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Abstract

Probing studies have extensively explored
where in neural language models linguistic in-
formation is located. While probing classifiers
are a common instrument to approach such
questions, it is less clear what evaluation met-
rics to choose, how to compare probes, and
which baselines to use. We identify angles from
which the question how linguistic information
is structured within a model can be approached
and propose two new setups that fill the gap
of explicitly modelling local information gain
compared to the previous layer. We apply the
new setups, along with two from the literature,
to probe models for a syntactic property that
explicitly needs context to be retrieved: part-
of-speech tags that are not the most common
for a specific token. We test the hypothesis
that more information is retrieved in deeper lay-
ers than for the most common tags, and find
that while this is often true, the manifestation
varies among metrics and models in different
languages.

1 Introduction

Probing neural language representations aims at
finding hierarchical structure or other linguistic in-
formation in their parameters by testing hypotheses
about features in the representations empirically
(Hupkes et al., 2018; Alain and Bengio, 2017).
This is often done by training a probing classifier
with the model’s hidden representations at different
layers as the input representations and comparing
the performance on diagnostic tasks across layers.
While probes are conceptually simple, developing
convincing evaluation setups for them is an ongo-
ing challenge.

We contribute to this line of research by sys-
tematically investigating methods to measure us-
able information across layers on seven models in
different languages. We group the metrics along
two dimensions. The first one (as proposed by
Hewitt et al. (2021)) inspects the relation of the

baseline and the representation: how much more
information can we extract from the representa-
tion than from the baseline (baselined probing),
or how much information is extractable from the
representation that does not overlap with informa-
tion from the baseline (conditional probing). The
second dimension, proposed by us, is the type of
information intended to be measured: overall infor-
mation, relative to a non-contextualized baseline
(a global baseline), or information gain relative to
the previous layer (a local baseline). The local set-
ting challenges the view that a linguistic property’s
place in the model is the layer where most usable
information for it can be extracted. Instead, we
consider the layers where most usable information
is gained relative to the previous layer to reflect
the linguistic property’s place within the model’s
hierarchy. We fill the identified gap of local metrics
by developing and testing the local correspondents
of baselined and conditional probing.

As a case study, we investigate which layers en-
code information for part-of-speech (POS) tags that
are not the most frequent for a word form (—MFTs).
Recent probing work has hypothesized that ~-MFT's
could be found in deeper layers of a model: The
layer’s contribution beyond the information already
present in the uncontextualized layer of the pop-
ular BERT model (Devlin et al., 2019) is more
significant in deeper layers, and therefore POS in-
formation could be found later in the model than
previously assumed (Hewitt et al., 2021). While
this behavior is arguably expected because lower
layers share more information with layer O due
to the closer connection in the neural architecture,
such findings emphasize the relevance of the ques-
tion of how we define and measure where in the
model a linguistic feature is best found.

2 Related Work

How linguistic information is distributed across the
layers of a neural model is one of the central ques-



tions in the probing literature. For ELMo, Peters
et al. (2018) find that parts-of-speech are better pre-
dicted from the first hidden layer and word senses
from the second. Tenney et al. (2019) probe BERT
for a range of different NLP tasks and find that
the layers that are the most predictive for each task
are ordered like a classical pipeline: from parts-of-
speech over syntactic dependencies, named entities
and semantic roles to coreference.

How probing experiments should be designed
and evaluated is an ongoing discussion. Some au-
thors argue for simple classifiers (Alain and Bengio,
2017; Hewitt and Liang, 2019), others for more ex-
pressive models (Pimentel et al., 2020). While
probes are traditionally evaluated using accuracy,
recent work has proposed the use of alternative met-
rics that measure the effort of learning (Voita and
Titov, 2020) or emphasize the performance early
in the training (Talmor et al., 2020). Kunz and
Kuhlmann (2021) propose to probe in an extrapola-
tion setting, evaluating, among other setups, on the
—MFTs in diagnostic POS tagging experiments.

3 Probing Setups

We consider a standard setup where we train a
probe on a diagnostic task (part-of-speech tagging
in our case) and evaluate it in terms of accuracy.
More specifically, we use datasets D = {(z;, yi) }4
where each x; is the representation of a neural lan-
guage model (BERT in our case) at some specific
layer, and y; is the gold-standard label. By comput-
ing probe accuracy for different layers of the same
model, we can compare layers in terms of how pre-
dictive they are with respect to the diagnostic task.
For this we employ four different metrics:

Global Baselined Probing (GBP) In this com-
mon setup we measure the difference between the
probe accuracy on a given layer /; and the baseline
layer Iy — in BERT, this is the uncontextualized
embedding layer. Thus we compute

Acc(l;) — Acc(lp) (1)

As Hewitt et al. (2021) show, this can be inter-
preted as a difference between two quantities of
V-information (Xu et al., 2020), a theory of us-
able information under computational constraints.
More specifically, (1) estimates the difference in V-
information between predicting the linguistic prop-
erty under consideration from [/; and predicting it
from layer lj.

Global Conditional Probing (GCP) This setup
has been proposed by Hewitt et al. (2021) with
the intent to explicitly measure what information a
layer [; contributes beyond the information present
in the baseline /. Practically, it entails computing
the difference between the probe accuracy on the
concatenation of /; to [y and the baseline layer:

Acc([l3510]) — Acc(lp) 2)

In the framework of Hewitt et al. (2021), this
measure is related to a conditional version of V-
information. More specifically, it estimates the
conditional V-information conditioned on prior in-
formation contained in the baseline.

Local Baselined Probing (LBP) Analogously to
global baselined probing, we may consider a local
setup where the baseline is the previous layer /;_1:

Acc(l;) — Acc(li—q) 3)

This quantity provides an estimate of how much
V-information is gained when taking the step from
l;—1 to l;. We posit that layers with high values of
(3) can be considered as layers where useful new
information emerges.

Local Conditional Probing (LCP) To complete
the picture, we propose to apply conditional prob-
ing to the local setting:

Acc([li;1i—1]) — Acc(l;—1) 4)

The intention behind this metric is also to mea-
sure information gain with respect to [;_;, but we
account for exclusive information of [;_; that is
absent in ;. Similar to Hewitt et al. (2021), we
concatenate two layers and compare to scores on
one of them. Our approach differs in that we do
not compare to one static baseline layer (lp) but
dynamically to /;_; to track the information gained
across layers.

4 Experiments

As our probe, we use a simple feed-forward net-
work with 64 hidden units and ReLU activation,
and train it using the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.001. Our im-
plementation uses PyTorch (Paszke et al., 2019).
We calculate the results for all metrics based on the
mean accuracy over 10 random seeds.

Apart from English BERT (Devlin et al., 2019),
we train probes on BERT models in Czech
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Figure 1: Layer that maximizes the score for a setup.
Circle: All tags, Square: MFTs, Cross: -MFTs. Ma-
genta: cs, black: en, red: de, dark blue: fi, green: he,
orange: sv, light blue: #r. Color-free alternative: table 1.

(Sido et al., 2021), Finnish (Virtanen et al.,
2019), German (Chan et al., 2020), Hebrew
(Seker et al., 2021), Swedish (Malmsten et al.,
2020) and Turkish (Schweter, 2020). The lan-
guages are chosen to represent diverse fami-
lies: Indo-European/Germanic (de, en, sv), Indo-
European/Slavic (cs), Uralic (fi), Turkic (¢r), and
Afro-Asiatic/Semitic (he) to test if the syntactic
information is localized in similar regions across
models and languages. All models are base models
with 12 layers, and accessed via the Huggingface
Transformers library (Wolf et al., 2020).!

We predict UPOS tags from the Universal De-
pendencies treebank (Zeman et al., 2021) as the
probing task?, train on 1000 random sentences, and
evaluate on three sets: the full test set (all), the
most frequent tags for a word form (MFT) and tags
are not the most frequent for a word form (—MFT).

5 Results and Discussion

For each probing setup and language, we report
that layer which maximizes the respective metric
in Figure 1. Figures 2 and 3 show plots for selected
setup/language pairs with interesting properties;
plots for the remaining combinations can be found
in Appendix A.

Global metrics. Our results for the global setups
confirm the finding of Hewitt et al. (2021) that the
layers that maximize conditional probing accuracy
(GCP) are generally deeper than those that maxi-
mize baselined accuracy (GBP). This is the case in

'All code is provided in the supplementary material and
will be available on Github after the anonymity period.

The treebanks for each language are: cs: PDT, de: GSD,
en: EWT, fi: TDT, he: HTB, sv: Talbanken, #r: Kenet. Lic:
CC BY-SA 4.0 (de, en, fi, sv, tr) / CC-BY-NC-SA 3.0 (cs, he).
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Figure 2: Global Metrics on en BERT. Solid green line:
—MFTs, dotted orange: MFTs, dashed blue: all tags.

5 out of the 7 models we investigated.

Zooming in on the distinction between most fre-
quent and non-most frequent tags, however, ex-
hibits an unexpected behavior: Hewitt et al. (2021)
suggest that for the non-MFTs, GCP should be
higher than GBP in deeper layers, while for MFTs
it should be the other way round. Here we find
that in 4 out of 7 models, the layer with the highest
GCP value on non-MFTs precedes the layer with
the highest value for MFTs. The highest scores of
GBP on non-MFTs are consistently in deeper lay-
ers than those for MFTs. The exact layer in which
the maximum scores are however varies greatly
between models: for the MFTs, it ranges between
2 (tr) and 6 (de) and for the non-MFTs between 4
(he) and 11 (de).

The plots for en BERT in Figure 2 are in line
with the general trend: GCP peaks in deeper layers
than GBP, but this is not explained by the non-
MFTs, as their curve drops steeper with increasing
layer index compared to that of the MFTs. This
observation holds for most BERT models we used,
except for cs and #r where the scores on MFT's drop
more in deeper layers than those for non-MFTs.

Local metrics. Looking at the highest local in-
formation gain in Figure 1, both LBP and LCP
show the highest gains for -MFTs in layer 1 for
all models except he and tr, plus cs for LCP, where
it is layer 2 to 3 (average LBP 1.3, LCP 1.6). The
differences of the empirical results in LBP and
LCP are small, leaving the choice between them
to theoretical or practical preferences. Specifically
accounting for information in [; that is absent in
l;—1 does not result in a different pattern.
Example curves for English BERT in Figure 3
show a typical pattern for the drop across layers.
It appears to be the layer where contextual infor-
mation is added first which is the layer of highest
information gain. For MFTs, where the accuracy
starts off much higher, and information gains are
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Figure 3: Local Metrics on en BERT.
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Figure 4: Distinct patterns for de and fi BERT.

generally smaller, the highest-scoring layer ranges
between 1 and 4 (average GBP 2.3, GCP 2.1) in
both setups.

Model differences. As a general observation, we
note that the relation between layer depth and score
for each setup varies greatly across models. For
example, looking at the GCP plots Figure 4, the
curve for de shows a prolonged increase and the
strongest information increase in deep layers (peak
at layer 10), while for fi, the plot has a steep but
short ascent (up to layer 5) followed by a slow drop
as layers get deeper. Such differences in the distri-
bution of information across models raise concerns
about the generalizability of earlier probing results,
which were limited to few popular, mostly English-
language models. Future probing studies should
include more diverse models and languages.

Summary. The different results on different met-
rics show how it depends on the perspective where
a linguistic property is located. POS-relevant in-
formation, both for MFTs and —-MFTs, are gained
in early layers (LBP and LCP). Still, middle (and
in some models late) layers contribute additional
information that increases the amount of usable
information over previous layers (GBP and GCP).
The deeper the layer, the more different is the in-
formation from that in /o (GCP compared to GBP).
—MFTs s are more sensitive to the layers than
MFTs, with steep increases in the beginning but
also a more distinct drop deeper in the model. As
expected, the =MFTs are generally found later in
the layers than MFTs. Contrary to previous assump-

tions, the difference is less pronounced in GCP.
However, conditional probing makes the strong as-
sumption that the probe can make optimal use of
the features present in the representation. As this
is probably not the case in the -MFTs evaluation,
where the training data differs more from the test
data than from the other two evaluation sets, GBP
may be more meaningful here.

—MFTSs show both steeper gains in the beginning
and more pronounced losses in the later layers,
indicating that it is more specialized contextual
information that the -MFTs require.

Limitations of our method. All metrics we use
are based on probe accuracy. However, our se-
tups can be easily adapted to other metrics which
have been shown to be more robust towards design
choices regarding the classifier, such as minimum
description length (Voita and Titov, 2020), or met-
rics that reward fast learning (Yogatama et al., 2019;
Talmor et al., 2020).

We do not consider the possibility to relate the
different distribution of information across mod-
els to linguistic properties of the languages. We
believe that this is impossible with the relatively
small set of non-parallel models we analyze. Apart
from the language, they differ in several variables:
most importantly, the data they are trained on, but
some also in training details.

6 Conclusion

We have collected and suggested metrics that model
the information distribution in a model’s layers
from different perspectives: globally and locally,
and with or without conditioning on the baseline.
We used them to test whether information for POS
tags that are not the most frequent for a word is
found in deeper layers than general POS informa-
tion and found that while this is the case for over-
all information measured by global metrics, local
metrics highlight that the most significant gains
consistently happen in the very first layers.

Probing experiments on seven monolingual
BERT models in different languages show that the
metrics’ behavior varies between models. While
it is currently not feasible to relate the differences
to specific properties of the models such as the
language or the domain of the training data, a con-
trolled training of parallel models where the ad-
ditional variables are controlled for may enable
such a comparison and is an insightful direction for
future work.
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A All results

For completeness, we present all plots across mod-
els and metrics as supplementary material in figure
5. Table 1 reports the layers of the maximum score
across all metrics and models that were visualized
in figure 1 numerically, including average scores.
A brief summary of the material is provided in the
following paragraphs.

Accuracy and GBP. The accuracy shows the
same highs and lows as the GBP setup, where the
static [y baseline is subtracted from the accuracy.
Its peak is in the early middle layers, with the av-
erage over models being 5.6 for all, 3.6 for MFT's

and 6.1 for -MFTs (see table 1). Generally, the
—MFTs peak a few layers later, indicating the need
for more contextual information. Across models
we see a large variation, most extremely visible
in de, where the scores increase until layer 11 for
the MFTs, and tr, where the drop for the MFTs is
more distinct than for other models. fi and he have
a distinct peak for the “MFTs in layer 4, then a
decrease, and then stabilize.

GCP. Compared to GBP, the results for -MFTs
in GCP are shifted to later layers. Table 1 shows
that the peak is on average in layer 6.9 instead of
layer 5.6 for all tags. For MFTs, the difference is
most pronounced with the average layer being 7.3
compared to 3.6 in GBP, while for -MFTs, it is
closer, with 7.6 compared to 6.1.

LBP and LCP. The metrics that measure the lo-
cal information gain have the most consistent pat-
tern for the “MFTs, with most information gener-
ally added in the very first layer. The pattern of
the curves appears to asymptotically approximate
0. There are however two exceptions: the cs, but
most distinctly the #r model that gains relatively
little in the first layer and makes its biggest jump in
the second layer. We also observe in the accuracy
curve of these two models that the increase in the
beginning is less steep.

In all of the models we observe little difference
in the empirical results and patterns of LBP and
LCP, confirming our observations in section 5 that
the choice between them can be arbitrary or based
on theoretical preferences.
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Figure 5: Plots for all language/metric combinations.




GBP (& Accuracy) GCP LBP LCP

all MFT —MFT all MFT —MFT] all MFT —MFT all MFT —MFT
cs | 6 4 6 6 4 6 1 3 2 3 3 2
de |8 6 11 10 8 10 1 4 1 1 4 1
en |7 4 7 8 10 8 1 2 1 1 1 1
fi 4 3 4 5 7 5 1 1 1 1 1 1
he |4 3 5 7 8 7 2 2 1 2 2 1
sv |5 3 5 7 11 6 1 2 1 1 2 1
tr |5 2 5 5 3 11 2 2 2 2 2 2
avg | 5.6 3.6 6.1 6.9 7.3 7.6 1.3 2.3 1.3 1.6 2.1 1.3

Table 1: Layer of maximum score across metrics and models.



