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Abstract

Governments and industries have widely adopted differential privacy as a mea-
sure to protect users’ sensitive data, creating the need for new implementations
of differentially private algorithms. In order to properly test and audit these algo-
rithms, a suite of tools for testing the property of differential privacy is needed. In
this work we expand this testing suite and introduce RENYITESTER , an algorithm
that can reject a mechanism is not Rényi differentially private. Our algorithm com-
putes computes a lower bound of the Rényi divergence between the distributions
of a mechanism on neighboring datasets, only requiring black-box access to sam-
ples from the audited mechanism. We test this approach on a variety of pure and
Rényi differentially private mechanisms with diverse output spaces and show that
RENYITESTER detects bugs in mechanisms’ implementations and design flaws.
While detecting that a general mechanism is differentially private is known to be
NP hard, we empirically show that tools like RENYITESTER provide a way for re-
searchers and engineers to decrease the risk of deploying mechanisms that expose
users’ privacy.

1 Introduction

In the past decade, there has been an explosion of data driven technologies such as automated chat
bots, medical image classifiers and face recognition systems. As these technologies become more
ingrained in our everyday lives, society is realizing that sharing data with these technologies, even
in aggregate, may pose privacy risks. With this realization, regulators and tech companies have had
to update their systems to handle data in a privacy safe manner. At the same time, users expect
technology to be automated and frictionless. This automation is generally data-driven, putting both
goals of usability and privacy seemingly at odds.

Luckily, the concept of differential privacy [13] has demonstrated that high quality statistical infor-
mation or machine learning models can still be generated without compromising the privacy of any
individual user. At the heart of differential privacy is the concept of a mechanism. A mechanism M
is a randomized function that maps a dataset D to an object, such as a set of statistics or a machine
learning model. Differential privacy quantifies how much any individual user in the dataset affects
the output of a mechanism, and this quantification is measured by the privacy budget ǫ. The smaller
ǫ is the less each user affects the outcome of the mechanism and, hence, the less information about
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specific users may be leaked from the output of the mechanism. This intuition is formalized by
bounding the distance between the distributions of the output of M on two neighboring datasets D
and D′. More formally, this is the distance between the distribution of random variables M(D) and
M(D′), where D′ is a dataset obtained from D by adding or subtracting a single record.

The introduction of differential privacy to the research community has revolutionized the world of
statistics and machine learning. Research in this field has been prolific and the community has devel-
oped differentially private algorithms for a variety of learning tasks. More importantly, mechanisms
for these tasks are continuously being improved to extract the most utility, without compromising
any privacy. It is in these improvements that one of the issues of differential privacy is observed.
Unlike other privacy notions, like k-anonymity, one cannot verify if a mechanism is differentially
private based only on a single output of a mechanism. Indeed, differential privacy is an information
theoretical property of the mechanism that can only be verified by understanding the probability
distribution over the space of outputs of a mechanism. This is straightforward when the mechanism
is the well-known Laplace or Gaussian mechanism (albeit there are known errors in the implementa-
tion of even these mechanisms). However, as mechanisms become more accurate, the distributions
generally become more complex. Fully understanding the distributions of such mechanisms be-
comes harder and errors on the analysis of such distributions (or errors in the implementations of
such mechanisms) have occurred in the past [23]. In some of these scenarios, mechanisms that were
asserted to be differentially private at a certain privacy budget level ǫ turned out to be either private
at a different level or not private at all. As these mechanisms get deployed into real-world systems,
it is important for researchers and regulators to verify the privacy claims of their mechanisms.

Ideally, given a privacy budget ǫ, there would be a system that takes, as input, the implementation
of a mechanism and validates that the mechanism is differentially private at the asserted level of ǫ.
The stochastic nature of differential privacy makes this difficult, since verifying differential privacy
requires bounding the distance between two distributions, which is generally hard to estimate.

In this paper we propose a tester for detecting if a mechanism satisfies so called Rényi differential
privacy (RDP) guarantees [24]. RDP provides some advantages over approximate (ǫ, δ)-differentialy
privacy. For one, it provides a better understanding of the privacy properties of the Gaussian mech-
anism by smoothly quantifying the probability of failing to achieve privacy. Moreover, its compos-
ability properties makes it a great tool for calculating overall privacy budgets of iterative algorithms
such as the celebrated differentially private stochastic gradient descent (DP-SGD). Indeed, popular
open source privacy accounting libraries [2, 34] are implemented with RDP as their backbone. For
this reason we believe that Rény DP tester would be of the utmost importance to the privacy com-
munity and to the best of our knowledge, this is the first proposed such tester. As an added benefit,
we show how a Rényi differential privacy tester can be used to test ǫ-differential privacy. Finally,
we believe that estimating lower bounds of the Rényi divergence is of independent interest to the
statistics community [6, 21].

Another contribution of our work comes from the use of Bayesian optimization methods to find
neighboring datasets D and D′ for which the privacy guarantee is violated. This approach allows a
user to not only discover whether a mechanism is private, but also provides information about the
type of datasets for which the mechanism leaks the most information. Previous work either ignores
this [16] or tests only on grids containing extremal datasets [9, 5]. Our experiments show that in
some cases the privacy violation does not occur in an extremal dataset.

The rest of the paper is organized as follows. First, we introduce the necessary concepts to derive
our statistical test, then we discuss previous work on testing of differentially private mechanisms.
We then proceed to introduce our test and its theoretical guarantees. Finally, we conduct extensive
empirical evaluation to demonstrate that a) our distance estimator performs very well in practice and
b) known privacy bugs can easily be detected using our tester.

2 Preliminaries

Notation. M : Xn → Y denotes a mechanism that receives an input dataset D ⊆ Xn with n
records and domain X ⊆ R

p and outputs a statistic y ∈ Y ⊆ R
d.
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2.1 Differential privacy and Renyi divergence

Differential privacy [13] quantifies the level of risk that a user is exposed to when they contribute
their data to a randomized mechanism. We formalize this concept in definition 2.1

Definition 2.1. Datasets D,D′ are called neighbors, denoted by D ∼ D′, if D can be obtained from
D′ by adding or removing one record from D. A randomized mechanism M : Xn → Y satisfies
(ǫ, δ)–approximate differential privacy, or is (ǫ, δ)–differentially private ((ǫ, δ)–DP), if for every pair
of neighboring datasets D and D′ and every set O ⊆ Y in the output space, we have

P (M(D) ∈ O) ≤ eǫP (M(D′) ∈ O) + δ (1)

We say M satisfies pure differential privacy, or is ǫ–differentially private (ǫ–DP), when δ = 0.

An interpretation of differential privacy suggests that a mechanism is private if the distance between
the distributions of M(D) and M(D′) is small (relative to ǫ and δ). Under this interpretation, novel
notions of privacy have emerged by introducing different ways of measuring divergences between
distributions. Notably, the Rényi divergence [31, 15] (which we define below) has become a popular
choice when analyzing the privacy properties of mechanisms such as DP-SGD [14].

Definition 2.2. Let (Ω,F) be an arbitrary measurable space. Let P and Q denote two probabilities
in (Ω,F). We assume that P is absolutely continuous with respect to Q 1 and let dP

dQ denote the

Radon-Nykodym derivative of P with respect to Q. For α > 0, the Rényi divergence of order α
between P and Q is given by

Dα(P ||Q) =
1

α− 1
ln

∫
(

dP

dQ

)α

dQ (2)

We now make two remarks about the above definition. First, as α ↓ 0, the quantity Dα(P ||Q)
tends to the well-known Kullback–Leibler (KL) divergence. Second, when P and Q admit density
functions p, q respectively, the above expression is equivalent

Dα(P ||Q) =
1

α− 1
ln

∫
(

p(x)α

q(x)α−1

)

dx

We will abuse the notation sometimes for random variables X ∼ P and Y ∼ Q we will denote
Dα(X||Y ) = Dα(P ||Q). Using this divergence, we can introduce the notion of Rényi differential
privacy [25].

Definition 2.3. A randomized mechanism M : Xn → Y satisfies (α, ǫ)–Rényi differential privacy
if for every pair of neighboring datasets D and D′, we have

Dα(M(D)||M(D′)) ≤ ǫ (3)

The next two results present some important properties about Dα(P ||Q).

Lemma 2.4 (Proposition 9 in [25]). Let 1 < α1 < α2 and P and Q be probability measures. Then
Dα1

(P ||Q) < Dα2
(P ||Q)

Lemma 2.5 (Lemma 1 in [25]). Let M be an ǫ–differentially private mechanism and α > 1. Then
Dα(M(D)||M(D′)) ≤ min{ǫ, 2αǫ2}.

Fact 2.6. α = ∞ corresponds to pure-DP, i.e., M is an ǫ–DP mechanism if and only if for any
D ∼ D′, we have D∞(A(D)||A(D′) ≤ ǫ.

3 Related work

There are generally two kinds of approaches used in differential privacy testing. The first approach
uses adversarial attacks that try to break the privacy definition, like membership inference attacks
[20, 30, 7] and data reconstruction attacks [18, 3] of deep learning models trained with DP-SGD.
Hence, the validation of whether a mechanism satisfies privacy is linked to the ability of the attack
to succeed. The tests generated by these approaches are very valuable when trying to understand

1A measure P is absolutely continuous with respect to Q if for every set A ⊂ Ω such that Q(A) = 0 then
P (A) = 0.
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potential privacy risks on a single data set, by manually designing canaries that are expected to have
highest sensitivity. However, they do not attempt to understand the worst case (unknown) scenario
that differential privacy tries to protect. Running these tests generally requires white box access
to the trained model and, more importantly, requires access to large portions of the training data,
making auditing of a privately trained model impossible for someone who is not the data curator.
Consequently, the resulting lower bounds from these approaches tend to be loose [28, 27]. Moreover,
the budget ǫ predicted by these experiments is generally much smaller than the theoretical budget.
For example, some authors assert that their proposed models were private with an ǫ = 10−3 when
these models were trained without privacy.

The second approach, that contains our proposed method, attempts to directly estimate the effective
privacy parameters from black-box access to the tested mechanism and compare these effective pri-
vacy parameters with the ones stated by the privacy guarantee. This approach focuses on estimating
the distance between the distribution induced by the mechanism in two different datasets. However,
two key challenges arise: 1) how do we estimate the distance between distributions given two fixed
neighboring datasets? and 2) how do we find the pair of neighboring datasets that maximize the
distance between these distributions?

The problem of estimating distance between distributions has been thoroughly studied in the statis-
tics and hypothesis testing community. While providing a full overview of the literature in this space
is beyond the scope of this work, we do highlight [29, 35, 33] which consider estimating probabil-
ity distances through optimization methods over function spaces. Their work provided asymptotic
guarantees while we provide strict finite sample complexities to obtain a lower bound on the Rényi
divergence between two distributions.

For the specific task of estimating the Rényi divergence, our estimator is inspired by the work of [6]
which considers using neural networks to estimate Rényi divergence. The finite sample complex-
ity bounds provided in that work, however, depend on the structure of the neural network and can
rapidly become vacuous for the purpose of testing differential privacy. In contrast, our complexity
bounds are independent of the network structure as we are primarily concerned with lower bounds
on the Rényi divergence. In a related approach, [11] proposes to estimate the regularized kernel
Rényi divergence, a lower bound on the Rényi divergence between distributions of a randomized
mechanism. However, this approach requires knowledge about the covariance matrix of the under-
lying distributions, which is impractical for most mechanisms other than the Gaussian and Laplace
mechanisms. Recent work on tight estimation of the privacy loss distribution [12] provides tech-
niques for lower-bounding ǫ, and in some cases it can be tighter. Unfortunately, the previous method
needs access to the cumulative distribution function of the distribution of the privacy loss random
variable, which is precisely unknown in our considered setting.

There is also a large body of literature pertaining to the testing of a mechanism’s privacy, which we
briefly go through here. [10] proposes a differential privacy tester for mechanisms with discrete and
finite output, requiring access to the distribution over datasets and the probability measure over out-
puts induced by the tested algorithm. Instead of testing privacy in the worst case setting, they test if
the mechanism satisfy the guarantee over datasets with high probability. More importantly the tester
does not work for continuous output spaces. StatDP [9] proposes a system for detecting differential
privacy violations by post-processing the output of the mechanisms through different statistics. The
tester requires semi-black box access to the mechanisms (as one of the post processing techniques
requires running the mechanism without privacy), which is infeasiable for auditing certain systems.
[16] presents a test for discrete (ǫ, δ)-DP mechanisms but omits the problem of finding the worst
case pair of neighboring datasets. DP-Sniper [5] provides an ǫ-DP tester that tries to explicitly find a
set in the output space that maximizes the difference in probability for the output of the mechanism.
The choice of neighboring datasets, however, is done using some hard-coded rules that may hinder
the ability to detect violations on new tasks, and under non-classic neighboring relations llike the
ℓ∞ relation instead of the classic swap or add/remove definition of neighboring. Their framework is
also specific to detecting ǫ-DP, as low probability events are hard to estimate. In contrast, our mech-
anism estimates RDP, which averages out low probability events. Moreover, we use our estimates
to inform the search of worst case datasets through a Bayesian optimizer. [19] proposes a similar
approach but targets specifially auditing the privacy of DP-SGD. [22] extends the work of [5] by
developing data poisoning attacks to explore the space of datasets, focusing on machine learning
predictive models learning algorithms rather than arbitrary statistical tasks.
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Algorithm 1 RENYITESTER

1: Input: Mechanism (black-box access) M, probability of failure β, estimation error κ, (α, ǫ)–
Rényi differential privacy parameters, number of trials N , family of bounded functions H.

2: Initialize the sample complexity n(ǫ, α, β, κ) (see theorem 4.3).
3: Compute the test divergence threshold

τ(n) :=

{

ǫ+ κ if testing Rényi DP,

min(ǫ, 2αǫ2) + κ if testing pure DP.

4: for i = 1 to N do
5: Generate datasets D,D′ (see section 4.4).
6: Generate 2n samples X ∼ M(D), and 2n samples from Y ∼ M(D′) that are evenly split

as Xtrain, Xtest, Ytrain, Ytest.
7: h1 = argmaxh∈H Rh,n

α (Xtrain||Ytrain).
8: h2 = argmaxh∈H Rh,n

α (Ytrain||Xtrain).
9: if Rh1,n(Xtest||Ytest) ≥ τ or Rh2,n(Ytest||Xtest) ≥ τ then

10: Return False (w.p. 1− β, M is not private)
11: end if
12: end for
13: Return Passed (no proof of privacy violation)

4 Rényi Tester

In this section, we propose RENYITESTER , an RDP and ǫ-DP (or pure DP) tester that is able to find
instances where non-private mechanisms violate the privacy guarantee that they claim to have. While
the sample complexity to prove that a mechanism satisfies pure ǫ-DP can be exponentially large [16],
we use several heuristics that help detect mechanisms that are not private. We start by providing an
overview of RENYITESTER followed by a derivation of the algorithm’s subroutines. We finish by
proving a sample complexity bound that ensures the test results hold with high probability.

We introduce RENYITESTER in algorithm 1. The tester receives, as input, (i) black-box access to
the tested mechanism M, (ii) a value ǫ if validating ǫ-DP or a tuple (α, ǫ) if validating RDP, and (iii)
a probability of failure β. It then proceeds as follows:

1. Generate neighboring datasets (line 5). This is done according to the process discussed
in section 4.4.

2. Generate samples from mechanism. Given the datasets, the tester generates samples for
the mechanism for each dataset.

3. Obtain a lower bound for the Rényi between both samples. The details of the estimation
process are described in Section 4.2 and through Corollary 4.5.

4. Detect if the mechanism violates privacy. Specifically, use the bound in Lemma 2.5 with
Corollary 4.5.

4.1 Variational formulations

We now present estimator for a lower bound on the Rényi divergence of two distributions. Our
estimator relies on a variational formulation of the Rényi divergence. The first such formulation is
a special case of the problem of calculating f divergences via convex optimization [29], and the
formulation that we use (described below) is the one recently proposed by [6].

Theorem 4.1. Let α > 1, and P and Q be probability measures on (Ω,F). Let Γ be any function
space such that Mb(Ω) ⊆ Γ ⊆ M(Ω) where Mb(Ω) and M(Ω) are the sets of measurable bounded
and measurable functions on Ω respectively. Then,

Dα(P ||Q) = sup
g∈Γ

α
α−1 log

(

EP

[

e(α−1)g(X)
])

− log
(

EQ

[

eαg(X)
])

(4)

Exact computation of the supremum in eq. (4) is generally hard, given that the complexity of the
function space can be arbitrarily large for general distributions. We propose to relax this definition
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in two ways that allow us to derive a lower bound on the Rényi divergence. First, we fix a space
of functions Φ ⊆ Γ. By restricting the search space for the supremum, the obtained value will be
a lower bound on the real divergence. For example, one can define Φ as the set of functions gener-
ated by dense neural networks with bounded outputs. Second, we estimate the expectations using
approximate (empirical) measures from samples, Pn, Qn. While this last step introduces estimation
error, this error can be bounded with high probability, thus allowing us to find a confidence interval
for the lower bound.

Definition 4.2. Let h : Y ⊆ Ω → R be a function in Φ on Ω and α > 1. Define

Rh
α(P ||Q) := α

α−1 log

(
∫

e(α−1)h(x)dP

)

− log

(
∫

eαh(x)dQ

)

(5)

and, given samples X1, ..., Xn ∼ P, Y1, ..., Yn ∼ Q, define its empirical counterpart

Rh,n
α (X||Y ) := α

α−1 log

(

1

n

n
∑

i=1

e(α−1)h(Xi)

)

− log

(

1

n

n
∑

i=1

eαh(Yi)

)

. (6)

The next section derives a sample complexity bound to quantify the estimation error err(n, δ) :=
|Rh,n

α (X||Y )−Rh
α(P ||Q)| with probability 1− δ.

Note that with the error function, we can provide a lower bound to the true Rényi divergence between
P and Q as follows: for h0 ∈ Φ and Mb(Ω) ⊆ Γ ⊆ M(Ω), we have

Rα(P ||Q) = sup
h∈Γ

Rh
α(P ||Q) ≥ sup

h∈Φ
Rh

α(P ||Q) ≥ Rh0
α (P ||Q) ≥ Rh,n

α (X||Y )− err(n, δ).

4.2 Sample complexity

The following theorem derives an inequality satisfied by every private mechanism with high proba-
bility for all neighboring datasets (cf. line 9). We provide a proof in the supplementary material.

Theorem 4.3. Let P and Q be two distributions. Let h : Ω ⊆ Y → R be a function such that
supx∈Ω h(x) < C, x = (x1, ..., xn) and y = (y1, ..., yn) be n realizations of P and Q, respectively,

µ1 = EP

[

e(α−1)h(x)
]

, and µ2 = EQ

[

eαh(x)
]

. Define also M1 = e(α−1)C and M2 = eαC . Then,

if γ ∈ [0,min(M1

µ1
, M2

µ2
)], and n ≥ max

(

3M1 log(2/β)
µ1γ2 , 2M2 log(2/β)

µ2γ2

)

, with probability at least 1−β,

we have

Rh
α(P ||Q) ≥ Rh,n

α (x||y)− log

(

1 + γ

1− γ

)

(7)

Remark 4.4. Our sample complexity is dimension independent. On the other hand, there are results
showing that sample complexity of estimating the Rényi divergence from samples is lower bounded
by ed, where d is the dimension of the distribution output space. Our result does not contradict this
fact because we are not estimating the true Rényi divergence, but a lower bound of the divergence.
As the dimensions of the mechanism increases, one could expect that a more complex space of
functions is required for in the definition of the lower bound.

The next result shows how our estimate Rh,n
α (x‖y) is used as a lower bound for the true Rényi

divergence.

Corollary 4.5. Let h : Ω ⊂ Y → R be a function such that supx∈Ω |h(x)| ≤ C, M denote a
mechanism and D,D′ be two neighboring databases., x = (x1, . . . , xn) be a sample from M(D)
and y = (y1, . . . , yn) be a sample from M(D′), and β > 0 and γ be defined as in theorem 4.3. If
n is chosen according to theorem 4.3, then with probability at least 1− β, we have

Dα(M(D)||M(D′)) ≥ Rh,n
α (x||y)− log

(

1 + γ

1− γ

)

.

4.3 Selection of function h

The previous section showed that we can choose a function h to lower bound the Rényi divergence
between the output of a mechanism in two neighboring datasets. It remains to show how to select
the function that obtains the tightest lower bound. In this section we provide a natural heuristic for
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choosing h. Fix C > 0 and let Φ denote a collection of functions bounded by C. We propose the
following two step approach. First, sample x = (x1, . . . , xn) from M(D) and y = (y1, . . . , yn)
from M(D′). Let h∗ be defined by

h∗ = argmax
h∈Φ

Rh
α(x||y).

Second, given h∗, generate a new sample x
′ = (x′

1, . . . , x
′
n) from M(D) and y

′ = (y′1, . . . , y
′
n)

from M(D′), and use theorem 4.3 on this sample to obtain a lower bound on the true Rényi di-
vergence. The process just described corresponds to lines 6–8 in algorithm 1. It is also worth
mentioning that the above approach is somewhat similar to DP-Sniper [5]. Specifically, the latter
approach uses a training sample to find a set where the DP guarantee can fail and then use a test
sample to estimate the actual privacy violation.

Model considerations. Even though the model complexity does not appear in the sample complex-
ity of our mechanism, it is important to constrain the model class as our heuristic only makes sense
when Rh.n

α (x||y) and Rh.n
α (x′||y′) are close.

4.4 Dataset generation

One of the main difficulties of testing for differential privacy is the worst-case nature of differential
privacy guarantees. Namely, to prove a mechanism is not private, one has to find a dataset where
inequality (1) or (3) fails to hold. We propose to use black-box optimization to find datasets that max-
imize Rh,n(X||Y ). Specifically, assuming that we have access to Rh,n

α : (D,D′) ⊆ X × X → R,
our goal is to produce a sequence (Dt, D

′
t)t that approaches the optimum. In our case, we only

need to generate a point (D,D′) where line 9 does not hold. Available techniques include pure
exploration methods, such as grid search, and techniques that use prior information to trade between
exploration and exploitation that can accelerate the optimization, such as evolutionary methods. We
refer the reader to [4] for an overview. In our experiments we will use an open-sourced implementa-
tion of the well known Bayesian optimization software Vizier.

5 Experiments

This section presents numerical experiments for RENYITESTER . We first demonstrate how
RENYITESTER can be used to detect pure differential privacy guarantees. We then focus on RDP
violations and specifically look into two common errors in DP-SGD implementations. We include
in the supplementary an analysis on the accuracy of estimating Rényi divergence. Throughout our
exposition, we let ε > 0 and n ≥ 1 be fixed and X ∈ R

n denote the input dataset.

Pure DP mean mechanisms. The first three mechanisms attempt to privately compute the mean by
generating the random estimates

DPMEAN(X) :=

∑n
i=1 Xi

ñ
+ ρ1, NONDPMEAN1(X) :=

∑n
i=1 Xi

n
+ ρ2

NONDPMEAN2(X) :=

∑n
i=1 Xi

n
+ ρ1

where ñ = max{10−12, n + τ}, τ ∼ Laplace(0, 2/ε), ρ1 ∼ Laplace(0, 2/[ñε]), and ρ2 ∼
Laplace(0, 2/[nε]). The first estimate satisfies ǫ-DP, the second one violates the guarantee because
it has access to the private number of points, and the third one privatizes the number of points to
estimate the scale of the noise added to the mean statistic but the mean itself is computed using the
non-private number of points.

Sparse vector technique mechanisms. The next six mechanisms address different private and non-
private implementations of the sparse vector technique (SVT), a mechanism for releasing a stream
of c queries on a fixed dataset. SVT mechanisms compare each query value against a threshold and
the given algorithm returns certain outputs for a maximum number of queries c. We denote these
by SVT1 –SVT6 and they correspond to Algorithms 1-6 in [23]. SVT1 and SVT2 satisfy ǫ-DP.
SVT4 satisfies ( 1+6c

4 )-DP, and SVT3, SVT5, and SVT6 do not satisfy ǫ-DP for any finite ǫ.

Rényi DP mean mechanisms. To verify the ability of our tester to detect violations of Rényi
differential privacy we first instantiate NONADPMEAN, a non-private Gaussian mean analog of
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Non-Private-Mean1 that uses the true number of points to compute the mean and noise scale, but
adds Gaussian noise instead of Laplace noise.

DP-SGD mechanisms. We also include two flawed DP-SGD’s [1] implementations.

Recall that DP-SGD is parametrized by a clip norm G (which clips individual per-example gradients
to have ℓ2 norm G) and a noise multiplier σ, and that a single iteration of DP-SGD is guaranteed
to be (α, ǫ)-RDP for ǫ = 2α

σ2G2 . The first implementation simulates a scenario where a developer
assumes they are using a noise multiplier σtheory but in reality uses a noise multiplier σeffective. We
dub this scenario SCALEDSGD .

For the second implementation, we consider an accounting error when using batch or micro-batch
clipping instead of per-example clipping in DP-SGD. Per-example clipping is memory and com-
putationally expensive when training high-dimensional models. To address these constraints at the
cost of utility, practitioners split a batches of size n into m microbatches of size n/m, compute
average gradients over each micro-batch, clip and noise the per-microbatch gradient, and finally av-
erage the resulting noisy micro-batch gradients. It sometimes goes unnoticed but the sensitivity of
per-microbatch gradients is 2G instead of G. WRONGSENSITIVITYSGD below refers to an imple-
mentation of a DP-SGD optimizer that receives a model fθ, learning rate, noise multiplier σ, clip
norm value G, number of micro-batches, and takes a DP-SGD with noise scaled by σG respect to
the parameters θ, and does privacy accounting using a library that receives batch size, number of
epochs, noise multiplier, assuming per-example clipping and ignoring the of microbatch clipping.
The final budget should be ǫ = 2α

σ2 but by ignoring microbatching results in the misleadingly stricter
guarantee of ǫ = α

2σ2 .

Baselines. We compare RENYITESTER ’s auditing capacity first with the the approximate differen-
tial privacy tester (ADPTESTER ) presented in [16]. For completeness we introduce this algorithm as
algorithm 2 in the supplement. For a fixed pair of neighboring datasets, the algorithm estimates from
samples the probability z of the algorithm violating a pure ǫ-differential privacy guarantee (line 10).
If the mechanism is (ǫ, δ)–differentially private, then z < δ up to estimation error η (line 11).

We also compare our method with DP-Sniper [5]. Recall that the original DP-Sniper paper uses
different neighboring relationships for different mechanisms. Below we compare the methods under
the same neighboring relationships to elucidate the power of these testers under similar conditions.
DP-Sniper is generally unsuited for RDP, hence we do not include a comparison in the experimental
section for non-pure DP mechanims.

The RKRDTESTER introduced in [11] is similar to RENYITESTER but requires knowledge of cer-
tain covariance matrices that are generally not known a priori. Consequently, we do not compare
with this test in our auditing experiments, but do compare it with RENYITESTER in the estimation
of Rényi divergence between Gaussian distributions in appendix B.6.

Table 1: Sample complexity for RENYITESTER , ADPTESTER with different universe sizes m, and DP-Sniper.

ǫ α
RENYITESTER

ADPTESTER
DP-Sniper

m = 10 m = 100 m = 1000

0.01 1.5 520K 810K 8.1M 81M 10M

0.1 1.5 360K 810K 8.1M 81M 10M

0.01 2. 610K 890K 8.9M 89M 10M

0.1 2. 1.8M 890K 8.9M 89M 10M

Methodology. We run RENYITESTER tester with Φ being the class of functions generated by a two-
layer dense neural networks consisting of 100 units for each hidden layer. To ensure the output of the
network is bounded we use a scaled hyperbolic tangent loss activation scaled to C = 16ǫ for the last
layer. DPSNIPER proposes its own grid of test cases to generate pairs of datasets. RENYITESTER

and ADPTESTER are run on trials by generating pairs of neighboring datasets using an open sourced
version of Vizier [32, 17], with an underlying NSGA-II evolutionary algorithm [8]. This method
performed slighly better than a a random search algorithm, but obtaining similar speed of detection,
or no detection at all (see appendix B.4).

We test each mechanism for different values of ǫ and α, and test 5 times for each mechanisms. We
found that both RENYITESTER and ADPTESTER had different estimator values over the five runs
but the outcome (False or Passed) was consistent across runs.

Pure DP results. The results of our experiments are summarized in Table 2. RENYITESTER detects
all one-dimensional non-private mechanisms while the ADPTESTER fails to detect NONDPMEAN1,
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Table 2: Non-Privacy detection with ADPTESTER and RENYITESTER and add/remove neighboring relation.
We report false if a mechanism fails the privacy test. Otherwise we report passed . Experiments were
run 5 times always with the same outcome. ADPTESTER was run with universe sizes 10,100, and 1000. .
SCALEDSGD uses σtheory = 10 and σeffective = 1.5

Guarantee RENYITESTER ADPTESTER DPSNIPER

DPMEAN ǫ passed passed passed

NONDPMEAN1 ǫ false passed passed

NONDPMEAN2 ǫ false false passed

SVT1 ǫ passed - passed

SVT2 ǫ passed - passed

SVT3 ǫ passed - passed

SVT4 ǫ passed - passed

SVT5 ǫ false - false

SVT6 ǫ passed - passed

JOINT ǫ passed - passed

WRONGSENSITIVITYSGD (α, ǫ) false passed -

SCALEDSGD (α, ǫ) false passed -

NONADPMEAN (α, ǫ) false passed -

and is not defined for high dimensional output spaces, and cannot apply it to sparse vector technique
algorithms. RENYITESTER misses SVT3 and SVT6 but catches all the errors for at least a pair
of parameters (α, ǫ). DP-Sniper suceeds at detecting the same mechanisms that RENYITESTER .
However, it requires 10M samples while RENYITESTER only needs 400K samples.

Rényi DP results. RENYITESTER detects all errors while the ADPTESTER does not, even when
varying the outcome’s space discretization size. It does so by evaluating less than 10 pairs of
neighboring datasets (we present average number of trials in the appendix). DP-Sniper does not
apply in this setting. In the appendix we further investigate the potential of RENYITESTER to de-
tect SCALEDSGD ’s implementation for different values of σeffective. WRONGSENSITIVITYSGD
presents an example where exploring extremal datasets is not useful for catching privacy violations
but our dataset generation technique can find pairs of datasets violating the privacy constraint on
an average of 5 trials. In this case, assuming gradients are in the [−2, 2] interval, and assuming a
clip norm of G = 1, the privacy violation occurs at datasets neighboring datasets D = {−1} and
D′ = {−1, 2}, where the sensitivity of the clipped averaged gradient is 2 and not at neighboring
datasets D = {−2} and D = {−2, 2} where the sensitivity is 1.

It is important to highlight that our implementation for detecting errors for higher values of σeffective

is mostly limited due to the cap C used to define the space Φ. This capping parameter noticeably de-
livers smaller divergence estimates making it harder to find privacy leaks. Unfortunately, increasing
this constant substantially increases the required Ω(eαC) sample size. In the following section we
find that removing this cap provides very accurate estimation for Gaussian distributions. We leave
tightening the sample complexity as future work.

The high sample complexity for measuring divergence distribution seems to be universal. In table 1
we add the number of samples for RENYITESTER , ADPTESTER , and DPSNIPER . RENYITESTER

requires at least one order of magnitude less than baselines and does not need a discretization pa-
rameter m.

6 Discussion

We presented a new test for detecting privacy violations that is suited to pure and Rényi differen-
tial privacy and, hence, is able to detect flaws in non-private mechanisms. While failing to detect
a few pure differential privacy leaks, it appears to be the first one to test Rényi differential privacy
guarantees with only black-box access to the mechanism. We highlight that our tester is particularly
flexible and that it can easily be improved as we derive better sample complexity bounds for vari-
ational approaches of Rényi divergence estimators. As demonstrated in appendix B.6, there is still
a noticeable gap between the theoretical and practical error bounds on these estimates. We leave
possible theoretical improvements as a future area of research.
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