, where t = (x,−ω) denotes the ray at the same
particle location while in the opposite direction of incident
light −ω. The predicted incident light i plays the role of
the student istudent. In other words, we can distill the inci-
dent light field from the learned outgoing light field. This
reference is established via volume rendering as Eq. 2. We
introduce the distillation loss Li, defined by:

Li = M(t) · ||iteacher − istudent||2

= M(t) · ||Cv(t)− i||2.
(5)

Here, M(t) signifies the importance assigned to the inci-
dent ray t, and the loss constitutes the squared square error
between the predicted and referenced rendering color.

Incident Direction. The indiscriminate sampling of par-
ticles across all spatial and angular coordinates frequently
yields sub-optimal results, a consequence of the generaliza-
tion limitations of volume rendering for significantly dif-
ferent locations and directions. We thus anticipate that the
incident direction of the target particle x should point to



another randomly selected particle x′ rather than towards a
random point in the scene, i.e.:

ω =
x− x′

||x− x′||2
. (6)

Selecting these incident directions is more efficient because
the incident light of a particle is exactly from the outgoing
light of another group of particles.

Incident Weight. Since the outgoing light field is opti-
mized only on observed camera rays, its rendering quality
limits across various other positions and orientations. To
address this under-fitting issue, we introduce a metric, called
Certainty Score, for each incident light, assessing the relia-
bility of rendered rays, and refining the distillation process.
The metric for an incident ray t quantifies the confidence
coefficient in rendering the teacher iteacher, formulated as:

M(t) =

N∑
n=1

w2
n. (7)

The weight of the n-th particle during volume rendering, wn,
is expressed in Eq. 2. It is easy to see that M(t) is in the
range of [0, 1]. This proposed certainty score is then used
as the weight of the incident rays in Eq. 5. This metric is
straightforward yet effective in improving the quality of dis-
tillation. There is a close linear relationship between M(t)
and the variance of wn. Therefore, a higher score implies
a more concentrated weight distribution, which suggests a
more reliable rendering color.

3.3. Implicit Rendering

The final phase aggregates the estimated incident and out-
going light fields to produce the rendered images. Previous
approaches such as NeILF [27] usually use a physically-
based rendering to transform the outgoing light to incident
light through the Disney BRDF [4]. In computer graphics,
the explicit rendering equation [11] that considers incident
light is represented as:

o′ =
∑
ω∈Ω

b(x, r, ω)I(Fi(x), ω)(ω · n), (8)

where Ω is the set of incident directions for particle x, o′ is
the physical outgoing light, b(x, r, ω) is the BRDF value for
incident direction ω and outgoing direction r, and n is the
normal direction.

The difficulty is that we must first predict precise normal
directions and BRDF material parameters, which is chal-
lenging at the scene level [31]. Furthermore, computing the
incident light from all possible directions takes too much
time and memory. Since we have already captured all shape
and appearance information of the particle via the incident

and outgoing embedding, it becomes apparent to fuse them
and implicitly predict the final image colors via an MLP.

Consequently, we propose the final implicit function as
our particle renderer, which directly combines incident and
outgoing light embeddings to predict RGB colors, skipping
explicit reconstruction of physical properties. Specifically,
for each particle sampled along a camera ray, we extract
embeddings ei, eo from incident and outgoing light fields
using the encoder networks Fi,Fo. The embeddings are
then concatenated and fed into an MLP Fp to predict ray
color:

Cp(r) = Fp(e
1
i , e

1
o, e

2
i , e

2
o, ..., e

N
i , eNo ). (9)

The loss function of implicit rendering is the mean square
error between the rendered color and the ground truth given
by:

Lp =
∑
r∈R

||Cp(r)−Cgt(r)||2. (10)

Our implicit function for rendering provides a learnable
mapping from incident and outgoing light to final pixel col-
ors tailored to the scene. Intuitively, the model learns to
select and combine relevant illumination and material interac-
tions implicitly for accurate view synthesis. Our aggregation
approach has several benefits. First, it avoids challenging
and time-consuming intermediate predictions of normals
and BRDFs. Second, the embeddings provide bottlenecks
that compress the 4D radiance fields into informative global-
scene representations. Finally, the implicit model learns
specialized mappings per scene that are adapted to lighting
and materials.

Training Losses. The final training goal is optimizing the
following equation:

L = λo · Lo + λi · Li + λp · Lp, (11)

where λo, λi, and λp controls the weights of outgoing, inci-
dent and implicit rendering loss respectively. The implicit
functions that need to be trained are Fo,O,Fi, I, and Fp.

Our PR pipeline provides a novel solution to model com-
plex light transport for high-fidelity view synthesis. The
outgoing radiance field captures geometric and emissive
properties. The incident field represents the incident illu-
mination. Finally, the aggregator combines these to render
images with realistic lighting effects suitable for scenes with
complex material and lighting environment.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments to evaluate our PR
framework against existing state-of-the-art approaches on
the indoor and outdoor datasets: 360 Dataset [1], and our col-
lected 360 reflective Dataset which contains various intricate
lighting environments and reflective materials.



Evaluation Metrics. We evaluate the quality of the syn-
thesized images by reporting Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) [26],
and Learned Perceptual Image Patch Similarity (LPIPS) [32]
metrics. These metrics compare the rendered images with
the ground truth, where higher PSNR and SSIM, as well as
lower LPIPS, signify superior synthesis quality.

Implementation Details. All implicit functions are imple-
mented by MLPs. During the estimation of the outgoing
light field, the number of particles per ray N is set to 32.
For incident light field distillation, all rendered colors along
incident directions via volume rendering are detached, and
no gradient is propagated back to outgoing implicit functions.
The maximum number of training iterations is 70,000 with a
batch size of 4096 for all three phases. At 5,000 iterations,
the distillation and implicit rendering phases are inserted
simultaneously for joint training. We set the loss weight λo,
λi, and λp to 1, 0.1, and 1, respectively. The training process
for each scene is completed within one hour and requires
only 8GB of GPU memory. Refer to our supplementary for
additional network and dataset evaluation details with regard
to the experiments.

4.2. Comparisons

Comparison on Mip-NeRF 360 Dataset. The Mip-NeRF
360 Dataset [1] is popular for its high-resolution images and
exceptional quality, capturing comprehensive 360-degree
views of the real world. This dataset has become a bench-
mark in the research field, with many recent methods, such
as Mip-NeRF [1], Mip-NeRF 360 [2], and Zip-NeRF [3]
utilizing it to evaluate performance. There are a total of
7 public-released scenes: Bicycle, Garden, Stump, Room,
Counter, Kitchen and Bonsai. We adopt the standard train
and test split. The experimental results of ours and the base-
lines are presented in the Tab. 1. Ours achieves the best
performance, with a 0.47dB improvement compared to the
state-of-the-art Zip-NeRF [3]. This superiority underscores
the importance of modeling incident light, particularly in
complex environments with challenging materials. More-
over, compared to the Outgoing rendering results (Stage 1),
our method achieves significantly better performance. Ad-
ditionally, we implemented the Outgoing network with the
same number of parameters (9 M) as the Implicit rendering
(noted as Outgoing, Large Model), the performance only
slightly improved over the original Outgoing results. This
indicates that the enhanced performance of our method
is not due to an increase in parameters. The compara-
tive under-performance of other methods highlights a crucial
insight: mere extensions of NeRF are not adequate to cap-
ture the nuanced lighting of real-world settings. Note that
Nerfacto [22] runs without pose optimizer and appearance
embedding for best evaluation performance.

Comparison on 360 Reflective Dataset. To further under-
score the capabilities of our approach, we conduct extensive
experiments in our collected dataset: 360 reflective Dataset.
This dataset which poses greater challenges due to its com-
plexity, comprises eight real-world scenes characterized by
intricate lighting and diverse materials. These scenes feature
elements such as multiple light sources, reflective flooring,
and mirrors. Among them, four scenes are sourced from
the ScanNet dataset [7], a large-scale resource tailored for
indoor settings that integrates high-quality color imagery
with economical geometry. One scene is selected from the
Nerfstudio [22] dataset. Additionally, two derived from
Mirror-NeRF [30] are notable for the prominent inclusion
of large mirrors in the room centers, while the remaining
one scene is captured by our own. There lacks a fixed image
resolution and number for each scene of the dataset, with
resolutions ranging from 640× 480 to 1, 920× 1, 080 and
numbers from 100 to 600. We employ the same split as the
Mip-NeRF 360 Dataset to every 8th frame for testing and the
rest for training. The results of the experiment are detailed in
Tab. 1. Ours achieved significantly higher performance than
all state-of-the-art methods (1.56 dB improvement), which
demonstrates the substantial benefits of considering both
incident and outgoing light fields in complex environments.

Qualitative Comparisons. We also provide a qualita-
tive demonstration of the performance of our proposed PR
method compared to other baseline approaches in both in-
door and outdoor scenes. These comparative results are
illustrated in Fig. 3 and Fig. 4. A key strength of our PR
lies in its exceptional sensitivity to intricate lighting condi-
tions and a diverse range of materials. This sensitivity is
particularly evident in environments where complex inter-
plays of light are present or where materials with unique
reflective or absorptive properties are encountered. For ex-
ample, in the Poster scene of Fig. 4, there is a glass which
reflects the background light when viewing in different di-
rections. Nerfacto [22] cannot properly deal with the case,
thus rendering a plain light effect. Ref-NeRF [24] also does
not perform well due to their strict requirement of surface
normal. . Compared to other existing methods, PR consis-
tently exhibits superior performance and is adept at handling
scenarios that pose significant challenges due to their com-
plexity of lighting and material diversit. Ours successfully
renders the enriching light in the surface of the reflective
objects. This performance advantage is a testament to the
efficacy of our approach in accurately simulating the intrica-
cies of real-world lighting and material interactions, setting
a new standard in the field of particle rendering.

4.3. Ablation Studies

There are a variety of different approaches to achieve our
incident distillation and light aggregation. In the following
experiments, we analyze the influence of different modules



Table 1. Comparison on the Mip-NeRF 360 dataset and our collected Reflective 360 dataset. All evaluated scenes contain complicated
reflective surfaces or challenging lighting environments.

Methods MipNeRF 360 Reflective 360
PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Instant-NGP [18] 23.94 0.641 0.478 23.02 0.824 0.398
NeRF [17] 24.85 0.659 0.426 23.72 0.837 0.342

Mip-NeRF [1] 25.12 0.672 0.414 26.98 0.834 0.274
Nerfacto [22] 27.98 0.800 0.291 26.91 0.846 0.288

3D Gaussian Splatting [12] 28.96 0.859 0.186 27.62 0.857 0.260
Ref-NeRF [24] 28.35 0.843 0.218 27.86 0.864 0.247

Mip-NeRF 360 [2] 29.23 0.846 0.208 27.44 0.855 0.262
Zip-NeRF [3] 30.08 0.877 0.170 28.63 0.868 0.235

Ours (Outgoing) 28.00 0.809 0.279 27.26 0.851 0.288
Ours (Outgoing, Large Model) 28.14 0.821 0.270 27.33 0.854 0.275

Ours (Outgoing + Incident) 30.55 0.891 0.150 30.19 0.890 0.202

Garden

Room

Bicycle

Counter

GT Mip-NeRF	360 OursZip-NeRF

television

bench

metalware

ceramic

Scenes Objects

Figure 3. Qualitative comparisons on the 360 Dataset. We visualize two indoor scenes and two outdoor scenes, including the Garden, Room,
Bicycle, and Counter. We selected and enlarged reflective objects (ceramic, television, bench, and metalware) for better demonstration.

to prove the efficacy of our proposed solutions for obtaining
incident light fields and combining them into the final images.
The experimental results are presented in Tab. 2.

The Effect of Incident Directions. Determining the inci-
dent directions of the particles presents multiple options. A
naive approach is to randomly select directions in all 360
degree directions despite low effectiveness, as shown in
Fig. 5(a). Physically-based methods typically first obtain the
normal direction of the surface [31] and then sample the di-
rections within the corresponding hemisphere. However, this
approach faces two significant challenges: it is difficult to ac-
curately predict normal directions, as illustrated in Fig. 5(b).
In contrast, our proposed method utilizes particle-to-particle

incident directions as Eq. 6. This strategy eliminates the
need to predict additional physical parameters and improve
the effective of distillation, as shown in Fig. 5(c). We com-
pared these two strategies to determine the incident direction
on the Reflective 360 dataset as shown in Row 1 ∼ 3, Tab. 2.
Random incidents yield the poorest results, while physical
incidents are slightly better. In comparison, our particle-to-
particle incidents yield the best outcomes.

The Effect of Incident Weights. We conducted an experi-
ment in which we eliminated the incident weighting to assess
the impact of incident weights. The experiment results in
Row 3 of Tab. 2 shows that assigning a weight to each in-
cident ray using Eq. 7 can help to filter out uncertain cases
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Figure 4. Qualitative comparisons on the Reflective 360 Dataset. We visualize four indoor scenes, including the Poster, Market, Lounge, and
Chamber. We selected and enlarged the reflective objects (glass, shadow, mirror, and floor) for a better demonstration.
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Figure 5. Incident directions of random, physically-based and our
particle-to-particle strategies. The normal direction of the former
must be predicted initially, whereas our approach does not require
this step and is more efficient.

during distillation, resulting in an improvement of the PSNR
metric by 1.28 dB.

The Effect of Implicit Rendering. Finally, we validate
the importance of implicit rendering, incident light field, and
outgoing light field. We remove all outgoing embeddings
F(e1i , e

2
i , ..., e

N
i ) or incident embeddings F(e1o, e

2
o, ..., e

N
o )

to render novel views. An interesting observation is that im-
plicit rendering with only outgoing incident embeddings also
achieved satisfactory performance in Row 6 of Tab. 2, which
demonstrates the potential of implicit function in render-
ing novel-view images. We implement an explicit rendering,
following NeILF++ [31], which additionally predicts the nor-
mal directions and BRDF parameters. However, the PSNR
is only 27.25 dB, demonstrating the difficulty in predict-
ing physical parameters. For explicit rendering, we sample
128 incident light for each particle, GPU memory usage
reaches 20 GB, and the rendering speed for image resolution

at 960× 540 is around 10 seconds per image, which is 20×
slower compared to our implicit rendering at 2 FPS.

No. Method PSNR ↑ SSIM ↑ LPIPS ↓
1 PR 30.19 0.890 0.202
2 PR w/ random incidents 28.02 0.863 0.265
3 PR w/ physical incidents 28.57 0.870 0.247
4 PR w/o incident weighting 28.91 0.873 0.246
5 PR w/o outgoing field 28.01 0.854 0.274
6 PR w/o incident field 28.83 0.865 0.236
7 PR w/ explicit rendering [31] 27.25 0.852 0.283

Table 2. Ablation studies on Reflective 360 Dataset to validate the
effect of incident direction, weighting and implicit rendering.

5. Conclusion

In this paper, we introduce a new implicit rendering frame-
work for novel view synthesis, which is especially suitable
for complex lighting environments and multiple reflective
materials. Instead of attempting to create a more accurate
representation of the physically-based rendering process,
we follow the trend of implicit functions in 3D vision and
proposed implicit functions for rendering images. We first
extract the outgoing light field using the NeRF, then dis-
till the incident light field, and finally directly render the
pixel color via the final implicit function. The results are
surprisingly better than those of the state-of-the-art meth-
ods, demonstrating the importance of incident light during
rendering and the potential of implicit rendering.
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