
Under review as a conference paper at ICLR 2024

A UNIFIED FRAMEWORK FOR REINFORCEMENT
LEARNING UNDER POLICY AND DYNAMICS SHIFTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training reinforcement learning policies using environment interaction data col-
lected from varying policies or dynamics presents a fundamental challenge. Exist-
ing works often overlook the distribution discrepancies induced by policy or dy-
namics shifts, or rely on specialized algorithms with task priors, thus often result-
ing in suboptimal policy performances and high learning variances. In this paper,
we identify a unified strategy for online RL policy learning under diverse settings
of policy and dynamics shifts: transition occupancy matching. In light of this,
we introduce a surrogate policy learning objective by considering the transition
occupancy discrepancies and then cast it into a tractable min-max optimization
problem through dual reformulation. Our method, dubbed Occupancy-Matching
Policy Optimization (OMPO), features a specialized actor-critic structure and a
distribution discriminator. We conduct extensive experiments based on the Ope-
nAI Gym, Meta-World, and Panda Robots environments, encompassing policy
shifts under stationary and non-stationary dynamics, as well as domain adaption.
The results demonstrate that OMPO outperforms the specialized baselines from
different categories in all settings. We also find that OMPO exhibits particularly
strong performance when combined with domain randomization, highlighting its
potential in RL-based robotics applications.

1 INTRODUCTION

Online Reinforcement Learning (RL) aims to learn policies to maximize long-term returns through
interactions with the environments, which has achieved significant advances in recent years (Gu
et al., 2017; Bing et al., 2022b; Mnih et al., 2013; Perolat et al., 2022; Cao et al., 2023). Many
of these advances rely on on-policy data collection, wherein agents gather fresh experiences in
stationary environments to update their policies (Schulman et al., 2015; 2017; Zhang & Ross, 2021).
However, this on-policy approach can be expensive or even impractical in some real-world scenarios,
limiting its practical applications. To overcome this limitation, a natural cure is to enable policy
learning with data collected under varying policies or dynamics (Haarnoja et al., 2018; Rakelly
et al., 2019; Duan et al., 2021; Zanette, 2023; Xue et al., 2023).

Challenges arise when dealing with such collected data with policy or dynamics shifts, which of-
ten diverge from the distribution induced by the current policy under the desired target dynamics.
Naı̈vely incorporating such shifted data during training without careful identification and treatment,
could lead to erroneous policy evaluation (Thomas & Brunskill, 2016; Irpan et al., 2019), eventu-
ally resulting in biased policy optimization (Imani et al., 2018; Nota & Thomas, 2020; Chan et al.,
2022). Previous methods often only focus on specific types of policy or dynamics shifts, lacking a
unified understanding and solution to address the underlying problem. For example, in stationary
environments, off-policy methods such as those employing importance weights or off-policy eval-
uation have been used to address policy shifts (Jiang & Li, 2016; Fujimoto et al., 2018; Zanette &
Wainwright, 2022). Beyond policy shifts, dynamics shifts can occur in settings involving environ-
ment or task variations, which are common in task settings such as domain randomization (Tobin
et al., 2017; Chen et al., 2021; Kadokawa et al., 2023), domain adaptation (Eysenbach et al., 2021;
Liu et al., 2021), and policy learning under non-stationary environments (Rakelly et al., 2019; Lee
et al., 2020; Wei & Luo, 2021; Bing et al., 2022a). According to different combinations of dynam-
ics and policy shifts, we categorize these different scenarios into three types: 1) policy shifts with

1

Under review as a conference paper at ICLR 2024

Source Dynamic (flat)

Target Dynamic (uneven)
Dynamic Shifts

Policy Shifts

ො𝜋 ≠ 𝜋

Walking Policy

Running Policy

Policy Shifts

ො𝜋

𝜋

Stationary Dynamics

𝑇

ො𝜋

Domain Adaption

𝑇𝑖 ≠ 𝑇ℎ+1, ො𝜋𝑖 ≠ 𝜋ℎ+1, 𝑖 = 1, 2,⋯ , ℎ

Policy Shifts

Non-stationary Dynamics

𝑇ℎ+1, 𝜋ℎ+1

Non-stationary Dynamics

𝜋

𝑇1, 𝑇2, ⋯ , 𝑇ℎ

ො𝜋1, ො𝜋2, ⋯ , ො𝜋ℎ

𝑇

𝑇 ≠ 𝑇, ො𝜋 ≠ 𝜋

Training Stages Training Stages Training Stages

Figure 1: Diverse settings of online reinforcement learning under policy or dynamics shifts.

stationary dynamics, 2) policy shifts with domain adaption, and 3) policy shifts with non-stationary
dynamics (see Figure 1 for an intuitive illustration1).

Our work stems from a realization that, from a distribution perspective, under the same state s, policy
shifts lead to different choices of actions a, while dynamics shifts primarily introduce discrepancies
over the next states s′ given state-action pair (s, a). Regardless of the combination of policy and
dynamics shifts, the discrepancies inherently boil down to the transition occupancy distribution in-
volving (s, a, s′). This means that if we can correct the transition occupancy discrepancies among
data from various sources during the RL training process, i.e., implementing transition occupancy
matching, we can elegantly model all policy & dynamics shift scenarios within a unified framework.

Inspired by this insight, we introduce a novel and unified framework, Occupancy-Matching Policy
Optimization (OMPO), designed to facilitate policy learning with data affected by policy and dy-
namic shifts. We start by presenting a surrogate policy objective capable of capturing the impacts of
transition occupancy discrepancies. We then show that this policy objective can be transformed into
a tractable min-max optimization problem through dual reformulation (Nachum et al., 2019b), which
naturally leads to an instantiation with a special actor-critic structure and a distribution discriminator.

We conduct extensive experiments on diverse benchmark environments to demonstrate the superior-
ity of OMPO, including locomotion tasks from OpenAI Gym (Brockman et al., 2016) and manipula-
tion tasks in Meta-World (Yu et al., 2019) and Panda Robots (Gallouédec et al., 2021) environments.
Our results show that OMPO can achieve consistently superior performance using a single frame-
work as compared to prior specialized baselines from diverse settings. Notably, when combined
with domain randomization, OMPO exhibits remarkable performance gains and sample efficiency
improvement, which makes it an ideal choice for many RL applications facing sim-to-real adaptation
challenges, e.g., robotics tasks.

2 RELATED WORKS

We first briefly summarize relevant methods that handle diverse types of policy and dynamics shifts.

Policy learning under policy shifts with stationary dynamics. In scenarios involving policy
shifts, several off-policy RL methods have emerged that leverage off-policy experiences stored in
the replay buffer for policy evaluation and improvement (Jiang & Li, 2016; Fujimoto et al., 2018;
Zanette & Wainwright, 2022; Ji et al., 2023). However, these approaches either ignore the impact of
policy shifts or attempt to reconcile policy gradients through importance sampling (Precup, 2000;
Munos et al., 2016). Unfortunately, due to off-policy distribution mismatch and function approxima-
tion error, these methods often suffer from high learning variance and training instability, potentially
hindering policy optimization and convergence (Nachum et al., 2019b).

Policy learning under policy shifts with domain adaption. Domain adaptation scenarios involve
multiple time-invariant dynamics, where policy training is varied in the source domain to ensure the
resulting policy is adaptable to the target domain. Methods in this category typically involve mod-
ifying the reward function to incorporate target domain knowledge (Arndt et al., 2020; Eysenbach
et al., 2021; Liu et al., 2021). However, these methods often require the source domain dynamics
can cover the target domain dynamics, and potentially involve extensive human design to achieve

1The walking and running pictograms are from https://olympics.com/en/sports/

2

https://olympics.com/en/sports/

Under review as a conference paper at ICLR 2024

optimal performance. Another setting is domain randomization, where the source domains are ran-
domized to match the target domain (Tobin et al., 2017; Chen et al., 2021; Kadokawa et al., 2023).
Nonetheless, these techniques heavily rely on model expressiveness and generalization, which do
not directly address shifts in policy and time-invariant dynamics.

Policy learning under policy shifts with non-stationary dynamics. Non-stationary dynamics
encompass a broader class of environments where dynamics can change at any timestep, such as
encountering unknown disturbances or structural changes. Previous works have often adopted addi-
tional latent variables to infer possible successor dynamics (Lee et al., 2020; Wei & Luo, 2021; Bing
et al., 2022a), learned the stationary state distribution from data with dynamics shift (Xue et al.,
2023), or improved dynamics model for domain generalization (Cang et al., 2021). However, these
methods either rely on assumptions about the nature of dynamics shifts, such as hidden Markov
models (Bouguila et al., 2022) and Lipschitz continuity (Domingues et al., 2021), or neglect the
potential policy shifts issues, limiting their flexibility across non-stationary dynamics with policy
shifts settings.

3 PRELIMINARIES

We consider the typical Markov Decision Process (MDP) setting (Sutton & Barto, 2018), which
is denoted by a tuple M = ⟨S,A, r, T, µ0, γ⟩. Here, S and A represent the state and ac-
tion spaces, while r : S × A → (0, rmax] is the reward function. The transition dynamics
T : S × A → ∆(S) captures the probability of transitioning from state st and action at to state
st+1 at timestep t. The initial state distribution is represented by µ0, and γ ∈ (0, 1] is the dis-
count factor. Given an MDP, the objective of RL is to find a policy π : S → ∆(A) that maxi-
mizes the cumulative reward obtained from the environment, which can be formally expressed as
π∗ = argmaxπ Es0∼µ0,a∼π(·|s),s′∼T (·|s,a) [

∑∞
t=0 γ

tr(st, at)].

In this paper, we employ the dual form of the RL objective (Puterman, 2014; Wang et al., 2007;
Nachum et al., 2019b), which can be represented as follows:

π∗ = argmax
π
J (π) = argmax

π
E(s,a)∼ρπ [r(s, a)] . (1)

where ρπ(s, a) represents a normalized discounted state-action occupancy distribution (henceforth,
we omit “normalized discounted” for brevity), characterizing the distribution of state-action pairs
(s, a) induced by policy π under the dynamics T . It can be defined as:

ρπ(s, a) = (1− γ)
∞∑
t=0

γtPr [st = s, at = a|s0 ∼ µ0, at ∼ π(·|st), st+1 ∼ T (·|st, at)] .

To tackle this optimization problem, a class of methods known as the DIstribution Correction Esti-
mation (DICE) has been developed (Nachum et al., 2019b; Lee et al., 2021; Kim et al., 2021; Ma
et al., 2022; 2023; Li et al., 2022). These methods leverage offline data or off-policy experience
to estimate the on-policy distribution ρπ(s, a), and subsequently learn the policy. In this paper, we
extend DICE-family methods to the transition occupancy matching context (see more discussion in
Appendix D), addressing the challenges posed by policy and dynamics shifts in a unified framework.

4 POLICY OPTIMIZATION UNDER POLICY AND DYNAMICS SHIFTS

We consider the online off-policy RL setting, where the agent interacts with environments, collects
new experiences (s, a, s′, r) and stores them in a replay buffer D. At each training step, the agent
samples a random batch fromD to update the policy. We use π̂ and T̂ to denote the historical/source
policies and dynamics specified by the replay buffer (Hazan et al., 2019; Zhang et al., 2021), while π
and T to denote the current policy and target/desired dynamics. For the aforementioned three policy
& dynamics shifted types, we have

• Policy shifts with stationary dynamics: Only policy shifts occur (π̂ ̸= π), while the dynamics
remain stationary2 (T̂ ≃ T).
2We use “≃” to represent that the empirical dynamics derived from sampling data can be approximately

equal to the true dynamics.

3

Under review as a conference paper at ICLR 2024

• Policy shifts with domain adaption: Both policy shifts (π̂ ̸= π) and gaps between the source and
target dynamics (T̂ ̸= T) can be observed.

• Policy shifts with non-stationary dynamics: Policy shifts (π̂ ̸= π) occur alongside dynamics
variation (T̂1, T̂2, · · · , T̂h ̸= Th+1). For simplicity, we consider a mixture of historical dynamics
in the replay buffer, representing this as (T̂ ̸= T).

Through estimating the discrepancies between different state-action distributions, the mismatch be-
tween ρπ(s, a) and ρπ̂(s, a) can be effectively corrected for policy shifts. However, when both
policy and dynamics shifts occur, using state-action occupancy alone, without capturing the next
state s′ for dynamics shifts, is insufficient. To address this, we introduce the concept of transition
occupancy distribution (Viano et al., 2021; Ma et al., 2023). This distribution considers the normal-
ized discounted marginal distributions of state-actions pair (s, a) as well as the next states s′:

ρπT (s, a, s
′) = (1−γ)

∞∑
t=0

γtPr [st = s, at = a, st+1 = s′|s0 ∼ µ0, at ∼ π(·|st), st+1 ∼ T (·|st, at)] .

Hence, the policy & dynamics shifts in the previous three types can be generalized as transition
occupancy discrepancies, i.e., ρπT (s, a, s

′) ̸= ρπ̂
T̂
(s, a, s′). This offers a new opportunity for devel-

oping a unified modeling framework to handle diverse policy and dynamics shifts. In this section, we
propose a surrogate policy learning objective that captures the transition occupancy discrepancies,
which can be further cast into a tractable min-max optimization problem through dual reformulation.

4.1 A SURROGATE POLICY LEARNING OBJECTIVE

With the transition occupancy distribution ρπT (s, a, s
′) in hand, we redefine the policy learning ob-

jective as J (π) = E(s,a,s′)∼ρπT [r(s, a)]. Employing the fact x > log(x) for x > 0 and Jensen’s
inequality, we provide the following policy learning objective:

J (π) > logJ (π) = logE(s,a,s′)∼ρπT [r(s, a)] = logE(s,a,s′)∼ρπ
T̂

[(
ρπT /ρ

π
T̂

)
· r(s, a)

]
≥ E(s,a,s′)∼ρπ

T̂

[
log
(
ρπT /ρ

π
T̂

)
+ log r(s, a)

]
= E(s,a,s′)∼ρπ

T̂
[log r(s, a)]−DKL

(
ρπ
T̂
(s, a, s′)∥ρπT (s, a, s′)

)
. (2)

Here, DKL(·) represents the KL-divergence that measures the distribution discrepancy introduced
by the dynamics T̂ . In cases encountering substantial dynamics shifts, the term DKL(·) can be
large, subordinating the reward and causing training instability. Drawing inspiration from prior
methods (Haarnoja et al., 2018; Nachum et al., 2019b; Xu et al., 2023), we introduce a weighted
factor α to balance the scale and focus on the following more practical objective:

J̄ (π) = E(s,a,s′)∼ρπ
T̂
[log r(s, a)]− αDKL

(
ρπ
T̂
(s, a, s′)∥ρπT (s, a, s′)

)
. (3)

We further incorporate the policy π̂ into this objective to account for policy shifts. The following
proposition provides an upper bound for the KL-divergence discrepancy:
Proposition 4.1. Let ρπ̂

T̂
(s, a, s′) denote the transition occupancy distribution specified by the replay

buffer. The following inequality holds for any f -divergence that upper bounds the KL divergence:

DKL

(
ρπ
T̂
∥ρπT

)
≤ E(s,a,s′)∼ρπ

T̂

[
log
(
ρπT /ρ

π̂
T̂

)]
+Df

(
ρπ
T̂
∥ρπ̂
T̂

)
. (4)

The proof is provided in Appendix A.1. By substituting the bound (4) into objective (3), we can
establish a surrogate policy learning objective under policy and dynamics shifts:

Ĵ (π) = E(s,a,s′)∼ρπ
T̂

[
log r(s, a)− α log

ρπT (s, a, s
′)

ρπ̂
T̂
(s, a, s′)

]
− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
. (5)

The final surrogate objective involves ρπ̂
T̂
(s, a, s′), making it theoretically possible to utilize data

from the replay buffer for policy learning, and also allowing us to explicitly investigate the impacts
of policy and dynamics shifts.

4

Under review as a conference paper at ICLR 2024

4.2 DUAL REFORMULATION OF THE SURROGATE OBJECTIVE

Directly solving the surrogate objective has some difficulties, primarily due to the presence of the
unknown distribution ρπ

T̂
. Estimating this distribution necessitates sampling from the current policy

π samples in historical dynamics T̂ . While some model-based RL methods (Janner et al., 2019; Ji
et al., 2022) in principle can approximate such samples through model learning and policy rollout,
these approaches can be costly and lack feasibility in scenarios with rapidly changing dynamics. In-
stead of dynamics approximation, we can rewrite the definition of transition occupancy distribution
as the following Bellman flow constraint (Puterman, 2014) in our optimization problem,

ρπ
T̂
(s, a, s′) = (1− γ)µ0(s)T̂ (s

′|s, a)π(a|s) + γT̂ (s′|s, a)π(a|s)
∑

ŝ,â
ρπ
T̂
(ŝ, â, s).

Let T π⋆ ρπ(s, a) = π(a|s)
∑
ŝ,â ρ

π
T̂
(ŝ, â, s) denote the transpose (or adjoint) transition operator. Note

that
∑
s′ ρ

π
T (s, a, s

′) = ρπ(s, a) and
∑
s′ T (s

′|s, a) = 1, we can integrate over s′ to remove T̂ :

ρπ(s, a) = (1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a), ∀(s, a) ∈ S ×A. (6)

Thus, to enable policy learning with the surrogate objective, we seek to solve the following equiva-
lent constrained optimization problem:

π∗=argmax
π
Ĵ (π)=argmax

π
E(s,a,s′)∼ρπ

T̂

[
log r(s, a)−α log

(
ρπT /ρ

π̂
T̂

)]
−αDf

(
ρπ
T̂
∥ρπ̂
T̂

)
, (7)

s.t. ρπ(s, a) = (1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a), ∀(s, a) ∈ S ×A. (8)

The challenge of solving this problem is threefold, 1) how to compute the distribution discrepancy
term log

(
ρπT /ρ

π̂
T̂

)
, 2) how to handle the constraint tractably; 3) how to deal with the unknown

distribution ρπ
T̂
(s, a, s′). To address these, our solution involves three steps:

Step 1: Computing the distribution discrepancy term. We denote R(s, a, s′) = log
(
ρπT /ρ

π̂
T̂

)
for simplicity. Given a tuple (s, a, s′), R(s, a, s′) characterizes whether it stems from on-policy
sampling ρπT (s, a, s

′) or the replay buffer data ρπ̂
T̂
(s, a, s′). In view of this, we adopt DL as a local

buffer to collect a small amount of on-policy samples, whileDG as a global buffer for historical data
involving policy and dynamics shifts. Using the notion of GAN (Goodfellow et al., 2014), we can
train a discriminator h(s, a, s′) to distinguish the tuple (s, a, s′) sampled from DL or DG,

h∗ = argmin
h

1

|DG|
∑

(s,a,s′)∼DG

[log h(s, a, s′)] +
1

|DL|
∑

(s,a,s′)∼DL

[log(1− h(s, a, s′))], (9)

then the optimal discriminator is solved as h∗(s, a, s′) =
ρπ̂
T̂
(s,a,s′)

ρπ̂
T̂
(s,a,s′)+ρπT (s,a,s′)

. Thus, based on the

optimal discriminator, we can recover the distribution discrepancies R(s, a, s′) by

R(s, a, s′) = log
(
ρπT (s, a, s

′)/ρπ̂
T̂
(s, a, s′)

)
= − log [1/h∗(s, a, s′)− 1] . (10)

Step 2: Handling the Bellman flow constraint. In this step, we make a mild assumption that
there exists at least one pair of (s, a) to satisfy the constraint (6), ensuring that the constrained
optimization problem is feasible. Note that the primal problem (7) is convex, under the feasible
assumption, we have that Slater’s condition (Boyd & Vandenberghe, 2004) holds. That means, by
strong duality, we can adopt Q(s, a) as the Lagrangian multipliers, and the primal problem can be
converted to the following equivalent unconstrained problem.

Proposition 4.2. The constraint optimization problem can be transformed into the following uncon-
strained min-max optimization problem,

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ E(s,a,s′)∼ρπ

T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)] .

(11)

5

Under review as a conference paper at ICLR 2024

The proof is provided in Appendix A.2.

Step 3: Optimizing with the data from replay buffer. To address the issue of the unknown dis-
tribution ρπ

T̂
(s, a, s′) in the expectation term, we follow a similar treatment used in the DICE-based

methods (Nachum et al., 2019a;b; Nachum & Dai, 2020) and adopt Fenchel conjugate (Fenchel,
2014) to transform the problem (11) into a tractable form, as shown in the following proposition.

Proposition 4.3. Given the accessible distribution ρπ̂
T̂
(s, a, s′) specified in the global replay buffer,

the min-max problem (11) can be transformed as

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
, (12)

where f⋆(x) := maxy⟨x, y⟩ − f(y) is the Fenchel conjugate of f .

See the proof in Appendix A.3. Such a min-max optimization problem allows us to train the policy
by randomly sampling in the global replay buffer. Importantly, our method doesn’t assume any
specific conditions regarding the policy or dynamics shifts in the replay buffer, making it applicable
to diverse types of shifts.

4.3 PRACTICAL IMPLEMENTATION

Building upon the derived framework, we now introduce a practical learning algorithm called
Occupancy-Matching Policy Optimization (OMPO). Apart from the discriminator training, imple-
menting OMPO mainly involves two key designs. More implementation details are in Appendix C.

Policy learning via bi-level optimization. For the min-max problem (12), we utilize a stochastic
first-order two-timescale optimization technique (Borkar, 1997) to iteratively solve the inner ob-
jective w.r.t. Q(s, a) and the outer one w.r.t. π(a|s). Such an approach could be regarded as an
actor-critic paradigm.

Instantiations in three settings. OMPO can be seamlessly instantiated for different policy or
dynamics shift settings, one only needs to specify the corresponding interaction data collection
scheme. The local buffer DL is used to store the fresh data sampled by current policy under the
target/desired dynamics; while the global buffer DG stores the historical data involving policy and
dynamics shifts.

5 EXPERIMENT

Our experimental evaluation aims to investigate the following questions: 1) Is OMPO effective in
handling the aforementioned three settings with various shifts types? 2) Is the performance consis-
tent with our theoretical analyses?

5.1 EXPERIMENTAL RESULTS IN THREE SHIFTED TYPES

Our experiments encompass three distinct scenarios involving policy and dynamics shifts. For each
scenario, we employ four popular OpenAI gym benchmarks (Brockman et al., 2016) and their vari-
ants, including Hopper-v3, Walker2d-v3, Ant-v3, and Humanoid-v3. Note that, all of experiments
involve policy shifts. Since OMPO as well as most baselines are off-policy algorithms, the training
data sampled from the replay buffer showcase gaps with the current on-policy distribution.

Stationary environments. We conduct a comparison of OMPO with several off-policy model-
free baselines by stationary environments. These baselines include: 1) SAC (Haarnoja et al., 2018),
the most popular off-policy actor-critic method; 2) TD3 (Fujimoto et al., 2018), which introduces
the Double Q-learning technique to mitigate training instability; and 3) AlgaeDICE (Nachum et al.,
2019b), utilizing off-policy evaluation methods to reconcile policy gradients to deal with behavior-
agnostic and off-policy data. We evaluated all methods using standard benchmarks with stationary
dynamics. All methods are trained within the off-policy paradigm.

6

Under review as a conference paper at ICLR 2024

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Hopper

0 500k 1M
steps

0

2000

4000

Walker2d

0 0.5M 1M 1.5M
steps

0

3000

6000

Ant

0 500k 1M
steps

0

2500

5000

Humanoid

OMPO AlgaeDICE SAC TD3

Figure 2: Comparison of learning performance on stationary environments. Solid curves indicate the average
performance among five trials under different random seeds, while the shade corresponds to the standard devi-
ation over these trials. We use the same setup for the performance curves below.

Hopper Walker2d Ant Humanoid

0 50k 100k
steps

0

1500

3000

av
er

ag
e

re
tu

rn

0 150k 300k
steps

0

2500

5000

0 150k 300k
steps

0

2000

4000

0 150k 300k
steps

0

3000

6000

OMPO OMPO-DR DARC DARC-DR SAC-DR SAC

Figure 3: Target dynamics visualizations for the four tasks are on the top. A comparison of learning perfor-
mance on domain adaption is below. The x coordinate indicates the interaction steps on the target dynamics.

Figure 2 displays the learning curves of the three baselines, along with their asymptotic performance.
These results demonstrate OMPO’s superior performance in terms of exploration efficiency and
training stability, indicating its effectiveness in handling the policy-shifted scenarios.

Domain adaption. In this scenario, akin to Eysenbach et al. (2021), the policy trains on both
source dynamics (T̂) and target dynamics (T). Its objective is to maximize returns efficiently within
the target dynamics while collecting ample data from the diverse source dynamics. Across the
four tasks, source dynamics align with standard benchmarks, while the target dynamics feature
substantial differences. Specifically, in the Hopper and Walker2d tasks, the torso and foot sizes
double, and in the Ant and Humanoid tasks, gravity doubles while introducing a headwind with a
velocity of 1m/s. Refer to the top part of Figure 3 for further details.

We benchmark OMPO in this scenario against several baselines, including 1) DARC (Eysenbach
et al., 2021), which adjusts rewards for estimating dynamics gaps; 2) Domain Randomization
(DR) (Tobin et al., 2017), a technique that randomizes source dynamics parameters to enhance
policy adaptability under target dynamics; 3) SAC (Haarnoja et al., 2018), which is directly trained
using mixed data from both dynamics. Furthermore, since the DR approach is to randomize the
source parameters, DR can be combined with OMPO, DARC and SAC, leading to variants OMPO-
DR, DARC-DR and SAC-DR, which provide a comprehensive validation and comparison.

Figure 3 presents the learning curves for all the compared methods, illustrating that OMPO out-
performs all baselines with superior eventual performance and high sample efficiency. Notably,
when OMPO is combined with DR technology, diverse samplings from randomized source dynam-
ics further harness OMPO’s strengths, enabling OMPO-DR to achieve exceptional performance and
highlighting its potential for real-world applications. For instance, within the target dynamics of the
Walker2d task, OMPO nearly reaches convergence with about 60 trajectories, equivalent to 60,000
steps. More trajectory visualizations are provided in Figure 12, Appendix E.

Non-stationary environments. In non-stationary environments, the dynamics vary throughout
the training process, setting this scenario apart from domain adaptation scenarios with fixed target
dynamics. For the Hopper and Walker2d tasks, the lengths of the torso and foot vary between 0.5−2

7

Under review as a conference paper at ICLR 2024

Figure 4: Non-stationarity in structure. Figure 5: Non-stationarity in mechanics.

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Hopper

0 250k 0.5M
steps

0

2000

4000

Walker2d

0 0.5M 1M
steps

0

1000

2000

Ant

0 0.5M 1M
steps

0

1500

3000

Humanoid

OMPO CADM CEMRL

Figure 6: Comparison of learning performance on non-stationary environments.

times the original length. While the Ant and Humanoid tasks feature stochastic variations in gravity
(0.5− 2 times) and headwinds (0− 1.5m/s) at each time step. The non-stationarities of four tasks
are depicted in Figures 4 and 5 and comprehensive environment details are provided in Appendix E.
The baselines employed in this scenario include: 1) CEMRL (Bing et al., 2022a), which leverages
Gaussian mixture models to infer dynamics change; and 2) CaDM Lee et al. (2020), which learns a
global dynamics model to generalize across different dynamics.

The results displayed in Figure 6 demonstrate OMPO’s ability to effectively handle both policy
and dynamics shifts, showing its superiority compared to the baselines. The rapid convergence and
automatic data identification of OMPO enable it to adapt seamlessly to diverse shifts, showcasing
impressive convergence performance. Besides, even under various non-stationary conditions, our
method keeps the same parameters, a notable advantage when compared to the baselines (see hyper-
parameters and baseline settings in Appendix C).

5.2 ANALYSIS OF OMPO UNDER POLICY AND DYNAMICS SHIFTS

The necessity of handling policy and dynamics shifts. We visualize the transition occupancy
distribution ρπT (s, a, s

′) at different training stages using the training data from the Hopper task
within OMPO. As shown in the left part of Figure 7, even under stationary dynamics, policy shifts
resulting from constantly updated policies lead to variations of action distributions, thus, ρπ1

T ̸=
ρπ2

T ̸= ρπ3

T . When encountering dynamics shifts caused by domain adaptation, as depicted in the
right part of Figure 7, these distribution inconsistencies are exacerbated by the dynamics gaps, as
evidenced by the differences between ρπ1

T and ρπ1

T̂
, or ρπ2

T and ρπ2

T̂
. Furthermore, visualizations

of non-stationary environments are provided in Figure 13 of Appendix F, which represent a more
complex combination of policy and dynamic shifts.

To further understand the necessity of addressing these shifts, we introduce a variant of OMPO
where the distribution discriminator h(s, a, s′) is eliminated, disabling the treatment of shifts by
setting R(s, a, s′) ≡ 0. Performance comparisons are shown in Figure 8 using the Hopper task. The
results illustrate that in stationary environments, the variant performs comparably to SAC, both of
which ignore policy shifts and are weaker than OMPO. Furthermore, when applied in domain adap-
tation with significant dynamics gaps, the variant suffers from high learning variance and becomes
trapped in a local landscape. Similar results appear for non-stationary environments in Figure 14
of Appendix F. These results highlight the effectiveness of our design, as well as the necessity of
handling the shifts.

Ablations on different hyperparameters. We conducted investigations on two key hyperparam-
eters by Hopper task under non-stationary environments: the size of the local replay buffer |DL|
and the weighted factor α. As shown in Figure 9, our results reveal that choosing a smaller |DL|
can better capture the policy and dynamics shifts, but it causes training instability of the discrimina-
tor, resulting in unstable performance. Conversely, selecting a larger |DL| disrupts the freshness of
on-policy sampling, resulting in a local landscape.

8

Under review as a conference paper at ICLR 2024

Figure 7: Different stages of ρπT by Hopper tasks.
Left: 10k, 20k and 50k (π1, π2 and π3). Right: 20k
(π1, T and π1, T̂) and 50k (π2, T and π2, T̂).

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Stationary Dynamics
OMPO
OMPO w/- R
SAC

0 100k 200k
steps

0

1000

2000

av
er

ag
e

re
tu

rn

Domain Adaption
OMPO
OMPO w/- R
SAC

Figure 8: Performance comparison of OMPO and
the variant of OMPO without discriminator by Hop-
per tasks.

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Hopper

0 250k 0.5M
steps

0

2000

4000

Walker2d

| L| = 1000 | L| = 500 | L| = 1500 | L| = 3000

Figure 9: Ablations on the local buffer size |DL|.

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Hopper

0 250k 0.5M
steps

0

2000

4000

Walker2d

= 0.001 = 0.01 = 0.0001

Figure 10: Ablations on weighted factor α.

Table 1: Success rates of stochastic tasks.

Tasks SAC TD3 OMPO

Panda-Reach-Den 92.6% 94.2% 97.5%

Panda-Reach-Spr 94.5% 88.6% 93.1%

Coffer-Push 15.8% 3.3% 68.5%

Drawer-Open 57.7% 64.3% 93.4%

Door-Unlock 93.5% 95.7% 98.9%

Door-Open 97.5% 47.9% 99.5%

Hammer 15.4% 12.2% 84.2%

Regarding the weighted factor α, as shown in Fig-
ure 10, we find that excessively large α makes the
R(s, a, s′) term overweighted and subordinates the en-
vironmental reward during policy optimization. Con-
versely, excessively small α weakens the discrimina-
tor’s effectiveness, similar to the issues observed in the
OMPO variant without handling shifts.

Robustness in stochastic robot manipulations. To
further verify OMPO’s performance in stochastic robot
manipulations, we employ 2 stochastic Panda robot
tasks with both dense and sparse rewards (Gallouédec et al., 2021), where random noise is intro-
duced into the actions, and 8 manipulation tasks from Meta-World (Yu et al., 2019) with different
objectives (see Appendix E for settings). Table 1 demonstrates that OMPO shows comparable suc-
cess rates in stochastic environments and outperforms baselines in terms of manipulation tasks.
More performance comparisons are provided in Appendix F.3.

6 CONCLUSION

In this paper, we conduct a holistic investigation of online policy optimization under policy or dy-
namics shifts. We develop a unified framework to tackle diverse shift settings by introducing a surro-
gate policy learning objective from the view of transition occupancy matching. Through dual refor-
mulation, we obtain a tractable min-max optimization problem, and the practical algorithm OMPO
stems from these theoretical analyses. OMPO exhibits superior performance across diverse policy
and dynamics shift settings, including policy shifts with stationary environments, domain adapta-
tion, and non-stationary environments, and shows robustness in various challenging locomotion and
manipulation tasks. OMPO offers an appealing paradigm for addressing policy and dynamics shifts
in many practical RL applications. For example, our empirical results show that OMPO can greatly
enhance policy adaptation performance when combined with domain randomization, which can be
particularly useful for many sim-to-real transfer problems. Nonetheless, several challenges, such as
determining a proper local buffer size to capture the varying on-policy distribution and relaxing the
assumption of strictly positive rewards, warrant further investigation. Future work could also extend
our work to areas like offline-to-online RL (Li et al., 2023), leveraging simulators with dynamics
gaps to enhance offline policy learning (Niu et al., 2022), or hierarchical RL with non-stationarity
issues in high-level policy optimization (Nachum et al., 2018).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning for
sim-to-real domain adaptation. In IEEE International Conference on Robotics and Automation,
2020.

Zhenshan Bing, David Lerch, Kai Huang, and Alois Knoll. Meta-reinforcement learning in non-
stationary and dynamic environments. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 45(3):3476–3491, 2022a.

Zhenshan Bing, Hongkuan Zhou, Rui Li, Xiaojie Su, Fabrice O Morin, Kai Huang, and Alois Knoll.
Solving robotic manipulation with sparse reward reinforcement learning via graph-based diversity
and proximity. IEEE Transactions on Industrial Electronics, 70(3):2759–2769, 2022b.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Nizar Bouguila, Wentao Fan, and Manar Amayri. Hidden Markov Models and Applications.
Springer, 2022.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Catherine Cang, Aravind Rajeswaran, Pieter Abbeel, and Michael Laskin. Behavioral priors and
dynamics models: Improving performance and domain transfer in offline rl. arXiv preprint
arXiv:2106.09119, 2021.

Zhong Cao, Kun Jiang, Weitao Zhou, Shaobing Xu, Huei Peng, and Diange Yang. Continuous
improvement of self-driving cars using dynamic confidence-aware reinforcement learning. Nature
Machine Intelligence, 5(2):145–158, 2023.

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A Rupam Mahmood, and Martha White.
Greedification operators for policy optimization: Investigating forward and reverse kl diver-
gences. The Journal of Machine Learning Research, 23(1):11474–11552, 2022.

Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain randomiza-
tion for sim-to-real transfer. In International Conference on Learning Representations, 2021.

Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko. A
kernel-based approach to non-stationary reinforcement learning in metric spaces. In International
Conference on Artificial Intelligence and Statistics, 2021.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE
Transactions on Neural Networks and Learning Systems, 33(11):6584–6598, 2021.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhut-
dinov. Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In
International Conference on Learning Representations, 2021.

Werner Fenchel. On conjugate convex functions. Springer, 2014.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, 2018.

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-
Source Goal-Conditioned Environments for Robotic Learning. 4th Robot Learning Workshop:
Self-Supervised and Lifelong Learning at NeurIPS, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, 2014.

10

Under review as a conference paper at ICLR 2024

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE International Conference
on Robotics and Automation, pp. 3389–3396, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, 2019.

Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using emphatic
weightings. In Advances in Neural Information Processing Systems, 2018.

Alexander Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, and Sergey
Levine. Off-policy evaluation via off-policy classification. In Advances in Neural Information
Processing Systems, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in neural information processing systems, 2019.

Tianying Ji, Yu Luo, Fuchun Sun, Mingxuan Jing, Fengxiang He, and Wenbing Huang. When to
update your model: Constrained model-based reinforcement learning. In Advances in Neural
Information Processing Systems, 2022.

Tianying Ji, Yu Luo, Fuchun Sun, Xianyuan Zhan, Jianwei Zhang, and Huazhe Xu. Seizing
serendipity: Exploiting the value of past success in off-policy actor-critic. arXiv preprint
arXiv:2306.02865, 2023.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International Conference on Machine Learning, 2016.

Yuki Kadokawa, Lingwei Zhu, Yoshihisa Tsurumine, and Takamitsu Matsubara. Cyclic policy distil-
lation: Sample-efficient sim-to-real reinforcement learning with domain randomization. Robotics
and Autonomous Systems, 165:104425, 2023.

Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok Yang,
and Kee-Eung Kim. Demodice: Offline imitation learning with supplementary imperfect demon-
strations. In International Conference on Learning Representations, 2021.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, 2021.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynam-
ics model for generalization in model-based reinforcement learning. In International Conference
on Machine Learning, 2020.

Jianxiong Li, Xiao Hu, Haoran Xu, Jingjing Liu, Xianyuan Zhan, Qing-Shan Jia, and Ya-Qin Zhang.
Mind the gap: Offline policy optimization for imperfect rewards. In International Conference on
Learning Representations, 2022.

Jianxiong Li, Xiao Hu, Haoran Xu, Jingjing Liu, Xianyuan Zhan, and Ya-Qin Zhang. Proto: Iterative
policy regularized offline-to-online reinforcement learning. arXiv preprint arXiv:2305.15669,
2023.

Jinxin Liu, Hao Shen, Donglin Wang, Yachen Kang, and Qiangxing Tian. Unsupervised domain
adaptation with dynamics-aware rewards in reinforcement learning. In Advances in Neural Infor-
mation Processing Systems, 2021.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with
state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

11

Under review as a conference paper at ICLR 2024

Yecheng Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Versatile offline imitation from
observations and examples via regularized state-occupancy matching. In International Confer-
ence on Machine Learning, 2022.

Yecheng Jason Ma, Kausik Sivakumar, Jason Yan, Osbert Bastani, and Dinesh Jayaraman. Learning
policy-aware models for model-based reinforcement learning via transition occupancy matching.
In Learning for Dynamics and Control Conference, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in neural information processing systems, 2016.

Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality. arXiv preprint
arXiv:2001.01866, 2020.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in neural information processing systems, 2018.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. In Advances in neural information processing sys-
tems, 2019a.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019b.

Haoyi Niu, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming HU, Xianyuan Zhan, et al. When to trust
your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning. In Advances
in Neural Information Processing Systems, 2022.

Chris Nota and Philip S Thomas. Is the policy gradient a gradient? In International Conference on
Autonomous Agents and MultiAgent Systems, 2020.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, pp. 80, 2000.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International Conference on
Machine Learning, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, 1999.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, pp. 2139–2148. PMLR, 2016.

12

Under review as a conference paper at ICLR 2024

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Luca Viano, Yu-Ting Huang, Parameswaran Kamalaruban, Adrian Weller, and Volkan Cevher. Ro-
bust inverse reinforcement learning under transition dynamics mismatch. In Advances in Neural
Information Processing Systems, 2021.

Tao Wang, Michael Bowling, Dale Schuurmans, and Daniel Lizotte. Stable dual dynamic program-
ming. In Advances in Neural Information Processing Systems, 2007.

Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge:
An optimal black-box approach. In Conference on Learning Theory, 2021.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
In The Eleventh International Conference on Learning Representations, 2023.

Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, and Bo An. State
regularized policy optimization on data with dynamics shift. In Advances in neural information
processing systems, 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2019.

Andrea Zanette. When is realizability sufficient for off-policy reinforcement learning? In Interna-
tional Conference on Machine Learning, 2023.

Andrea Zanette and Martin J Wainwright. Bellman residual orthogonalization for offline reinforce-
ment learning. In Advances in Neural Information Processing Systems, 2022.

Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E Gonzalez, and Stuart
Russell. Made: Exploration via maximizing deviation from explored regions. In Advances in
Neural Information Processing Systems, 2021.

Yiming Zhang and Keith W Ross. On-policy deep reinforcement learning for the average-reward
criterion. In International Conference on Machine Learning, pp. 12535–12545. PMLR, 2021.

13

Under review as a conference paper at ICLR 2024

A PROOFS IN THE MAIN TEXT

Here, we first present a sketch of theoretical analyses in Figure 11. We first propose a surrogate
objective to handle policy and dynamics shifts (Equation 5). Then, to make this objective tractable,
we consider the Bellman flow constraint (Equation 6) thus constructing a constraint optimization
problem (Equations 7 and 8). To solve this problem, we divide it into three steps. (1) We deal
with the distribution discrepancy R(s, a, s′) by the discriminator h∗(s, a, s′) (Equation 10); (2) We
handle the Bellman flow constraint by Lagrangian relaxation (Equation 11); (3) To get rid of the
unknown distribution ρπ

T̂
, we utilize Fenchel conjugate to obtain the final tractable optimization

problem (Equation 12).

+𝔼 𝑠,𝑎,𝑠′ ∼𝜌𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝒯𝜋𝑄 𝑠, 𝑎 − 𝑄(𝑠, 𝑎)

The Bellman flow constraint

Step 2: handle the Bellman flow constraint

Step 3: optimize with replay buffer

×

Using a discriminator Using Lagrangian Relaxation

Using Fenchel Conjugate

Make the objective tractable

The surrogate objective

መ𝒥 𝜋 = 𝔼 𝑠,𝑎,𝑠′ ∼𝜌𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼log

𝜌𝑇
𝜋(𝑠, 𝑎, 𝑠′)

𝜌 𝑇
ෝ𝜋(𝑠, 𝑎, 𝑠′)

− 𝛼𝐷𝑓 𝜌 𝑇
𝜋 𝑠, 𝑎, 𝑠′ ‖𝜌 𝑇

ෝ𝜋(𝑠, 𝑎, 𝑠′)

𝜌𝜋 𝑠, 𝑎 = 1 − 𝛾 𝜇0 𝑠 𝜋 𝑎 𝑠 + 𝛾𝒯⋆
𝜋𝜌𝜋 𝑠, 𝑎 , ∀ 𝑠, 𝑎 ∈ 𝒮 ×𝒜

𝑠. 𝑡. 𝜌𝜋 𝑠, 𝑎 = 1 − 𝛾 𝜇0 𝑠 𝜋 𝑎 𝑠 + 𝛾𝒯⋆
𝜋𝜌𝜋 𝑠, 𝑎 , ∀ 𝑠, 𝑎 ∈ 𝒮 ×𝒜

𝜋∗ = argmax
𝜋

መ𝒥 𝜋 = argmax
𝜋

𝔼 𝑠,𝑎,𝑠′ ∼𝜌𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼log

𝜌𝑇
𝜋

𝜌𝑇
ෝ𝜋 − 𝛼𝐷𝑓 𝜌 𝑇

𝜋‖𝜌 𝑇
ෝ𝜋

The constraint optimization problem of OMPO

Step 1: compute the distribution discrepancy term

log 𝜌𝑇
𝜋 𝑠, 𝑎, 𝑠′ /𝜌 𝑇

ෝ𝜋(𝑠, 𝑎, 𝑠′) = −log
1

ℎ∗ 𝑠, 𝑎, 𝑠′
− 1

max
𝜋

min
𝑄 𝑠,𝑎

1 − 𝛾 𝔼𝑠∼𝜇0,𝑎∼𝜋 𝑄(𝑠, 𝑎) − 𝛼𝐷𝑓 𝜌 𝑇
𝜋 𝑠, 𝑎, 𝑠′ ‖𝜌 𝑇

ෝ𝜋(𝑠, 𝑎, 𝑠′)

max
𝜋

min
𝑄 𝑠,𝑎

1 − 𝛾 𝔼𝑠∼𝜇0,𝑎∼𝜋 𝑄(𝑠, 𝑎)

+𝛼𝔼
𝑠,𝑎,𝑠′ ∼𝜌𝑇

ෝ𝜋 𝑓⋆
log 𝑟 𝑠, 𝑎 − 𝛼𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝒯𝜋𝑄 𝑠, 𝑎 − 𝑄(𝑠, 𝑎)

𝛼

The general RL objective

𝒥 𝜋 = 𝔼 𝑠,𝑎 ∼𝜌𝜋 𝑟 𝑠, 𝑎

Considering dynamics shifts

𝒥 𝜋 > 𝔼 𝑠,𝑎,𝑠′ ∼𝜌𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼𝐷𝐾𝐿 𝜌 𝑇

𝜋 𝑠, 𝑎, 𝑠′ ‖𝜌𝑇
𝜋(𝑠, 𝑎, 𝑠′)

By 𝑥 > log 𝑥 and Jensen Inequality

Accounting for policy shifts

𝐷𝐾𝐿 𝜌 𝑇
𝜋‖𝜌𝑇

𝜋 ≤ 𝔼 𝑠,𝑎,𝑠′ ∼𝜌𝑇
𝜋 log 𝜌𝑇

𝜋/𝜌 𝑇
ෝ𝜋 + 𝐷𝑓 𝜌 𝑇

𝜋‖𝜌 𝑇
ෝ𝜋

Figure 11: Theoretical sketch of OMPO.

14

Under review as a conference paper at ICLR 2024

A.1 PROOF OF PROPOSITION 4.1

Proposition A.1. Let ρπ̂
T̂
(s, a, s′) denote the transition occupancy distribution specified by the re-

play buffer. The following inequality holds for any f -divergence that upper bounds the KL diver-
gence:

DKL

(
ρπ
T̂
∥ρπT

)
≤ E(s,a,s′)∼ρπ

T̂

[
log
(
ρπT /ρ

π̂
T̂

)]
+Df

(
ρπ
T̂
∥ρπ̂
T̂

)
. (13)

Proof. Based on the definition of KL-divergence, we have

DKL

(
ρπ
T̂
(s, a, s′)∥ρπT (s, a, s′)

)
= E(s,a,s′)∼ρπ

T̂

[
log

ρπT (s, a, s
′)

ρπ
T̂
(s, a, s′)

]

= E(s,a,s′)∼ρπ
T̂

[
log

(
ρπT (s, a, s

′)

ρπ
T̂
(s, a, s′)

·
ρπ̂
T̂
(s, a, s′)

ρπ̂
T̂
(s, a, s′)

)]

= E(s,a,s′)∼ρπ
T̂

[
log

(
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

)]
+ E(s,a,s′)∼ρπ

T̂

[
log

(
ρπ̂
T̂
(s, a, s′)

ρπ
T̂
(s, a, s′)

)]

= E(s,a,s′)∼ρπ
T̂

[
log

(
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

)]
+DKL

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
≤ E(s,a,s′)∼ρπ

T̂

[
log

(
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

)]
+Df

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
. by any Df ≥ DKL

(14)

The proof is completed.

A.2 PROOF OF PROPOSITION 4.2

Proposition A.2. The constraint optimization problem can be transformed into an unconstrained
min-max problem,

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ Es,a,s′∼ρπ

T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)] . (15)

Proof. With the primal optimization,

π∗=argmax
π
Ĵ (π)=argmax

π
E(s,a,s′)∼ρπ

T̂

[
log r(s, a)−α log

(
ρπT /ρ

π̂
T̂

)]
−αDf

(
ρπ
T̂
∥ρπ̂
T̂

)
,

s.t. ρπ(s, a) = (1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a), ∀(s, a) ∈ S ×A,

15

Under review as a conference paper at ICLR 2024

let Q(s, a) denote the Lagrangian multipliers, then we have

E(s,a,s′)∼ρπ
T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+
∑
s,a

Q(s, a)
[
(1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a)− ρπ(s, a)

]
= E(s,a,s′)∼ρπ

T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+
∑
s,a

Q(s, a)
[
(1− γ)µ0(s)π(a|s) + γπ(a|s)

∑
ŝ,â

ρπ
T̂
(ŝ, â, s)−

∑
s′

ρπ
T̂
(s, a, s′)

]
= E(s,a,s′)∼ρπ

T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)

∑
s,a

Q(s, a)π(a|s)µ0(s) + γ
∑
s,a

Q(s, a)π(a|s)
∑
ŝ,â

ρπ
T̂
(ŝ, â, s)

−
∑
s,a,s′

ρπ
T̂
(s, a, s′)Q(s, a)

= E(s,a,s′)∼ρπ
T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)

∑
s,a

Q(s, a)π(a|s)µ0(s) + γ
∑
s′,a′

Q(s′, a′)π(a′|s′)
∑
s,a

ρπ
T̂
(s, a, s′)

−
∑
s,a,s′

ρπ
T̂
(s, a, s′)Q(s, a)

= E(s,a,s′)∼ρπ
T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ

T̂
(s, a, s′)

)
+ (1− γ)Es∼µ0,a∼πQ(s, a) +

∑
s,a,s′

ρπ
T̂
(s, a, s′)

[
γ
∑
a′

Q(s′, a′)π(a′|s′)−Q(s, a)

]

= (1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
(s, a, s,′)∥ρπ̂

T̂
(s, a, s,′)

)
+ E(s,a,s′)∼ρπ

T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)] . (16)

The proof is completed.

A.3 PROOF OF PROPOSITION 4.3

We first briefly introduce the Fenchel conjugate, which is a crutical technology in the proof of
Proposition 4.3.
Definition A.3 (Fenchel conjugate). In a real Hilbert space X , if a function f(x) is proper, then the
Fenchel conjugate f⋆ of f is defined as

f⋆(x) = sup
y∈X
⟨x, y⟩ − f(y), (17)

where the domain of the f⋆(x) is given by:

dom f⋆ =

{
x : sup

y∈dom f
(⟨x, y⟩ − f(y)) <∞

}
. (18)

Based on this definition, we have f⋆⋆(x) = f(x) = miny∈X f⋆(y) − ⟨x, y⟩. For the f -divergence
function, we let Df (x∥p) = Ez∼pf(x/p), thus its Fenchel conjugate is Ez∼p [f⋆(y(z))] (Fenchel,

2014). Further, we apply this property into the f -divergence term Df

(
ρπ
T̂
∥ρπ̂
T̂

)
, and we have

Df

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
= min
y(s,a,s′)

E(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))]− E(s,a,s′)∼ρπ

T̂
[y(s, a, s′)] .

(19)
With the help of the derivation , we start the proof of Proposition 4.3.

16

Under review as a conference paper at ICLR 2024

Proposition A.4. Given the accessible distribution ρπ̂
T̂
(s, a, s′) specified in the global replay buffer,

the min-max problem (11) can be transformed as

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
, (20)

where f⋆(x) := maxy⟨x, y⟩ − f(y) is the Fenchel conjugate of f .

Proof. For the proposed min-max problem (11), we have

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ Es,a,s′∼ρπ

T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)]

= max
π

min
Q(s,a)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)]

− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)Es∼µ0,a∼π[Q(s, a)]. (21)

Then, for the f -divergence term Df

(
ρπ
T̂
∥ρπ̂
T̂

)
, we apply its Fenchel Conjugate (19) into (21),

max
π

min
Q(s,a)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)]

− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)Es∼µ0,a∼π[Q(s, a)]

= max
π

min
Q(s,a)

min
y(s,a,s′)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)] By (19)

+ αE(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))]− αE(s,a,s′)∼ρπ

T̂
[y(s, a, s′)] + (1− γ)Es∼µ0,a∼π[Q(s, a)]

= max
π

min
Q(s,a)

min
y(s,a,s′)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)− αy(s, a, s′)]

+ αE(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))] + (1− γ)Es∼µ0,a∼π[Q(s, a)]. (22)

To eliminate the expectation over ρπ
T̂
(s, a, s′), we follow prior works (Nachum et al., 2019b;a) and

make a change of variables by

y(s, a, s′) =
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α
. (23)

Note that in this variable changing, min y(s, a, s′) can be equivalent to min T πQ(s, a) − Q(s, a)
(we suppose α > 0 and r(s, a), R(s, a, s′) are both irrelevant variables). Based on the definition of
T π , we find that in the inner optimization problem of (22) with the fixed variable π, min y(s, a, s′)
can be replaced by minQ(s, a). Thus, we can further yield

max
π

min
Q(s,a)

min
y(s,a,s′)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)− αy(s, a, s′)]

+ αE(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))] + (1− γ)Es∼µ0,a∼π[Q(s, a)]

= max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
. (24)

The proof is completed.

17

Under review as a conference paper at ICLR 2024

B MORE DISCUSSION OF PERFORMANCE IMPROVEMENG FOR OMPO

Here, we discuss the performance improvement of OMPO from an optimization objective perspec-
tive, compared to the general RL objective (1). To recap, our proposed surrogate objective to handle
policy and dynamics shifts is formulated as

Ĵ (π) = E(s,a,s′)∼ρπ
T̂

[
log r(s, a)− α log

ρπT (s, a, s
′)

ρπ̂
T̂
(s, a, s′)

]
− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
.

Ideal Condition without Policy and Dynamics Shifts. When there is no policy and dynamics
shifts, we have T̂ = T and π̂ = π. Thus, the negative terms in the surrogate objective satisfy

log
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

= log
ρπT (s, a, s

′)

ρπT (s, a, s
′)

= 0,

Df

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
= Df (ρ

π
T (s, a, s

′)∥ρπT (s, a, s′)) = 0.

At this case, the surrogate objective reduced to

Ĵ (π) = E(s,a,s′)∼ρπ
T̂
[log r(s, a)] . (25)

This actually corresponds to solving an MDP with reward shaping using the logarithmic function.
Since the logarithmic function is monotonically increasing, it does not largely change the nature of
the original task.

Only Policy shifts without Dynamics shifts. In stationary environments where T̂ = T , the train-
ing data exhibit policy shifts since they are collected by various policy in the training. The general
RL objective (1),

π∗ = argmax
π

E(s,a)∼ρπ [r(s, a)],

assumes the distribution from on-policy samplings (s, a) ∼ ρπ . Under policy shifts, the training
data (s, a) ∼ ρπ̂ have a mismatch to on-policy samplings (s, a) ∼ ρπ , resulting in suboptimal
performance. While, for OMPO, the surrogate objective (5) reduces to

Ĵ (π) = E(s,a,s′)∼ρπT

[
log r(s, a)− α log(ρπT /ρ

π̂
T)
]
− αDf

(
ρπT ∥ρπ̂T

)
= E(s,a)∼ρπ

[
log r(s, a)− α log

(
ρπ/ρπ̂

)]
− αDf

(
ρπ∥ρπ̂

)
= E(s,a)∼ρπ [log r(s, a)]− α

[
DKL

(
ρπ∥ρπ̂

)
+Df

(
ρπ∥ρπ̂

)]
, (26)

which essentially regularizes the discrepancy between on-policy occupancy ρπ and the occupancy
induced by off-policy samples ρπ̂from the replay buffer, which helps to alleviate potential instability
caused by off-policy learning (Liu et al., 2019; Xue et al., 2023).

Policy shifts with Dynamics Shifts. For the most general setting, Section 4.2 has discussed the
solution. By carefully handling the impact of polic and dynamics shifts, OMPO can achieve better
performance than the general RL objective in practice.

18

Under review as a conference paper at ICLR 2024

C IMPLEMENTATION DETAILS

In this section, we delve into the specific implementation details of OMPO. To do so, we employ
deep neural networks parameterized by ϕ, θ, and ψ to represent the discriminatorh(s, a, s′), critic
Q(s, a), and policy π(a|s), respectively. Here are the key aspects of the implementation:

Discriminator training. To address practical considerations during online training, it’s essential
to manage the discrepancy in data volume between the local buffer DL and the global buffer DG.
To tackle this challenge, we adopt the following strategy: At each gradient step, we randomly draw
several batches, each with a size of |DL|, and employ them to train the discriminator. This process
ensures a balanced use of data from both DL and DG during training.

Specialized actor-critic architecture. For the f -divergence, we specifically choose f(x) =
1
p (x − 1)p, with its Fenchel conjugate denoted as f⋆(x) = 1

qx
q + x, where 1

p + 1
q = 1. To practi-

cally address the tractable min-max optimization problem (12), we initially solve the inner problem
concerning Q(s, a) using a gradient-based approach:

Q(s, a)← argmin
Q

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
. (27)

Subsequently, employing the policy gradient method (Sutton et al., 1999; Nachum et al., 2019b),
where:

∂

∂π
min
Q

J(π,Q) = E(s,a)∼ρπ

[
Q̃(s, a)∇ log π(a|s)

]
, (28)

with Q̃(s, a) representing the Q-value function of π based on rewards r̃(s, a) = r(s, a) −
αf ′(ρπT /ρ

π̂
T̂
), updated using Q̃(s, a) from the inner problem, we update the policy π as follows:

π(a|s)← argmin
π

(1− γ)Es∼µ0,a∼π[Q̃(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f ′⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ̃(s, a)− Q̃(s, a)

α

)]
. (29)

Here, f ′⋆(x) = xq−1 + 1 represents the derivative of f⋆(x).

In the actor-critic architecture, we follow a two-step process: first, we update the critic network,
and then we update the actor network. To ensure training stability, we implement a stochastic first-
order two-time scale optimization technique (Borkar, 1997), where the gradient update step size
for the inner problem is significantly larger than that for the outer layer. This setup ensures rapid
convergence of the inner problem to suit the outer problem.

Especially, to deal with s0 ∼ µ0 in Equation (27) and Equation (29), we refer to the implementation
of previous DICE works (Nachum et al., 2019b; Ma et al., 2022), and adopt an initial-state buffer to
store initial state s0. When optimizing Equation (27) and Equation (29), we can sample s0 from the
initial-state buffer.

Application in different scenarios. With the proposed actor-critic architecture, OMPO seam-
lessly accommodates various scenarios involving diverse shifts. By employing the local replay
buffer DL to collect fresh data and the global replay buffer DG to store all historical data, OMPO
effectively addresses different shift scenarios:

• Policy shifts with stationary dynamics: In this scenario, only the fresh data is retained in DL.
WhenDL reaches its capacity, we initiate training of the discriminator. Subsequently, we sample
random batches from DG to update both the critic and the actor, with the updated discriminator.
Following this update, we merge the data inDL intoDG and resetDL for further data collection.

• Policy shifts with domain adaption: When policy shifts involve domain adaptation, fresh data
sampled under the target dynamics is stored in DL, while data from the source dynamics resides
in DG. Then, the training process mirrors that of the scenario with stationary dynamics.

19

Under review as a conference paper at ICLR 2024

Algorithm 1: Occupancy-Matching Policy Optimization (OMPO)
initialize: Global buffer DG, local buffer DL, initial-state buffer D0, critic Qθ, policy πψ ,

discriminator h
repeat

for each environment step do
if Initialisation then

Store the initial state s0 ∼ µ0 into D0

/* Case 1: Interact with stationary environment */
Collect (s, a, s′, r) with πψ from environment; add to DL
/* Case 2: Interact with multiple domains for adaption */
Collect (s, a, s′, r) with πψ from source domains; add to DG
Collect (s, a, s′, r) with πψ from target domain; add to DL
/* Case 3: Interact with non-stationary environment */
Collect (s, a, s′, r) with πψ from current environment; add to DL

if DL is full then
for each gradient step do

Update discriminator h(s, a, s′) by Eq.(9) from both DG and DL
Computing R(s, a, s′) with discriminator h(s, a, s′) by Eq.(10)
Update critic Qθ by Eqs.(27) and actor πψ by Eqs.(29) from DG and D0

Merge global buffer by DG ← DG ∪ DL and reset local buffer DL ← ∅
until the policy performs well in the environment;

• Policy shifts with non-stationary dynamics: The training process aligns with the first scenario
regardless of policy and dynamics shifts.

Therefore, in various scenarios, adjusting data collection in distinct replay buffers suffices, elim-
inating the need for any modifications to the policy optimization process. These approaches are
succinctly summarized in Algorithm 1.

C.1 HYPERPARAMETERS AND NETWORK ARCHITECTURE

We use the same hyperparameters for all OMPO experiments in this paper. In terms of architec-
ture, we use a simple 2-layer ReLU network with a hidden size of 256 to parameterize the cirtic
network. For the policy network, we use the same architecture to parameterize a Gaussian distri-
bution, where the mean and the log standard deviation are outputs of two separate heads, referring
to SAC (Haarnoja et al., 2018). For the discriminator network, we also a simple 2-layer network.
Table 2 summarizes the hyperparameters as well as the architecture.

C.2 BASELINES

In our experiments across the three different scenarios, we have implemented all the baseline algo-
rithms using their original code bases to ensure a fair and consistent comparison.

For the stationary environments,

• For SAC (Haarnoja et al., 2018), we utilized the open-source PyTorch implementation, available
at https://github.com/pranz24/pytorch-soft-actor-critic.

• TD3 (Fujimoto et al., 2018) was integrated into our experiments through its official codebase,
accessible at https://github.com/sfujim/TD3.

• AlgaeDICE (Nachum et al., 2019b) was employed with its official implementation from
https://github.com/google-research/google-research/tree/master/
algae_dice.

For the domain adaption,

20

https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/sfujim/TD3
https://github.com/google-research/google-research/tree/master/algae_dice
https://github.com/google-research/google-research/tree/master/algae_dice

Under review as a conference paper at ICLR 2024

Table 2: The hyperparameters of OMPO

OMPO Hyperparameters

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 1e-4
Discount factor 0.99
Mini-batch 256
Actor Log Std. Clipping (−20, 2)
Local buffer size 1000
Global buffer size 1e6
Order q of Conjugate function 1.5
Weighted factor 0.001

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function elu
Actor hidden dim 256
Actor hidden layers 2
Actor activation function elu
Discriminator hidden dim 256
Discriminator hidden layers 2
Discriminator activation function tanh

• DARC (Eysenbach et al., 2021) was harnessed via its official implementation, found at https:
//github.com/google-research/google-research/tree/master/darc.

• We meticulously detailed the implementation of Domain Randomization (Tobin et al., 2017) in
Appendix E.

For the non-stationary environments,

• CaDM (Lee et al., 2020) was implemented using its official codebase accessible at https:
//github.com/younggyoseo/CaDM.

• CEMRL (Bing et al., 2022a) was utilized with its official implementation found at https:
//github.com/zhenshan-bing/cemrl.

21

https://github.com/google-research/google-research/tree/master/darc
https://github.com/google-research/google-research/tree/master/darc
https://github.com/younggyoseo/CaDM
https://github.com/younggyoseo/CaDM
https://github.com/zhenshan-bing/cemrl
https://github.com/zhenshan-bing/cemrl

Under review as a conference paper at ICLR 2024

D COMPARISON WITH PRIOR DICE WORKS

In comparison to prior works within the DICE family, OMPO distinguishes itself as primarily tai-
lored for Online, Shifted scenarios. This distinction is notable in terms of both theoretical under-
pinnings and generalizability.

• Generalizability
– Not only policy shifts, but also dynamics shifts: While numerous DICE works concentrate

on discrepancies in state or state-action occupancy distributions, such as DualDICE (Nachum
et al., 2019a) and AlgaeDICE (Nachum et al., 2019b), their primary concern is variations in
data distributions due to differing policies (i.e., behavior-agnostic and off-policy data distri-
bution in their paper). Consequently, these approaches may struggle when policy shifts and
dynamic shifts co-occur, as they do not account for the transition dynamics for the next state
when given the current states and actions.

– Model-Based Distinctions: TOM (Ma et al., 2023), as a model-based RL method, also em-
ploys transition occupancy distributions. However, a fundamental difference exists between
TOM and OMPO. TOM encourages the learned model to consider policy exploration while
optimizing the transition occupancy distribution, i.e., minT̂ Df (d

π
T̂
(s, a, s′)∥dπT (s, a, s′)),

but it does not incorporate the environmental reward into its objective. In OMPO, our ob-
jective seeks to identify similar experiences collected from the global buffer, with a focus
on enhancing environmental returns, see the log r(s, a) term in the surrogate objective (5).
Furthermore, TOM can only apply to stationary environments and does not address policy
shifts and dynamic shifts explicitly.

– Experimental Effectiveness: Through our experimental results, OMPO demonstrates its ef-
ficacy across diverse scenarios encompassing policy shifts, dynamic shifts, or a combination
of both, which can not be unified in previous works.

• Theory
– Comparison between Reward and Distribution Discrepancy: Our derivation of the sur-

rogate policy learning objective highlights that the use of logarithmic rewards log r(s, a) is
comparable to distribution discrepancies log(ρπT /ρ

π̂
T̂
), as opposed to the heuristic objectives

found in prior online DICE methods. For instance, AlgaeDICE (Nachum et al., 2019b) em-
ploys the objective J(π) = E(s,a)∼dπ [r(s, a)− αDf (d

π∥dD)].
– Variable Substitution with Bellman Flow Constraint: Although OMPO, AlgaeDICE and

DualDICE all use variable substitution to eliminate the unknown distribution, We begin our
optimisation problem by considering the Bellman flow constraint that the distribution needs
to satisfy, which allows us to do variable substitutions in such a way that

log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)− αy(s, a, s′) = 0

⇒ y(s, a, s′) =
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

explaining the motivation for variable substitutions. However, previous work has simply used
variable substitutions without additional specification.

– Offline RL with DICE Methods: Offline RL methods like SMODICE (Ma et al., 2022)
and DEMODICE (Kim et al., 2021) predominantly focus on constraining the exploration
distribution of the policy to match a given distribution of offline data, aimed at avoiding
out-of-distribution (OOD) issues. Consequently, even with the consideration of Bellman
flow constraint, their optimization variable is dπ . In contrast, OMPO, designed for online
training, uses π as the optimization variable, with the aim of maximizing environmental
rewards. The introduction of Df in our derivation naturally arises from our considerations of
shifts, differentiating OMPO from these offline DICE approaches.

22

Under review as a conference paper at ICLR 2024

E EXPERIMENT SETTINGS

Below, we provide the environmental details for the three proposed scenarios.

Stationary environments. In this scenario, we used the standard task settings from OpenAI Gym
as benchmarks, including Hopper-v3, Walker2d-v3, Ant-v3, and Humanoid-v3. All methods were
trained using the off-policy paradigm. Specifically, we set up a global replay buffer with a size of
1e6 for each baseline to store all historical data for policy training.

Domain Adaption. For each of the four tasks, we established both source dynamics and target
dynamics. In the target dynamics, we introduced significant changes, including structural modifi-
cations such as doubling the torso and foot sizes in the Hopper and Walker2d tasks, and altering
mechanics such as doubling gravity and introducing a wind with a velocity of 1m/s in the Ant and
Humanoid tasks. We divided the source dynamics into two categories, with and without the adoption
of domain randomization technology.

• Without domain randomization: We use the standard task settings from OpenAI Gym as source
dynamics, without any modification. See Table 3 for parameters comparison.

Table 3: The parameters of source dynamics without domain randomization technology

Source Dynamics (Without Domain Randomization) Target Dynamics
Torso Length Foot Length Gravity Wind speed Torso Length Foot Length Gravity Wind speed

Hopper 0.2 0.195 - - 0.4 0.39 - -
Walker2d 0.2 0.1 - - 0.4 0.2 - -
Ant - - 9.81 0.0 - - 19.62 1.0
Humanoid - - 9.81 0.0 - - 19.62 1.0

• With domain randomization: Since the principle of domain randomization is to randomise certain
dynamic parameters, we apply it to the source dynamics when training the variant OMPO-DR
and SAC-DR. See table 4 for the parameter settings.

Table 4: The parameters of source dynamics with domain randomization technology

Source Dynamics (With Domain Randomization) Target Dynamics
Torso Length Foot Length Gravity Wind speed Torso Length Foot Length Gravity Wind speed

Hopper (0.3, 0.5) (0.29, 0.49) - - 0.4 0.39 - -
Walker2d (0.1, 0.3) (0.05, 0.15) - - 0.4 0.2 - -
Ant - - (16.62, 22.62) (0.5, 1.2) - - 19.62 1.0
Humanoid - - (16.62, 22.62) (0.5, 1.2) - - 19.62 1.0

Non-stationary environments. In this non-stationary dynamics scenario, dynamic variations
were introduced throughout the entire training process. It’s worth noting that while both non-
stationary environments and domain adaptation involve dynamic shifts, the evaluation in domain
adaptation is based on fixed target dynamics, whereas in non-stationary environments, the evalua-
tion is conducted on varying dynamics. This makes the non-stationary environment evaluation more
challenging. Here is a detailed description of the dynamic shifts for each task:

• Hopper task: In this task, we change the torso length Ltorso and the foot length Lfoot of each
episode. At episode i, the lengths satisfy the following equations:

Ltorso(i) = 0.4 + 0.1× sin(0.2× i), Lfoot(i) = 0.39 + 0.1× sin(0.2× i). (30)

• Walker2d task: Similar to the Hopper task, the torso length Ltorso and the foot length Lfoot of
each episode i satisfy:

Ltorso(i) = 0.2 + 0.1× sin(0.3× i), Lfoot(i) = 0.1 + 0.05× sin(0.3× i). (31)

• Ant task: In the Ant task, dynamic changes occur at each time step rather than at the episode
level, making it as a stochastic task. Let i denote the number of episodes and 0 ≤ j ≤ 1000

23

Under review as a conference paper at ICLR 2024

represent the time step in an episode. The values of gravity g and wind speed W are calculated
as follows3:

g(i, j) = 14.715 + 4.905× sin(0.5× i) + rand(−3, 3), (32)
W (i, j) = 1 + 0.2× sin(0.5× i) + rand(−0.1, 0.1). (33)

• Humanoid task: Similar to the Ant task, gravity g and wind speed W in the Humanoid task are
calculated as follows:

g(i, j) = 14.715 + 4.905× sin(0.5× i) + rand(−3, 3), (34)

W (i, j) = 1 + 0.5× sin(0.5× i) + rand(−0.1, 0.1). (35)

It’s worth noting that when wind is introduced to the Ant and Humanoid tasks (with default density
1.2 and viscosity 2e−5), the Ant has a larger windward area relative to the Humanoid, thus suffering
the bigger drag. Therefore, this sets a smaller upper bound on the wind speed for the Ant task. This
consideration helps maintain task feasibility and realism in the presence of wind dynamics.

Stochastic manipulation tasks. Here, we adopt two Panda Robot tasks and four robot manipu-
lation tasks from Meta-World to evaluate OMPO. For the Panda Robot tasks, we introduce a fixed
bias with a minor noise to the actions for each interaction, which is

ã = aOMPO + 0.05 + uniform(0, 0.01). (36)

For the tasks from Meta-World suite, we use the original environmental settings.

3We choose 14.715 and 4.905 as the different magnifications of the original gravity g = 9.81, not a special
design.

24

Under review as a conference paper at ICLR 2024

F MORE EXPERIMENTAL RESULTS

F.1 TRAJECTORIES VISUALIZATION

We visualize the trajectories generated by OMPO on four tasks with target dynamics from domain
adaption scenarios. For each trajectory, we display seven keyframes.

time −→

H
op

pe
r

Ta
rg

et
W

al
ke

r2
d

Ta
rg

et
A

nt
Ta

rg
et

H
um

an
oi

d
Ta

rg
et

Figure 12: Domain adaption trajectory visualizations. Visualizations of the learned policy of
OMPO on four tasks with target dynamics.

F.2 TRANSITION OCCUPANCY DISTRIBUTION VISUALIZATION

We visualize the transition occupancy distribution ρπT (s, a, s
′) of the Hopper task under Non-

stationary environments.

Figure 13: Different stages of ρπT by Hopper tasks un-
der non-stationary environment. Training stages: 100k
(ρπ1

T1
), 200k (ρπ2

T2
), 300k (ρπ3

T3
), 500k (ρπ4

T4
)

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Non-stationary Dynamics
OMPO
OMPO w/- R

Figure 14: Performance comparison of OMPO and
the variant of OMPO without discriminator by Hopper
tasks.

25

Under review as a conference paper at ICLR 2024

F.3 PERFORMANCE LEARNING CURVES OF STOCHASTIC ROBOT TASKS

0 500k 1M
steps

0

0.5

1
su

cc
es

s
ra

te
dial turn

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

dial turn

(a) dial turn

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

door open

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

door open

(b) door open

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

door unlock

0 500k 1M
steps

0

2500

5000
av

er
ag

e
re

tu
rn

door unlock

(c) door unlock

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

drawer open

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

drawer open

(d) drawer open

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

hand insert

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

hand insert

(e) hand insert

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

plate slide

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

plate slide

(f) plate slide

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

coffee push

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

coffee push

(g) coffee push

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

hammer

0 500k 1M
steps

0

2500

5000
av

er
ag

e
re

tu
rn

hammer

(h) hammer
0 50k 100k

steps

0

2000

4000

av
er

ag
e

re
tu

rn

Hopper

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Walker2d

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant

0 100k 200k
steps

0

2000

4000

6000
av

er
ag

e
re

tu
rn

Humanoid

OMPO SAC TD3

Figure 15: Individual Meta-World tasks. Success rate and average return of OMPO, SAC, TD3
on twelve manipulation tasks from Panda-Gym suite.

0 100k 200k
steps

0

0.5

1

su
cc

es
s

ra
te

panda reach dense

0 100k 200k
steps

-30

-15

0

av
er

ag
e

re
tu

rn

panda reach dense

(a) Panda Reach (Dense)

0 100k 200k
steps

0

0.5

1

su
cc

es
s

ra
te

panda reach sparse

0 100k 200k
steps

-120

-60

0

av
er

ag
e

re
tu

rn

panda reach sparse

(b) Panda Reach (Sparse)
0 50k 100k

steps

0

2000

4000

av
er

ag
e

re
tu

rn

Hopper

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Walker2d

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant

0 100k 200k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Humanoid

OMPO SAC TD3

Figure 16: Individual Panda Robot tasks. Success rate and average return of OMPO, SAC, TD3
on two manipulation tasks from Meta-World suite.

26

Under review as a conference paper at ICLR 2024

F.4 ABLATIONS ON REWARD FUNCTION

Based on our derivation, when considering distribution discrepancies in the objective, using logarith-
mic rewards log r(s, a) instead of the original rewards r(s, a) may be a more aligned and comparable
approach. Thus, we conduct an investigation of the reward function in the surrogate objective.

• OMPO: the tractable problem to be solved is formulated as
max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
, (37)

• OMPO-r: the tractable problem to be solved is formulated as
max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
, (38)

Through the Hopper tasks under three settings, as depicted in Figure 17, we find that directly using
environmental rewards in our framework, rather than in the form of logarithmic rewards, leads to
performance degradation, illustrating the soundness of our theory.

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Stationary Dynamics
OMPO
OMPO-r
SAC

0 100k 200k
steps

0

1000

2000

av
er

ag
e

re
tu

rn

Domain Adaption
OMPO
OMPO-r
SAC

0 250k 0.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Non-stationary Dynamics
OMPO
OMPO-r

Figure 17: Performance comparison between OMPO and OMPO-r through Hopper tasks.

F.5 LONG TRAINING STEPS OF STATIONARY ENVIRONMENTS

We provide the performance comparison under 2.5M environmental steps in Figure 18. The results
demonstrate that, OMPO exhibits significantly better sample efficiency and competitive convergence
performance.

0 1.25M 2.5M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Hopper
OMPO
SAC
TD3

0 1.25M 2.5M
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Walker2d
OMPO
SAC
TD3

0 1.25M 2.5M
steps

0

3000

6000

av
er

ag
e

re
tu

rn

Ant
OMPO
SAC
TD3

0 1.25M 2.5M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

Humanoid
OMPO
SAC
TD3

Figure 18: Performance comparison of OMPO, SAC and TD3 through 2.5M environment steps in
stationary environments.

F.6 MORE SEVERE DYNAMICS SHIFTS EXPERIMENTS

To verify the robustness of OMPO in extreme cases, we conduct additional experiments in Non-
stationary environments where the gravity ranges from 0.5 ∼ 3 times the original parameters.

27

Under review as a conference paper at ICLR 2024

Specifically, through Ant task and Humanoid tasks, gravity g is calculated as follows:

g(i, j) = 17.1675 + 12.2625× sin(0.5× i) + rand(−3, 3), (39)

where i represent the i-th training episode.

The results are shown in Figures 19 and 20. We find that, under much greater variations in gravity,
OMPO can maintain satisfactory performance in both Ant and Humanoid tasks, while the baseline
CEMRL suffers from the changes of gravity greatly, demonstrating performance degradation.

0 0.5M 1M
steps

0

1000

2000

av
er

ag
e

re
tu

rn

NonStationary-Ant
OMPO in (0.5 2) × g
OMPO in (0.5 3) × g
CEMRL in (0.5 2) × g
CEMRL in (0.5 3) × g

Figure 19: More Severe gravity changes in Ant tasks.

0 0.5M 1M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

NonStationary-Humanoid
OMPO in (0.5 2) × g
OMPO in (0.5 3) × g
CEMRL in (0.5 2) × g
CEMRL in (0.5 3) × g

Figure 20: More Severe gravity changes in Ant tasks.

F.7 ABLATION ON ORDER q OF FENCHEL CONJUGATE

Regarding the order q of Fenchel Conjugate function, we test four sets of parameters by Hopper and
Walker2d tasks under non-stationary dynamics. As dispected in Figure 21, q ∈ [1.2, 2] can yield
satisfactory performance, with q = 1.5 showing superior results in our experiments.

0 250k 500k
steps

0

2000

4000

av
er

ag
e

re
tu

rn

Non-stationary Hopper
q = 1.5
q = 1.2
q = 1.7
q = 2.0

0 250k 500k
steps

0

2000

4000

av
er

ag
e

re
tu

rn

Non-stationary Walker2d
q = 1.5
q = 1.2
q = 1.7
q = 2.0

Figure 21: Ablation on the order q by Hopper and Walker2d tasks under Non-stationary dynamics.

28

Under review as a conference paper at ICLR 2024

G COMPUTING INFRASTRUCTURE AND TRAINING TIME

We list the computing infrastructure and benchmark training times of OMPO in Table 5.

Table 5: Computing infrastructure and training time on stationary dynamics tasks (in hours).

Hopper Walker2d Ant Humanoid

CPU Intel® CoreTM i9-9900

GPU NVIDIA GeForce RTX 2060

Training steps 0.5M 1.0M 1.5M 1.0M

Training time 3.15 6.58 9.37 8.78

29

	Introduction
	Related Works
	Preliminaries
	Policy Optimization under Policy and Dynamics Shifts
	A Surrogate Policy Learning Objective
	Dual Reformulation of the Surrogate Objective
	Practical Implementation

	Experiment
	Experimental Results in Three Shifted Types
	Analysis of OMPO under policy and dynamics shifts

	Conclusion
	Proofs in the Main Text
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3

	More Discussion of Performance Improvemeng for OMPO
	Implementation Details
	Hyperparameters and Network Architecture
	Baselines

	Comparison with Prior DICE Works
	Experiment Settings
	More Experimental Results
	Trajectories Visualization
	Transition Occupancy Distribution Visualization
	Performance Learning Curves of Stochastic Robot Tasks
	Ablations on Reward Function
	Long Training Steps of Stationary Environments
	More Severe Dynamics Shifts Experiments
	Ablation on Order q of Fenchel Conjugate

	Computing Infrastructure and Training Time

