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Abstract

Although soft prompt tuning is effective in efficiently
adapting Vision-Language (V&L) models for downstream
tasks, it shows limitations in dealing with distribution shifts.
We address this issue with Attribute-Guided Prompt Tun-
ing (ArGue), making three key contributions. 1) In con-
trast to the conventional approach of directly appending
soft prompts preceding class names, we align the model
with primitive visual attributes generated by Large Lan-
guage Models (LLMs). We posit that a model’s ability to
express high confidence in these attributes signifies its ca-
pacity to discern the correct class rationales. 2) We intro-
duce attribute sampling to eliminate disadvantageous at-
tributes, thus only semantically meaningful attributes are
preserved. 3) We propose negative prompting, explicitly
enumerating class-agnostic attributes to activate spurious
correlations and encourage the model to generate highly
orthogonal probability distributions in relation to these neg-
ative features. In experiments, our method significantly out-
performs current state-of-the-art prompt tuning methods on
both novel class prediction and out-of-distribution general-
ization tasks. The code is available https://github.
com/Liam—Tian/ArGue.

1. Introduction

Soft prompt tuning is increasingly favored in enabling
Vision-Language (V&L) models [1, 16, 33] to be efficiently
adapted to downstream tasks [20, 22, 24]. Models with
a few soft tokens can achieve performance parity with,
or even outperform, fully fine-tuned ones. Additionally,
adapting to different downstream tasks typically necessi-
tates prompt replacement rather than extensive model re-
configuration [21, 38], further explaining the superiority of
soft prompt tuning.

In typical classification tasks, prompt tuning often in-
volves introducing a learnable context directly preceding
the class name [20]. However, recent research in zero-shot
recognition has emphasized the substantial benefits of in-
corporating visual attributes that describe the classes into
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Figure 1. The illustration of negative prompting. Given an im-
age of a cat (Left), we visualize the model rationale with Grad-
CAM [36], which highlights the image pixels significantly de-
termining the results (Middle). The standard prompt could be
a photo of a cat, where vanilla models, e.g. CLIP [33], give high
confidence on the ground truth class (the “CLIP” column). How-
ever, a negative prompt, e.g., the background of a cat, yields
biased prediction since it activates the spurious correlation, i.e.,
background. In contrast, our attribute-guided model (the “Ours”
column) disregards incorrect rationales and bases its predictions
solely on class-specific semantics.

the input [28, 31, 35, 42, 44]. One observes that although
class names, e.g., cat or bird, capture high-level seman-
tics, during inference, primitive attributes, e.g., long tail
or black paw, provide a more precise specification. This
augmentation significantly enhances zero-shot classifica-
tion accuracy, offering insights into transfer learning, par-
ticularly in few-shot scenarios.

In this paper, we investigate visual attributes for trans-
fer learning by identifying the shortcuts existing in V&L
models, which exhibit ease in adapting to new tasks but
often provide incorrect rationales for their decisions [27].
For instance, a V&L model may correctly classify an ob-
ject in the sky as a bird, not due to a comprehension of
the semantic features, but because it detects spurious cor-
relations between the bird and the sky. A model that
predominantly highlights spurious correlations, e.g., the
background, struggles to generalize effectively to out-of-
distribution data.

To mitigate this challenge, we introduce Attribute-
Guided Prompt Tuning (ArGue). In contrast to the vanilla
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prompt tuning methods that directly align image features
with class names, ArGue encourages models to express high
confidence in recognizing associated visual attributes gen-
erated by Large Language Models (LLMs) [3, 8, 32]. The
underlying concept is that a model capable of identifying
these primitive attributes captures the correct rationales for
a class, rather than being influenced by spurious correla-
tions. This approach offers two key advantages: firstly,
attributes generated solely based on class names naturally
circumvent shortcuts present in images, and secondly, these
primitive attributes may be shared by other classes, enhanc-
ing models’ generalization capability.

Nevertheless, despite meticulous prompting, the inherent
quality of attributes generated directly from LLMs remains
uncertain. To address this, we present Attribute Sampling to
select the most representative and non-redundant attributes
that align well with the corresponding images. Particularly,
the attribute pool is clustered, facilitating the selection of
the most representative attributes per cluster while avoid-
ing redundancy. Subsequently, within each cluster, we rank
attributes based on their similarity to images in the feature
space, opting for the most closely correlated attributes. This
process enables the selection of the most semantically rel-
evant visual attributes for the images. Empirically, we ob-
serve that reducing the number of attributes by 80% overall
results in an accuracy improvement while conserving the
computational resources.

Furthermore, rooted in attribute-guided prompt tuning,
we introduce Negative Prompting, i.e., ArGue-N. We con-
tend that when presented with a negative attribute, one
devoid of class-specific semantics and activating spuri-
ous correlations, the model should refrain from favor-
ing any class. We provide a general negative prompt,
i.e., the background of a {class}, where the attribute,
the background of a, activates the background of images
which is semantically unrelated to classes. Upon employing
a negative prompt, we enforce a uniform predictive proba-
bility distribution for the model (see Fig. | for an illustration
of negative prompting). Despite the weak assumption of the
general negative prompt, consistent performance enhance-
ments are observed on out-of-distribution datasets.

In summary, our research focuses on leveraging visual
attributes to encourage models to comprehend correct ratio-
nales, thereby improving robustness for transfer learning.
The experiments reveal that our method outperforms exist-
ing state-of-the-art prompt tuning methods and, for the first
time, surpasses pre-trained models on 10 out of 11 bench-
mark datasets in terms of novel class accuracy. Moreover,
our method demonstrates consistent superior performance
in out-of-distribution generalization against baselines. We
aim for our work to serve as a foundational reference for
the application of attributes in transfer learning, providing a
strong baseline for the research community.

2. Related Work

Visual Attributes for Image Classification. Recent re-
search emphasizes the use of visual attributes to enhance
zero-shot recognition, moving beyond broad prompts like
a photo of a {class} [28, 31, 35]. These attributes, e.g.,
tail, paw, offer more distinguishing characteristics. Lever-
aging LLMs like GPT-3 [3], researchers can efficiently gen-
erate a wide array of class-specific attributes, surpassing
manually crafted templates.

Despite the extensive research on zero-shot scenar-

ios [18, 28, 31, 35, 42, 43], the role of attributes in trans-
fer learning is under-explored. A pioneer study, Mao et al.
[27], which is most related to ours, introduces an additional
objective for V&L models to clarify their behaviors. How-
ever, they did not conduct an in-depth investigation into
attributes, and manually curating attributes for datasets is
quite costly. In contrast, we generate attribute pools through
LLMs and efficiently select semantically related attributes
via attribute sampling.
Prompt Engineering integrates foundational language
models [3, 8, 32] into downstream tasks, allowing tradi-
tional tasks to be reframed as question-answering formats
with carefully designed prompts [6, 11, 12, 17, 23, 39].
Manual prompt design is costly, driving the development
of automated approaches like prompt tuning [20, 22, 24].
This technique optimizes soft tokens, reducing storage re-
quirements and enhancing flexibility by enabling individual
prompt replacement [21, 25, 38].

In the evolving field of V&L models [1, 16, 33], craft-
ing text encoder prompts is pivotal for enhancing few-shot
performance. CoOp [45] introduces soft prompts but at the
expense of robustness. CoCoOp [46] tackles this by condi-
tioning prompts on individual images, albeit with increased
computational demand. LASP [4] proposes prompt regular-
ization to align with pre-trained models’ generalization, yet
overlooks their inherent biases. Our work extends LASP by
utilizing attributes to guide models toward class-specific se-
mantics and further correcting pre-trained model rationales
through negative prompting.

3. Method

3.1. Preliminary

Prompt Engineering for Zero-shot Recognition. The
Contrastive Language-Image Pre-training (CLIP) demon-
strates the impressive understanding capability of V&L
models for open-set concepts, showcasing competitive clas-
sification performance in zero-shot scenarios. Consider an
image classification task where the dataset is defined as
pairs D = {(z,c)}, with = representing the image and
¢ € {1,...,C} as its corresponding label. The classifica-
tion problem is reformulated by calculating the similarity
between visual and textual features within the CLIP space.
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Figure 2. The pipeline of ArGue. In (a), we instruct the LLMs to generate attribute candidates using various LLM templates. In (b), we
extract semantically relevant attributes through an assessment of their similarity to images, as described in Sec. 3.3. In (c¢), with guidance
from the selected attributes and the application of negative prompting, we construct a set of soft tokens tailored to the task, which is detailed

in Sec. 3.4 and Sec. 3.5.

Specifically, for each image x, it undergoes transforma-
tion via the vision encoder h;(+) to compute a feature vec-
tor f = h;(z). Simultaneously, a series of textual inputs
{t.}&_, are generated by appending a customized template
to each class name, e.g., t. = a photo of a {class.}. These
textual inputs are then processed through the text encoder
hr(-) to derive the textual features or known as weight vec-
tors, denoted as {w%}_,, where w® = hp(t.). The predic-
tive probability for the image x classified to y is

exp(cos(f, wl)/7)
$¢ | exp(cos(f,wt) /)’

Pyy|z) = ey
where cos(-) computes the visual/text cosine similarity, and
T is a temperature scalar.

Prompt Tuning for Few-shot Learning. Prompt tuning
aims to replace the manually designed discrete templates
with a set of learnable continuous tokens {p,,, }*/_; and op-
timize these tokens with a few labeled samples. Specifi-
cally, let s, = {p1,Ps,-.., Pass€c} be the concatenation of
the learnable tokens and the word embedding e, of a spe-
cific class c. With prompt tuning, the soft prompt s, is used
instead of the discrete prompt ¢., leading to the learnable
text embedding w8 = hp(s.) with predictive distribution

exp(cos(f, WZ)/T)
»¢ , exp(cos(f,ws)/7)’

Py(y|z) = 2
Finally, with the few labeled samples, a cross entropy loss
is employed to align the logits with the ground truth to op-
timize the learnable tokens {p,,}M_,.

3.2. ArGue: Attribute-Guided Prompt Tuning

The pipeline of our method has been presented in Fig. 2.
As discussed in Sec. 3.1, the word embedding of a spe-
cific class name is concatenated with the learnable tokens
for conventional prompt tuning [20, 22, 45]. However, we
contend that this practice represents a shortcut for CLIP to
attain high accuracy without suitable rationales [27]. For
instance, when presented with a class name of bird, CLIP
may establish a semantic connection with the sky, introduc-
ing a dependence on the background rather than capturing
the semantics of birds. This reliance on spurious correla-
tions substantially undermines generalization capabilities.

To mitigate this challenge, instead of directly learning
from class names, we advocate training a model that ex-
hibits high confidence in the associated visual attributes,
leading to the proposed attribute-guided prompt tuning.
This approach is grounded in two fundamental intuitions.
Firstly, in contrast to high-level class names, aligning ex-
plicitly with visual attributes encourages the model to pri-
oritize inherent semantics of the class. Secondly, visual at-
tributes representing low-level features may be shared with
multiple classes, facilitating generalization to novel classes
or out-of-distribution data.

A direct approach to obtain these visual attributes in-
volves prompting LLMs with inquiries about the visual
characteristics of specific classes. Notably, the LLM in-
put exclusively consists of class names, thereby inher-
ently circumventing shortcuts present in images. For-
mally, given any label ¢, we obtain a list of J attributes

28580



yellow or white in color 7537
pointed tip at the end 67.26
narrow and round 60.38

soft and creamy insides 4982

smooth, leathery skin 31.74

4 sweet taste 23.81

(a) ImageNet

(b) ImageNet-Sketch ...

| black and white sketch 68.32
round or oval 63.71

a small stem at the top 54.42

oblong or conical 43.14
thin, edible skin 35.90
red, green or yellow 2561

Figure 3. Two example classes from (a) ImageNet and (b) ImageNet-Sketch for the attribute sampling procedure. We demonstrate
several attributes inside each class and the number within the yellow bar indicates its similarity to images in CLIP space. For each class,
we designate 3 clusters, resulting in the selection of 3 attributes with the highest similarity score and they are framed with the black box.

attr. = U(class.), where U is the language model. It’s
worth noting that the templates for prompting LLMs have
been pre-defined (see Supp. Mat. A). Now we let s/ =
{P1,P2; s Pas» €c, V2 }, where j € [1, J], be the concate-
nation of the learnable tokens {p,,}_,, the word embed-
ding e, of class., and the word embedding v/ of j*" at-
tribute for class.. We then define w$ = hp(s?) as the
attribute-guided soft embedding. Finally, for each sample
(z, ¢), we determine the probability distribution by averag-
ing the logits over the attributes for each class, i.e.,

¥7_, exp(cos(f, wi7)/7)
B2y exp(cos(f, wel)/7)

Py(y|z) = 3)

The prompts are optimized with a typical cross entropy loss

Eent = 7chzlyc IOg PS(C | l’) “4)

Essentially, optimizing Eq. 4 implies our expectation for the
model to exhibit high confidence in every attribute assigned
to the ground truth class while minimizing its association
with any other attributes.

3.3. Attribute Sampling

While LLMs can generate attributes associated with the
class names, we find that some attributes exhibit a stronger
semantic correlation with visual features than others. Our
subsequent experiments further highlight that the removal
of ineffective attributes not only reduces memory consump-
tion but also improves the model’s accuracy. We thus work
on selecting optimal attributes from an attribute pool. It
is essential to note that while our primary task is few-shot
adaptation, this method is equally applicable to attribute-
based zero-shot recognition [28, 31, 35].

Our selection process revolves two main criteria: 1) the
selected attributes should be both representative and non-
redundant; 2) the selected attributes should be semanti-
cally related to the class-specific images. Consequently,
our method involves two distinct steps. Firstly, given
the attributes attr. associated with class ¢ from the at-
tribute pool, we partition them into N clusters denoted as
{AL A2, ..., AN} based on their feature similarity in the
CLIP space. This clustering strategy aims to ensure that

each cluster represents a distinct aspect, e.g., color or shape,
in the descriptions. Subsequently, within each cluster, we
rank the attributes by assessing their similarity to visual
features within the CLIP space, and select the one with
the highest relevance. This approach filters out: 1) non-
visual attributes, e.g., sweet, edible, and 2) incorrect visual
attributes that are semantically unrelated to the images.

An illustrative example could be found in ImageNet-
Sketch [40], where the predominant content comprises
sketches, devoid of the real colors of objects. Nevertheless,
LLMs tend to generate class-specific colors despite care-
ful prompting, e.g., red for apple. In this situation, our at-
tribute sampling approach initially groups attributes related
to color into one cluster and subsequently identifies the most
pertinent colors for sketches, i.e., black and white. Fig. 3
offers concrete examples of this process.

3.4. Prompt Regularization

One issue of soft prompt learning within the few-shot set-
ting is that the model may overfit training samples, lead-
ing to performance degradation for unseen data during test-
ing [4]. Prompt regularization is a methodology that com-
pels soft prompts to reside in proximity to natural texts in
the feature space [4, 47], which is effective in dealing with
the over-fitting issue. In this paper, we employ and interpret
this technique through the lens of shortcut learning.

Empirically, the adaptation of pre-trained models of-
ten results in the acquisition of shortcuts, implying that
spurious correlations, e.g., background, may be given
undue weight in the decision-making process. There-
fore, prompt regularization is shown to be an effec-
tive approach for aligning semantic understanding with
pre-trained models. Specifically, we define ¢, =
a photo of a {class.} {attr. ;}, which constitutes a textual
prompt for the text encoder. Subsequently, we establish
whd = hr(tJ). Recall that w8 represents the features for
the attribute-guided soft prompts. The predictive distribu-
tion determining whether a soft prompt w® corresponds to
its textual counterpart wg’k is

exp(cos(W®, wh*) /1
Ps(y, k| w*) = p(costw’, w, )/ t)' 6
BB exp(cos(ws, we) /7)
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The cross entropy loss is then used to optimize the prompts

Ereg = —252123']:1%/{;' log Pts(caj | ws). (6)

That is, we establish a positive pair for each soft prompt
in conjunction with its corresponding textual prompt, while
any other textual prompt is designated as a negative pair.
Consequently, the optimization of Eq. 6 is carried out in a
contrastive manner.

In summary, we combine the loss terms as follows

L= ['ent + Bﬁrega (7)

where [ represents a predefined weight to balance the two
components. We designate our method as Attribute-Guided
Prompt Tuning (ArGue) for incorporating and sampling
primitive visual attributes to bypass the incorrect rationales
in the images.

3.5. Negative Prompting

In preceding sections, we explore the process of selecting
attributes that maintain semantic and intrinsic relevance to
our images. In this section, we further study the effects of
attributes, but in the other way. We introduce the concept of
negative prompting, where our objective is to explicitly enu-
merate attributes lacking class-specific information. We ex-
pect the model to display no preference for any class when
presented with these negative attributes.

To illustrate, consider the cat image in Fig. 1, where
CLIP is expected to confidently identify standard prompts
like a photo of a cat. However, when introduced to a
negative prompt, e.g., the background of a cat, the model
should provide a uniform prediction without a dominant
class. In this context, the background of a exemplifies a
typical negative attribute devoid of class-specific informa-
tion while activating spurious correlations from the images.
It serves as the general negative attribute in this paper. Al-
though it is possible to provide more specific negative at-
tributes, manually labeling them for each class is a labor-
intensive task. Additionally, our experiments reveal that the
general negative attribute, despite being a weak assumption,
performs remarkably well across most datasets. A discus-
sion on manually curating class-specific negative attributes
is provided in Supp. Mat. E.

Moreover, it’s noteworthy that negative prompting fol-
lows a format akin to attribute-guided prompts, involving
the integration of class names into the prompt structure.
Empirical findings [35] suggest that when models overly
lean on the class name, the impact of the attribute tends to be
weakened. Considering that the negative prompt includes
the class name, the model is designed to lessen the influence
of negative attributes while concurrently diminishing the
significance of class names. As a result, the model adeptly
identifies and engages with areas indicated by class-specific

attributes, prioritizing them over class names for precise ac-
tivation.

Formally, consider a negative attribute attrg, we de-
fine the embedding of the negative prompt as n, =
{P1, P2, -, Pass Vo, €c }» Where v is the word embedding
of the negative attribute. Then we let {w?}<_,, where
w? = hr(n.). The predictive probability that the negative
prompt is classified to class y is

exp(cos(f, wyy)/T)
»¢ , exp(cos(f,wn) /1)

Py |z) = ®)

To ensure that the model exhibits no preference for either
class, we enforce the probability to be uniform. In other
words, we aim to maximize the entropy of the distribution.

Loeg =X 1 log Py(c| 2). )
In summary, we aggregate all the introduced components
L= Cent + 5£Teg + ’Y»Cnega (10)

where vy denotes the weight that accentuates the importance
of negative prompting. We formally designate the compre-
hensive method as ArGue-N, signifying its inclusion of neg-
ative prompting within our attribute-guided prompt tuning
framework.

4. Experiment

The evaluation primarily focuses on two tasks similar to [4,
46]: novel class prediction and out-of-distribution general-
ization. In the novel class prediction task, each dataset is
equally partitioned into base and novel classes. The model
undergoes training on the base classes, followed by the
evaluation of test sets encompassing both base and novel
classes. For the out-of-distribution generalization task, the
model is transferred from an in-distribution dataset to sev-
eral distinct yet related variants. Furthermore, we conduct a
comprehensive analysis to validate and enhance our under-
standing of the proposed methodology.

Datasets. In the novel class prediction task, we employ
11 datasets, encompasing ImageNet [7], Caltech101 [10],
OxfordPets [30], StanfordCars [19], Flowers102 [29],
Food101 [2], FGVCAircraft [26], SUN397 [41],
UCF101 [37], DTD [5] and EuroSAT [13]. For the
out-of-distribution generalization task, we designate Ima-
geNet [7] as the in-distribution or source set, and extend
the model’s capabilities to four variants, including Ima-
geNetV2 [34], ImageNet-Sketch [40], ImageNet-A [15]
and ImageNet-R [14]. For a fair comparison, following
[45, 46], we randomly sample 16 images, i.e., 16 shots for
each class, to form the training set. Each result represents
an average over three runs with different initializations.
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Dataset CLIP [33] CoOp [45] CoCoOp [46] LASP [4] ArGue ArGue-N
Base New H |Base New H |Base New H |[Base New H |Base New H |Base New H A

Average 69.34 7422 71.70(82.69 63.22 71.66|80.47 71.69 75.83|83.18 76.11 79.48|83.69 78.07 80.78|83.77 78.74 81.18 +1.70
ImageNet |[72.43 68.14 70.22|76.47 67.88 71.92|75.98 70.43 73.10|76.25 71.17 73.62|76.92 72.06 74.41|76.95 71.86 74.32 +0.70
Caltech101 [96.84 94.00 95.40[98.00 89.91 93.73|97.96 93.81 95.84|98.17 94.33 96.21|98.43 95.20 96.79|98.63 94.70 96.63 +0.42
OxfordPets [91.17 97.26 94.12]93.67 95.29 94.47|95.20 97.69 96.43|95.73 97.87 96.79|95.36 97.95 96.64|96.23 98.59 97.40 +0.61
StanfordCars | 63.37 74.89 68.85|78.12 60.40 68.13|70.49 73.59 72.01|75.23 71.77 73.46|75.64 73.38 74.49|75.06 74.18 74.62 +1.16
Flowers102 |72.08 77.80 74.83|97.60 59.67 74.06|94.87 71.75 81.71|97.17 73.53 83.71|98.34 75.41 85.36|98.62 77.96 87.08 +3.37
Food101 90.10 91..22 90.66|88.33 82.26 85.19(90.70 91.29 90.99|91.20 91.90 91.54|92.33 91.96 92.14|91.42 92.40 9191 +0.37
FGVCAircraft|27.19 36.29 31.09|40.44 2230 28.75|33.41 23.71 27.74|38.05 33.20 35.46|40.46 38.03 39.21[41.29 38.80 40.01 +4.55
SUN397 69.36 7535 72.23|80.60 65.89 72.51|79.74 76.86 78.27|80.70 79.30 80.00|81.52 80.74 81.13|81.89 80.48 81.18 +1.18
DTD 5324 59.90 56.37|79.44 41.18 54.24|77.01 56.00 64.85|81.10 62.57 70.64|81.60 66.55 73.31|80.33 67.03 73.08 +2.44
EuroSAT |56.48 64.05 60.03|92.19 54.74 68.90|87.49 60.04 71.21{95.00 83.37 88.86|94.43 88.24 91.23|95.10 90.68 92.84 +3.98
UCF101 70.53 77.50 73.85|84.69 56.05 67.46|82.33 73.45 77.64|85.53 78.20 81.70|85.56 79.29 82.31|86.00 79.43 82.58 +0.88
Table 1. The comparison with baselines on novel class prediction. We report performance of both ArGue and its variant, ArGue-N. H

is the harmonic mean of the test accuracy on base and new class. A is the absolute difference between ArGue-N and previous best results.

Dataset CLIP CoOp CoCoOp LASP ArGue ArGue-N
a ImageNet 66.73 71.51 71.02 7134 71.57 7184
ImageNetV2 |60.83 64.20 64.07 64.04 64.57 65.02
8 ImageNet-Sketch 46.15 47.99 48.75 4793 4892 49.25
) ImageNet-A  |47.77 49.71 50.63 49.11 50.93 51.47
ImageNet-R  |73.96 75.21 76.18 75.36 76.56 76.96

Table 2. The comparison against baselines for out-of-

distribution generalization. We employ ImageNet as our in-
distribution set for adaptation and subsequently transfer our mod-
els to four related out-of-distribution variants.

Baselines. A primary point of reference is LASP [4],
upon which we build our models. Additionally, we con-
trast our approach with CoCoOp [46], which conditions
on images but significantly escalates computational require-
ments. Two baseline models, CLIP [33] and CoOp [45], are
included, representing zero-shot performance and vanilla
prompt tuning, respectively.

Implementation Details. By default, we employ a pre-
trained CLIP model with a ViT-B/16 vision encoder back-
bone [9]. The soft token length M is configured to be 4
and is initialized with the word embedding of a photo of a.
The choice of epoch numbers, learning rate, optimizer, and
batch size aligns with the baselines [4, 45, 46] (SGD opti-
mizer with a learning rate of 0.032 and a batch size of 32).
Additionally, we set 5 to 20 following [4] and -y to 3 based
on empirical observations (see Supp. Mat. G for parameter
analysis of y). For each class in datasets, we generate a total
of J = 15 attributes with GPT-3 [3], while only sampling
N = 3 representative attributes for training. We determine

N based on a 20% proportion relative to the total number of
attributes. Insufficient attributes may not comprehensively
elucidate the class, while an excessive N introduces redun-
dancy, thereby amplifying computational burden (see Supp.
Mat. H for further analysis).

4.1. Novel Class Prediction

The superiority of ArGue-N over state of the art. Table |
provides a comparative analysis of our methods against
baseline models for novel class prediction, showcasing
ArGue-N’s consistent outperformance of LASP, the current
state-of-the-art, by 1.70% on average across base and novel
classes. Notably, it excels on more challenging benchmark
datasets, demonstrating a remarkable 3.98% improvement
on EuroSAT and an impressive 4.55% gain on FGVCA:ir-
craft. Additionally, CLIP serves as a robust baseline for
novel class accuracy due to its large-scale pre-training. For
the first time, ArGue-N outperforms CLIP on novel classes
in 10 out of 11 datasets, marking a notable milestone.

The comparison between ArGue and ArGue-N. ArGue-
N exhibits an overall advantage over ArGue, with an abso-
Iute improvement of 0.40% on average. It’s worth noting
that this advantage is contingent upon dataset characteris-
tics. When spurious correlations predominantly reside in
the background of the dataset, e.g., OxfordPets (+0.76%),
Flowers102 (+1.72%), the efficacy of negative prompting
becomes pronounced. Conversely, in specialized datasets,
e.g., DTD (-0.23%), ArGue-N tends to converge towards
ArGue, as images cannot be distinguished between back-
ground and foreground, e.g., textures. Nonetheless, the gen-
eral negative prompt yields favorable results across the ma-
jority of datasets without any manual supervision.
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Dataset Baseline [45] Attr. +Reg. + Samp. (ArGue) + Neg. (ArGue-N)

base new H base new H base new H base new H base new H
Average 82.69 6322 71.66 | 83.51 7550 79.30 | 83.54 7757 8044 | 83.69 78.07 80.78 | 83.77 78.74 81.18
ImageNet 7647 67.88 7192 | 76.77 7143 74.00 | 76.67 7190 7421 | 76.92 72.06 7441 | 7695 71.86 74.32
Caltech101 98.00 8991 93.73 | 9854 93.16 9577 | 9836 9475 96.52 | 98.43 9520 96.79 | 98.63 9470 96.63
OxfordPets 93.67 9529 9447 | 9513 96.79 9595 | 95.17 98.02 96.57 | 9536 9795 96.64 | 96.23 98.59 97.40
StanfordCars | 78.12 60.40 68.13 | 77.52 7038 73.78 | 7598 7229 74.09 | 75.64 7338 7449 | 75.06 7418 74.62
Flowers102 97.60 59.67 74.06 | 98.56 7245 8351 | 98.17 7501 85.04 | 9834 7541 8536 | 98.62 77.96 87.08
Food101 88.33 8226 8519 | 92.19 8947 90.81 | 92.14 9197 92.05 | 9233 9196 92.14 | 9142 9240 9191
FGVCAircraft | 40.44 2230 28.75 | 3836 37.55 37.95 | 3931 38.05 38.67 | 4046 38.03 39.21 | 41.29 38.80 40.01
SUN397 80.60 65.89 7251 | 81.14 78.82 79.96 | 81.07 80.06 80.56 | 81.52 80.74 81.13 | 81.89 80.48 81.18
DTD 79.44  41.18 5424 | 81.27 6592 7279 | 81.62 6598 7297 | 81.60 66.55 73.31 | 80.33 67.03 73.08
EuroSAT 92.19 5474 6890 | 94.10 7895 8586 | 94.78 86.41 90.40 | 9443 8824 9123 | 9510 90.68 92.84
UCF101 84.69 56.05 67.46 | 8498 7555 79.99 | 85.62 78.80 82.07 | 85.56 79.29 8231 | 86.00 79.43 82.58

Table 3. Components analysis.

4.2. Out-of-Distribution Generalization

ArGue outperforms baselines. Table 2 presents results by
transferring from ImageNet to four variants. ArGue consis-
tently exhibits strengths across all five datasets, with a no-
tably substantial enhancement observed in OOD datasets.
This observation is comprehensible as the distribution shift
does not alternate class-specific semantics or introduce
novel classes. ArGue empowers the model to comprehend
the visual attributes associated with each existing class, re-
inforcing its robustness across different variants.

ArGue-N eliminates shortcuts. As shown in Table 2,
ArGue-N consistently outperforms ArGue across four dis-
tinct variants. This observation suggests that ImageNet ex-
hibits spurious correlations between background elements
and class labels, and the utilization of negative prompting
encourages the model to eliminate these shortcuts, refocus-
ing its attention on the inherent semantics of the categories.
The OOD datasets, in an adversarial manner, effectively
eradicate these shortcuts. For instance, consider ImageNet-
sketch, where objects are exclusively represented through
sketches, completely devoid of any background context.

4.3. Attribute Sampling Analysis

We provide visual examples for a more comprehensive
analysis of the influence of our attribute sampling proce-
dure. In Fig. 3, we select one class from ImageNet and
ImageNet-Sketch, respectively. Utilizing LLMs, we gener-
ate attributes for each class, thus creating an attribute pool.
Subsequently, we apply attribute sampling to exclude inef-
fective attributes (see Sec. 3.3). The attributes that undergo
filtering can be categorized into two primary types.

Non-visual attributes. Despite our meticulous guidance
to LLMs to acquire visual attributes, it is possible for non-

CoOp [45] is chosen as the baseline as it is the vanilla prompt tuning method without any modification.

visual attributes, e.g., edible, sweet, to surface. Attribute
sampling may place these attributes within any cluster, but
their resemblance to the images is lower in comparison to
other visual attributes, resulting in their exclusion from the
selection process.

Semantically unrelated visual attributes refer to at-
tributes that possess visual features but do not correspond to
the image content. For instance, in scenarios like ImageNet-
Sketch, where images only contain black sketches, the at-
tribute pool may still include descriptions of object col-
ors, e.g., red for apples. In our clustering process, we
tend to group attributes with similar semantics together,
e.g., {red, yellow, black}, {round, square, oblong}. Sub-
sequently, color descriptions that do not align with the ac-
tual image content are regarded as dissimilar and are there-
fore excluded from the selection process.

4.4. Ablation Study

Simply introducing attributes improves the baseline by
large margins. Table 3 presents the performance as we
progressively include components. As evident from the
table, the transition from the baseline to the vanilla solu-
tion guided solely by generated attributes without any addi-
tional components (the “Attr.”” column), leads to a substan-
tial 7.64% improvement on average. When juxtaposed with
the observations in Table 1, it becomes clear that even with-
out the inclusion of our proposed components, this level of
performance outperforms CLIP and CoCoOp significantly
and matches LASP, explaining the potential of attributes for
novel class prediction.

Attribute sampling contributes more gains with less
computation. During the sampling process, we select 20%
attributes from the pool, resulting in an average perfor-
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(A) Image

(B) Comp. with baseline methods

(C) Attr. visualization (D) Neg. prompt

Standard Prompt:
A photo of a

Class Label:

CLIP CoOp

A photo of a cat A photo of a cat The
which has a which has a of a

Standard Prompt:
A photo of a

CLIP CoOp

Class Label:

A photo of a
rabbit which

A photo of a
rabbit which

Figure 4. The Grad-CAM visualization of our method and baselines. (A) contains visual images. (B) features a comparison between
our method and baselines using standard prompts, where CoOp and ArGue-N replace the template A photo of a with their respective soft
tokens. (C) reveals the rationale of ArGue-N concerning various visual attributes. (D) showcases the negative prompt used during training.

mance improvement of 0.34% compared with the vanilla
one (the “+Reg.” column). This indicates that with the ju-
dicious selection of attributes, significant enhancements can
be achieved by merely introducing 1 to 2 additional prompts
to the baseline.

4.5. Grad-CAM Visualization

To further enhance our comprehension of the learned ratio-
nales in ArGue-N, we employ Grad-CAM [36] to visualize
the class activation map of the model in Fig. 4.

ArGue-N relies on correct rationales. In Fig. 4 (B), we
conduct a comparative analysis to showcase the rationales
learned by ArGue-N. We compare ArGue-N with baselines
using the standard prompt that solely includes class names.
It indicates that while CLIP broadly captures class-specific
semantics, it also incorporates dependencies from the back-
ground. Moreover, CoOp exhibits a significant emphasis
shift from the foreground to the background. Conversely,
ArGue-N 1) more precisely captures the pixels determin-
ing intrinsic semantics and 2) nearly eliminates the back-
ground’s influence on the classification results.

ArGue-N comprehends primitive attributes. In Fig. 4
(C), we provide visualizations illustrating the rationales
captured by ArGue-N using various primitive attributes
in the prompts. These visual representations demonstrate
ArGue-N’s proficiency in localizing the mentioned visual
attributes while notably reducing the influence of the back-
ground. This observation supports our claim that when a

model exhibits high confidence in associated attributes, it
accurately captures the correct rationales while mitigating
the impact of spurious correlations.

Negative prompting diminishes reliance on class names.
The findings in Fig. 4 (C) reveal that ArGue-N precisely
identifies the areas indicated by the attributes while disre-
garding the class names. For example, when prompted with
a photo of a cat which has a long tail, the model accu-
rately activates the tail rather than the entire cat. This phe-
nomenon aligns with our assertion that incorporating class
names within negative prompts contributes to reducing the
model’s dependence on them.

5. Conclusion

We delve into an under-explored area, i.e., leverag-
ing visual attributes to guide the model toward correct
rationales during adaptation. We propose ArGue, mo-
tivated by the intuition that a model exhibiting high
confidence in associated visual attributes comprehends
the class-specific semantics. ~We further introduce at-
tribute sampling to enhance the quality of attributes while
conserving computational resources by removing ineffec-
tive attributes. Finally, we present negative prompting,
where, when provided with prompts that activate spuri-
ous correlations, the model is constrained with uniform
predictive distribution. As attributes become increasingly
prevalent in multi-modal zero-shot recognition, we aim
for our work to initiate the incorporation of attributes
into few-shot adaptation and serve as a strong baseline.
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