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Abstract

Probing studies have extensively explored001
where in neural language models linguistic in-002
formation is located. While probing classifiers003
are a common instrument to approach such004
questions, it is less clear what evaluation met-005
rics to choose, how to compare probes, and006
which baselines to use. We identify angles from007
which the question how linguistic information008
is structured within a model can be approached009
and propose two new setups that fill the gap010
of explicitly modelling local information gain011
compared to the previous layer. We apply the012
new setups, along with two from the literature,013
to probe models for a syntactic property that014
explicitly needs context to be retrieved: part-015
of-speech tags that are not the most common016
for a specific token. We test the hypothesis017
that more information is retrieved in deeper lay-018
ers than for the most common tags, and find019
that while this is often true, the manifestation020
varies among metrics and models in different021
languages.022

1 Introduction023

Probing neural language representations aims at024

finding hierarchical structure or other linguistic in-025

formation in their parameters by testing hypotheses026

about features in the representations empirically027

(Hupkes et al., 2018; Alain and Bengio, 2017).028

This is often done by training a probing classifier029

with the model’s hidden representations at different030

layers as the input representations and comparing031

the performance on diagnostic tasks across layers.032

While probes are conceptually simple, developing033

convincing evaluation setups for them is an ongo-034

ing challenge.035

We contribute to this line of research by sys-036

tematically investigating methods to measure us-037

able information across layers on seven models in038

different languages. We group the metrics along039

two dimensions. The first one (as proposed by040

Hewitt et al. (2021)) inspects the relation of the041

baseline and the representation: how much more 042

information can we extract from the representa- 043

tion than from the baseline (baselined probing), 044

or how much information is extractable from the 045

representation that does not overlap with informa- 046

tion from the baseline (conditional probing). The 047

second dimension, proposed by us, is the type of 048

information intended to be measured: overall infor- 049

mation, relative to a non-contextualized baseline 050

(a global baseline), or information gain relative to 051

the previous layer (a local baseline). The local set- 052

ting challenges the view that a linguistic property’s 053

place in the model is the layer where most usable 054

information for it can be extracted. Instead, we 055

consider the layers where most usable information 056

is gained relative to the previous layer to reflect 057

the linguistic property’s place within the model’s 058

hierarchy. We fill the identified gap of local metrics 059

by developing and testing the local correspondents 060

of baselined and conditional probing. 061

As a case study, we investigate which layers en- 062

code information for part-of-speech (POS) tags that 063

are not the most frequent for a word form (¬MFTs). 064

Recent probing work has hypothesized that ¬MFTs 065

could be found in deeper layers of a model: The 066

layer’s contribution beyond the information already 067

present in the uncontextualized layer of the pop- 068

ular BERT model (Devlin et al., 2019) is more 069

significant in deeper layers, and therefore POS in- 070

formation could be found later in the model than 071

previously assumed (Hewitt et al., 2021). While 072

this behavior is arguably expected because lower 073

layers share more information with layer 0 due 074

to the closer connection in the neural architecture, 075

such findings emphasize the relevance of the ques- 076

tion of how we define and measure where in the 077

model a linguistic feature is best found. 078

2 Related Work 079

How linguistic information is distributed across the 080

layers of a neural model is one of the central ques- 081
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tions in the probing literature. For ELMo, Peters082

et al. (2018) find that parts-of-speech are better pre-083

dicted from the first hidden layer and word senses084

from the second. Tenney et al. (2019) probe BERT085

for a range of different NLP tasks and find that086

the layers that are the most predictive for each task087

are ordered like a classical pipeline: from parts-of-088

speech over syntactic dependencies, named entities089

and semantic roles to coreference.090

How probing experiments should be designed091

and evaluated is an ongoing discussion. Some au-092

thors argue for simple classifiers (Alain and Bengio,093

2017; Hewitt and Liang, 2019), others for more ex-094

pressive models (Pimentel et al., 2020). While095

probes are traditionally evaluated using accuracy,096

recent work has proposed the use of alternative met-097

rics that measure the effort of learning (Voita and098

Titov, 2020) or emphasize the performance early099

in the training (Talmor et al., 2020). Kunz and100

Kuhlmann (2021) propose to probe in an extrapola-101

tion setting, evaluating, among other setups, on the102

¬MFTs in diagnostic POS tagging experiments.103

3 Probing Setups104

We consider a standard setup where we train a105

probe on a diagnostic task (part-of-speech tagging106

in our case) and evaluate it in terms of accuracy.107

More specifically, we use datasets D = {(xi, yi)}i108

where each xi is the representation of a neural lan-109

guage model (BERT in our case) at some specific110

layer, and yi is the gold-standard label. By comput-111

ing probe accuracy for different layers of the same112

model, we can compare layers in terms of how pre-113

dictive they are with respect to the diagnostic task.114

For this we employ four different metrics:115

Global Baselined Probing (GBP) In this com-116

mon setup we measure the difference between the117

probe accuracy on a given layer li and the baseline118

layer l0 – in BERT, this is the uncontextualized119

embedding layer. Thus we compute120

Acc(li)− Acc(l0) (1)121

As Hewitt et al. (2021) show, this can be inter-122

preted as a difference between two quantities of123

V-information (Xu et al., 2020), a theory of us-124

able information under computational constraints.125

More specifically, (1) estimates the difference in V-126

information between predicting the linguistic prop-127

erty under consideration from li and predicting it128

from layer l0.129

Global Conditional Probing (GCP) This setup 130

has been proposed by Hewitt et al. (2021) with 131

the intent to explicitly measure what information a 132

layer li contributes beyond the information present 133

in the baseline l0. Practically, it entails computing 134

the difference between the probe accuracy on the 135

concatenation of li to l0 and the baseline layer: 136

Acc([li; l0])− Acc(l0) (2) 137

In the framework of Hewitt et al. (2021), this 138

measure is related to a conditional version of V- 139

information. More specifically, it estimates the 140

conditional V-information conditioned on prior in- 141

formation contained in the baseline. 142

Local Baselined Probing (LBP) Analogously to 143

global baselined probing, we may consider a local 144

setup where the baseline is the previous layer li−1: 145

146

Acc(li)− Acc(li−1) (3) 147

This quantity provides an estimate of how much 148

V-information is gained when taking the step from 149

li−1 to li. We posit that layers with high values of 150

(3) can be considered as layers where useful new 151

information emerges. 152

Local Conditional Probing (LCP) To complete 153

the picture, we propose to apply conditional prob- 154

ing to the local setting: 155

Acc([li; li−1])− Acc(li−1) (4) 156

The intention behind this metric is also to mea- 157

sure information gain with respect to li−1, but we 158

account for exclusive information of li−1 that is 159

absent in li. Similar to Hewitt et al. (2021), we 160

concatenate two layers and compare to scores on 161

one of them. Our approach differs in that we do 162

not compare to one static baseline layer (l0) but 163

dynamically to li−1 to track the information gained 164

across layers. 165

4 Experiments 166

As our probe, we use a simple feed-forward net- 167

work with 64 hidden units and ReLU activation, 168

and train it using the Adam optimizer (Kingma and 169

Ba, 2015) with a learning rate of 0.001. Our im- 170

plementation uses PyTorch (Paszke et al., 2019). 171

We calculate the results for all metrics based on the 172

mean accuracy over 10 random seeds. 173

Apart from English BERT (Devlin et al., 2019), 174

we train probes on BERT models in Czech 175
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Figure 1: Layer that maximizes the score for a setup.
Circle: All tags, Square: MFTs, Cross: ¬MFTs. Ma-
genta: cs, black: en, red: de, dark blue: fi, green: he,
orange: sv, light blue: tr. Color-free alternative: table 1.

(Sido et al., 2021), Finnish (Virtanen et al.,176

2019), German (Chan et al., 2020), Hebrew177

(Seker et al., 2021), Swedish (Malmsten et al.,178

2020) and Turkish (Schweter, 2020). The lan-179

guages are chosen to represent diverse fami-180

lies: Indo-European/Germanic (de, en, sv), Indo-181

European/Slavic (cs), Uralic (fi), Turkic (tr), and182

Afro-Asiatic/Semitic (he) to test if the syntactic183

information is localized in similar regions across184

models and languages. All models are base models185

with 12 layers, and accessed via the Huggingface186

Transformers library (Wolf et al., 2020).1187

We predict UPOS tags from the Universal De-188

pendencies treebank (Zeman et al., 2021) as the189

probing task2, train on 1000 random sentences, and190

evaluate on three sets: the full test set (all), the191

most frequent tags for a word form (MFT) and tags192

are not the most frequent for a word form (¬MFT).193

5 Results and Discussion194

For each probing setup and language, we report195

that layer which maximizes the respective metric196

in Figure 1. Figures 2 and 3 show plots for selected197

setup/language pairs with interesting properties;198

plots for the remaining combinations can be found199

in Appendix A.200

Global metrics. Our results for the global setups201

confirm the finding of Hewitt et al. (2021) that the202

layers that maximize conditional probing accuracy203

(GCP) are generally deeper than those that maxi-204

mize baselined accuracy (GBP). This is the case in205

1All code is provided in the supplementary material and
will be available on Github after the anonymity period.

2The treebanks for each language are: cs: PDT, de: GSD,
en: EWT, fi: TDT, he: HTB, sv: Talbanken, tr: Kenet. Lic:
CC BY-SA 4.0 (de, en, fi, sv, tr) / CC-BY-NC-SA 3.0 (cs, he).
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Figure 2: Global Metrics on en BERT. Solid green line:
¬MFTs, dotted orange: MFTs, dashed blue: all tags.

5 out of the 7 models we investigated. 206

Zooming in on the distinction between most fre- 207

quent and non-most frequent tags, however, ex- 208

hibits an unexpected behavior: Hewitt et al. (2021) 209

suggest that for the non-MFTs, GCP should be 210

higher than GBP in deeper layers, while for MFTs 211

it should be the other way round. Here we find 212

that in 4 out of 7 models, the layer with the highest 213

GCP value on non-MFTs precedes the layer with 214

the highest value for MFTs. The highest scores of 215

GBP on non-MFTs are consistently in deeper lay- 216

ers than those for MFTs. The exact layer in which 217

the maximum scores are however varies greatly 218

between models: for the MFTs, it ranges between 219

2 (tr) and 6 (de) and for the non-MFTs between 4 220

(he) and 11 (de). 221

The plots for en BERT in Figure 2 are in line 222

with the general trend: GCP peaks in deeper layers 223

than GBP, but this is not explained by the non- 224

MFTs, as their curve drops steeper with increasing 225

layer index compared to that of the MFTs. This 226

observation holds for most BERT models we used, 227

except for cs and tr where the scores on MFTs drop 228

more in deeper layers than those for non-MFTs. 229

Local metrics. Looking at the highest local in- 230

formation gain in Figure 1, both LBP and LCP 231

show the highest gains for ¬MFTs in layer 1 for 232

all models except he and tr, plus cs for LCP, where 233

it is layer 2 to 3 (average LBP 1.3, LCP 1.6). The 234

differences of the empirical results in LBP and 235

LCP are small, leaving the choice between them 236

to theoretical or practical preferences. Specifically 237

accounting for information in li that is absent in 238

li−1 does not result in a different pattern. 239

Example curves for English BERT in Figure 3 240

show a typical pattern for the drop across layers. 241

It appears to be the layer where contextual infor- 242

mation is added first which is the layer of highest 243

information gain. For MFTs, where the accuracy 244

starts off much higher, and information gains are 245
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Figure 3: Local Metrics on en BERT.
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Figure 4: Distinct patterns for de and fi BERT.

generally smaller, the highest-scoring layer ranges246

between 1 and 4 (average GBP 2.3, GCP 2.1) in247

both setups.248

Model differences. As a general observation, we249

note that the relation between layer depth and score250

for each setup varies greatly across models. For251

example, looking at the GCP plots Figure 4, the252

curve for de shows a prolonged increase and the253

strongest information increase in deep layers (peak254

at layer 10), while for fi, the plot has a steep but255

short ascent (up to layer 5) followed by a slow drop256

as layers get deeper. Such differences in the distri-257

bution of information across models raise concerns258

about the generalizability of earlier probing results,259

which were limited to few popular, mostly English-260

language models. Future probing studies should261

include more diverse models and languages.262

Summary. The different results on different met-263

rics show how it depends on the perspective where264

a linguistic property is located. POS-relevant in-265

formation, both for MFTs and ¬MFTs, are gained266

in early layers (LBP and LCP). Still, middle (and267

in some models late) layers contribute additional268

information that increases the amount of usable269

information over previous layers (GBP and GCP).270

The deeper the layer, the more different is the in-271

formation from that in l0 (GCP compared to GBP).272

¬MFTs s are more sensitive to the layers than273

MFTs, with steep increases in the beginning but274

also a more distinct drop deeper in the model. As275

expected, the ¬MFTs are generally found later in276

the layers than MFTs. Contrary to previous assump-277

tions, the difference is less pronounced in GCP. 278

However, conditional probing makes the strong as- 279

sumption that the probe can make optimal use of 280

the features present in the representation. As this 281

is probably not the case in the ¬MFTs evaluation, 282

where the training data differs more from the test 283

data than from the other two evaluation sets, GBP 284

may be more meaningful here. 285

¬MFTs show both steeper gains in the beginning 286

and more pronounced losses in the later layers, 287

indicating that it is more specialized contextual 288

information that the ¬MFTs require. 289

Limitations of our method. All metrics we use 290

are based on probe accuracy. However, our se- 291

tups can be easily adapted to other metrics which 292

have been shown to be more robust towards design 293

choices regarding the classifier, such as minimum 294

description length (Voita and Titov, 2020), or met- 295

rics that reward fast learning (Yogatama et al., 2019; 296

Talmor et al., 2020). 297

We do not consider the possibility to relate the 298

different distribution of information across mod- 299

els to linguistic properties of the languages. We 300

believe that this is impossible with the relatively 301

small set of non-parallel models we analyze. Apart 302

from the language, they differ in several variables: 303

most importantly, the data they are trained on, but 304

some also in training details. 305

6 Conclusion 306

We have collected and suggested metrics that model 307

the information distribution in a model’s layers 308

from different perspectives: globally and locally, 309

and with or without conditioning on the baseline. 310

We used them to test whether information for POS 311

tags that are not the most frequent for a word is 312

found in deeper layers than general POS informa- 313

tion and found that while this is the case for over- 314

all information measured by global metrics, local 315

metrics highlight that the most significant gains 316

consistently happen in the very first layers. 317

Probing experiments on seven monolingual 318

BERT models in different languages show that the 319

metrics’ behavior varies between models. While 320

it is currently not feasible to relate the differences 321

to specific properties of the models such as the 322

language or the domain of the training data, a con- 323

trolled training of parallel models where the ad- 324

ditional variables are controlled for may enable 325

such a comparison and is an insightful direction for 326

future work. 327
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A All results482

For completeness, we present all plots across mod-483

els and metrics as supplementary material in figure484

5. Table 1 reports the layers of the maximum score485

across all metrics and models that were visualized486

in figure 1 numerically, including average scores.487

A brief summary of the material is provided in the488

following paragraphs.489

Accuracy and GBP. The accuracy shows the490

same highs and lows as the GBP setup, where the491

static l0 baseline is subtracted from the accuracy.492

Its peak is in the early middle layers, with the av-493

erage over models being 5.6 for all, 3.6 for MFTs494

and 6.1 for ¬MFTs (see table 1). Generally, the 495

¬MFTs peak a few layers later, indicating the need 496

for more contextual information. Across models 497

we see a large variation, most extremely visible 498

in de, where the scores increase until layer 11 for 499

the MFTs, and tr, where the drop for the MFTs is 500

more distinct than for other models. fi and he have 501

a distinct peak for the ¬MFTs in layer 4, then a 502

decrease, and then stabilize. 503

GCP. Compared to GBP, the results for ¬MFTs 504

in GCP are shifted to later layers. Table 1 shows 505

that the peak is on average in layer 6.9 instead of 506

layer 5.6 for all tags. For MFTs, the difference is 507

most pronounced with the average layer being 7.3 508

compared to 3.6 in GBP, while for ¬MFTs, it is 509

closer, with 7.6 compared to 6.1. 510

LBP and LCP. The metrics that measure the lo- 511

cal information gain have the most consistent pat- 512

tern for the ¬MFTs, with most information gener- 513

ally added in the very first layer. The pattern of 514

the curves appears to asymptotically approximate 515

0. There are however two exceptions: the cs, but 516

most distinctly the tr model that gains relatively 517

little in the first layer and makes its biggest jump in 518

the second layer. We also observe in the accuracy 519

curve of these two models that the increase in the 520

beginning is less steep. 521

In all of the models we observe little difference 522

in the empirical results and patterns of LBP and 523

LCP, confirming our observations in section 5 that 524

the choice between them can be arbitrary or based 525

on theoretical preferences. 526
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Figure 5: Plots for all language/metric combinations.
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GBP (& Accuracy) GCP LBP LCP
all MFT ¬MFT all MFT ¬MFT all MFT ¬MFT all MFT ¬MFT

cs 6 4 6 6 4 6 1 3 2 3 3 2
de 8 6 11 10 8 10 1 4 1 1 4 1
en 7 4 7 8 10 8 1 2 1 1 1 1
fi 4 3 4 5 7 5 1 1 1 1 1 1
he 4 3 5 7 8 7 2 2 1 2 2 1
sv 5 3 5 7 11 6 1 2 1 1 2 1
tr 5 2 5 5 3 11 2 2 2 2 2 2
avg 5.6 3.6 6.1 6.9 7.3 7.6 1.3 2.3 1.3 1.6 2.1 1.3

Table 1: Layer of maximum score across metrics and models.
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