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ABSTRACT

Reward learning plays a pivotal role in Reinforcement Learning from Human
Feedback (RLHF), ensuring the alignment of language models. The Bradley-
Terry (BT) model stands as the prevalent choice for capturing human preferences
from datasets containing pairs of chosen and rejected responses. In preference
modeling, the focus is not on absolute values but rather on the reward difference
between chosen and rejected responses, referred to as preference strength. Thus,
precise evaluation of preference strength holds paramount importance in prefer-
ence modeling. However, an easily overlooked factor significantly affecting pref-
erence strength measurement is that human attitudes towards two responses may
not solely indicate a preference for one over the other and ties are also a common
occurrence. To address this, we propose the adoption of the generalized Bradley-
Terry model – the Bradley-Terry model with ties (BTT) – to accommodate tied
preferences, thus leveraging additional information. We prove that even with the
access to the true distributions of prompt and response, disregarding ties can lead
to a notable bias in preference strength measurement. Comprehensive experi-
ments further validate the advantages of incorporating ties in preference model-
ing. Notably, fine-tuning with BTT significantly outperforms fine-tuning with BT
on synthetic preference datasets with ties, labeled by state-of-the-art open-source
LLMs.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ziegler et al., 2019;
Ouyang et al., 2022) has played a pivotal role in aligning large language models (LLMs) (Kenton
et al., 2021), enhancing specific capabilities of LLMs in various fields, such as summarization (Sti-
ennon et al., 2020), coding (Gao et al., 2023), and medical assistance (Moor et al., 2023). A crucial
component of the RLHF process is the reward model, which serves as the primary mechanism for
integrating human preferences and feedback into the learning process (Wang et al., 2024). The re-
ward model guides the optimization procedure of RLHF towards objectives aligned with human
preferences (Kaufmann et al., 2023). Therefore, the accuracy of the reward model greatly affects
or even determines the effectiveness of alignment with human preferences. Moreover, the direct
preference optimization (DPO) method (Rafailov et al., 2024) utilizes LLMs to implicitly represent
the reward model through mathematical transformations, bypassing the complex RL optimization
phase and focusing solely on the reward modeling phase. As a simplified alternative to RLHF, DPO
has demonstrated computational efficiency and competitive performance compared to RLHF.

To learn a reward model from human preferences, obtaining high-quality human preference data
is crucial (Wang et al., 2024), typically achieved by having human labelers annotate previously
collected data consisting of a prompt and a pair of responses (Ouyang et al., 2022; Bai et al., 2022).
Conventional approaches (Rafailov et al., 2024; Ziegler et al., 2019; Stiennon et al., 2020) often
assume that the latent human preference model follows the Bradley-Terry (BT) (Bradley & Terry,
1952) model, where the preference distribution can be expressed as:

pr (y1 ≻ y2 | x) = exp (r (x, y1))

exp (r (x, y1)) + exp (r (x, y2))
= σ(−∆r)

where r is the latent reward model, σ is sigmoid function, and ∆r = r(x, y1)−r(x, y2) is preference
strength. Consequently, human labelers are presented with only two options for each prompt x and
pair of responses y1 and y2: either y1 is preferred or y2 is preferred. However, this approach does
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not fully align with human attitudes towards preferences, as humans often perceive two responses
as ties when their rewards have very little difference. To illustrate this point, we refer to the findings
of Wang et al. (2024) due to the scarcity of preference datasets including ties. In their study, 10
different reward models are trained on Anthropic’s HH-RLHF (Bai et al., 2022) dataset assuming
the BT preference model. The mean and standard deviation of these 10 reward models can partially
reflect the real human preferences of this dataset. From the results of Wang et al. (2024), the ab-
solute value of the preference strength for a large amount of data is close to 0, indicating that the
preference difference in these cases is minimal and the pair of responses can often be considered as
ties. We provide examples of data with small absolute mean preference strength in Table 1 to further
emphasize the importance of introducing ties in preferences.

Table 1: Examples of pairs of responses with low absolute mean preference strength in the annotated
Anthropic’s HH-RLHF dataset (Wang et al., 2024).

Prompt Can you help me set up an outdoor running routine so that I can get
in shape?

Chosen Response What kind of running are you interested in?
Rejected Response Sure, what kind of program are you looking for?
Preference Strength Mean : 0.0027, Standard Deviation: 0.22

Prompt Can you tell me what the meaning and themes are of the book Oliver
Twist

Chosen Response Sure, here are some common themes, and there are a few interpretations
that scholars have proposed: - the evil and temptations of London, - the
books portray Oliver as a victim of the harsh society, - Oliver is also a
victim of his situation, - the story is an attack on

Rejected Response The meaning of the book is about the theme of being homeless and being
poor. This is an important thing in the society we live in today. When
we have children, we want them to be able to live a good life with lots of
opportunities. However, we don’t have all the resources to provide that to
them. So the book is about the struggles of poor people trying to live a life
with a family, which is difficult and sad.

Preference Strength Mean : 0.0, Standard Deviation: 0.36

Prompt I want to purchase a men’s suit, but I don’t know what I am looking
for or how to get started.

Chosen Response Sure! In what price range are you looking to spend?
Rejected Response Great, let me walk you through the process. First we’ll start with the size,

do you know your measurements?
Preference Strength Mean : 0.00019, Standard Deviation: 0.23

In this paper, we propose to model human preferences with the Bradley-Terry model with ties (BTT)
(Rao & Kupper, 1967). We demonstrate that if we blindly adopt BT as our preference model (with
the true latent preference model being BTT) can lead to significant bias in measuring preference
strength due to model mismatch. To illustrate the model mismatch problem occurring in conven-
tional preference datasets lacking ties when simply assuming the latent preference model is BT, we
first introduce a simulated preference generation procedure. Specifically, we generate two prefer-
ence datasets—one with ties and one without ties. By analyzing the maximum likelihood estimates
(MLE) based on BTT and BT preference models on these datasets respectively, we quantify the
bias in measuring preference strength due to the model mismatch. Furthermore, we show that al-
though the bias term is bounded, it can still have a substantial impact. Since most conventional
preference datasets lack ties, we propose a novel method to address the preference model mismatch
problem, which subtracts the bias term from the MLE loss function to recover the true preference
strength measurement. This method can be viewed as a variant of adaptive margin (Touvron et al.,
2023) when training the reward model and a variant of DPO with offset (ODPO) when training
DPO (Amini et al., 2024). To further demonstrate the benefit of incorporating ties in preference
modeling, we use state-of-the-art open-source LLMs to simulate human judgment and label ties in
a conventional preference dataset without ties, and then evaluate the fine-tuned models on this syn-
thetic preference dataset with ties. It is important to note that the main limitation of this paper is
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the inability to conduct experiments on real human-labeled preference datasets with ties, due to the
scarcity of such datasets and the high cost of manual annotation and evaluation. Addressing this
limitation could be considered for future work.

Main Contributions. Our contributions can be outlined as follows:

• We advocate for the inclusion of tie options when labeling preference data, aligning with
human preference habits. To the best of our knowledge, we are the first to propose the use
of BTT to model human preference.

• We derive the bias in measuring preference strength caused by model mismatch when
assuming the latent preference model is BTT. To address this, we propose a novel bias-
correction method to mitigate this bias in conventional preference datasets without ties, as
validated by comprehensive experimental results.

• We generate a synthetic preference dataset with ties, labeled by state-of-the-art open-source
LLMs, and evaluate fine-tuning with BTT and BT on this dataset. The results show that
fine-tuning with BTT consistently outperforms fine-tuning with BT.

2 RELATED WORK

The reward model plays a crucial role in RLHF, guiding LLMs towards objectives aligned with hu-
man preferences (Christiano et al., 2017; Kaufmann et al., 2023). Recent related work has addressed
various aspects of reward modeling. Wang et al. (2024) conducted a comprehensive study on reward
models, proposing a method to measure the strength of preferences within the data and introduc-
ing contrastive learning to enhance the ability of reward models to distinguish between chosen and
rejected responses. Zhu et al. (2024) analyzed reward overfitting and overoptimization problems
in RLHF, proposing to mitigate them using an iterative data smoothing method. Dai et al. (2023)
proposed training a cost model in addition to the reward model to decouple human preferences
regarding helpfulness and harmlessness.

As a simplified alternative to RLHF, DPO (Rafailov et al., 2024) has achieved significant success and
impact. The core concept of DPO involves implicitly representing the reward model using LLMs
through a clever reparameterization. Recently, there has been extensive research focused on enhanc-
ing and broadening the scope of DPO. Amini et al. (2024) propose DPO with an offset (ODPO),
where the likelihood difference between the preferred and dispreferred response must exceed an
offset value. Zhou et al. (2023) extend DPO for multiple alignment objectives by training LMs as
implicit collective reward models, combining all objectives with specific weightings. Chowdhury
et al. (2024) propose robust DPO methods to mitigate the bias introduced by noise in preference
data on average.

The preference model serves as the foundation for reflecting human feedback, with the Bradley-
Terry (BT) model (Bradley & Terry, 1952) being the most commonly used preference model in
RLHF. Indeed, various generalized models based on the BT model have been proposed to address
different scenarios, such as handling home advantage (Agresti, 2012), ties (Rao & Kupper, 1967),
multiple comparisons (Plackett, 1975; Luce, 2005), and team comparisons (Huang et al., 2006). In
particular, the Plackett-Luce (PL) model, a popular extension for handling multiple comparisons,
has also found application in RLHF (Zhu et al., 2023; Song et al., 2024).

3 PRELIMINARIES

RLHF typically comprises three phases: supervised fine-tuning (SFT), reward learning, and re-
inforcement learning. In the first phase, a pre-trained language model undergoes fine-tuning via
supervised learning on high-quality data tailored for specific tasks such as dialogue and summariza-
tion. This fine-tuning process yields the model πSFT. The second phase involves reward learning on
a preference dataset. To construct this dataset, prompts x ∼ X are fed to πSFT, generating pairs of
responses (y1, y2) ∼ πSFT(y | x). These pairs are presented to human labelers, who express prefer-
ences. Conventional preference datasets do not allow ties and require one response to be preferred
over the other, denoted as yw ≻ yl | x, where yw and yl represent the preferred and dispreferred
completions among (y1, y2), respectively. The most popular approach to modeling preference is the
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Bradley-Terry (BT) model, which assumes the human preference distribution p∗ as:

p∗ (y1 ≻ y2 | x) = exp (r∗ (x, y1))

exp (r∗ (x, y1)) + exp (r∗ (x, y2))
. (1)

where r∗(y, x) is the latent reward model which is inaccessible. Assuming access to a static dataset

of comparisons D =
{
x(i), y

(i)
w , y

(i)
l

}N
i=1

sampled from p∗, we can parametrize a reward model

rψ(x, y) and estimate the parameters via maximum likelihood. Framing the problem as a binary
classification we have the negative log-likelihood loss:

LR (rψ,D) = −E(x,yw,yl)∼D [log σ (rψ (x, yw)− rψ (x, yl))] ,

where σ is the logistic function. And the third phase is to solve the following RL problem with the
learned reward function:

max
πθ

Ex∼D,y∼πθ(y|x) [rψ(x, y)]− βDKL

[
πθ(y | x)∥πSFT(y | x)

]
, (2)

where β is a parameter controlling the deviation from the base reference policy πSFT.

DPO utilizes the fact that the optimization problem equation 2 has the closed form solution (Go
et al., 2023; Korbak et al., 2022; Peng et al., 2019; Peters & Schaal, 2007):

πr(y | x) = 1

Z(x)
πSFT(y | x) exp

(
1

β
r(x, y)

)
.

Then a clever reparameterization is applied to express the reward function in terms of its correspond-
ing optimal policy πr:

r(x, y) = β log
πr(y | x)
πSFT(y | x)

+ β logZ(x).

Applying this reparameterization to the ground-truth reward r∗ and corresponding optimal model
π∗, then substituting this reparameterization into the BT model equation 1, analogous to the reward
modeling approach, the loss function of DPO becomes:

LDPO (πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πSFT (yw | x)

− β log
πθ (yl | x)
πSFT (yl | x)

)]
.

Bradley-Terry model with ties (BTT) (Rao & Kupper, 1967) can be employed to model human
preference with ties, i.e., the two response (y1, y2) ∼ πSFT(y | x) are considered equal with respect
to the prompt x:

p∗θ (y1 = y2 | x) = (θ2 − 1) exp (r∗ (x, y1)) exp (r
∗ (x, y2))

(exp (r∗ (x, y1)) + θ exp (r∗ (x, y2))) (θ exp (r∗ (x, y1)) + exp (r∗ (x, y2)))

p∗θ (y1 ≻ y2 | x) = exp (r∗ (x, y1))

exp (r∗ (x, y1)) + θ exp (r∗ (x, y2))
(3)

where θ ≥ 1 is the parameter controlling the tendency to ties, with a larger θ indicating a higher
probability of ties occurring. It’s worth noting that when θ = 1, the BTT model is equivalent to the
BT model.

4 PREFERENCE MODELING WITH TIES

For a given reward model r, RLHF focuses not on the absolute values r(x, y1), r(x, y2) but on the
preference strength between the pair of responses (Wang et al., 2024):

∆r = r(x, y1)− r(x, y2)

In this section, we will explain that if the real preference model is BTT, but we do not provide human
labelers with the option of a tie to generate the preference dataset, the learned reward model will
exhibit significant deviation from the real reward model in measuring preference strength.

4
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4.1 PREFERENCE DATASET UNDER BTT

Since previous preference datasets do not include ties, we will first explain the simulation pro-
cess for obtaining a preference dataset without ties when assuming the preference model is BTT.
Suppose we have n samples, each consisting of a prompt and a pair of responses, denoted as
D = {

(
xi, y

1
i , y

2
i

)
}ni=1. With D available, if we assume the true preference model is BTT, we

can obtain preference datasets with and without ties using the following methods:

• Offer three options to human labelers: y1 ≻ y2, y2 ≻ y1, or y1 = y2. Then, we can derive
a preference dataset with ties DBTT from the original dataset D. We denote that DBTT =
DBT ∪ DT , where DBT = {

(
xi, y

w
i , y

l
i

)
}, ywi ≻ yli, i ∈ J ;DT = {

(
xi, y

1
i , y

2
i

)
}, y1i =

y2i , i ∈ K, and J ∪ K = {n}.

• For the ties dataset DT , ask human labelers to further specify which response is preferred,
resulting in the dataset DTN = {

(
xi, y

w
i , y

l
i

)
}, ywi ≻ yli, i ∈ K. We denote DBTTN =

DBT ∪DTN .
Assumption 4.1. Human labelers randomly label responses in ties, assigning each response an equal
probability of being preferred.

In summary, if we assume the preference model is the BTT model and provide the option for ties to
human labelers, we obtain the preference dataset with ties DBTT . By subsequently asking human
labelers to specify preferred responses within ties, we derive the preference dataset without ties
DBTTN . Therefore, we can consider conventional preference datasets without ties as DBTTN .

4.2 BIAS IN MEASURING PREFERENCE STRENGTH

Assuming we have both DBTT and DBTTN derived from D, we can illustrate how to estimate the
latent reward model using maximum likelihood estimation (MLE). Since we assume that the latent
preference model is BTT and thus obtain the dataset with ties, the most accurate log-likelihood is:

LCEBTT (r,D) =
∑

(x,yw,yl)∈DBT

log pθr(yw ≻ yl | x) +
∑

(x,y1,y2)∈DT

log pθr(y1 = y2 | x) (4)

Conventional approaches to estimate the latent reward model typically utilize DBTTN to fit the BT
model, with the log-likelihood given by:

LCEBT (r,D) =
∑

(x,yw,yl)∈DBTTN

log pr(yw ≻ yl | x) (5)

We can demonstrate that, even if we possess access to the true prompt and response distributions,
there may exist a noteworthy discrepancy between the learned and the actual reward model in mea-
suring preference strength, as illustrated by the following results.

First, we can establish the relationship between the true reward model r∗ and the learned reward
model r̂ by fully optimizing equation 5 in Theorem 4.2.
Theorem 4.2.

E
[
LCEBT (r,D)

]
≤ E

[
LCEBT (r̂, D)

]
,∀r ̸= r̂

where r̂ satisfies

pr̂(y1 ≻ y2 | x) = qθr∗(y1 ≻ y2 | x),∀x ∼ X , (y1, y2) ∼ πSFT(y | x) (6)

and
qθr (y1 ≻ y2 | x) = pθr (y1 ≻ y2 | x) + 1

2
pθr (y1 = y2 | x) (7)

Proof. By Assumption 4.1 we know that the true preference distribution without ties is qθr . There-
fore, it is equivalent to verify that:

Ex∼X ,(y1,y2)∼πSFT(y|x),(yw,yl)∼qθr∗

[
log

pr(yw ≻ yl | x)
pr̂(yw ≻ yl | x)

]
≤ 0

5
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by Jensen’s inequality we have:

E
[
log

pr(yw ≻ yl | x)
pr̂(yw ≻ yl | x)

]
≤ log

(
E
[
pr(yw ≻ yl | x)
pr̂(yw ≻ yl | x)

])
= log

(
E(x,y1,y2)

[
qθr∗(y1 ≻ y2 | x)pr(y1 ≻ y2 | x)

pr̂(y1 ≻ y2 | x)
+ qθr∗(y2 ≻ y1 | x)pr(y2 ≻ y1 | x)

pr̂(y2 ≻ y1 | x)

])
= log

(
E(x,y1,y2) [pr(y1 ≻ y2 | x) + pr(y2 ≻ y1 | x)]

)
= log

(
E(x,y1,y2) [1]

)
= 0

Theorem 4.3. Even if we have the access to the true prompt and response distributions, there can
be a bias in measuring preference strength:

∆r̂ = ∆r∗ + log

(
2θ +

(
1 + θ2

)
exp(−∆r∗)

1 + θ2 + 2θ exp(−∆r∗)

)
,∀(x, y1, y2) (8)

where ∆r = r(x, y1)− r(x, y2).

Proof Sketch: From equation 6, we can know that:

pr̂(y1 ≻ y2 | x) =pθr∗(y1 ≻ y2 | x) + 1

2
pθr∗(y1 = y2 | x)

pr̂(y2 ≻ y1 | x) =pθr∗(y2 ≻ y1 | x) + 1

2
pθr∗(y2 = y1 | x)

By subtraction, we can get:

pr̂(y1 ≻ y2 | x)− pr̂(y2 ≻ y1 | x) = pθr∗(y1 ≻ y2 | x)− pθr∗(y2 ≻ y1 | x)

Consequently, we can derive the relation between ∆r̂ and ∆r∗. Detailed proof can be found in the
appendix.

To analyze the bias term log

(
2θ+(1+θ2) exp(−∆r∗)

1+θ2+2θ exp(−∆r∗)

)
, we can observe that its sign is opposite to

∆r∗, indicating that the preference strength is attenuated due to latent preference model mismatch.
Additionally, the bias term is a sigmoid-shaped function, bounded by log( 1+θ

2

2θ ) in absolute value.
However, despite this bound, the bias term can still be substantial. As mentioned earlier, Wang et al.
(2024) trained 10 different reward models on the Anthropic’s HH-RLHF dataset (Bai et al., 2022),
and the mean preference strength of 83.6% of the data falls within the interval [−0.6, 2.94]. In this
range, the ratio between the bias term and ∆r∗ can be considerable, as depicted in Figure 1.

Figure 1: Bias term has a significant impact

6
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4.3 PREFERENCE STRENGTH BIAS CORRECTION ALGORITHM

Since conventional preference datasets typically lack ties, we propose a novel method to address
the model mismatch issue on preference datasets without ties, assuming the latent preference model
is the BTT model. We acknowledge that the right side of equation 8 is a monotonic function with
respect to ∆r∗, implying a one-to-one mapping relationship between ∆r̂ and ∆r∗. Thus, during
the optimization procedure, when obtaining the value of ∆r̂, we can treat equation 8 as a nonlinear
equation and solve for the value of ∆r∗, subsequently subtracting the bias term from the current
∆r̂. The detailed description of this method can be found in Alg. 1. We note that this method can be
viewed as a variant of DPO with an offset (ODPO) (Amini et al., 2024) when fine tuning with DPO.

Algorithm 1 Preference Strength Bias Correction
Input: Preference dataset without ties DBTTN ,
θ: Parameter of the BTT model,
rψ: Parameterized reward model with parameters ψ,
Output: ψ

1: while rψ dose not converge do
2: Calculate the current value of rψ .
3: Solve the nonlinear equation equation 8 with ∆r̂ = ∆rψ , and get the value of ∆r∗.

4: Plug ∆r = ∆rψ − log

(
2θ+(1+θ2) exp(−∆r∗)

1+θ2+2θ exp(−∆r∗)

)
into the loss function equation 5.

5: Perform optimization step for the new loss function.
6: end while
7: return ψ

5 EXPERIMENTS

In this section, we empirically demonstrate the benefits of incorporating ties in preference learning.
First, we conduct a simulation experiment to show that, when the ground truth reward function
is accessible and the preference dataset is labeled according to the BTT model, the reward model
trained with the BT model exhibits a stronger preference strength bias compared to the one trained
with the BTT model. Second, we apply Algorithm 1 to address the model mismatch problem on
conventional preference datasets without ties. Finally, we use two state-of-the-art open-source LLMs
Llama3-70b (abbreviated as Llama) (Meta, 2024) and Qwen2-72b-instruct (abbreviated as Qwen)
(Yang et al., 2024) to label whether pairs in Anthropic’s HH-RLHF dataset (Bai et al., 2022) are
tied, thereby generating a simulated preference dataset with ties. We then evaluate the fine-tuning
using BT and BTT on this dataset. We choose DPO as our fine-tuning technique because it is
an simplified and efficient alternative to RLHF and allows LLMs to be treated as implicit reward
models. We follow Rafailov et al. (2024), fine-tuning on Anthropic’s HH-RLHF dataset (Bai et al.,
2022) and consistently setting β = 0.1 for DPO. Additional experimental details can be found in
appendix.

5.1 PREFERENCE BIAS WITH THE GROUND TRUTH REWARD

In this section, we randomly generate a ground truth reward function r∗(x, y), x ∈ N+, y ∈
[0, 1, 2, 3]n, along with a preference dataset labeled by the BTT model using r∗ (with tied pairs
randomly assigned preferences). We then train two reward models, both parameterized by the same
neural network, on this dataset using the loss functions 4 and 5, respectively. These trained reward
models are denoted as rBTT and rBT . Next, we evaluate the average preference bias of these two
reward models relative to the ground truth reward under varying preference parameters θ. The pref-
erence bias difference, ∆ = |∆rBT −∆r∗|−|∆rBTT −∆r∗|, is shown in Table 2. From the results,
we observe that the preference bias of rBTT is consistently smaller than that of rBT , indicating that
the BTT model effectively reduces the preference bias with respect to the ground truth reward func-
tion, resulting in a more accurate reward model. We also find that as θ increases, the preference bias

7
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difference becomes larger, which aligns with the trends shown in Figure 1, as a larger θ in ground
truth preference model indicates a higher probability of ties occurring.

Table 2: The preference bias difference between rBT and rBTT

θ = 2 θ = 5 θ = 10
0.0206 0.0237 0.0353

5.2 DPO WITH A BIAS-CORRECTION OFFSET

We apply Alg. 1 to the conventional preference dataset without ties, Anthropic’s HH-RLHF, in order
to mitigate the bias term using a DPO reward model. It is important to note that this approach can
be viewed as a variant of the ODPO method (Amini et al., 2024), with the key difference being the
bias-correction term. We train the small Pythia-160M model (Biderman et al., 2023) for one epoch
and record the reward preference accuracy on the test set. It is also worth mentioning that we do
not evaluate Pythia-160M’s inference capability, as the model is too small to generate meaningful
responses. The experimental results are presented in Table 3. As shown, when θ = 1, the bias-
correction term is consistently zero, which essentially reduces the method to DPO, serving as our
baseline. From Table 3, we observe that all three ODPO methods, with θ ∈ {2, 5, 10}, significantly
outperform DPO, with ODPO at θ = 5 showing more than a 10% improvement in accuracy.

Table 3: Test Accuracy of DPO with a bias-Correction offset
θ = 1 θ = 2 θ = 5 θ = 10
0.5333 0.5583 0.6042 0.5958

To further validate the effectiveness of Alg 1, we fine-tuned the larger Pythia-2.8B model (Bider-
man et al., 2023) on the HH-RLHF dataset using DPO and DPO with a bias-correction offset, and
evaluated their responses using Llama and Qwen. Due to limited computing resources, we only
conducted experiments for the optimal θ, i.e., 5, as indicated in Table 3. The results, shown in
Table 4, demonstrate that our method significantly outperforms DPO, confirming the effectiveness
of the preference strength bias-correction offset. It is important to note that we provide evaluators
with the option to label ties, and Llama and Qwen may occasionally refuse to evaluate certain offen-
sive content. Therefore, we only include samples that are clearly evaluated as wins or losses when
calculating the win rate.

Table 4: Win rate of DPO with a bias-correction offset against DPO
Evaluator Llama Qwen
Win rate 0.5582 0.5370

5.3 SYNTHETIC PREFERENCE DATASETS WITH TIES

The most compelling experiment is to fine-tune two models using BT and BTT, respectively, on
a real preference dataset with ties and then compare their win rates. However, due to the lack of
human-labeled preference datasets with ties and the high cost of manual annotation and evaluation,
we use an LLM to simulate human judgment and label ties in Anthropic’s HH-RLHF dataset. We
then fine-tune Pythia-2.8B (Biderman et al., 2023) on this synthetic preference dataset with ties,
applying the BT and BTT preference models, and evaluate the responses. When using the loss func-
tion 4, we refer to this approach as TDPO. To reduce bias, we utilize Llama and Qwen, alternately
as labelers and evaluators. The two labeled preference datasets are summarized in Table 5.
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Table 5: Summary of preference datasets with ties
labeler Llama Qwen
# of tied samples 847 3553

Figure 2: TDPO win rate against DPO with varying ties sample ratio in preference dataset

We observe that Anthropic’s HH-RLHF dataset contains over 160k samples, with only a small
portion labeled as ties. As a result, directly fine-tuning LLMs on the entire labeled dataset would lead
to minimal impact from the tied samples. To emphasize the importance of these tied samples, we
train DPO and TDPO on preference datasets with varying percentages of tied samples, with untied
samples randomly selected. We still only conducted experiments for the optimal θ, i.e., 5, due to
limited computing resources. The win rate results are presented in Figure 2. From the results, we
observe that, regardless of the labeler and evaluator, the win rate of TDPO increases as the number
of tied samples increases, and it significantly exceeds 50% when only tied samples are present. This
demonstrates that incorporating BTT with tied samples improves the quality of the trained reward
model. Moreover, as shown in Figure 2, when Llama is the labeler and Qwen is the evaluator, the
win rate of TDPO consistently exceeds 50% when the tie ratio is greater than 0.2. In contrast, when
Qwen is the labeler and Llama is the evaluator, TDPO’s performance is slightly lower. This may be
due to Qwen’s less strict criteria for ties, resulting in an overabundance of tied samples.

6 DISCUSSION

In this paper, we introduced the concept of incorporating ties into preference modeling. Specifically,
we applied the generalized Bradley-Terry model—the Bradley-Terry model with ties—to more ac-
curately capture human preferences. Additionally, we analyzed the bias in measuring preference
strength due to model mismatch and proposed a novel method to mitigate this bias. Extensive ex-
periments demonstrate the benefits of considering ties in preference modeling. A limitation of this
work is the absence of real human-annotated preference datasets with ties, as collecting such data is
both expensive and time-consuming. Future work involving human-labeled preference datasets with
ties could significantly improve the effectiveness of preference modeling.
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