Curriculum Learning for Graph Neural Networks:
Which Edges Should We Learn First

Zheng Zhang' Junxiang Wang® Liang Zhao'
TEmory University, Atlanta, GA ®NEC Labs America, Princeton, NJ
{zheng.zhang,liang.zhao}@emory.edu
{junxiang.wang}@alumni.emory.edu

Abstract

Graph Neural Networks (GNNs) have achieved great success in representing data
with dependencies by recursively propagating and aggregating messages along
the edges. However, edges in real-world graphs often have varying degrees of
difficulty, and some edges may even be noisy to the downstream tasks. Therefore,
existing GNNs may lead to suboptimal learned representations because they usually
treat every edge in the graph equally. On the other hand, Curriculum Learning
(CL), which mimics the human learning principle of learning data samples in a
meaningful order, has been shown to be effective in improving the generalization
ability and robustness of representation learners by gradually proceeding from easy
to more difficult samples during training. Unfortunately, existing CL strategies are
designed for independent data samples and cannot trivially generalize to handle
data dependencies. To address these issues, we propose a novel CL strategy to
gradually incorporate more edges into training according to their difficulty from
easy to hard, where the degree of difficulty is measured by how well the edges
are expected given the model training status. We demonstrate the strength of our
proposed method in improving the generalization ability and robustness of learned
representations through extensive experiments on nine synthetic datasets and nine
real-world datasets. The code for our proposed method is available at https:
//github.com/rollingstonezz/Curriculum_learning_for_GNNs,

1 Introduction

Inspired by cognitive science studies [8,33]] that humans can benefit from the sequence of learning
basic (easy) concepts first and advanced (hard) concepts later, curriculum learning (CL) [2] suggests
training a machine learning model with easy data samples first and then gradually introducing more
hard samples into the model according to a designed pace, where the difficulty of samples can usually
be measured by their training loss [25]. Many previous studies have shown that this easy-to-hard
learning strategy can effectively improve the generalization ability of the model 2|19} 150|111, 135}46],
and some studies [[19} 15} [11] have shown that CL strategies can also increase the robustness of the
learned model against noisy training samples. An intuitive explanation is that in CL settings noisy
data samples correspond to harder samples, and CL learner spends less time with the harder (noisy)
samples to achieve better generalization performance and robustness.

Although CL strategies have achieved great success in many fields such as computer vision and
natural language processing, existing methods are designed for independent data (such as images)
while designing effective CL methods for data with dependencies has been largely underexplored.
For example, in a citation network, two researchers with highly related research topics (e.g. machine
learning and data mining) are more likely to collaborate with each other, while the reason behind
a collaboration of two researchers with less related research topics (e.g. computer architecture and
social science) might be more difficult to understand. Prediction on one sample impacts that of another,
forming a graph structure that encompasses all samples connected by their dependencies. There are

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/rollingstonezz/Curriculum_learning_for_GNNs
https://github.com/rollingstonezz/Curriculum_learning_for_GNNs

many machine learning techniques for such graph-structured data, ranging from traditional models
like conditional random field [36]], graph kernels [37]], to modern deep models like GNNs [29, |30} 52,
381,149,121 153)42]. However, traditional CL strategies are not designed to handle the curriculum of
the dependencies between nodes in graph data, which are insufficient. Handling graph-structured
data require not only considering the difficulty in individual samples, but also the difficulty of their
dependencies to determine how to gradually composite correlated samples for learning.

As previous CL strategies indicated that an easy-to-hard learning sequence on data samples can
improve the generalization and robustness performance, an intuitive question is whether a similar
strategy on data dependencies that iteratively involves easy-to-hard edges in learning can also benefit.
Unfortunately, there exists no trivial way to directly generalize existing CL strategies on independent
data to handle data dependencies due to several unique challenges: (1) Difficulty in quantifying edge
selection criteria. Existing CL studies on independent data often use supervised computable metrics
(e.g. training loss) to quantify sample difficulty, but how to quantify the difficulties of understanding
the dependencies between data samples which has no supervision is challenging. (2) Difficulty in
designing an appropriate curriculum to gradually involve edges. Similar to the human learning
process, the model should ideally retain a certain degree of freedom to adjust the pacing of including
edges according to its own learning status. As existing CL methods for graph data typically use fixed
pacing function to involve samples, they can not provide this flexibility. Designing an adaptive pacing
function for handling graph data is difficult since it requires joint optimization of both supervised
learning tasks on nodes and the number of chosen edges. (3) Difficulty in ensuring convergence and
a numerical steady process for CL in graphs. Discrete changes in the number of edges can cause
drift in the optimal model parameters between training iterations. How to guarantee a numerically
stable learning process for CL on edges is challenging.

In order to address the aforementioned challenges, in this paper, we propose a novel CL algorithm
named Relational Curriculum Learning (RCL) to improve the generalization ability and robustness
of representation learners on data with dependencies. To address the first challenge, we propose an
approach to select the edges by quantifying their corresponding difficulties in a self-supervised learn-
ing manner. Specifically, for each training iteration, we choose K easiest edges whose corresponding
relations are most well-expected by the current model. Second, to design an appropriate learning
pace for gradually involving more edges in training, we present the learning process as a concise
optimization model, which automatically lets the model gradually increase the number K to involve
more edges in training according to its own status. Third, to ensure convergence of optimizing the
model, we propose an alternative optimization algorithm with a theoretical convergence guarantee
and an edge reweighting scheme to smooth the graph structure transition. Finally, we demonstrate the
superior performance of RCL compared to state-of-the-art comparison methods through extensive
experiments on both synthetic and real-world datasets.

2 Related Works

Curriculum Learning (CL). Bengio et al.[2] pioneered the concept of Curriculum Learning (CL)
within the machine learning domain, aiming to improve model performance by gradually including
easy to hard samples in training the model. Self-paced learning [25]] measures the difficulty of
samples by their training loss, which addressed the issue in previous works that difficulties of samples
are generated by prior heuristic rules. Therefore, the model can adjust the curriculum of samples
according to its own training status. Following works [[18}[17,155]] further proposed many supervised
measurement metrics for determining curriculums, for example, the diversity of samples [17]] or the
consistency of model predictions [55)]. Meanwhile, many empirical and theoretical studies were
proposed to explain why CL could lead to generalization improvement from different perspectives.
For example, studies such as MentorNet [19] and Co-teaching [15] empirically found that utilizing
CL strategy can achieve better generalization performance when the given training data is noisy.
[L1] provided theoretical explanations on the denoising mechanism that CL learners waste less time
with the noisy samples as they are considered harder samples. Some studies [2, 135,146, |13} 24]] also
realized that CL can help accelerate the optimization process of non-convex objectives and improve
the speed of convergence in the early stages of training.

Despite great success, most of the existing designed CL strategies are for independent data such as
images, and there is little work on generalizing CL strategies to handle samples with dependencies.
Few existing attempts on graph-structured data [26} 21| 28], such as [44] 5| 45] 28], simply treat

(@) | Incremental Edge Selection (IES)

Latent embedding

Huk
»IE""'F%

yey

\
1
1
1
1
1
1
1
1

/__O______‘
00 90
_Q_Iiaj)__,
/"___{___‘

1 t Training process T

Figure 1: The overall framework of RCL. (a) The Incremental Edge Selection module first extracts
the latent node embedding by the GNN model given the current training structure, then jointly learns
the node prediction label y and reconstructs the input structure by a decoder. A small residual error
on an edge indicates the corresponding dependency is well expected and thus can be added to the
refined structure for the next iteration. (b) The iterative learning process of RCL. The model starts
with an empty structure and gradually includes more edges until the training structure converges to
the input structure.

nodes as independent samples and then apply CL strategies on independent data, which ignore the
fundamental and unique dependency information carried by the structure in data, and thus can not
well handle the correlation between data samples. Furthermore, these models are mostly based on
heuristic-based sample selection strategies [3, 45| 28], which largely limit the generalizability of
these methods.

Graph structure learning. Another stream of existing studies that are related to our work is
graph structure learning. Recent studies have shown that GNN models are vulnerable to adversarial
attacks on graph structure [[7,48]. In order to address this issue, studies in graph structure learning
usually aim to jointly learn an optimized graph structure and corresponding graph representations.
Existing works [9 4} 120} |54} 31]] typically consider the hypothesis that the intrinsic graph structure
should be sparse or low rank from the original input graph by pruning “irrelevant” edges. Thus, they
typically use pre-deterministic methods [7} 156} 9] to preprocess graph structure such as singular value
decomposition (SVD), or dynamically remove “redundant” edges according to the downstream task
performance on the current sparsified structure [4, 20} 31]]. However, modifying the graph topology
will inevitably lose potentially useful information lying in the removed edges. More importantly, the
modified graph structure is usually optimized for maximizing the performance on the training set,
which can easily lead to overfitting issues.

3 Preliminaries

Graph neural networks (GNNs) are a class of methods that have shown promising progress in
representing structured data in which data samples are correlated with each other. Typically, the
data samples are treated as nodes while their dependencies are treated as edges in the constructed
graph. Formally, we denote a graph as G = (V,), where V = {v1,v2,...,vn} is a set of nodes
that N = |V| denotes the number of nodes in the graph and £ C V x V is the set of edges. We
also let X € RV*? denote the node attribute matrix and let A € RV XY represent the adjacency
matrix. Specifically, A;; = 1 denotes that there is an edge connecting nodes v; and v; € V), otherwise
A;; = 0. A GNN model f maps the node feature matrix X associated with the adjacency matrix A
to the model predictions ¥ = f(X, A), and get the loss Loy = L(y,y), where L is the objective
function and y is the ground-truth label of nodes. The loss on one node v; is denoted as I; = L(g;, y;).

4 Methodology

As previous CL methods have shown that an easy-to-hard learning sequence of independent data
samples can improve the generalization ability and robustness of the representation learner, the goal
of this paper is to develop an effective CL method on data with dependencies, which is extremely
difficult due to several unique challenges: (1) Difficulty in designing a feasible principle to select

edges by properly quantifying their difficulties. (2) Difficulty in designing an appropriate pace of
curriculum to gradually involve more edges in training based on model status. (3) Difficulty in
ensuring convergence and a numerical steady process for optimizing the CL model.

In order to address the above challenges, we propose a novel CL method named Relational Curriculum
Learning (RCL). The sequence, which gradually includes edges from easy to hard, is called curricu-
lum and learned in different grown-up stages of training. In order to address the first challenge, we
propose a self-supervised module Incremental Edge Selection (IES), which is shown in Figure[Ifa), to
select the K easiest edges at each training iteration that are mostly expected by the current model. The
details are elaborated in Section[4.1} To address the second challenge, we present a joint optimization
framework to automatically increase the number of selected edges K given its own training status.
The framework is elaborated in Figure[I|b) and details can be found in Section4.2] Finally, to ensure
convergence of optimization and steady the numerical process, we propose an EM-style alternative
optimization algorithm with a theoretical convergence guarantee in Section .2 Algorithm 1 and an
edge reweighting scheme to smooth the discrete edge incrementing process in Section [d.3]

4.1 Incremental Edge Selection by Quantifying Difficulties of Sample Dependencies

Here we propose a novel way to select edges by first quantifying their difficulty levels. Existing works
on independent data typically use supervised metrics such as training loss of samples to quantify their
difficulty level, but there exists no supervised metrics on edges. To address this issue, we propose a
self-supervised module Incremental Edge Selection (IES). We first quantify the difficulty of edges by
measuring how well the edges are expected from the currently learned embeddings of their connected
nodes. Then the most well-expected edges are selected as the easiest edges for the next iteration of
training. As shown in Figure[I[(a), given the currently selected edges at iteration ¢, we first feed them
to the GNN model to extract the latent node embeddings. Then we restore the latent node embeddings
to the original graph structure through a decoder, which is called the reconstruction of the original
graph structure. The residual graph R, which is defined as the degree of mismatch between the
original adjacency matrix A and the reconstructed adjacency matrix A(®), can be considered a strong
indicator for describing how well the edges are expected by the current model. Specifically, a smaller
residual error indicates a higher probability of being a well-expected edge.

With the developed self-supervised method to measure the difficulties of edges, here we formulate the
key learning paradigm of selecting the top K easiest edges. To obtain the training adjacency matrix
A® that will be fed into the GNN model f (), we introduce a learnable binary mask matrix S with
each element S;; € {0, 1}. Thus, the training adjacency matrix at iteration ¢ can be represented as
A® =8® o A To filter out the edges with K smallest residual error, we penalize the summarized
residual errors over the selected edges, which can be represented as > i Si;R.;. Therefore, the
learning objective can be presented as follows:

minLgny + 3 Z SiiRij,
i (1)
s.t.||S]; > K,

where the first term Lann = L(f(X, A®); w), y) is the node-level predictive loss, e.g. cross-entropy
loss for the node classification task. The second term), ; S;;R;; aims at penalizing the residual
errors over the edges selected by the mask matrix S. [is a hyperparameter to tune the balance
between terms. The constraint is to guarantee only the most K well-expected edges are selected.

More concretely, the value of a residual edge AZ(.;) € [0, 1] can be computed by a non-parametric
) ()
VA Z

kernel function (z; ’, z;

), e.g. the inner product kernel. Then the residual error R;; between

the input structure and the reconstructed structure can be defined as HAS) — Ay

, where ||-|| is

commonly chosen to be the squared ¢5-norm.
4.2 Automatically Control the Pace of Increasing Edges
In order to dynamically include more edges into training, an intuitive way is to iteratively increase

the value of K in Equation [I]to allow more edges to be selected. However, it is difficult to determine
an appropriate value of K with respect to the training status of the model. Besides, directly solving

Algorithm 1 Alternating Minimization Algorithm for Optimizing Equation 2
Input: Node features X, adjacency matrix A, stepsize p and hyperparameter ~y
Output: Parameters w of GNN model f

1: Initialize w(®), S©),)

2: while Not converged do

32w = argmin,, L(f(X,At"D:w) y) + 3 > S

#3 - w0

’Aﬁfl) — Ay

4: Given w(t), extract latent nodes embedding Z® from GNN model f

5: Calculate reconstructed structure AE;) = H(Zz(-t), z;-t)) for all pairs of 4, j
6: S = arg ming /)’Zi.j Si; ‘A,;j — AS) ‘ +9(S;0)+ 3 HS — S“‘UH
7: Compute A =S © A

8: if A(Y) £ A then

9: Increase \ by stepsize p

10: end if

11: end while

Equation [1|is difficult since S is a binary matrix where each element S;; € {0, 1}, optimizing S
would require solving a discrete constraint program at each iteration. To address this issue, we first
relax the problem into continuous optimization so that each S;; can be allowed to take any value
in the interval [0, 1]. Note that the inequality ||S||; > K in Eqn. [l|is equivalent to the equality
[|S|li = K. This is because the second term in the loss function would always encourage fewer
selected edges by the mask matrix S, as all values in the residual error matrix R and mask matrix
S are nonnegative. Given this, we can incorporate the equality constraint as a Lagrange multiplier
and rewrite the loss function as £ = Lgyny + 8 Zi’j SiiRi; — A(||S|]1 — K). Considering that K
remains constant, the optimization of the loss function can be equivalently framed by substituting the
given constraint with a regularization term denoted as g(S; A). As such, the overall loss function can
be reformulated as:

Ivrvl,igLGNN +5ZSinij +9(S; A),)
0
where g(S;A) = A||S — A|| and ||-|| is commonly chosen to be the squared ¢2-norm. Since the

training adjacency matrix A() = S ® A, as A\ — oo, more edges in the input structure are included
until the training adjacency matrix A®) converges to the input adjacency matrix A. Specifically, the
regularization term ¢(S; A) controls the learning scheme by the age parameter A, where A = \(t)
grows with the number of iterations. By monotonously increasing the value of A, the regularization
term g(S; A) will push the mask matrix gradually converge to the input adjacency matrix A, resulting
in more edges automatically involved in the training structure.

Optimization of learning objective. In optimizing the objective function in Equation 2} we need
to jointly optimize parameter w for GNN model f and the mask matrix S. To tackle this, we
introduce an EM-style optimization scheme (detailed in Algorithm 1) that iteratively updates both.
The algorithm uses the node feature matrix X, the original adjacency matrix A, a step size u to
control the age parameter)\ increase rate, and a hyperparameter ~y for regularization adjustments.
Post initialization of w and S, it alternates between: optimizing GNN model f (Step 3), extracting
latent node embeddings and reconstructing the adjacency matrix (Steps 4 & 5), refining the mask
matrix using the reconstructed matrix and regularization, and results in more edges are gradually
involved (Step 6), updating the training adjacency matrix (Step 7), and incrementing A when the
training matrix A(*) differs from input matrix A, incorporating more edges in the next iteration.

Theorem 4.1. We have the following convergence guarantees for Algorithm 1:
e Avoidance of Saddle Points. If the second derivatives of L(f(X, A®";w),y) and g(S; \) are

continuous, then for sufficiently large +y, any bounded sequence (w®),SM)) generated by Algorithm
1 with random initializations will not converge to a strict saddle point of F' almost surely.
e Second Order Convergence. If the second derivatives of L(f(X, A®Y;w),y) and g(S; \) are
continuous, and L(f(X, A®;w),y) and g(S; \) satisfy the Kurdyka-Lojasiewicz (KL) property
[41]], then for sufficiently large -y, any bounded sequence (W(t), S(t)) generated by Algorithm 1 with
random initialization will almost surely converge to a second-order stationary point of F.

The detailed proof can be found in Appendix [B]

4.3 Smooth Structure Transition by Edge Reweighting

Note that in the Algorithm 1, the optimization process requires iteratively updating the parameters
w of the GNN model f and current adjacency matrix A®), where A(*) varies discretely between
iterations. However, GNN models mostly work in a message-passing fashion, which computes
node representations by iteratively aggregating information along edges from neighboring nodes.
Discretely modifying the number of edges will result in a great drift of the optimal model parameters
between iterations. In Appendix Figure , we demonstrate that a shift in the optimal parameters of
the GNN results in a spike in the training loss. Therefore, it can increase the difficulty of finding
optimal parameters and even hurt the generalization ability of the model in some cases. Besides the
numerical problem caused by discretely increasing the number of edges, another issue raised by the
CL strategy in Section [.1]is the trustworthiness of the estimated edge difficulty, which is inferred by
the residual error on the edges. Although the residual error can reflect how well edges are expected in
the ideal case, the quality of the learned latent node embeddings may affect the validity of this metric
and compromise the quality of the designed curriculum by the CL strategy.

To address both issues, we propose a novel edge reweighting scheme to (1) smooth the transition
of the training structure between iterations, and (2) reduce the weight of edges that connect nodes
with low-confidence latent embeddings. Formally, we use a smoothed version of structure A*) to
substitute A (*) for training the GNN model f in step 3 of Algorithm 1, where the mapping from A ()
to A® can be represented as:
AD) _ (D) A)

Aij = Tij Az’j) 3)
where 771(;) is the weight imposed on edge e;; at iteration ¢. 7Tl(t-) is calculated by considering the
counted occurrences of edge e;; until the iteration ¢ and the confidence of the latent embedding for
the connected pair of nodes v; and v;:

7%(;) = 1(eij)p(vi)p(vj), “)

where 9 is a function that reflects the number of edge occurrences and p is a function to reflect the
degree of confidence for the learned latent node embedding. The details of these two functions are
described as follow.

Smooth the transition of the training structure between iterations. In order to obtain a smooth
transition of the training structure between iterations, we take the learned curriculum of selected edges
into consideration. Formally, we model ¢ by a smooth function of the edge selected occurrences
compared to the model iteration occurrences before the current iteration:

Y(eis) = tleij)/, (5)

where ¢ is the number of current iterations and ¢(e;;) represents the counting number of selecting
edge e;;. Therefore, we transform the original discretely changing training structure into a smoothly
changing one by taking the historical edge selection curriculum into consideration.

Reduce the influence of nodes with low confidence latent embeddings. As introduced in our
Algorithm 1 line 6, the estimated structure A is inferred from the latent embedding Z, which is
extracted from the trained GNN model f. Such estimated latent embedding may possibly differ from
the true underlying embedding, which results in the inaccurately reconstructed structure around the
node. In order to alleviate this issue, we model the function p by the training loss on nodes, which
indicates the confidence of their learned latent embeddings. This idea is similar to previous CL
strategies on inferring the difficulty of data samples by their supervised training loss. Specifically, a
larger training loss indicates a low confident latent node embedding. Mathematically, the weights
p(v;) on node v; can be represented as a distribution of their training loss:

p(v;) ~ et (6)

where [; is the training loss on node v;. Therefore, a node with a larger training loss will result in a
smaller value of p(v;), which reduces the weight of its connecting edges.

5 Experiments

In this section, the experimental settings are introduced first in Section then the performance
of the proposed method on both synthetic and real-world datasets are presented in Section[5.2} We
further present the robustness test on our CL method against topological structure noise in Section[5.3]

Table 1: Node classification accuracy on synthetic datasets (%). The best-performing method on
each backbone GNN model is highlighted in bold, while the second-best method is underlined. In
situations where RCL’s performance is not strictly the best among all methods, we can see that almost
all methods can achieve a near-perfect performance and RCL is still close to the best methods.

Homo ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
GCN 50.84+1.03 56.50£0.50 65.17+0.48 77.94+0.54 87.15£0.44 9327+0.24 97.48+£0.25 99.10+£0.17 99.93+0.03
GNNSVD 54.96+£0.76 58.45+0.56 63.06+0.63 70.23+0.61 80.51+0.41 85.02+0.46 90.31+£0.27 94.23+0.22 96.74+0.23
ProGNN 47.87+0.87 54.59+0.55 65.39+0.44 76.96+0.49 87.76+0.51 93.16+£0.34 97.60+0.31 99.04+0.19 99.94+0.03
NeuralSparse | 51.42+1.35 57.994£0.69 65.10+0.43 75.37+0.34 87.404+0.29 93.54+0.28 97.16+£0.15 99.01+0.22 99.83+0.07
PTDNet 48214198 55.5242.82 65.824+0.94 79.374+0.45 89.174+0.39 94.194+0.18 98.61+0.12 99.514+0.09 99.81+0.05
CLNodes 50.37+0.73 56.644+0.56 65.04+0.66 77.52+0.48 86.85+0.44 93.10+0.47 97.34+0.25 99.02+0.18 99.88+0.04
RCL 57.57+0.43 62.06+0.28 73.98+0.55 84.54+0.75 92.69+0.09 97.42+0.17 99.62+0.05 99.89+0.02 99.93+0.06
GIN 48.33+1.89 53.62+1.39 64.08+0.99 77.55+1.10 85.31+0.75 90.57+0.36 97.82+0.18 99.59+0.11 99.91+0.02
GNNSVD | 43.21+1.60 45.68+1.66 54.90+1.16 68.29+0.79 79.76+0.52 85.63+0.44 93.65+0.39 97.224+0.17 98.94+0.17
ProGNN 45.76+1.40 52.96+1.01 64.12+1.07 76.95+0.87 85.13+0.71 89.96+0.55 96.54+0.48 99.51+0.12 99.78+0.05
NeuralSparse | 50.23+2.05 54.124+1.52 62.814+0.75 76.98+1.17 85.14+0.94 92.57+0.44 98.02+0.20 99.61+0.12 99.91+0.05
PTDNet 53.2342.76 56.1242.03 65.81+1.38 77.81+1.02 86.14+0.65 93.21£0.74 97.08+0.41 99.51+0.18 99.91+0.03
CLNodes 4536+£142 51.10£1.15 62.53+0.88 75.83£1.07 87.76+0.90 94.25+0.44 98.30+£0.26 99.60+0.09 99.92+0.03
RCL 57.63+0.66 62.08+1.17 71.02+0.61 80.61+0.69 88.62+0.43 94.88+0.36 98.19+0.19 99.324+0.08 99.89+0.04
GraphSAGE | 62.57£0.55 67.33+0.64 71.06+0.74 80.88+£0.54 85.884+0.51 91.42+0.37 95.26+0.33 97.784+0.16 99.52+0.13
GNNSVD 64.42+0.80 65.71£0.39 67.124+0.58 68.47+0.50 77.70+0.65 82.86+0.50 87.81+0.71 91.61+0.55 95.014+0.50
ProGNN 58.574+2.09 66.75+0.91 72.14+0.64 81.27+0.44 86.89+0.47 92.10+0.39 95.21+0.30 97.51+0.23 99.50+0.11
NeuralSparse | 61.70+0.77 66.65+0.66 70.60+0.79 79.65+0.45 84.19+091 91.31+0.54 94.86+0.53 97.16+0.23 99.55+0.19
PTDNet 65.724+1.08 69.254+0.92 72.60+0.77 79.65+0.45 86.54+0.56 91.79+0.53 96.10+0.58 97.98+0.13 99.78+0.08
CLNodes 69.41+0.66 70.834+0.58 75.51+0.36 82.65+0.43 87.084+0.56 91.58+0.41 95.91+0.38 98.33+0.26 99.57+0.14
RCL 68.03+0.37 71.39+0.51 76.99+0.99 83.76+0.55 88.24+0.30 93.34+0.56 97.66+0.52 98.86+0.28 99.64+0.08

We verify the effectiveness of framework components through ablation studies in Section[5.4] Intuitive
visualizations of the edge selection curriculum are shown in Section[5.3] In addition, we measure the
parameter sensitivity in Appendix [A.2]and running time analysis in Appendix [A.5]due to the space
limit.

5.1 Experimental Settings

Synthetic datasets. To evaluate the effectiveness of our proposed method on datasets with ground-
truth difficulty labels on edges, we follow previous studies [22, [1] to generate a set of synthetic
datasets, where the formation probability of an edge is designed to reflect its likelihood to positively
contribute to the node classification job, which indicates its ground-truth difficulty level. Specifically,
the nodes in a generated graph are divided into 10 equally sized node classes 1,2, ..., 10, and the
node features are sampled from overlapping multi-Gaussian distributions. Each generated graph is
associated with a homophily coefficient (homo) which indicates the probability of a node forming
an edge to another node with the same label. For the rest edges that are formed between nodes with
different labels, the probability of forming an edge is inversely proportional to the distances between
their labels. Nodes with close classes are more likely to be connected since the formation probability
decreases with the distance of the node label, and connections from nodes with close classes can
increase the likelihood of accurately classifying a node due to the homophily property of the designed
node classification task. Therefore, an edge with a high formation probability indicates a higher
chance to positively contribute to the node classification task because it connects a node with a close
class, and thus can be considered an easy edge. We vary the value of homo to generate nine graphs in
total. More details and visualization about the synthetic dataset can be found in Appendix [A.T]

Real-world datasets. To further evaluate the performance of our proposed method in real-world
scenarios, nine benchmark real-world attributed network datasets, including four citation network
datasets Cora, Citeseer, Pubmed [51]] and ogbn-arxiv [16]], two coauthor network datasets CS and
Physics [34], two Amazon co-purchase network datasets Photo and Computers [34], and one protein
interation network ogbn-proteins [16]. We follow the data splits from [3]] on citation networks and
use a 5-fold cross-validation setting on coauthor and Amazon co-purchase networks. All datasets
are publicly available from Pytorch-geometric library [10]] and Open Graph Benchmark (OGB) [16]],
where basic statistics are reported in Table 2]

Comparison methods. We incorporate three commonly used GNN models, including GCN [23]],
GraphSAGE [14]], and GIN [50], as the baseline model and also the backbone model for RCL. In
addition to evaluating our proposed method against the baseline GNNs, we further leverage two
categories of state-of-the-art comparison methods in the experiments: (1) We incorporate four graph
structure learning methods GNNSVD [9], ProGNN [20]], NeuralSparse [54], and PTDNet [31]; (2)
We further compare with a curriculum learning method named CLNode [45] which gradually select
nodes in the order of the difficulties defined by a heuristic-based strategy. More details about the
comparison methods can be found in Appendix

Table 2: Node classification results on real-world datasets (%). The best-performing method on each
backbone is highlighted in bold and second-best is underlined. (OOM) shorts for out-of-memory.

Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv ogbn-proteins
nodes 2,708 3,327 19,717 18,333 34,493 7,650 13,752 169,343 132,534
edges 10,556 9,104 88,648 163,788 495,924 238,162 491,722 1,166,243 39,561,252
features 1,433 3,703 500 6,805 8,415 745 767 100 8
GCN 85.74+0.42 78.93+0.32 87.91+0.09 93.03+£0.32 96.55+0.15 93.25£0.70 88.09+£0.40 71.74£0.29 72.51+0.35
GNNSVD | 83.244+1.03 74.80+0.87 88.8140.38 93.79+0.11 96.11+£0.13 89.63+0.73 86.49+0.77 67.44+0.51 66.92+0.64
ProGNN 85.66+0.61 74.78+0.55 87.2240.33 94.04+0.19 96.75+0.26 92.07+0.67 88.72+0.59 (OOM) (OOM)
NeuralSparse | 85.95+0.98 76.24+0.48 86.83+£0.40 92.31+0.47 95.564+0.30 90.574+0.90 88.62+0.83 (OOM) (OOM)
PTDNet 83.84+0.95 77.54+0.42 87.89+0.08 93.60+0.43 96.56+0.09 88.924+0.87 87.52+0.70 (OOM) (OOM)
CLNode 85.67+0.33 78.9940.57 89.504+0.28 93.83+0.24 95.76+0.16 93.394+0.83 89.2840.38 70.95+0.18 71.4040.32
RCL 87.15+0.44 79.79+0.55 89.79+0.12 94.66+0.32 97.02+0.23 94.41+0.76 90.23+0.23 74.08+0.33 75.19+0.26
GIN 84.43+£0.65 74.871£0.20 85.72+0.40 91.48+0.36 95.62+0.30 93.02£0.91 86.94+1.58 69.26+0.34 74.514+0.32
GNNSVD | 82.2340.65 72.11£0.70 88.31£0.15 91.40+0.87 95.30+£0.29 89.49+1.11 82.66+2.26 67.79+0.41 70.65+0.53
ProGNN 85.02+0.41 78.12+0.93 87.82+0.51 (OOM) (OOM) 92.23+0.67 83.54+1.48 (OOM) (OOM)
NeuralSparse | 84.92+0.58 75.44+0.87 86.11+0.49 89.66+0.82 95.05+0.57 93.2840.83 87.22+0.54 (OOM) (OOM)
PTDNet 83.02+£1.01 75.00+0.74 88.04+0.29 91.01+0.21 95.574+0.40 90.704+0.76 87.08+0.65 (OOM) (OOM)
CLNode 83.52+0.77 75.82+0.58 86.92+0.61 91.71+0.41 95.75+0.46 92.784+0.90 85.93+1.53 70.58+0.17 73.97+0.31
RCL 86.64+0.39 77.60+0.18 89.17+0.29 93.92+0.27 96.75+0.17 93.88+0.51 89.76+0.19 72.55+0.15 78.76+0.22
GraphSAGE | 86.224+0.27 77.274£0.23 88.50+0.16 94.22+0.18 96.26+0.34 93.82+0.51 88.62+0.21 71.49+£0.27 77.68+0.20
GNNSVD | 83.114+0.82 73.194+0.49 88.42+0.38 93.86+0.36 95.96+0.12 89.31+0.53 81.46+1.15 69.82+0.34 71.82+0.39
ProGNN 86.23+£0.42 74.45+£0.83 88.52+0.45 (OOM) (OOM) 90.89+0.69 89.34+0.54 (OOM) (OOM)
NeuralSparse | 84.6040.52 76.3240.55 89.02+0.39 93.89+0.58 96.67+0.20 90.78+1.06 88.37+0.37 (OOM) (OOM)
PTDNet 86.03+0.60 76.07+0.58 86.78+0.45 93.78+0.43 95.324+0.31 92.964+0.87 84.89+1.47 (OOM) (OOM)
CLNode 86.60+0.64 77.23+0.54 88.76+0.57 94.13+0.34 96.87+0.45 93.90+0.42 89.57+0.62 71.544+0.20 78.40+0.41
RCL 86.900.39 78.95+0.18 90.14+0.43 95.05+0.23 96.88+0.19 95.06+0.52 90.47+0.38 73.13+0.14 79.89+0.35

Initializing graph structure by a pre-trained model. It is worth noting that the model needs
an initial training graph structure A(%) in the initial stage of training. An intuitive way is that we
can initialize the model to work in a purely data-driven scenario that starts only with isolated nodes
where no edges exist. However, an instructive initial structure can greatly reduce the search cost and
computational burden. Inspired by many previous CL works [46} 13|19, |55] that incorporate prior
knowledge of a pre-trained model into designing curriculum for the current model, we initialize the
training structure A(?) by a pre-trained vanilla GNN model f*. Specifically, we follow the same
steps from line 4 to line 7 in the algorithm 1 to obtain the initial training structure A (%) but the latent
node embedding is extracted from the pre-trained model f*.

Implementation details. We use the baseline model (GCN, GIN, GraphSAGE) as the backbone
model for both our RCL method and all comparison methods. For a fair comparison, we require all
models follow the same GNN architecture with two convolution layers. For each split, we run each
model 10 times to reduce the variance in particular data splits. Test results are according to the best
validation results. General training hyperparameters (such as learning rate or the number of training
epochs) are equal for all models.

5.2 Effectiveness Results

Table [T] presents the node classification results of the synthetic datasets. We report the average
accuracy and standard deviation for each model against the homo of generated graphs. From the
table, we observe that our proposed method RCL consistently achieves the best or most competitive
performance to all the comparison methods over three backbone GNN architectures. Specifically,
RCL outperforms the second best method on average by 4.17%, 2.60%, and 1.06% on GCN, GIN,
and GraphSAGE backbones, respectively. More importantly, the proposed RCL method performs
significantly better than the second best model when the homo of generated graphs is low (< 0.5), on
average by 6.55% on GCN, 4.17% on GIN, and 2.93% on GraphSAGE backbones. These demonstrate
that our proposed RCL method significantly improves the model’s capability of learning an effective
representation to downstream tasks especially when the edge difficulties vary largely in the data.

We report the experimental results of the real-world datasets in Table 2] The results demonstrate
the strength of our proposed method by consistently achieving the best results in all 9 datasets by
GCN backbone architecture, all 9 datasets by GraphSAGE backbone architecture, and 8 out of 9
datasets by GIN backbone architecture. Specifically, our proposed method improved the performance
of baseline models on average by 1.86%, 2.83%, and 1.62% over GCN, GIN, and GraphSAGE, and
outperformed the second best models model on average by 1.37%, 2.49%, and 1.22% over the three
backbone models, respectively. The results demonstrate that the proposed RCL method consistently
improves the performance of GNN models in real-world scenarios.

Our experimental results are statically sound. In 43 out of 48 tasks our method outperforms the
second-best performing model with strong statistical significance. Specifically, we have in 30 out of
43 cases with a significance p < 0.001, in 8 out of 43 cases with a significance p < 0.01, and in 5

Figure 2: Node classification accuracy (%) on Cora and Citeseer under random structure attack.
The attack edge ratio is computed versus the original number of edges, where 100% means that the
number of inserted edges is equal to the number of original edges.

Cora, GCN Cora, GIN Citeseer, GCN Citeseer, GIN

0.851 1%
0.80

0.75

Accuracy

1| 070

0.65
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
Attack edge (%) Attack edge (%) Attack edge (%) Attack edge (%)

--&- basic —@— GNNSVD —%— ProGNN NeuralSparse ~ —— PTDNet —<— CLNode —%— RCL

Table 3: Ablation study. Here “Full” represents the original method without removing any component.
The best-performing method on each dataset is highlighted in bold.

Syntheticl Synthetic2 Citeseer CS Computers

Full 73.98+0.55 97.42+0.17 79.79+0.55 94.66+0.22 90.23+0.23
Curriculum-linear 70.93+0.54 95.194+0.19 79.04+0.38 94.14+0.26 89.28+0.21
Curriculum-root 70.13+£0.72 95.50+0.18 78.27+£0.54 94.47+0.34 89.27+0.15
Random-linear 58.76+0.46 89.78+0.11 77.43+0.49 92.76+0.14 88.76+0.18
Random-root 61.04+0.20 91.04+0.09 76.81+£0.35 92.92+0.15 88.81+0.28
w/o edge appearance | 70.70+£0.43 95.77+0.16 77.77+£0.65 94.39+0.21 89.56+0.30
w/o node confidence | 72.384+0.41 96.86+0.17 78.724+0.72 94.34+0.13 90.03+0.62
w/o pre-trained model | 72.56+0.69 93.89+0.14 78.284+0.77 94.50+0.14 89.80+0.55

out of 43 cases with a significance p < 0.05. Such statistical significance results can demonstrate
that our proposed method can consistently perform better than the baseline models in both scenarios.

5.3 Robustness Analysis Against Topological Noise

To further examine the robustness of the RCL method on extracting powerful representation from
correlated data samples, we follow previous works [20} [31]] to randomly inject fake edges into
real-world graphs. This adversarial attack can be viewed as adding random noise to the topological
structure of graphs. Specifically, we randomly connect M pairs of previously unlinked nodes in the
real-world datasets, where the value of M varies from 10% to 100% of the original edges. We then
train RCL and all the comparison methods on the attacked graph and evaluate the node classification
performance. The results are shown in Figure[2] we can observe that RCL shows strong robustness to
adversarial structural attacks by consistently outperforming all compared methods on all datasets.
Especially, when the proportion of added noisy edges is large (> 50%), the improvement becomes
more significant. For instance, under the extremely noisy ratio at 100%, RCL outperforms the second
best model by 4.43% and 2.83% on Cora dataset, and by 6.13%, 3.47% on Citeseer dataset, with
GCN and GIN backbone models, respectively.

5.4 Ablation Study

To investigate the effectiveness of our proposed model with some simpler heuristics, we deploy a
series of abalation analysis. We first train the model with node classification task purely and select the
top K expected edges as suggested by the reviewer. Specifically, we follow previous works [43],145]]
using two classical selection pacing functions as follows:

t t
Linear: Kjinear(t) = T\E|, Root: Koot (t) = 1/ f|E|’

where ¢ is the number of current iterations and T is the number of total iterations, and |E| is
the number of total edges. We name these two variants Curriculum-linear and Curriculum-root,
respectively. In addition, we also remove the edge difficulty measurement module and use random
selection instead. Specifically, we gradually incorporate more edges into training in random order
to verify the effectiveness of the learned curriculum. We name two variants as Random-linear and
Random-root with the above two mentioned pacing functions, respectively.

In order to further investigate the impact of the proposed components of RCL. We also first consider
variants of removing the edge smoothing components mentioned in Section4.3] Specifically, we

GCN GIN GraphSage
1.0 — 1.0 1.0

- Easy ----- Easy ----- Easy
0.8 Medium 0.8 Medium 0.8 Medium

- Hard ----- Hard === Hard 0
S XE 4 | 0.6

0.4 0.44 A—

0.2 4/ 0.2 /"

T T 0.0 T T 0.0 T T
0 50 100 150 0 50 100 150 0 50 100 150
Epochs Epochs Epochs

Figure 3: Visualization of edge selection process during training.

consider two variants w/o EC and w/o NC, which remove the smoothing function of the edge
occurrence ratio and the component to reflect the degree of confidence for the latent node embedding
in RCL, respectively. In addition to examining the effectiveness of edge smoothing components, we
further consider a variant w/o pre-trained model that avoids using a pre-trained model to initialize
model, which is mentioned in Section[5.1] to initialize the training structure by a pre-trained model
and instead starts with inferred structure from isolated nodes with no connections.

We present the results of two synthetic datasets (homophily coefficient= 0.3, 0.6) and three real-world
datasets in Table[3] We summarize our findings from the above table as below: (i) Our full model
consistently outperforms the two variants Curriculum-linear and Curriculum-root by an average of
1.59% on all datasets, suggesting that our pacing module can benefit model training. It is worth
noting that these two variants also outperform the baseline vanilla GNN model Vanilla by an average
of 1.92%, which supports the assumption that even a simple curriculum learning strategy can still
improve model performance. (ii) We observe that the performance of the two variants Random-linear
and Random-root on all datasets drops by 3.86% on average compared to the variants Curriculum-
linear and Curriculum-root. Such behavior demonstrates the effectiveness of our proposed edge
difficulty quantification module by showing that randomly involving edges into training cannot benefit
model performance. (iii) We can observe a significant performance drop consistently for all variants
that remove the structural smoothing techniques and initialization components. The results validate
that all structural smoothing and initialization components can benefit the performance of RCL on
the downstream tasks.

5.5 Visualization of Learned Edge Selection Curriculum

Besides the effectiveness and robustness of the RCL method on downstream classification results,
it is also interesting to verify whether the learned edge selection curriculum satisfies the rule from
easy to hard. Since real-world datasets do not have ground-truth labels of difficulty on edges, we
conduct visualization experiments on synthetic datasets, where the difficulty of each edge can be
indicated by its formation probability. Specifically, we classify edges into three balanced categories
according to their difficulty: easy, medium, and hard. Here, we define all homogenous edges that
connect nodes with the same class as easy, edges connecting nodes with adjacent classes as medium,
and the remaining edges connecting nodes with far away classes as hard. We report the proportion of
edges selected for each category during training in Figure 3] We can observe that RCL can effectively
select most of the easy edges at the early stage of training, then more easy edges and most medium
edges are gradually included during training, and most hard edges are left unselected until the end
stage of training. Such edge selection behavior is highly consistent with the core idea of designing
a curriculum for edge selection, which verifies that our proposed method can effectively design
curriculums to select edges according to their difficulty from easy to hard.

6 Conclusion

This paper focuses on developing a novel CL method to improve the generalization ability and
robustness of GNN models on learning representations of data samples with dependencies. The
proposed method Relational Curriculum Learning (RCL) effectively addresses the unique challenges
in designing CL strategy for handling dependencies. First, a self-supervised learning module is
developed to select appropriate edges that are expected by the model. Then an optimization model is
presented to iteratively increment the edges according to the model training status and a theoretical
guarantee of the convergence on the optimization algorithm is given. Finally, an edge reweighting
scheme is proposed to steady the numerical process by smoothing the training structure transition.
Extensive experiments on synthetic and real-world datasets demonstrate the strength of RCL in
improving the generalization ability and robustness.

10

Acknowledgement

This work was supported by the National Science Foundation (NSF) Grant No. 1755850, No.
1841520, No. 2007716, No. 2007976, No. 1942594, No. 1907805, a Jeffress Memorial Trust Award,
Amazon Research Award, NVIDIA GPU Grant, and Design Knowledge Company (subcontract
number: 10827.002.120.04). The authors acknowledge Emory Computer Science department for
providing computational resources and technical support that have contributed to the experimental
results reported within this paper.

References

[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine
learning, pages 21-29. PMLR, 2019.

[2] Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41-48,

20009.

[3] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: Fast learning with graph convolutional networks
via importance sampling. In International Conference on Learning Representations, 2018.

[4] Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural
networks: Better and robust node embeddings. Advances in neural information processing
systems, 33:19314-19326, 2020.

[5] Guanyi Chu, Xiao Wang, Chuan Shi, and Xungiang Jiang. Cuco: Graph representation with
curriculum contrastive learning. In IJCAI, pages 2300-2306, 2021.

[6] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovié. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260-13271, 2020.

[7] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack
on graph structured data. In International conference on machine learning, pages 1115-1124.
PMLR, 2018.

[8] Jeffrey L Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48(1):71-99, 1993.

[9] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All
you need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 169—177, 2020.

[10] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[11] Tieliang Gong, Qian Zhao, Deyu Meng, and Zongben Xu. Why curriculum learning & self-
paced learning work in big/noisy data: A theoretical perspective. Big Data & Information
Analytics, 1(1):111, 2016.

[12] Xiaojie Guo, Shiyu Wang, and Liang Zhao. Graph neural networks: Graph transformation.
Graph Neural Networks: Foundations, Frontiers, and Applications, pages 251-275, 2022.

[13] Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep
networks. In International Conference on Machine Learning, pages 2535-2544. PMLR, 2019.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[15] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
Advances in neural information processing systems, 31, 2018.

11

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[17] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander Hauptmann.
Self-paced learning with diversity. Advances in neural information processing systems, 27,
2014.

[18] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-paced
curriculum learning. In Twventy-ninth AAAI conference on artificial intelligence, 2015.

[19] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. In International
conference on machine learning, pages 2304-2313. PMLR, 2018.

[20] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 6674, 2020.

[21] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao
Shen, Fang Sun, Zhiping Xiao, et al. A comprehensive survey on deep graph representation
learning. arXiv preprint arXiv:2304.05055, 2023.

[22] Fariba Karimi, Mathieu Génois, Claudia Wagner, Philipp Singer, and Markus Strohmaier.
Homophily influences ranking of minorities in social networks. Scientific reports, 8(1):1-12,
2018.

[23] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International Conference on Learning Representations,

2017.

[24] Yajing Kong, Liu Liu, Jun Wang, and Dacheng Tao. Adaptive curriculum learning. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 5067-5076,
2021.

[25] M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
Advances in neural information processing systems, 23, 2010.

[26] Haoyang Li, Xin Wang, and Wenwu Zhu. Curriculum graph machine learning: A survey. arXiv
preprint arXiv:2302.02926, 2023.

[27] Qiuwei Li, Zhihui Zhu, and Gongguo Tang. Alternating minimizations converge to second-order
optimal solutions. In International Conference on Machine Learning, pages 3935-3943. PMLR,
2019.

[28] Xiaohe Li, Lijie Wen, Yawen Deng, Fuli Feng, Xuming Hu, Lei Wang, and Zide Fan. Graph
neural network with curriculum learning for imbalanced node classification. arXiv preprint
arXiv:2202.02529, 2022.

[29] Chen Ling, Junji Jiang, Junxiang Wang, and Zhao Liang. Source localization of graph diffusion
via variational autoencoders for graph inverse problems. In Proceedings of the 28th ACM
SIGKDD conference on knowledge discovery and data mining, pages 1010-1020, 2022.

[30] Chen Ling, Junji Jiang, Junxiang Wang, My T Thai, Renhao Xue, James Song, Meikang
Qiu, and Liang Zhao. Deep graph representation learning and optimization for influence
maximization. In International Conference on Machine Learning, pages 21350-21361. PMLR,
2023.

[31] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang
Zhang. Learning to drop: Robust graph neural network via topological denoising. In Proceedings
of the 14th ACM international conference on web search and data mining, pages 779-787,
2021.

12

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[33] Douglas LT Rohde and David C Plaut. Language acquisition in the absence of explicit negative
evidence: How important is starting small? Cognition, 72(1):67-109, 1999.

[34] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[35] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 761-769, 2016.

[36] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random fields.
Foundations and Trends® in Machine Learning, 4(4):267-373, 2012.

[37] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201-1242, 2010.

[38] Junxiang Wang, Junji Jiang, and Liang Zhao. An invertible graph diffusion neural network for
source localization. In Proceedings of the ACM Web Conference 2022, pages 1058—1069, 2022.

[39] Junxiang Wang, Hongyi Li, Zheng Chai, Yongchao Wang, Yue Cheng, and Liang Zhao. Toward
quantized model parallelism for graph-augmented mlps based on gradient-free admm framework.
IEEFE Transactions on Neural Networks and Learning Systems, 2022.

[40] Junxiang Wang, Hongyi Li, and Liang Zhao. Accelerated gradient-free neural network training
by multi-convex alternating optimization. Neurocomputing, 487:130-143, 2022.

[41] Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. Admm for efficient deep learning
with global convergence. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 111-119, 2019.

[42] Shiyu Wang, Xiaojie Guo, and Liang Zhao. Deep generative model for periodic graphs.
Advances in Neural Information Processing Systems, 35, 2022.

[43] Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(9):4555-4576, 2021.

[44] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Curgraph: Curriculum
learning for graph classification. In Proceedings of the Web Conference 2021, pages 1238—-1248,
2021.

[45] Xiaowen Wei, Weiwei Liu, Yibing Zhan, Du Bo, and Wenbin Hu. Clnode: Curriculum learning
for node classification. arXiv preprint arXiv:2206.07258, 2022.

[46] Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory
and experiments with deep networks. In International Conference on Machine Learning, pages
5238-5246. PMLR, 2018.

[47] Richard Lee Wheeden and Antoni Zygmund. Measure and integral, volume 26. Dekker New
York, 1977.

[48] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Ad-
versarial examples for graph data: deep insights into attack and defense. In Proceedings of the
28th International Joint Conference on Artificial Intelligence, pages 4816-4823, 2019.

[49] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

[50] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

13

[51] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40-48. PMLR,
2016.

[52] Zheng Zhang and Liang Zhao. Representation learning on spatial networks. Advances in Neural
Information Processing Systems, 34:2303-2318, 2021.

[53] Zheng Zhang and Liang Zhao. Unsupervised deep subgraph anomaly detection. In 2022 IEEE
International Conference on Data Mining (ICDM), pages 753-762. IEEE, 2022.

[54] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pages 11458—11468. PMLR, 2020.

[55] Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Robust curriculum learning: from clean label de-
tection to noisy label self-correction. In International Conference on Learning Representations,
2020.

[56] Daniel Ziigner, Amir Akbarnejad, and Stephan Giinnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2847-2856, 2018.

14

A Additional Experimental Settings and Results

A.1 Additional Experimental Settings

Figure 4: Visualization of synthetic datasets. Each color represents a class of nodes. Node attributes
are sampled from overlapping multi-Gaussian distributions, where the attributes of nodes with close
labels are likely to have short distances. Homogeneous edges represent edges that connect nodes of
the same class (with the same color). The probability of connecting two nodes of different classes
decreases with the distance between the center points of their class distribution. Therefore, the
formation probability of a node denotes the edge difficulty, since edges between nodes with close
classes are more likely to positively contribute to the prediction under the homogeneous assumption.

Synthetic datasets. To evaluate the effectiveness of our proposed method on datasets with ground-
truth difficulty labels on structure, we first follow previous studies [22| [T]] to generate a set of synthetic
datasets, where the difficulty of edges in generated graphs are indicated by their formation probability.
Specifically, as shown in Figure[d] each generated graph is with 5,000 nodes, which are divided into
10 equally sized node classes 1,2, ...,10. The node features are sampled from overlapping multi-
Gaussian distributions. Each generated graph is associated with a homophily coefficient (homo) which
indicates the likelihood of a node forming a connection to another node with the same label (same
color in Figure d). For example, a generated graph with homo = 0.5 will have on average half of the
edges formed between nodes with the same label. For the rest edges that are formed between nodes
with different labels (different colors in Figure), the probability of forming an edge is inversely
proportional to the distances between their labels. Mathematically, the probability of forming an
edge between node u and node v follows p,,_,, e~leu=col where the distances between labels
|, — ¢, | means shortest distance of two classes on a circle. Therefore, the probability of forming
an edge in the synthetic graph can reflect how well this edge is expected. Specifically, edges with
a higher formation probability, e.g. connecting nodes with the same label or close labels, meaning
that there is a higher chance that this connection will positively contribute to the prediction (less
chance to be a noisy edge). Conversely, edges with a lower formation probability, e.g., connecting
nodes with faraway labels, mean that there is a higher chance that this connection will negatively
contribute to the prediction (higher chance to be a noisy edge). We vary the value of homo from
0.1,0.2,...,0.9 to generate nine graphs in total. Similar to previous works [T, we randomly
partition each synthetic graph into equal-sized train, validation, and test node splits.

Implementation Details. We use the baseline model (GCN, GIN, GraphSage) as the backbone
model for both our RCL method and all comparison methods. For a fair comparison, we require all
models follow the same GNN architecture with two convolution layers. For each split, we run each
model 10 times to reduce the variance in particular data splits. Test results are according to the best
validation results. General training hyperparameters (such as learning rate or the number of training

15

epochs) are equal for all models. For the pre-trained model to initialize the training structure, we
utilize the same model as the backbone model utilized by our method. For example, if we use GCN
as the backbone model for RCL, the pre-trained model to initialize is also GCN. All experiments are
conducted on a 64-bit machine with four NVIDIA Quadro RTX 8000 GPUs. The proposed method is
implemented with Pytorch deep learning framework [32].

The following describes the details of our comparison models.
Graph Neural Networks (GNNs). We first introduce three baseline GNN models as follows.

(i) GCN. Graph Convolutional Networks (GCN) [23]] is a commonly used GNN, which introduces a
first-order approximation architecture of the Chebyshev spectral convolution operator;

(ii) GIN. Graph Isomorphism Networks (GIN) [50] is a variant of GNN, which has provably powerful
discriminating power among the class of 1-order GNNss;

(iii) GraphSage. GraphSage [14] is a GNN method that computes the hidden representation of the
root node by aggregating the hidden node representations hierarchically from bottom to top.

Graph structure learning. We then introduce four state-of-the-art methods for jointly learning the
optimal graph structure and downstream tasks.

(i) GNNSVD. GNNSVD [9] first apply singular value decomposition (SVD) on the graph adjacency
matrix to obtain a low-rank graph structure and apply GNN on the obtained low-rank structure;

(ii) ProGNN. ProGNN [20]] is a method to defend against graph adversarial attacks by obtaining a
sparse and low-rank graph structure from the input structure;

(iii) NeuralSparse. NeuralSparse [54] is a method to learn robust graph representations by iteratively
sampling k-neighbor subgraphs for each node and sparsing the graph according to the performance
on the node classification;

(iv) PTDNet. PTDNet [31] learns a sparsified graph by pruning task-irrelevant edges, where sparsity
is controlled by regulating the number of edges.

Curriculum learning on graph data. We introduce a recent curriculum learning work on node
classification as follows.

(i) CLNode. CLNode [45] regards nodes as data samples and gradually incorporates more nodes into
training according to their difficulty. They apply a heuristic-based strategy to measure the difficulty of
nodes, where the nodes that connect neighboring nodes with different classes are considered difficult.

Searching space for hyperparameters.

Number of epochs trained: {150, 500};

Learning rate for model: {le—2,5e—3, 1e—3};

Number of GNN layers: {2};

Dimension of hidden state: {64};

Age parameter A : {1,2,3,4,5} (A larger value indicates faster pacing for adding edges, where 1
denotes the training structure will converge to the input structure at the final iteration).

A.2 Additional Effectiveness Experiments on Heterophilic Datasets

Dataset | Edge homo ratio | GCN ~ GCN-RCL | GIN GIN-RCL
Texas 0.11 0.5645 0.6006 0.5885 0.6156
Cornell 0.30 0.4084 0.5045 0.4234 0.4925
Wisconsin 0.21 0.4923 0.5294 0.5141 0.5599
Actor 0.22 0.2868 0.3186 0.2678 0.3006
Squirrel 0.22 0.2743 0.2999 0.2347 0.2519
Chameleon 0.23 0.3625 0.4385 0.3233 0.4033

Table 4: Node classfication results for six real-world heterophilic datasets, where the best performance
of each model category in one dataset is highlighted.

16

In order to further verify the effectiveness of our proposed strategy on heterophilic graph datasets,
we have included new experiments on six real-world heterophilic datasets. As shown in Table[d] our
method consistently improve performance of backbone GNN models on these heterophilic datasets.
Secifically, RCL outperforms the second best method on average by 5.04%, and 4.55%, on GCN and
GIN backbones, respectively. The results can demonstrate our method is not limited to homophily
graphs.

Although the inner product decoder utilized in experiments might imply an underlying homophily
assumption, our method can still benefit from leveraging the edge curriculum present within the
input datasets. A reasonable explanation is that standard GNN models are usually struggled with the
heterophily edges, while our methodology designs a curriculum allowing more focus on homophily
edges, which potentially leads to the observed performance boost.

A.3 Additional Effectiveness Experiments on PNA Backbone Model.

Dataset \ PNA PNA-RCL PNA-linear PNA-root \ GCN GCN-RCL GCN-linear GCN-root
Synthetic-0.3 | 0.6982 0.7667 0.7463 0.7445 0.6517 0.7398 0.6641 0.6533
Synthetic-0.5 | 0.8742 0.9016 0.8476 0.8704 0.8715 0.9269 0.8494 0.8854
Synthetic-0.7 | 0.9658 0.9821 09514 0.9766 0.9748 0.9962 0.9712 0.9796
Cora 0.8310 0.8521 0.8145 0.8254 0.8574 0.8715 0.8327 0.8553
Citeseer 0.7478 0.7652 0.7482 0.7505 0.7893 0.7979 0.7723 0.7814
Computers 0.8989 0.9096 0.8866 0.8975 0.8809 0.9023 0.8713 0.8985
ogbn-arxiv 0.7175 0.7441 0.6980 0.7242 0.7174 0.7408 0.7288 0.7359

Table 5: Node classfication results for our method and traditional CL methods using PNA and GCN
as backbone. Here ‘-RCL’ denotes our method, while ‘-linear’ and ‘-root’ denotes two traditional CL
methods with different pacing functions.

In Table[5] new experiments that adopt modern GNN architecture - PNA model [6] have been added.
From the table we can observe that our proposed method improves the performance of PNA backbone

by 2.54% on average, which further verified the effectiveness of our method under different choices
of backbone GNN model.

In addition, in Table E] we further include two traditional CL methods for independent data as
additional baselines, following classical works [2}125]]. We employed the supervised training loss of a
pretrained GNN model as the difficulty metric, and selected two well-established pacing functions
for curriculum design: linear and root pacing, defined as follows:

t t
Linear: Kjinear(t) = T\V\;Root: Kioot(t) = “T'VL

where ¢ is the number of current iterations and T is the number of total iterations, and |V| is the
number of nodes.

We utilized GCN and PNA as backbone architectures, identified by the suffixes ’-linear’ and ’-root’.
Across all datasets, the results consistently demonstrate that our proposed method outperforms
traditional CL approaches.

A.4 Additional Robustness Experiments on PNA Backbone Model.
We present further robustness test against random noisy edges by using the PNA backbone model.

The results are shown in Table[6] which further proves that our curriculum learning approach improves
the robustness against edge noise with the advanced PNA model as the backbone.

A.5 Time Complexity Analysis

Here we consider GCN as the backbone. First, the time complexity of an L-layer GCN is O(L|£E|b +
L|V|b?) , where b is the number of node attributes. Second, the time complexity of measuring the

17

Dataset | Method | 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Cora PNA 0.8310 0.7911 0.7621 0.7402 0.7331 0.7210 0.6894 0.7042 0.6792 0.6617
Cora PNA-RCL | 0.8521 0.8315 0.8162 0.7969 0.7992 0.7951 0.7571 0.7642 0.7457 0.7371
Citeseer | PNA 0.7478 0.7195 0.7184 0.6934 0.6952 0.6920 0.6852 0.6552 0.6481 0.6327

Citeseer | PNA-RCL | 0.7652 0.7422 0.7222 0.7254 0.7041 0.7012 0.6953 0.6921 0.6884 0.6794

Table 6: Further robustness test using PNA as backbone model. Here the percentage denotes the ratio
of number of added random edges to the original edges.

Synthetic Citeseer Computers ogbn-arxiv ogbn-proteins
Vanilla 7.32s 3.90s 16.88s 55.22s 1438.23s
GNNSVD 11.49s 3.82s 35.96s 135.72s 2632.42s
CLNode 6.29s 3.96s 17.02s 58.53s 1545.53s
ProGNN 220.25s 72.42s 1953.23s))
NeuralSparse | 310.02s 88.91s 6553.34s (-) (-)
PTDNet 153.43s 48.42s 2942.02s “) “)
Ours 4.07s 2.42s 14.62s 71.49s 2239.05s

Table 7: Running time of our method and comparison methods. Here (-) denotes an out-of-memory
error and Vanilla denotes the standard GNN model.

difficulty levels of edges by reconstruction is O(|€|d) where d is the number of latent embedding
dimensions. Third, the time complexity of selecting the edges to add is O(|€|) . Therefore, the total
time complexity of our algorithm is O(|E|(Lb + d) + L|V[b?) .

In addition, we compare the total running time of our method and all comparison methods in the
Table[/] We can observe that the running time of our proposed method is comparable to that of
standard GNN models in all datasets. Notably, our method is even faster than standard GNN models
in some datasets. One possible reason is that at the beginning of training, the graphs in our model
have much fewer edges than those in standard GNN models. Therefore, the computational cost of the
GNN model is also reduced.

A.6 Parameter Sensitivity Analysis

Recall that RCL learns a curriculum to gradually add edges in a given input graph structure to the
training process until all edges are included. An interesting question is how the speed of adding
edges will affect the performance of the model. Here we conduct experiments to explore the impact
of age parameter A which controls the speed of adding edges to the model performance. Here a
larger value of A means that the training structure will converge to the input structure earlier. For
example, A = 1 means that the training structure will probably not converge to the input structure
until the last iteration, and A = 5 means that the training structure will converge to the input structure
around half of the iterations are complete, and then the model will be trained with the full input
structure for the remaining iterations. We present the results on two synthetic datasets (homophily
coefficient= 0.3,0.6) and two real-world datasets in Figure[5| As can be seen from the figure, the
classification results are steady that the average standard deviation is only 0.41%. It is also worth
noting that the peak values for all datasets consistently appear around A = 3, which indicates that the
best performance is when the training structure converges to the full input structure around two-thirds
of the iterations are completed.

Syntheticl Synthetic2 88.0 Cora Citeseer
74 4 93.0 1 80.0
87.5
3 731 92.5 4 79.5 1
£ 87.01
572 79.0 |
g 92.04 :
71 86.5
o1s 78.5
704 : Y 86.01,
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
A A A A

Figure 5: Parameter sensitivity analysis on four datasets. Here a larger value of A means the training
structure will converge to the original structure at an earlier training stage.

18

A.7 Visualization of Importance on Smoothing Component

2.0 1
—— Ours

—— w/0 smoothing

=
(9]
1

Training loss
=
o
1

0.5 A

[~—— S —~————

0.0 A

0 20 40 60 80 100 120 140
Epochs

Figure 6: The comparison between our full model and the version without smoothing technique on
the training loss trend.

Our experimental results demonstrated the importance of applying our smoothing component in
stablizing the optimization process of training. Figure[6]shows that without the smoothing technique,
the training loss spiked that reflects the GNN parameter shifts, which was caused by the number
of edges discretely changed. However, after adding the smoothing technique, the training loss can
smoothly converge, hence, the smoothing technique plays an important role in stabilizing the training
process.

B Mathematical Proof

Theorem 1. We have the following convergence guarantees for Algorithm 1:

e Avoidance of Saddle Points If the second derivatives of L(f(X,A®);w),y) and g(S;\) are
continuous, then for sufficiently large v, any bounded sequence (w(t), S(t)) generated by Algorithm
1 with random initializations will not converge to a strict saddle point of F' almost surely.

e Second Order Convergence If the second derivatives of L(f(X, A®);w),y) and g(S; \) are
continuous, and L(f(X, A®;w),y) and g(S; \) satisfy the Kurdyka-Fojasiewicz (KL) property
[40)), then for sufficiently large -y, any bounded sequence (w*), S()) generated by Algorithm 1 with
random initialization will almost surely converges to a second-order stationary point of F'.

Proof. We prove this theorem by Theorem 10 and Corollary 3 from [27]].

[Avoidance of Saddle Points] Because the sequence (w),S(®)) is bounded, and the second

derivatives of L and g are continuous, then they are bounded. In other words, we have

max{||VZ L(f(X,AD;w®) y)||, || Vg(SD; N)||} < p, where p > 0 is a constant. Simi-

AD A
ij

2
larly, it is easy to check that the second derivative of the term irj Sij is bounded,

2 2
V%v Z” Sij 9 V% le Sij 9

constant and A is a function of w. Therefore, it means that the objective F' is bi-smooth, i.e.
max{||VZF|]},||V&F||} < p+ ¢. In other words, F satisfies Assumption 4 from [27]. Moreover,
the second derivative of F is continuous. For any v > p -+ ¢, any bounded sequence (w(®),S®)
generated by Algorithm 1 will not converge to a strict saddle of I’ almost surely by Theorem 10 from
[27]].

[Second Order Convergence] From the above proof of avoidance of saddle points, we know that F'
satisfies Assumption 4 from [27]. Moreover, because L and g satisfy the KL property, and the term

A (t
23S ’Az('j) — Ay

j

A (T
‘Az(j) —Ajj

A (t
’Az(’j) —Aij

i.e., max{ } < g, where ¢ > 0 is

b

2
satisfies the KL property, we conclude that F satisfy the KL property as
2

19

well. From the proof above, we also know that the second derivative of F' is continuous. Because
continuous differentiability implies Lipschitz continuity [47]], it infers that the first derivative of
F' is Lipschitz continuous. As a result, F' satisfies Assumption 1 from [27]]. Because F' satisfies
Assumptions 1 and 4, then for any v > p + ¢, any bounded sequence (w(t), S(t)) generated by
Algorithm 1 will almost surely converges to a second-order stationary point of F' by Corollary 3 from
[27]. O

While the convergence of Algorithm 1 entails the second-order optimality conditions of f and g,
some commonly used f such as the GNN with sigmoid or tanh activations and some commonly used
g such as the squared ¢5 norm satisfy the KL property [39, [40]], and Algorithm 1 is guaranteed to
avoid a strict saddle point and converges to a second-order stationary point.

20

	Introduction
	Related Works
	Preliminaries
	Methodology
	Incremental Edge Selection by Quantifying Difficulties of Sample Dependencies
	Automatically Control the Pace of Increasing Edges
	Smooth Structure Transition by Edge Reweighting

	Experiments
	Experimental Settings
	Effectiveness Results
	Robustness Analysis Against Topological Noise
	Ablation Study
	Visualization of Learned Edge Selection Curriculum

	Conclusion
	Additional Experimental Settings and Results
	Additional Experimental Settings
	Additional Effectiveness Experiments on Heterophilic Datasets
	Additional Effectiveness Experiments on PNA Backbone Model.
	Additional Robustness Experiments on PNA Backbone Model.
	Time Complexity Analysis
	Parameter Sensitivity Analysis
	Visualization of Importance on Smoothing Component

	Mathematical Proof

