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ABSTRACT

Neural networks lack adversarial robustness – they are vulnerable to adversarial
examples that through small perturbations to inputs cause incorrect predictions.
Further, trust is undermined when models give miscalibrated uncertainty estimates,
i.e. the predicted probability is not a good indicator of how much we should trust
our model. In this paper, we study the connection between adversarial robustness
and calibration on four classification networks and datasets. We find that the
inputs for which the model is sensitive to small perturbations (are easily attacked)
are more likely to have poorly calibrated predictions. Based on this insight, we
examine if calibration can be improved by addressing those adversarially unrobust
inputs. To this end, we propose Adversarial Robustness based Adaptive Label
Smoothing (AR-AdaLS) that integrates the correlations of adversarial robustness
and uncertainty into training by adaptively softening labels for an example based on
how easily it can be attacked by an adversary. We find that our method, taking the
adversarial robustness of the in-distribution data into consideration, leads to better
calibration over the model even under distributional shifts. In addition, AR-AdaLS
can also be applied to an ensemble model to further improve model’s calibration.

1 INTRODUCTION

The robustness of machine learning algorithms is becoming increasingly important as ML systems
are being used in higher-stakes applications. In one line of research, neural networks are shown
to lack adversarial robustness – small perturbations to the input can successfully fool classifiers
into making incorrect predictions (Szegedy et al., 2014; Goodfellow et al., 2014; Carlini & Wagner,
2017b; Madry et al., 2017; Qin et al., 2020b). In largely separate lines of work, researchers have
studied uncertainty in model’s predictions. For example, models are often miscalibrated where the
predicted confidence is not indicative of the true likelihood of the model being correct (Guo et al.,
2017; Thulasidasan et al., 2019; Lakshminarayanan et al., 2017; Wen et al., 2020; Kull et al., 2019).
The calibration issue is exacerbated when models are asked to make predictions on data different
from the training distribution (Snoek et al., 2019), which becomes an issue in practical settings where
it is important that we can trust model predictions under distributional shift.

Despite robustness, in all its forms, being a popular area of research, the relationship between these
perspectives has not been extensively explored previously. In this paper, we study the correlation
between adversarial robustness and calibration. We discover that input data that are sensitive to small
adversarial perturbations (are easily attacked) are more likely to have poorly calibrated predictions.
This holds true on a number of network architectures for classification and on all the datasets that we
consider: SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009)
and ImageNet (Russakovsky et al., 2015). This suggests that the miscalibrated uncertainty estimates
on those adversarially unrobust data greatly degrades the performance of a model’s calibration.
Based on this insight, we hypothesize and study if calibration can be improved by giving different
supervision to the model depending on adversarial robustness of each training data.

To this end, we propose Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLS)
that integrates the correlations of adversarial robustness and calibration into training by adaptively
smoothing the training labels conditioned on how unrobust an input is. Our method improves label
smoothing (Szegedy et al., 2014) by explicitly teaching the model to differentiate the training data
according to their adversarial robustness and then adaptively smooth their labels. By giving different
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supervision to the training data, our method leads to better calibration over the model without an
increase of latency during inference. In particular, since adversarially unrobust data can be considered
as an outlier of the underlying data distribution (Carlini et al., 2019), our method, by taking the
adversarial robustness of the in-distribution data into consideration during training, can even greatly
improve model’s calibration on held-out shifted data. Further, we propose “AR-AdaLS of Ensemble”
to combine our AR-AdaLS and deep ensembles (Lakshminarayanan et al., 2017), which is the
state-of-the-art method especially under distributional shift (Snoek et al., 2019), to further improve
the calibration performance for shifted data. Last, we find an additional benefit of AR-AdaLS is
improving model stability (i.e., decreasing variance), which is valuable in practical applications
where changes in predictions across runs (churn) is problematic and deploying ensembles is too
costly (Milani Fard et al., 2016).

In summary, our main contributions are as follows:

• Relationship among Robustness Metrics: We find a significant correlation between adversar-
ial robustness and calibration: inputs that are unrobust to adversarial attacks are more likely to
have poorly calibrated predictions.
• Algorithm: We propose AR-AdaLS to automatically learn how much to soften the labels

of training data based on their adersarial robustness. Further, we introduce “AR-AdaLS of
Ensemble” to show how to apply AR-AdaLS to an ensemble model.
• Experimental Analysis: On CIFAR-10, CIFAR-100 and ImageNet, we find that AR-AdaLS

is more effective than previous label smoothing methods in improving calibration, particularly
for shifted data. Further, we find that while ensembling can be beneficial, applying AR-AdaLS
to adaptively calibrate ensembles offers further improvements over calibration.

2 RELATED WORK

Uncertainty Estimates How to better estimate a model’s predictive uncertainty is an important
research topic, since many models with a focus on accuracy may fall short in predictive uncertainty.
A popular way to improve a model’s predictive uncertainty is to make the model well-calibrated, e.g.,
post-hoc calibration by temperature scaling (Guo et al., 2017), and multiclass Dirichlet calibration
(Kull et al., 2019). In addition, Bayesian neural networks, through learning a posterior distribution
over network parameters, can also be used to quantify a model’s predictive uncertainty, e.g., Graves
(2011); Blundell et al. (2015); Welling & Teh (2011). Dropout-based variational inference (Gal &
Ghahramani, 2016; Kingma et al., 2015) can help DNN models make less over-confident predictions
and be better calibrated. Recently, mixup training (Zhang et al., 2018) has been shown to improve
both models’ generalization and calibration (Thulasidasan et al., 2019), by preventing the model from
being over-confident in its predictions. Despite the success of improving uncertainty estimates over
in-distribution data, Snoek et al. (2019) argue that it does not usually translate to a better performance
on data that shift from the training distribution. Among all the methods evaluated by Snoek et al.
(2019) under distributional shift, ensemble of deep neural networks (Lakshminarayanan et al., 2017),
is shown to be most robust to dataset shift, producing the best uncertainty estimates.

Adversarial Robustness On the other hand, machine learning models are known to be brittle (Xin
et al., 2017) and vulnerable to adversarial examples (Athalye et al., 2018; Carlini & Wagner, 2017a;b;
He et al., 2018). Many defenses have been proposed to improve model’s adversarial robustness (Song
et al., 2017; Yang et al., 2019; Goodfellow et al., 2018), however are further attacked by more
advanced defense-aware attacks (Carlini & Wagner, 2017b; Athalye et al., 2018). Recently, Carlini
et al. (2019); Stock & Cissé (2018) define adversarial robustness as the minimum distance in the
input domain required to change the model’s output prediction by constructing an adversarial attack.
The most recent work that is close to ours, Carlini et al. (2019), makes the interesting observation that
easily attackable data are often outliers in the underlying data distribution and then use adversarial
robustness to determine an improved ordering for curriculum learning. Our work, instead, explores
the relationship between adversarial robustness and calibration. In addition, we use adversarial
robustness as an indicator to adaptively smooth the training labels to improve model’s calibration.

Label Smoothing Label smoothing is originally proposed in Szegedy et al. (2016) and is shown to
be effective in improving the quality of uncertainty estimates in Müller et al. (2019); Thulasidasan
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Table 1: Network architecture and accuracy used for each dataset.
Dataset SVHN CIFAR-10 CIFAR-100 ImageNet

Network CNN-7 ResNet-29 v2 Wide ResNet-28-10 v2 ResNet-101 v1
Accuracy 95.0% 91.4% 79.2% 77.7%

et al. (2019). Instead of minimizing the cross-entropy loss between the predicted probability p̂ and
the one-hot label p, label smoothing minimizes the cross-entropy between the predicted probability
and a softened label p̃ = p(1 − ε) + ε

Z , where Z is the number of classes in the dataset and ε is a
hyperparameter which controls the degree of the smoothing effect. Our work makes label smoothing
adaptive and incorporates the correlation with adversarial robustness to further improve calibration.

3 CORRELATIONS BETWEEN ADVERSARIAL ROBUSTNESS AND CALIBRATION

To explore the relationship between adversarial robustness and calibration, we first introduce the
metrics to evaluate each of them. We use arrows to indicate which direction is better.

Adversarial robustness ↑ Adversarial robustness measures the minimum distance in the input
domain required to change the model’s output prediction by constructing an adversarial attack (Carlini
et al., 2019; Stock & Cissé, 2018). Specifically, given an input x and a classifier f(·) that predicts
the class for the input, the adversarial robustness is defined as the minimum adversarial perturbation
δ that enables f(x + δ) 6= f(x). Following the work (Carlini et al., 2019), we construct the `2
based CW attack (Carlini & Wagner, 2017b) and then use the `2 norm of the adversarial perturbation
‖δ‖2 to measure the distance to the decision boundary. Therefore, a more adversarially robust input
requires a larger adversarial perturbation to change the model’s prediction.

Calibration metric ↓ Model’s calibration measures the alignment between the predicted probability
and the accuracy. Well calibrated uncertainty estimates convey the information about how much
we should trust a model’s prediction. We follow the widely used expected calibration error (ECE)
to measure the calibration performance of a network (Guo et al., 2017; Snoek et al., 2019). To
compute the ECE, we need to first divide all the data into K buckets sorted by their predicted
probability (confidence) of the predicted class. Let Bk represent the set of data in the k-th confidence
bucket. Then the accuracy and the confidence of Bk are defined as acc(Bk) = 1

|Bk|
∑
i∈Bk

1(ŷi =

yi) and conf(Bk) = 1
|Bk|

∑
i∈Bk

p̂ŷii , where ŷ and y represent the predicted class and the true
class respectively, and p̂ŷ is the predicted probability of ŷ. The ECE is then defined as ECE =∑K
k=1

|Bk|
N |acc(Bk)− conf(Bk)|, where N is the number of the data.

3.1 CORRELATIONS

In this section, we perform experiments on the clean test set across four datasets: SVHN (Netzer et al.,
2011), CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009) and ImageNet (Russakovsky
et al., 2015) with different networks, whose architecture and accuracy are shown in Table 1. We refer
to these models as “Vanilla” for each dataset in the following discussion. The details for training each
vanilla network are included in Section A in the Appendix.

To explore the relationship between adversarial robustness and calibration, we start with the relation-
ship between adversarial robustness and confidence together with accuracy. Specifically, we rank the
input data according to their adversarial robustness and then divide the dataset into R equally-sized
subsets (R = 10 used in this paper). For each adversarial robustness subset, we compute the accuracy
and the average confidence score of the predicted class. As shown in the first row in Figure 1, we
can clearly see that both accuracy and confidence increase as adversarial robustness of the input
data, and confidence is consistently higher than accuracy in each adversarial robustness subset across
four datasets. This indicates that although vanilla classification models achieve the state-of-the-art
accuracy, they tend to give over-confident predictions, especially for those unrobust data.

Based on this, to explore the relationship between adversarial robustness and calibration, we compute
the expected calibration error (ECE) in each adversarial robustness subset, shown in the bottom row
of Figure 1. In general, we find that those unrobust data in lower adversarial robustness levels are
more likely to be over-confident and less well calibrated (larger ECE). For more robust examples,
there is a better alignment between their confidence and accuracy, and the ECE over those examples
is close to 0. On larger-scale ImageNet, while we still see the general trend that less robust examples
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Figure 1: Correlations between adversarial robustness and uncertainty estimates on the clean test set
on SVHN, CIFAR-10, CIFAR-100 and ImageNet. Top: Accuracy and confidence of the predicted
class. Bottom: ECE and variance (lower is better)in each adversarial robustness subset. Higher
adversarial robustness level means the input are more adversarially robust (harder to attack).
are less well calibrated, we see that the least robust examples are relatively well calibrated. We
hypothesize this may be due to larger data and less overfitting.

Furthermore, we also find an interesting correlation between adversarial robustness and model
stability, which is measured by the variance of the predicted probability across 5 independent runs.
As shown in the bottom row of Figure 1, we see that those adversarially unrobust examples tend to
have a much higher variance compared to the robust across all four datasets.

4 METHOD

Based on the correlation between adversarial robustness and calibration, we hypothesize and study if
calibration can be improved by giving different supervision to the model depending on the adversarial
robustness of training data. To this end, we propose a method named Adversarial Robustness based
Adaptive Label Smoothing (AR-AdaLS), which performs label smoothing at different degrees to
the training data based on their adversarial robustness. Specifically, we sort and divide the training
data into R small subsets with equal size according to their adversarial robustness1 and then use εr to
soften the labels in each training subset Strainr . The soft labels can be formulated as:

p̃r = pr(1− εr) +
εr
Z
, (1)

where pz=yr = 1 for the correct class y and pz 6=yr = 0 for the others, pr stands for the one-hot label,
and Z is the number of classes in the dataset. The parameter εr controls the degree of smoothing
effect and allows for different levels of smoothing in each adversarial robustness subset. Generally, a
relatively larger εr is desirable for lower adversarial robustness levels such that the model learns to
make a lower confidence prediction. Instead of empirically setting the parameter εr in each adversarial
robustness subset, we allow it to be adaptively updated according to the calibration performance on
the validation set (discussed in Section 4.1). In this way, we explicitly train a network with different
supervision based on the adversarial robustness of training data.

4.1 ADAPTIVE LEARNING MECHANISM

To find the best hyperparameter ε for label smoothing, previous methods (Szegedy et al., 2016;
Thulasidasan et al., 2019) sweep ε in a range and choose the one that has the best validation
performance. However, in our setting, the number of combinations of εr increases exponentially
with the number of adversarial robustness subsets R. To this end, we propose an adaptive learning
mechanism to automatically learn the parameter εr in each adversarial robustness subset. The overall
training procedure is summarized in Algorithm 1.

First, we denote the soft label for the correct class in the r-th adversarial robustness subset as p̃z=yr .
According to Eqn. (1), we can derive:

1Note, predicted confidence is not a good indicator for splitting the training dataset as the model can easily
overfit to the training data and their predicted confidence are all close to 100%.
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Algorithm 1 Pseudocode of the training procedure for AR-AdaLS
Input: number of classes Z, number of training epochs T , number of adversarial robustness subset
R, learning rate of adaptive label smoothing α.
For each adversarial robustness training subset, we initialize the soft label as the one-hot label
p̃r,t = pr, and initialize the soft label for the correct class p̃z=yr,t = 1.
for t = 1 to T do

Minimize cross-entropy loss between soft label and predicted probability 1
R

∑R
r L(p̃r,t, p̂r,t)

for r = 1 to R do
Update p̃z=yr,t ← p̃z=yr,t − α · {conf(Svalr )t − acc(Svalr )t} . according to Eqn. (3)
Clip p̃z=yr,t to be within ( 1

Z , 1]
Update εr,t ← (p̃z=yr,t − 1) · Z

1−Z . according to Eqn. (4)
Update p̃r,t ← pr(1− εr,t) + εr,t

Z . according to Eqn. (1)
end for

end for

p̃z=yr = 1− εr +
εr
Z
. (2)

Since well-calibrated uncertainty estimates should be aligned with the empirical accuracy, we use the
calibration performance in the validation set to help update p̃z=yr for the training data. Specifically,
we first rank the adversarial robustness of the validation data and split the validation set into R
equally-sized subsets. Then, we use the difference between confidence and accuracy in the r-th
adversarial robustness validation subset conf(Svalr )−acc(Svalr ) to update the soft label for the correct
class of training data in the r-th adversarial robustness training subset Strainr ,

p̃z=yr,t+1 = p̃z=yr,t − α · {conf(Svalr )t − acc(Svalr )t} (3)

where p̃z=yr,t is the soft label of the correct class in the r-th adversarial robustness training subset at time
step t. The accuracy and the confidence of Svalr are defined as acc(Svalr ) = 1

|Sval
r |

∑
i∈Sval

r
1(ŷi = yi)

and conf(Svalr ) = 1
|Sval

r |
∑
i∈Sval

r
p̂z=ŷii , where ŷ and y is the predicted class and the true class

respectively, p̂z=ŷ denotes the the predicted probability of the predicted class. The hyperparameter
α > 0 plays a role as a learning rate to update the soft label p̃z=yr,t based on the difference between
the predicted confidence and accuracy in the valiadation set. Intuitively, if we assign a large p̃z=yr to
training data, then the network tends to make a high confidence prediction and vice versa. Therefore,
if the confidence is greater than the accuracy (conf(Svalr ) > acc(Svalr ))) in the validation set, we
should reduce p̃z=yr to teach the network to be less confident. Otherwise, we should increase p̃z=yr .
In addition, we also need to constrain p̃z=yr to be within ( 1

Z , 1] after each update as it stands for the
true probability of the correct class, where Z is the number of classes in the dataset.

For a given p̃z=yr , we can easily obtain εr by reversing Eqn. (2):

εr = (p̃z=yr − 1) · Z

1− Z
, (4)

and the soft labels for all the classes p̃r can be computed according to Eqn. (1). We update the soft
labels after each training epoch in our experiments.

Note that this adaptive learning mechanism can be easily applied to standard label smoothing without
adversarial robustness slicing (R = 1). In this case, we can replace sweeping the hyperparameter ε
with this adaptive learning method, named as “Adaptive Label Smoothing” (AdaLS). Our proposed
AdaLS and AR-AdaLS does not increase the inference time: we test AdaLS and AR-AdaLS exactly
the same as a vanilla model.

5 EXPERIMENTS

We now test our methods on both clean and shifted data for CIFAR-10, CIFAR-100 and ImageNet
for calibration. The shifted dataset (Hendrycks & Dietterich, 2019) consists of different types (19
types for CIFAR-10, 17 types for CIFAR-100 and 15 types for ImageNet) of corruptions, e.g., noise,
blur, weather and digital categories that are frequently encountered in natural images. Each type of
corruption has five levels of shift intensity, with higher levels having more corruption. For each shift
intensity, we report the results with a box plot summarizing the 25th, 50th, 75th quartiles across the
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Table 2: Ablation study of AR-AdaLS on CIFAR-100 and CIFAR100-C (corrupted). We report both
accuracy and expected calibration error, denoted by Acc and ECE for the clean test set, and cAcc
and cECE for CIFAR100-C. Arrow indicates the better direction; best calibration of single model is
bolded.

Method Vanilla Label
Smoothing

Temperature
Scaling

AR-AdaLS
(pre-compute)

AR-AdaLS
(on-the-fly)

Ensemble of
Vanilla

Acc/cAcc (↑) 79.2/52.0 78.9/51.7 79.2/52.0 79.3/52.2 79.2/52.1 81.8/55.1
ECE/cECE (↓) 6.1/18.2 2.8/16.3 4.3/14.0 2.6/14.2 2.3/13.2 2.2/10.5

Figure 2: Comparison between LS and our AR-AdaLS on the clean test set of CIFAR-10. (a) and
(b): Accuracy and confidence score of the predicted class in each adversarial robustness subset. (c):
ECE of Vanilla, LS and AR-AdaLS.

types of shift. We first test single-model approaches and then explore how our methods compose with
deep ensembles (Lakshminarayanan et al., 2017).

5.1 BASELINES

We compare our proposed AR-AdaLS with the following methods: Vanilla model that is trained
with one-hot labels, Temperature Scaling (Guo et al., 2017), label smoothing (LS) (Szegedy et al.,
2016) that softs labels by sweeping the hyperparameter ε which controls the smoothing degree in a
range to find the best hyperparameter ε, Adaptive Label Smoothing (AdaLS): we use our proposed
adaptive learning mechanism introduced in Section 4.1 to automatically learn the hyperparameter
ε rather than sweeping to find the best ε. In addition, we also report the results of Ensemble of
Vanilla (Lakshminarayanan et al., 2017) with M = 5 vanilla models independently trained with
random initialization. We will further discuss that our method is complementary to deep ensembles.
All the methods are trained with the same network architectures and training hyperparameters: e.g.,
learning rate, batch size, number of training epochs, for fair comparison. Please refer to Appendix A
for all the training details and hyperparameters.

5.2 IMPROVEMENTS OVER SINGLE MODEL

Ablation Study There are two options to compute adversarial robustness. One is “on-the-fly”: to
keep creating adversarial attacks during training, which provides precise adversarial robustness rank-
ing but at the cost of great computing time. The other is to “pre-compute” adversarial robustness by
attacking a vanilla model. This is more efficient but at the sacrifice of the precision of adversarial ro-
bustness ranking. We perform experiments on CIFAR-100 as an example to compare the performance
of AR-AdaLS based on the adversarial robustness that is “pre-computed” or “on-the-fly”.

As shown in Table 2, generating adversarial robustness “on-the-fly” helps improve the calibration
performance further for AR-AdaLS on both clean and shifted datasets compared to pre-computing
adversarial robustness. When comparing AR-AdaLS with other single-model based methods, we can
see that all models have similar accuracy on clean and shifted datasets. Both versions of AR-AdaLS
significantly improve the calibration performance over label smoothing, especially under distributional
shifts. Further, we observe that AR-AdaLS with pre-computed adversarial robustness has similar
performance as Temperature Scaling but AR-AdaLS based on more precise adversarial robustness
(“on-the-fly”) is significantly better2. In the following sections, all results related to “AR-AdaLS”
are based on pre-computed adversarial robustness for efficiency. This is because our main target

2Similarly, we find that pre-computed AR-AdaLS improves on LS and performs nearly as well as TS on
CIFAR-10 and ImageNet. We also see similar improvements from on-the-fly AR-AdaLS on CIFAR-10, but we
did not run on-the-fly AR-AdaLS for ImageNet due to the computational intensity.
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Figure 3: ECE on clean test and shifted data on CIFAR-10 and ImageNet. For each shift intensity, we
show report a box plot summarizing the 25th, 50th, 75th quartiles across 19 shift types on CIFAR10-C
and 15 shift types on ImageNet-C. The error bars indicate the min and max value across different
shift types. Similar figures for Accuracy are shown in Figure 8 in Appendix and we observe that all
the single-model based methods have comparable accuracy while ensembles achieve higher accuracy.

is to show that the idea of differentiating the training data based on their adversarial robustness is
promising to improve model’s calibration rather than pushing the results to the best.

Visualization of improvement over label smoothing Since our proposed AR-AdaLS is built
upon label smoothing (LS), in Figure 2 we visualize the effect of label smoothing (LS) and our
AR-AdaLS. Comparing Figure 2 (a) and (b). AR-AdaLS is better at calibrating the data than label
smoothing, especially on the unrobust examples (lower adversarial robustness level). Further, we
show plots of ECE in Figure 2 (c). Both label smoothing and AR-AdaLS improve model’s calibration
over vanilla model and AR-AdaLS has the best performance among three methods. This suggests
that AR-AdaLS is better at improving calibration in unrobust regions, not just on average.

Generalization over shifted dataset Figure 3 and Table 4 summarizes the ECE for CIFAR-10
and ImageNet for both clean and shifted data with different levels of corruptions (Hendrycks &
Dietterich, 2019). On the clean test set, all non-vanilla methods achieve comparable low values
of ECE. When the intensity of shift increases, AR-AdaLS significantly outperforms other single-
model based methods with the lowest ECE. Contrasting with LS and AdaLS, we see AR-AdaLS
benefits greatly from the adversarial robustness slicing. As a result, our model learns to give smaller
soft labels of the correct class to those adversarially unrobust training data, which can also be
considered as outliers of the underlying data distribution (Carlini et al., 2019). Therefore, when
tested on the shifted data that deep networks have been shown to produce pathologically over-
confident predictions (Hendrycks & Dietterich, 2019), our model correctly learns to make a relatively
lower confidence prediction, resulting in a better calibration performance. When we compare to
an ensemble of five Vanilla models, we can see that AR-AdaLS achieves comparable calibration
performance on CIFAR-10 and the ensemble is better under highly shifted data on ImageNet.

Figure 4: ECE on CIFAR-10 and CIFAR-10-C of AR-AdaLS
with varying number of adversarial robustness subset R.

Sensitivity analysis To analyze the
effect of the number of adversarial
robustness subset R in AR-AdaLS,
we plot the calibration error of
AR-AdaLS with a varying R on
the clean CIFAR-10 and corrupted
CIFAR-10-C in Figure 4. We can see
that there is a significant drop in cali-
bration error (ECE) when we increase
the number of adversarial robustness
subset R from 1, where R = 1 de-
notes AdaLS. Further, the calibration error is robust when R is chosen within the range [4, 16].
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Figure 5: Histogram of predictive entropy on out-of-distribution data. Each model is trained on
CIFAR-10 and tested on CIFAR-100.

Table 3: Mean of variance (×10−2) across 19 types of shift for CIFAR-10-C and 15 types of shift for
ImageNet-C. The best model is shown in bold.

Dataset CIFAR-10-C ImageNet-C

Shift Intensity 1 2 3 4 5 1 2 3 4 5

Vanilla 7.85 9.69 11.2 13.1 16.0 5.28 6.39 7.37 8.23 8.29
LS 5.54 6.95 8.11 9.65 11.8 4.86 5.84 6.78 7.55 7.41

AdaLS 5.47 6.87 7.95 9.44 11.5 4.79 5.77 6.66 7.51 7.56
AR-AdaLS 4.21 5.06 5.73 6.66 8.24 4.53 5.49 6.12 6.76 6.66

Improvements on Out-of-Distribution Data We further study the performance of AR-AdaLS
when predicting on out-of-distribution (OOD) data. In Figure 5, we compare the performance of
Vanilla, Label Smoothing and AR-AdaLS by plotting the histogram of the entropy on the OOD
data (higher entropy on OOD is better). Each model is trained on CIFAR-10 dataset and then tested
on CIFAR-100 dataset. We can clearly see that AR-AdaLS significantly reduces the number of
low-entropy prediction on OOD data, which demonstrates the effectiveness of AR-AdaLS even on
fully out-of-distribution data.

Improvements over stability Since we observe in Figure 1 that the most adversarially unrobust
data are also very unstable, we test AR-AdaLS to see if it can help improve model stability, which is
of great value in practice where high variance of a model is bad for churn and deploying ensembles is
too costly (Milani Fard et al., 2016). Experiments show that AR-AdaLS can effectively reduce the
variance of a model compared to a vanilla model and label smoothing on CIFAR-10 and ImageNet.
An extensive set of results are shown in Table 3 and Figure 11 in the Appendix.

5.3 COMBINATION WITH DEEP ENSEMBLES

We now discuss if the two best models, deep ensembles and our AR-AdaLS, are complementary.
To this end, we propose the following two ways to combine them: Ensemble of AR-AdaLS: As
in Lakshminarayanan et al. (2017); Lee et al. (2015), we ensemble AR-AdaLS by training multiple
independent AR-AdaLS models with random initialization, and average their predictions at inference.

AR-AdaLS of Ensemble: Instead of computing soft labels independently for each AR-AdaLS,
we perform AR-AdaLS on the ensembled predictions, i.e., in Eqn (3) we compute confidence and
accuracy based on the average of M = 5 model predictions. Each model is then supervised with the
same soft labels. We will see this slight distinction in training is quite important.

Discussion We present the results for CIFAR-10 and ImageNet in Figure 6 and Table 4. At a high
level, we see that AR-AdaLS of Ensemble performs the best across both clean test data and all
intensities of shifted data. Looking more closely, some trends emerge: all of the ensemble methods
perform relatively well for highly shifted data (intensity 4–5), but Ensemble of AR-AdaLS performs
much worse on less shifted and clean test data. Please refer to Figure 8 in Appendix for more
extensive results on CIFAR-10 and Imagenet.

Digging deeper, we display the confidence of the predictd class and accuracy of each single model
and the corresponding ensemble models on the clean test set of CIFAR-10 and ImageNet in Figure 10
in Appendix. We can clearly see that the ensemble models generally increase accuracy and decrease
confidence compared to a single model, which results from the disagreement of the prediction of
each single model in ensembles. Therefore, naive deep ensembles can improve calibration on highly
shifted data where single-model is over-confident but can harm calibration if applied to a well-
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Figure 6: Comparison of ensembled models: ECE on both clean test data and shifted data on CIFAR-
10. For each intensity of shift, we report a box plot summarizing the 25th, 50th, 75th quartiles across
19 types of shift in CIFAR10-C. The error bars indicate the min and max value across shift types.

Table 4: Mean of ECE (×10−2) across 19 types of shift for CIFAR-10-C and 15 types of shift for
ImageNet-C. The best single model and ensemble model are shown in bold respectively.

Dataset CIFAR-10-C ImageNet-C

Shift Intensity 1 2 3 4 5 1 2 3 4 5

Vanilla 9.59 12.9 15.6 19.5 25.7 4.67 6.94 9.60 13.2 16.6
LS 4.45 7.06 9.15 12.1 17.5 2.38 4.62 7.39 11.4 15.1

AdaLS 4.06 6.65 8.85 11.7 16.5 2.37 4.48 7.18 11.1 14.6
AR-AdaLS 2.57 4.09 5.64 7.85 11.9 2.44 3.58 5.80 9.33 12.9

Ensemble of Vanilla 2.47 4.13 5.73 8.03 12.1 2.77 2.51 2.87 4.64 8.26
Ensemble of LS 2.77 3.24 3.96 5.20 7.85 4.96 4.18 3.65 3.65 6.94

Ensemble of AdaLS 3.48 3.74 4.86 5.95 7.74 5.20 4.36 3.61 3.74 6.92
Ensemble of AR-AdaLS 4.23 4.52 5.23 5.68 7.68 5.76 5.23 4.51 3.69 6.33
AR-AdaLS of Ensemble 1.97 2.98 3.91 5.38 7.98 3.41 3.03 2.84 3.61 7.03

Figure 7: Reliability diagram of accuracy versus confidence of single model and ensemble model on
the clean test of CIFAR-10 and ImageNet. The perfect calibrated model should be aligned with the
diagonal dotted line (above is under-confident, below is over-confident).

calibrated single-model. This is made clearer in Figure 7: while deep ensembles make over-confident
vanilla model well calibrate, it leads the well calibrated AR-AdaLS models to be under-confident
(similar patterns observed on LS and AdaLS, shown in Figure 9 in Appendix). From this perspective,
AR-AdaLS of Ensemble avoids this issue by adaptively adjusting smoothing to keep the ensemble
well calibrated. Taken together we see that AR-AdaLS improves calibration for both single-models
and ensembles.

6 CONCLUSION

In this paper, we have explored the correlations between adversarial robustness and calibration.
We find across four datasets that adversarially unrobust (easily attacked) data are more likely to
have poorly calibrated and unstable predictions. Based on this insight, we propose AR-AdaLS
to adaptively smooth the labels of the training data based on their adversarial robustness. In our
experiments we see that AR-AdaLS is more effective than previous label smoothing methods in
improving calibration, particularly for shifted data, and can offer improvements on top of already
strong ensembling methods. We believe this is an exciting new use for adversarial robustness as a
means to more generally improve model trustworthiness, not just by limiting adversarial attacks but
also improving uncertainty on unexpected data. We hope this spurs further work at the intersection of
these areas of research.
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A IMPLEMENTATION DETAILS

A.1 SVHN

We use a simple network architecture with 7 convolutional layers and follow all the training details
introduced in Qin et al. (2020a) for SVHN. This network architecture achieves the state-of-the-art
accuracy on SVHN.

A.2 CIFAR-10

All the experimental results on CIFAR-10 were obtained with a ResNet-29 v2 (He et al., 2016b) with
a batch size of 256. The network is trained with Adam optimizer (Kingma et al., 2015) for 200 epochs.
The initial learning rate is 10−3 and decayed down to 10−4 after 80 epochs, 10−5 after 120 epochs,
10−6 after 160 epochs and 0.5× 10−6 after 180 epochs. We adapted the following data augmentation
and training script at https://keras.io/examples/cifar10_resnet/. The training
mechanism is the same for all the methods that we compare in the main paper. We randomly split the
training dataset into training data of 45000 images and 5000 images as the validation set. The test set
has 10000 images.

For label smoothing (LS), we sweep the hyperparameter ε within the range [0, 0.1] with a step
size 0.01 and find that the network has the best calibration performance on the validation set when
ε = 0.02.

For Adaptive Label Smoothing (AdaLS), there is a hyperparameter α which plays a role as learning
rate in the adaptive learning mechanism. We choose hyperparameter α based on the calibration
performance on the validation set. Specifically, we run experiments with α ∈ {0.005, 0.01, 0.05, 0.1}
and find that α = 0.05 achieve the best calibration performance.

Similarly, for Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLS), we choose the
hyperparameter α from the set {0.005, 0.01, 0.05} and empirically set α = 0.005 which has the best
calibration performance on the validation set. We use the same hyperparameter α = 0.005 without
further tuning for AR-AdaLS of Ensemble.

All the results of ensemble models are obtained via training 5 independent models with random
initializations.

A.3 CIFAR-100

We train a Wide ResNet-28-10 v2 (Zagoruyko & Komodakis, 2016) to obtain the state-of-
the-art accuracy for CIFAR-100. We adapt the same training details and data augmenta-
tion at https://github.com/google/edward2/blob/master/baselines/cifar/
deterministic.py.

For label smoothing, we e sweep the hyperparameter ε within the range [0, 0.1] with a step size 0.01
and find that the network has the best calibration performance on the validation set when ε = 0.07.
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The hyperparameter α is set to be 0.005 in AR-AdaLS. For AR-AdaLS that generated with on-the-
fly adversarial examples, we recompute the adversarial robustness for training and validation sets
after 65, 130 epochs.

A.4 IMAGENET

All the experiments on ImageNet were obtained via training a ResNet-101 v1 (He et al., 2016a)
following the training script at https://github.com/google/edward2/blob/master/
baselines/imagenet/deterministic.py. The network is trained with a batch size of 128
for each TPU core with SGD optimizer for 90 epochs. The input image is normalized (divided by
255) to be within [0,1]. We randomly divide 50000 validation images into validation set with 25000
images and test set with 25000 images. Note that the same dataset and training mechanisms are used
for all the methods that we compare in the main paper.

For Label Smoothing (LS), we sweep the hyperparameter ε within the range [0, 0.1] with a step
size 0.01 and find that the best calibration performance on the validation set is achieved by setting
ε = 0.02.

For Adaptive Label Smoothing (AdaLS), we sweep the hyperparameter α in the set
{0.005, 0.01, 0.03, 0.05, 0.1} and set it to be α = 0.03 for the best calibration performance on
the validation set.

We empirically set α = 0.001 for AR-AdaLS in the first 60 epochs of the training and then increase
it to 0.05 for the next 30 epochs. The same hyperparameter α is used for AR-AdaLS of Ensemble
without further tuning.

All the ensemble models are a combination of 5 independent models with random initializations.

A.5 CW ATTACKS

To compute the adversarial robustness, we construct `2 based CW attacks (Carlini & Wagner,
2017b) following the code at https://github.com/tensorflow/cleverhans/blob/
master/cleverhans/attacks/carlini_wagner_l2.py. Specifically, we set the binary
search steps to be 3, max iterations to be 500 and learning rate to be 0.005. The generated untargeted
CW attacks can achieve 100% success rate for all the datasets that we consider: SVHN, CIFAR-10,
CIFAR-100 and ImageNet. We set the number of adversarial robustness training subset and validation
subset to be R = 10 respectively.

B CALIBRATION PERFORMANCE: ADDITIONAL RESULTS

In Figure 8, we show ECE and accuracy of all the single-models and their corresponding ensembles
on the clean test and shifted CIFAR-10 and ImageNet. The high-level conclusion is: 1) all the
ensemble models that we compare have similar accuracies, which are higher than single-models.
2) all the ensemble methods perform relatively well for highly shifted data but ensembles of well
calibrated models (Ensemble of LS, Ensemble of AdaLS, Ensemble of AR-AdaLS) perform much
worse on less shifted and clean test data. 3) AR-AdaLS of Ensemble successfully learns to adaptively
adjust its smoothing level to keep the ensemble well calibrated on both clean and shifted dataset.

Figure 9 is to validate the observation that naive ensembling of a single model can improve calibration
on highly shifted data where single-model is over-confident but can harm calibration on clean test
data where single model is well calibrated. As shown in Figure 9, we can see that if the single-model
is over-confident (Vanilla), Ensemble of Vanilla greatly improves the model’s calibration. However,
when the single model is well-calibrated (LS, AdaLS, AR-AdaLS), naive ensembling of these models
leads to an under-confident model with a worse calibration performance. In contrast, AR-AdaLS
of Ensemble successfully avoids this issue by adaptively smoothing the training labels according to
adversarial robustness of training data.
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Figure 8: Comparison of ensembled models: ECE and Accuracy on both clean test data and shifted
data on CIFAR-10 and ImageNet. For each intensity of shift, we show the results with a box plot
summarizing the 25th, 50th, 75th quartiles across 19 types of shift on CIFAR-10-C and 15 types of
shift on ImageNet-C. The error bars indicate the min and max value across different shift types.

Figure 9: Reliability diagram of accuracy versus confidence of single model and ensemble model on
the clean test of CIFAR-10 and ImageNet. The perfect calibrated model should be aligned with the
diagonal dotted line (above is under-confident, below is over-confident).
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Figure 10: Comparing accuracy and confidence of the predicted class between single model and the
corresponding ensemble model for each method.

Figure 11: Variance on clean test and shifted data on CIFAR-10 and ImageNet. For each shift
intensity, we show the results with a box plot summarizing the 25th, 50th, 75th quartiles across 19
shift types on CIFAR10-C and 15 shift types on ImageNet-C. The error bars indicate the min and
max value across different shift types.
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