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Abstract
A growing line of work has investigated the001
development of neural NLP models that can002
produce rationales—subsets of input that can003
explain their model predictions. In this paper,004
we ask whether such rationale models can also005
provide robustness to adversarial attacks in ad-006
dition to their interpretable nature. Since these007
models need to first generate rationales (“ratio-008
nalizer”) before making predictions (“predic-009
tor”), they have the potential to ignore noise or010
adversarially added text by simply masking it011
out of the generated rationale. To this end, we012
systematically generate various types of ‘Ad-013
dText’ attacks for both token and sentence-level014
rationalization tasks and perform an extensive015
empirical evaluation of state-of-the-art ratio-016
nale models across five different tasks. Our017
experiments reveal that the rationale models018
promise to improve robustness over AddText at-019
tacks while they struggle in certain scenarios—020
when the rationalizer is sensitive to position021
bias or lexical choices of attack text. Further,022
leveraging human rationale as supervision does023
not always translate to better performance. Our024
study is a first step towards exploring the inter-025
play between interpretability and robustness in026
the rationalize-then-predict framework.1027

1 Introduction028

Rationale models aim to introduce a degree of inter-029

pretability into neural networks by implicitly bak-030

ing in explanations for their decisions (Lei et al.,031

2016; Bastings et al., 2019; Jain et al., 2020). These032

models are carried out in a two-stage ‘rationalize-033

then-predict’ framework, where the model first se-034

lects a subset of the input as a rationale and then035

makes its final prediction for the task solely us-036

ing the rationale. A human can then inspect the037

selected rationale to verify the model’s reasoning038

over the most relevant parts of the input for the039

prediction at hand.040

1Code and data will be made available publicly.
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Figure 1: Top: input text is processed by a rationale
model (rationalizer and predictor) and a full-context
model (making predictions directly based on the whole
input) separately in a beer review sentiment classifi-
cation dataset. Both models make correct predictions.
Bottom: when an attack sentence “The tea looks horri-
ble.” is inserted to the text, the full-context model fails.
The rationalizer successfully excludes the negative sen-
timent word “horrible” from the selected rationales (yel-
low highlights) and the predictor is hence not distracted
by the attack.

While previous work has mostly focused on the 041

plausibility of extracted rationales and whether they 042

represent faithful explanations (DeYoung et al., 043

2020), we ask the question of how rationale models 044

behave under adversarial attacks (i.e., do they still 045

provide plausible rationales?) and whether they can 046

help improve robustness (i.e., do they provide bet- 047

ter task performance?). Our motivation is that the 048

two-stage decision-making could help models ig- 049

nore noisy or adversarially added text within the in- 050

put. For example, Figure 1 shows a state-of-the-art 051

rationale model (Paranjape et al., 2020) smoothly 052

handles input with adversarially added text by se- 053

lectively masking it out during the rationalization 054

step. Factorizing the rationale prediction from the 055

task itself effectively ‘shields’ the predictor from 056

having to deal with adversarial inputs. 057

To answer these questions, we first generate ad- 058
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versarial tests for a variety of popular NLP tasks.059

We focus specifically on model-independent, ‘Ad-060

dText’ attacks (Jia and Liang, 2017), which aug-061

ment input instances with noisy or adversarial text062

at test time, and study how the attacks affect ratio-063

nale models both in their prediction of rationales064

and final answers. For diversity, we consider in-065

serting the attack sentence at different positions066

of context, as well as three types of attacks: ran-067

dom sequences of words, arbitrary sentences from068

Wikipedia, and adversarially-crafted sentences.069

We then perform an extensive empirical eval-070

uation of multiple state-of-the-art rationale mod-071

els (Paranjape et al., 2020; Guerreiro and Martins,072

2021), across five different tasks that span review073

classification, fact verification, and question an-074

swering. In addition to the attack’s impact on task075

performance, we also assess rationale prediction076

by defining metrics on gold rationale coverage and077

attack capture rate. We then investigate the effect078

of incorporating human rationales as supervision,079

the importance of attack positions, and the lexical080

choices of attack text. Finally, we also investigate081

an idea of improving rationale prediction by adding082

augmented pseudo-rationales during training.083

Our key findings are the following:084

1. Rationale models show promise in providing085

robustness. Under our strongest type of attack,086

rationale models in many cases achieve less087

than 10% drop in task performance while full-088

context models suffer more (11% to 27%).089

2. However, robustness of rationale models can090

vary considerably with the choice of lexical091

inputs for the attack and is quite sensitive to092

the attack position.093

3. Training models with explicit rationale super-094

vision does not guarantee better robustness to095

attacks. In fact, their accuracy drops under096

attack are higher by 4-10 points compared to097

rationale models without supervision.098

4. Performance under attacks is significantly099

improved if the rationalizer can effectively100

mask out the attack text. Hence, our simple101

augmented-rationale training strategy can ef-102

fectively improve robustness (up to 4.9%).103

Overall, our results indicate that while there is104

promise in leveraging rationale models to improve105

robustness, current models may not be sufficiently106

equipped to do so. Furthermore, adversarial tests107

may provide an alternative form to evaluate ratio-108

nale models in addition to prevalent plausability109

metrics that measure F-1 scores using human ratio- 110

nales. We hope our findings can inform the develop- 111

ment of better models and algorithms for rationale 112

predictions and instigate more research into the 113

interplay between interpretability and robustness. 114

2 Related Work 115

Rationalization There has been a surge of work 116

on explaining predictions of neural NLP systems, 117

from post-hoc explanation methods (Ribeiro et al., 118

2016; Alvarez-Melis and Jaakkola, 2017), to an- 119

alyzing attention mechanisms (Jain and Wallace, 120

2019; Serrano and Smith, 2019). We focus on ex- 121

tractive rationalization (Lei et al., 2016), which 122

generates a subset of inputs or highlights as “ra- 123

tionales” such that the model can condition pre- 124

dictions on them. Recent development has been 125

focusing on improving joint training of rationalizer 126

and predictor components (Bastings et al., 2019; Yu 127

et al., 2019; Jain et al., 2020; Paranjape et al., 2020; 128

Guerreiro and Martins, 2021; Sha et al., 2021), or 129

extensions to text matching (Swanson et al., 2020) 130

and sequence generation (Vafa et al., 2021). These 131

rationale models are mainly compared based on 132

predictive performance, as well as agreement with 133

human annotations (DeYoung et al., 2020). In this 134

work, we question how rationale models behave 135

under adversarial attacks and whether they can pro- 136

vide robustness benefits through rationalization. 137

Adversarial examples in NLP Adversarial ex- 138

amples have been designed to reveal the brittle- 139

ness of state-of-the-art NLP models. A flood of 140

research has been proposed to generate different ad- 141

versarial attacks (Jia and Liang, 2017; Iyyer et al., 142

2018; Belinkov and Bisk, 2018; Ebrahimi et al., 143

2018, inter alia), which can be broadly catego- 144

rized by types of input perturbations (e.g., sentence, 145

word or character-level attacks), and the access of 146

model information (e.g., black-box, white-box). In 147

this work, we focus on model-independent, label- 148

preserving attacks, in which we insert a random 149

or an adversarially-crafted sentence into input ex- 150

amples (Jia and Liang, 2017). We hypothesize that 151

a good extractive rationale model is expected to 152

learn to ignore these distractor sentences and hence 153

achieve better performance under attacks. 154

Interpretability and robustness A key motiva- 155

tion of our work is to bridge the connection be- 156

tween interpretability and robustness, which we 157

believe is an important and under-explored theme. 158
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Alvarez-Melis and Jaakkola (2018) argued that159

robustness of explanations is a key desideratum160

for interpretability. Slack et al. (2020) explores161

unreliablitily of attribution methods against input162

perturbations. Camburu et al. (2020) introduces163

an adversarial framework to sanity check models164

against their generated inconsistent free-text expla-165

nations. Zhou et al. (2020) proposes to evaluate166

attribution methods through dataset modification.167

Noack et al. (2021) showed promising results of168

image recognition models that achieve better ad-169

versarial robustness when they are trained to have170

more interpretable gradients. To the best of our171

knowledge, we are the first to quantify the perfor-172

mance of rationale models under textual adversarial173

attacks and understand whether rationalization can174

inherently provide robustness.175

3 Background176

Extractive neural rationale models2 output predic-177

tions through a two-stage process: the first stage178

(“rationalizer”) selects a subset of the input as a179

rationale, while the second stage (“predictor”) pro-180

duces the prediction using only the rationale as181

input. Rationales can be any subset of the input,182

and we characterize them roughly into either token-183

level or sentence-level rationales, which we will184

both investigate in this work. The task of predict-185

ing rationales is often framed as a binary classifi-186

cation problem over each atomic unit depending187

on the type of rationales. The rationalizer and the188

predictor are often trained jointly using task su-189

pervision, with gradients back-propagated through190

both stages. We can also provide explicit rationale191

supervision, if human annotations are available.192

3.1 Formulation193

Formally, let us assume a supervised classifica-194

tion dataset D = {(x, y)} , where each input195

x = x1, x2, ..., xT is a concatenation of T sen-196

tences and y refers to the task label for each in-197

stance. Each sentence xt = (xt,1, xt,2, ...xt,nt)198

contains nt tokens, and y is the task label. A ratio-199

nale model consists of two main components: 1) a200

rationalizer module z = R(x; θ), which generates201

a discrete mask z ∈ {0, 1}L such that z⊙x selects202

a subset from the input (L = T for sentence-level203

rationalization or L = the total number of tokens204

2Abstractive models (Wiegreffe et al., 2021; Narang et al.,
2020), which generate rationales as free text, are an alternative
class of models that we do not consider in this work.

for token-level rationales), and 2) a predictor mod- 205

ule ŷ = C(x, z;ϕ) that makes a prediction ŷ us- 206

ing the generated rationale z. The entire model 207

M(x) = C(R(x)) is trained end-to-end using the 208

standard cross-entropy loss. We describe detailed 209

training objectives in §5. 210

3.2 Evaluation 211

Rationale models are traditionally evaluated along 212

two dimensions: a) their downstream task perfor- 213

mance, and b) the quality of generated rationales. 214

To evaluate rationale quality, prior work has used 215

metrics like token-level F1 or Intersection Over 216

Union (IOU) scores between the predicted ratio- 217

nale and a human rationale (DeYoung et al., 2020): 218

219

IOU =
|z ∩ z∗|
|z ∪ z∗|

, 220

where z∗ is the human annotated gold rationales. 221

A good rationale model should not sacrifice task 222

performance while generating rationales that con- 223

cur with human rationales. However, metrics like 224

F1 score may not be the most appropriate way to 225

capture this as it only captures plausibility instead 226

of faithfulness (Jacovi and Goldberg, 2020). 227

4 Robustness Tests for Rationale Models 228

4.1 AddText Attacks 229

Our goal is to construct attacks that can test the 230

capability of extractive rationale models to ignore 231

spurious parts of the input. Broadly, we used two 232

guiding criteria for selecting the type of attacks: 1) 233

they should be additive since an extractive rationale 234

model can only “ignore” the irrelevant context. For 235

other attacks such as counterfactually edited data 236

(CAD) (Kaushik et al., 2020), even if the rational- 237

izer could identify the edited context, the predictor 238

is not necessarily strong enough to reason about 239

the counterfactual text, 2) they should be model- 240

independent since our goal is to compare the per- 241

formance across different types of rationale and 242

baseline models. Choosing strong gradient-based 243

attacks (Ebrahimi et al., 2018; Wallace et al., 2019) 244

would probably break all models, but that is beyond 245

the scope of our hypothesis. An attack is suitable as 246

long as it reduces performance of standard classifi- 247

cation models by a non-trivial amount (our attacks 248

reduce performance from 10%-36%). 249

Keeping these requirements in mind, we fo- 250

cus on label-preserving text addition (AddText) at- 251

tacks Jia and Liang (2017) which can test whether 252
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rationale models are invariant to the addition of253

extraneous information and remain consistent with254

their predictions. Attacks are only added at test255

time and are not available during model training.256

Attack construction Formally, an AddText at-257

tack A(x) modifies the input x by adding an attack258

sentence xadv, without changing the ground truth259

label y. In other words, we create new perturbed260

test instances (A(x), y) for the model to be eval-261

uated on. While some prior work has considered262

the addition of a few tokens to the input (Wallace263

et al., 2019), we add complete sentences to each264

input, similar to the attacks in Jia and Liang (2017).265

This prevents unnatural modifications to the exist-266

ing sentences in the original input x and also allows267

us to test both token-level and sentence-level ratio-268

nale models (§5.1). We experiment with adding269

the attack sentence xadv across various positions in270

the input x, including the beginning, the end and a271

random position in between.272

Types of attacks We explore three different types273

of attacks: (1) AddText-Rand: We simply add274

a random sequence of tokens uniformly sampled275

from the task vocabulary. This is a weak attack276

that is easy for humans to spot and ignore since277

it does not guarantee grammaticality or fluency.278

(2) AddText-Wiki: We add an arbitrarily sampled279

sentence from Wikipedia into the task input (e.g.,280

“Sonic the Hedgehog, designed for . . . ”). This at-281

tack is more grammatical than AddText-Rand, but282

still adds text that is likely not relevant in the con-283

text of the input x. (3) AddText-Adv: We add an284

adversarially constructed sentence that has signifi-285

cant lexical overlap with tokens in the input x while286

ensuring the output label is unchanged. This type287

of attack is inspired by prior attacks such as Ad-288

dOneSent (Jia and Liang, 2017) and is the strongest289

attack we consider since it is more grammatical,290

fluent, and contextually relevant to the task. The291

construction of this attack is also specific to each292

task we consider, hence we provide examples listed293

in Table 1 and the exact details in §5.3.294

4.2 Robustness Evaluation295

We measure the robustness of rationale models un-296

der our attacks along two dimensions: task perfor-297

mance, and generated rationales. The change in298

task performance is simply computed as the differ-299

ence between the average scores of the model on300

the original vs perturbed test sets: 301

∆ =
1

|D|
∑

(x,y)∈D

f(M(x), y)− f(M(A(x)), y), 302

where f denotes a scoring function (F1 scores in 303

extractive question answering and I(y = ŷ) in text 304

classification). To measure the effect of the attacks 305

on rationale generation, we use two metrics: 306

Gold rationale F1 (GR) This is defined as the F1 307

score between the predicted rationale and a human- 308

annotated rationale, either computed at the token- 309

level or sentence-level. The token-level GR score 310

is equivalent to F1 scores reported in previous work 311

(Lei et al., 2016; DeYoung et al., 2020). A good 312

rationalizer should generate plausible rationales 313

and be not affected by the addition of attack text. 314

Attack capture rate (AR) We define AR as the 315

recall of the inserted attack text in the rationale 316

generated by the model: 317

AR =
1

|D|
∑

(x,y)∼D

|xadv ∩ (z ⊙A(x))|
|xadv|

, 318

where xadv is the attack sentence added to each 319

instance (i.e., A(x) is the result of inserting xadv 320

into x), z ⊙ A(x) is the predicted rationale. The 321

metric above applies on both token or sentence 322

level (|xadv| = 1 for sentence-level rationalization 323

and number of tokens in the attack sentence for 324

token-level rationalization). This metric allows us 325

to measure how often a rationale model can ignore 326

the added attack text—a maximally robust rationale 327

model should have an AR of 0. 328

5 Models and Tasks 329

We investigate two different state-of-the-art selec- 330

tive rationalization approaches: 1) sampling-based 331

stochastic binary masks (Bastings et al., 2019; 332

Paranjape et al., 2020), and 2) constrained mask 333

inference using a factor graph (Guerreiro and Mar- 334

tins, 2021). We adapt these models, using two sep- 335

arate BERT encoders for the rationalizer and the 336

predictor, and consider training scenarios with and 337

without explicit rationale supervision. We also con- 338

sider a full-context model as baseline. We provide a 339

brief overview of each model here and leave details 340

including loss functions and training to §A.1. 341

5.1 Models without Rationale Supervision 342

Variational information bottleneck (VIB) This 343

model (Alemi et al., 2017; Paranjape et al., 2020) 344
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Dataset Query → Attack Full Attacked Input Label

FEVER

Query: Jennifer Lopez was married.

Supports
Jennifer Lopez was married. Context: Jennifer Lynn Lopez (born July 24 , 1969), also known
→ Jason Bourne was unmarried. as JLo, is an American singer . . . She subsequently married

longtime friend Marc Anthony . . . Jason Bourne was unmarried.

SQuAD

Query: Where did Super Bowl 50 take place?

Levi’s Stadium
Where did Super Bowl 50 take place? Context: Super Bowl 50 was an American football game to
→ The Champ Bowl 40 took place in Chicago. determine the champion . . . was played on February 7, 2016,

at Levi’s Stadium . . . The Champ Bowl 40 took place in Chicago.

Beer
Positive appearance (no query) This beer poured a very appealing copper reddish color—it

Positive→ The tea looks horrible. was very clear with an average head . . . The tea looks horrible.

Table 1: AddText-Adv attack applied to the three datasets. The query (blue) is transformed into an attack (red). The
query together with the context forms the input. The attack is inserted to the context. We only show insertion at the
end, but the attack can be inserted at any position between sentences. A model needs to associate the query and the
evidence in the context (orange) and not be distracted by the inserted attack to make the correct prediction.

imposes a discrete bottleneck objective to select a345

subset z from the input x. The rationalizer sam-346

ples z using Gumbel-Softmax and the predictor347

uses only z for final prediction. During inference,348

we select the top-k scored rationales, where k is349

determined by the sparsity π.350

Sparse structured text rationalization (SPEC-351

TRA) This model (Guerreiro and Martins, 2021)352

extracts a deterministic structured mask z by solv-353

ing a constrained inference problem by applying354

factors to the global scoring function while op-355

timizing the end task performance. The entire356

computation is deterministic and allows for back-357

propagation through the LP-SparseMAP solver358

(Niculae and Martins, 2020). We use the BUDGET359

factor to control the sparsity π.360

Full-context model (FC) As a baseline, we also361

consider a full-context model, which is a BERT-362

based encoder (Devlin et al., 2019) with task spe-363

cific final layers such as an MLP layer for classifi-364

cation task or two MLPs for span prediction. The365

model is trained with a standard cross-entropy loss366

using task supervision.367

5.2 Models with Rationale Supervision368

VIB with human rationales (VIB-sup) When369

human annotated rationales z∗ are available, they370

can be used to guide predicting the sampled masks371

z by adding a loss term. VIB-sup leverages the372

supvervision signal in to guide rationale prediction.373

Full-context model with human rationales (FC-374

sup) We also extend the FC model to leverage hu-375

man annotated rationales supervision during train-376

ing (FC-sup) by adding a linear layer on top of the377

sentence/token representations. Essentially, it is378

multi-task learning of rationale prediction and the 379

original task, shared with the same BERT encoder. 380

5.3 Tasks 381

We evaluate the models on five datasets that cover 382

both sentence-level (FEVER, MultiRC, SQuAD) 383

and token-level (Beer, Hotel) rationalization (ex- 384

amples in Table 1). We summarize the dataset 385

characteristics in §A.3. 386

FEVER FEVER is a sentence-level binary classi- 387

fication fact verification dataset from the ERASER 388

benchmark (DeYoung et al., 2020). The input 389

contains a claim specifying a fact to verify and 390

a passage of multiple sentences supporting or re- 391

futing the claim. For the AddText-Adv attacks, we 392

add modified query text to the claims by replacing 393

nouns and adjectives in the sentence with antonyms 394

from WordNet (Fellbaum, 1998). 395

MultiRC MultiRC (Khashabi et al., 2018) is 396

a sentence-level multi-choice question answering 397

task (reformulated as ‘yes/no’ questions). For the 398

AddText-Adv attacks, we transform the question 399

and the answer separately using the same procedure 400

we used for FEVER. 401

SQuAD SQuAD (Rajpurkar et al., 2016) is a pop- 402

ular question answering dataset. We use the Ad- 403

dOneSent attacks proposed in Adversarial SQuAD 404

(Jia and Liang, 2017). We use the sentence that con- 405

tains the correct answer span as the ground truth 406

rationale sentence since SQuAD does not contain 407

human rationales. We report F1 score for SQuAD. 408

Beer BeerAdvocate is a multi-aspect sentiment 409

analysis dataset (McAuley et al., 2012), modeled 410

as a token-level rationalization task. We use the 411

appearance aspect in out experiments. We convert 412
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the scores into the binary labels following Chang413

et al. (2020). This task does not have a query as414

in the previous tasks, we insert a sentence with the415

template “{SUBJECT} is {ADJ}” into a negative416

review where the adjective is positive (e.g., “The417

tea looks fabulous.”) and vice versa.418

Hotel TripAdvisor Hotel Review is also a multi-419

aspect sentiment analysis dataset (Wang et al.,420

2010). We use the cleanliness aspect in our ex-421

periments. We generate AddText-Adv attacks in422

the same way as we did for the Beer dataset.423

6 Results424

For all attacked test sets, we report the average425

score with attack sentence inserted at the beginning426

and the end of the inputs. Our findings shed light427

on the relationship between GR, AR, and drop in428

performance (R1-R5), and include a promising di-429

rection to improve performance of rationale models430

under attacks (R6).431

(R1) Rationalization is a promising approach to432

improving robustness. Figure 2 summarizes the433

average scores on all the datasets for each model un-434

der the three attacks we consider. We first observe435

that all models (including the full-context models436

FC and FC-sup) are less affected by AddText-Rand437

and AddText-Wiki, with score drops of around 1-438

2% only. However, the AddText-Adv attack leads439

to significant drops in performance for all models,440

as high as 46% for SPECTRA on Hotel review.441

We break out the AddText-Adv results in a more442

fine-grained manner in Table 2. Our main observa-443

tion is that the rationale models (VIB, SPECTRA,444

VIB-sup) are generally more robust than their non-445

rationale counterparts (FC, FC-sup) on four out of446

the five tasks, and in some cases dramatically better.447

For instance, on Beer reviews, SPECTRA only suf-448

fers a 5.7% drop (95.4 → 89.7) compared to FC’s449

huge 34.3% drop (93.8 → 59.5) under attack. The450

only exception is the Hotel reviews dataset, where451

both the VIB and SPECTRA models perform worse452

under attack compared to FC. We analyze this phe-453

nomena and provide a potential reason below.454

(R2) Robustness is correlated with high GR and455

low AR. We report the Gold Rationale F1 (GR)456

and Attack Capture Rate (AR) for all models in457

Table 3. When attacks are added, GR consistently458

decreases for all tasks. However, AR ranges widely459

across datasets. VIB and SPECTRA have lower460

AR and higher GR compared to FC-sup across461

all tasks, which is correlated with their superior 462

robustness to AddText-Adv attacks. 463

Next, we investigate the poor performance of 464

VIB and SPECTRA on Hotel reviews by analyz- 465

ing the choice of words in the attack. Using the 466

template “My car is {ADJ}.”, we measure the per- 467

centage of times the rationalizer module selects 468

the adjective as part of its rationale. When the ad- 469

jectives are “dirty” and “clean”, the VIB model 470

selects them a massive 98.5% of the time. For “old” 471

and “new”, VIB still selects them 50% of the time. 472

On the other hand, the VIB model trained on Beer 473

reviews with attack template “The tea is {ADJ}.” 474

only selects the adjectives 20.5% of the time (when 475

the adjectives are “horrible” and “fabulous”). This 476

shows that the bad performance of the rationale 477

models on Hotel reviews is down to their inability 478

to ignore task-related adjectives in the attack text, 479

hinting that the lexical choices made in construct- 480

ing the attack can significantly impact robustness. 481

482
(R3) Explicit rationale supervision does not help 483

robustness. Perhaps surprisingly, adding explicit 484

rationale supervision does not help improve ro- 485

bustness (Table 2). Across FEVER, MultiRC and 486

SQuAD, VIB-sup consistently has a higher ∆ be- 487

tween its scores on the original and perturbed in- 488

stances. We observe that models trained with hu- 489

man rationales generally have higher GR, but they 490

also capture a much higher AR across the board. 491

On MultiRC, for instance, the VIB-sup model out- 492

performs VIB in task performance because of its 493

higher GR (36.1 versus 15.8). However, when un- 494

der attack, VIB-sup’s high 58.7 AR, hindering the 495

performance compared to VIB, which has a smaller 496

35.8 AR. This highlights an overlooked aspect of 497

prior work only considering metrics like IOU (sim- 498

ilar in spirit to GR) to assess rationale models. 499

(R4) Rationale models are sensitive to attack po- 500

sitions. We further analyze the effect of attack 501

text on rationale models by varying the attack po- 502

sition. Figure 3 displays the performance of VIB, 503

VIB-sup and FC on FEVER and SQuAD when 504

the attack sentence is inserted into the first, last or 505

a random position of the original text input. We 506

observe performance drops on both datasets when 507

inserting the attack sentence at the beginning of the 508

context text as opposed to the end. For example, 509

when the attack sentence is inserted at the begin- 510

ning, the VIB model drops from 77.1 F1 to 40.9 511

F1, but it only drops from 77.1 F1 to 72.1 F1 for a 512

last position attack. This hints that rationale models 513
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Figure 2: Original performance (Orig) and the three type of attacks AddText-Rand (Rand), AddText-Wiki (Wiki),
and AddText-Adv (Adv) evaluated on five datasets and all of the models. ∗-sup models used human rationales.

FEVER MultiRC SQuAD Beer Hotel
Orig. Attack ∆ ↓ Orig. Attack ∆ ↓ Orig. Attack ∆ ↓ Orig. Attack ∆ ↓ Orig. Attack ∆ ↓

Majority† / Random‡ 50.7† - - 54.8† - - 4.1‡ - - 68.9† - - 50.0† - -
FC 90.7 77.9 12.8 70.7 63.0 7.7 87.2 59.1 28.1 93.8 59.5 34.3 99.5 79.3 20.2
VIB 87.8 82.6 5.2 65.4 63.6 1.8 77.1 56.5 20.6 93.8 88.0 5.8 94.0 59.3 34.8
SPECTRA 84.0 76.5 7.6 63.8 63.3 0.5 65.5 45.5 20.0 95.4 89.7 5.7 94.5 51.3 43.2

FC-sup 91.9 77.1 14.8 71.5 64.0 7.5 87.0 57.3 29.7 - - - - - -
VIB-sup 90.2 81.4 8.8 68.7 63.7 5.0 86.5 56.5 30.0 - - - - - -

Table 2: Original versus attacked task performance on the five selected datasets under the AddText-Adv attack. We
report accuracy for all datasets except for SQuAD, which we report F1 score. The attacked performance is the
average of inserting the attack at the start and at the end of the text input. † indicates the Majority baseline and ‡
indicates the Random baseline.

First Random Last Orig.
70

75

80

85

90

95

First Random Last Orig.

40

60

80

VIB VIB-sup FC FC-sup

FEVER SQuAD

Figure 3: Accuracy when attack is inserted at differ-
ent sentence positions, highlighting the positional bias
picked up by the models.

may implicitly be picking up positional biases from514

the dataset, similar to their non-rationale counter-515

parts (Ko et al., 2020). We provide fine-grained516

plots for AR versus attack positions in §A.5.517

(R5) Extracting good rationales and avoiding518

attack text is crucial to robustness. We exam-519

ine where the rationale model gains robustness by520

inspecting the generated rationales. Table 4 shows521

the accuracy breakdown under attack for VIB and522

VIB-sup models. Intuitively, both models perform523

best when the gold rationale is selected and the524

attack is avoided, peaking at 91.1 for VIB and525

92.4 for VIB-sup. Models perform much worse526

when the gold rationale is omitted and the attack527

is included (73.6 for VIB and 74.1 for VIB-sup), 528

highlighting the importance of choosing good and 529

skipping the bad as rationales. 530

(R6) Augmented rationale training can improve 531

robustness. From our previous result (R5), it is 532

clear that avoiding attack sentences in rationales 533

is a viable way to make such models more ro- 534

bust. Note that this is not obvious by construc- 535

tion since the addition of attacks affects other pa- 536

rameters such as position of the original text and 537

discourse structure, which may thrown off the ‘pre- 538

dictor’ component of the model. As a more explicit 539

way of encouraging ‘rationalizers’ to ignore spuri- 540

ous text, we propose a simple method called aug- 541

mented rationale training (ART). Specifically, we 542

sample two sentences at random from Wikipedia 543

(the wikitext-103 dataset) and insert them into 544

the input passage at random position, setting their 545

pseudo rationale labels zpseudo = 1 and the labels 546

for all other sentences as z = 0. We then add an 547

auxiliary negative binary cross entropy loss to train 548

the model to not predict the pseudo rationale. This 549

encourages the model to ignore spurious text that 550

is unrelated to the task. Note that this procedure 551

is both model-agnostic and does not require prior 552

knowledge of the type of AddText attack. 553

Table 5 shows that ART improves robustness 554
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FEVER MultiRC SQuAD Beer Hotel
GR ↑ AR ↓ GR ↑ AR ↓ GR ↑ AR ↓ GR ↑ AR ↓ GR ↑ AR ↓

VIB 36.9 → 30.3 59.4 15.8 → 13.9 35.8 86.2 → 84.9 63.7 20.5 → 18.1 11.9 23.5 → 22.6 18.4
SPECTRA 26.9 → 21.5 40.6 11.9 → 11.8 22.6 67.1 → 60.8 52.6 28.6 → 27.8 15.2 19.5 → 18.3 31.6

FC-sup 51.5 → 45.5 65.9 50.0 → 42.7 55.7 99.6 → 98.8 97.8 - - - -
VIB-sup 50.6 → 44.3 67.0 36.1 → 22.7 58.7 99.5 → 97.8 97.2 - - - -

Table 3: Gold rationale F1 (GR) (original → perturbed input) and attack capture rate (AR) for the AddText-Adv
attack on the five tasks (defined in §4.2). The reported number is the average of inserting the attack at the start and
at the end of the text input.

+ART
VIB VIB-sup VIB VIB-sup

Acc (%) Acc (%) Acc (%) Acc (%)

Original 87.8 (100) 90.2 (100) 87.6 (100) 90.0 (100)

Overall Attack 83.0 (100) 84.9 (100) 86.5 (100) 84.9 (100)
G ✓ A ✓ 83.3 (34) 85.5 (77) 79.4 (6) 79.7 (25)
G ✓ A ✗ 91.1 (32) 92.4 (11) 91.1 (65) 90.9 (64)
G ✗ A ✓ 73.6 (22) 74.1 (12) 73.2 (3) 72.6 (4)
G ✗ A ✗ 77.7 (12) 68.0 (0) 77.9 (25) 78.3 (7)

Table 4: Accuracy breakdown of the VIB and VIB-sup
models without (left) and with (right) ART training on
the FEVER dataset. The attack is inserted at the begin-
ning of the passage. ✓ indicates the Gold (G) or Attack
(A) sentence is selected as rationale and ✗ otherwise. We
show the percentage of examples in parenthesis. Pink
highlights show the desirable category to have high ac-
curacy and percentage.

FEVER MultiRC
Ori Att ∆ ↓ Ori Att ∆ ↓

FC-sup 91.9 77.1 14.8 71.5 64.0 7.5
+ ART 91.8 78.7 13.1 69.3 64.8 4.5

VIB 87.8 82.6 4.2 65.4 63.6 0.7
+ ART 87.6 87.0 0.6 65.8 65.5 0.3

VIB-sup 90.2 81.4 8.8 68.7 63.7 5.0
+ ART 90.0 86.1 3.9 70.3 65.7 4.6

Table 5: Augmented Rationale Training (ART) reduces
the effect of adversarial attacks. Ori: original input, Att:
input with attack text.

across the board for all models (FC-sup, VIB and555

VIB-sup) in both FEVER and MultiRC, dropping556

∆ scores by as much as 5.9% (VIB-sup on FEVER).557

We further analyzed these results to break down558

performance in terms of attack and gold sentence559

capture rate. Table 4 shows that ART greatly im-560

proves the percentage of sentences under the “Gold561

✓ Attack ✗” category (31.8% → 65.4% for VIB562

and 11.3% → 63.5% for VIB-sup). This corrobo-563

rates our expectations for ART and shows its effec-564

tiveness at keeping GR high while lowering AR.565

An interesting point to note is that the random566

Wikipedia sentences we added in ART are not topi-567

cally or contextually related to the original instance 568

text at all, yet they seem to help the trained model 569

ignore adversarially constructed text that is tai- 570

lored for specific test instances. This points to 571

the promise of ART in future work, where perhaps 572

more complex generation schemes or use of attack 573

information could provide even better robustness. 574

7 Discussion 575

In this work, we investigated whether neural ratio- 576

nale models are robust to adversarial attacks. We 577

constructed a variety of AddText attacks across five 578

different tasks and evaluated several state-of-the- 579

art rationale models. Our findings raise two key 580

messages for future research in both interpretability 581

and robustness of NLP models: 582

Interpretability: We identify an opportunity 583

to use adversarial attacks as a means to evaluate 584

rationale models (especially extractive ones). In 585

contrast to existing metrics like IOU used in prior 586

work (DeYoung et al., 2020; Paranjape et al., 2020), 587

robustness more accurately tests how crucial the 588

predicted rationale is to the model’s decision mak- 589

ing. Further, our analysis reveals that even state- 590

of-the-art rationale models may not be consistent 591

in focusing on the most relevant parts of the input, 592

despite performing well on tasks they are trained 593

on. This points to the need for better model ar- 594

chitectures and training algorithms to better align 595

rationale models with human judgements. 596

Robustness: For adversarial attack research, we 597

show that extractive rationale models are promising 598

for improving robustness, while being sensitive to 599

factors like the attack position or word choices in 600

the attack text. Research that proposes new attacks 601

can use rationale models as baselines to assess their 602

effectiveness. Finally, the effectiveness of ART 603

points to the potential for data augmentation in 604

improving robustness of NLP systems, even against 605

other types of attacks beyond AddText. 606

We hope our results can inspire more research at 607

the intersection of interpretability and robustness. 608
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A Appendix784

A.1 Model details785

VIB details The sentence or token level logits786

s ∈ RL (A.2 describes how the logits are obtained)787

parameterize a relaxed Bernoulli distribution p(zt |788

x) = RelaxedBernoulli(s) (also known as the789

Gumbel distribution (Jang et al., 2017)), where790

zt ∈ {0, 1} is the binary mask for sentence t. The791

relaxed Bernoulli distribution also allows for sam-792

pling a soft mask z∗t = σ( log s+g
τ ) ∈ (0, 1), where793

g is the sampled Gumbel noise. The soft masks794

z∗ = (z∗1 , z
∗
2 , ..., z

∗
T ) are sampled independently795

to mask the input sentences such that the latent796

z = m∗ ⊙ x for training. The following objective797

is optimized:798

ℓVIB(x, y) = E
z∼p(z|x;θ)

[
− log p(y | z ⊙ x;ϕ)

]
+ βKL

[
p(z | x; θ) || p(z)

]
,

799

where ϕ denotes the parameters of the predictor C,800

θ denotes the parameters of the rationalizer R, p(z)801

is a predefined prior distribution parameterized by802

a sparsity ratio π, and β ∈ R controls the strength803

of the regularization.804

During inference, we take the rationale as zt =805

1[st ∈ top-k(s)], where s ∈ RL is the vector of806

token or sentence-level logits, and k is determined807

by the sparsity π.808

VIB-sup details With human raitonale supervi-809

sion z∗, the objective below is optimized:810

ℓVIB-sup(x, y) = E
z∼p(z|x;θ)

[
− log p(y | z ⊙ x;ϕ)

]
+ βKL

[
p(z | x; θ) || p(z)

]
+ γ

∑
t

−z∗t log p(zt | x; θ),
811

where β, γ ∈ R are hyperparameters. During in-812

ference, the rationale module generates the mask813

z the same way as the VIB model by picking the814

top-k scored positions as the final hard mask. The815

third loss term will encourage the model to predict816

human annotated rationales, which is the ability we817

expect a robust model should exhibit.818

SPECTRA details SPECTRA optimizes the fol-819

lowing objective:820

ℓSPECTRA(x, y) = − log p(y | z ⊙ x;ϕ),

z = argmax
z′∈{0,1}L

(score(z′; s; θ)− 1

2

∥∥z′∥∥2),821

where s ∈ RL is the logit vector of tokens or sen- 822

tences, and a global score(·) function that incorpo- 823

rates all constraints in the predefined factor graph. 824

The factors can specify different logical constraints 825

on the discrete mask z, e.g a BUDGET factor that 826

enforces the size of the rationale as
∑

t zt ≤ B. 827

The entire computation is deterministic and allows 828

for back-propagation through the LP-SparseMAP 829

solver (Niculae and Martins, 2020). We use the 830

BUDGET factor in the global scoring function. To 831

control the sparsity at π (e.g., π = 0.4 for 40% 832

sparsity), we can choose B = L× π. 833

FC-sup details The FC model can be extended 834

to leverage human annotated rationales supervision 835

during training (FC-sup). We add a linear layer on 836

top of the sentence/token representation and obtain 837

the logits s ∈ RL. The logits are passed through 838

the sigmoid function into mask probabilities to op- 839

timize the following objective: 840

ℓFC-sup(x, y) =− log p(y | x;ϕ)

+ γ
∑
t

−z∗t log p(zt | x;ϕ, ξ),
841

where z∗t is the human ratioanle, ξ accounts for 842

the parameters of the extra linear layer, and the 843

hyperparameter γ is selected based on the original 844

performance by tuning on the development set. 845

A.2 Implementation Details 846

We use two BERT-base-uncased (Wolf et al., 847

2020) as the rationalizer and the predictor compo- 848

nents for all the models and one BERT-base for 849

the Full Context (FC) baseline. The rationales for 850

FEVER, MultiRC, SQuAD are extracted at sen- 851

tence level, and Beer and Hotel are at token-level. 852

BERT(x) =
(
h[CLS],h

1
0,h

2
0, ...,h

n0
0 ,h[SEP],

h1
1,h

2
1, ...,h

n1
1 , ...,h1

T ,h
2
T , ...,h

nT
T ,h[SEP]

)
,

853

where the input text is formatted as query with 854

sentence index 0 and context with sentence index 855

1 to T . For sentiment tasks, the 0-th sentence and 856

the first [SEP] token are omitted. For sentence- 857

level representations, we concatenate the start and 858

end vectors of each sentence. For instance, the 859

t-th sentence representation is ht = [h0
t ;h

n(t)
t ]. 860

For token-level representations, we use the hidden 861

vectors directly. The representations are passed to a 862

linear layer {w, b} to obtain logit for each sentence 863

s = w⊺ht + b. 864
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Training Both the rationalizer and the predic-865

tor in the rationale models are initialized with pre-866

trained BERT (Devlin et al., 2019). We predeter-867

mine rationale sparsity before fine-tuning based on868

the average rationale length in the development set869

following previous work (Paranjape et al., 2020;870

Guerreiro and Martins, 2021). We set π = 0.4871

for FEVER, π = 0.2 for MultiRC, π = 0.7 for872

SQuAD, π = 0.1 for Beer, and π = 0.15 for Hotel.873

The hyperparameter k (for top-k ratioanle extrac-874

tion) is selected based on the percentage π of the875

human annotated rationales in the development set876

(following Paranjape et al. (2020)). During evalu-877

ation, for each passage k = π × #sentences. We878

select the model parameters based on the highest879

fine-tuned task performance on the development880

set. The models with rationale supervision will se-881

lect the same amount of text as their no-supervision882

counterparts.883

The epoch/learning rate/batch size for the differ-884

ent datasets are 10/5e−5/32 for FEVER and Mul-885

tiRC, 3/1e− 5/32 for SQuAD, and 20/5e− 5/64886

for Beer and Hotel.887

A.3 Dataset Characteristics888

We provide dataset characteristics in Table 6 such889

as the granularity of the extracted rationales, the890

type of predictions, the nature of the task, and891

whether or not the human annotated rationale su-892

pervision is available for training.893

A.4 Qualitative Examples894

We provide qualitative examples of the rationale895

model predictions for each dataset in Table 7.896

A.5 Effect of Attack Position897

Figure 4 shows a more fine-grained trend reflecting898

the sensitivity of AR against inserted attack posi-899

tion. As the attack position move from the begin-900

ning of the passage towards the end, AR decreases901

across all models. With ART training (R6 in §6),902

the AR also becomes less sensitive to positions.903

A.6 Varying Adjectives for Sentiment Attack904

We also experimented with various adjectives re-905

lated to appearance as the attack and observe the906

same trend. For example, when inserting “The car-907

pet looks really ugly/beautiful.” to the Beer dataset,908

VIB performance drops 93.8 → 83.1 while FC909

drops 93.8 → 61.6.910
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Dataset Rationale Granularity Prediction Task Available Human Rationale Supervision

FEVER Sentence-level Classification Fact Verification ✓

MultiRC Sentence-level Classification Question Answering ✓

SQuAD Sentence-level Span Prediction Question Answering ✓

Beer Token-level Classification Sentiment Analysis ✗

Hotel Token-level Classification Sentiment Analysis ✗

Table 6: Dataset characteristics.

Figure 4: The attack capture rate (AR) changes with respect to different attack positions for FEVER and MultiRC.
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Dataset Query Passage Predicted / Gold Label

FEVER The Silver Surfer appears only
in Icelandic comic books.

The Silver Surfer is a fictional superhero appearing in American comic
books published by Marvel Comics. The character also appears in a num-
ber of movies , television , and video game adaptations. The character
was created by Jack Kirby , and first appeared in the comic book Fantas-
tic Four # 48 , published in 1966. The Silver Surfer is a humanoid with
metallic skin who can travel space with the aid of his surfboard-like craft.
Originally a young astronomer named Norrin Radd on the planet Zenn-La
, he saved his homeworld from the planet devourer , Galactus , by serving
as his herald. Imbued in return with a tiny portion of Galactus ’s Power
Cosmic , Radd acquired vast power , a new body and a surfboard-like
craft on which he could travel faster than light. Now known as the Silver
Surfer , Radd roamed the cosmos searching for planets for Galactus to
consume. When his travels took him to Earth , he met the Fantastic Four ,
a team of powerful superheroes who helped him rediscover his humanity
and nobility of spirit. Betraying Galactus , the Surfer saved Earth but
was exiled there as punishment. The Carey Hayes appears only in scottish
comic books.

Refutes / Refutes

MultiRC What did Jenny and her friends
enjoy when they walked to the
sand ? || The sun

Jenny was a 13 year old girl with blond hair and blue eyes . She had gotten
out of her last day of school and was free for the summer. Two of her
friends were going to the nearby beach to do some swimming and enjoy
the sun. Jenny went with them and when they got there the beach was very
full and there were people everywhere. They changed into their bathing
suits and went to the water. The water was very cold. They chose not swim
and walked to the sand. Then they laid down on some towels and enjoyed
the sun. After several hours Jenny and her friends fell asleep. Jesse and
her foe enjoy the moon when they walked to the sand. They woke up and
the sun was beginning to set. When Jenny sat up she found that it was
painful to touch her skin. When she looked down she saw that she had
a very bad sunburn. Her friends were also very badly sunburned so they
went home. Jenny ’s mother gave her a cream to put on the sunburn.

False / True

SQuAD When did oil finally returned to
its bretton woods levels ?

This contributed to the "oil shock". After 1971, opec was slow to readjust
prices to reflect this depreciation. From 1947 to 1967, the dollar price of
oil had risen by less than two percent per year. Until the oil shock, the
price had also remained fairly stable versus other currencies and commodi-
ties. Opec ministers had not developed institutional mechanisms to update
prices in sync with changing market conditions, so their real incomes
lagged. The substantial price increases of 1973 – 1974 largely returned
their prices and corresponding incomes to bretton woods levels in terms of
commodities such as gold. Oil finally returned to its colossus mickelson
levels in 1898.

1973-1974 / 1973-1974

Beer The tea looks horrible. Poured from a 12oz bottle into a delirium tremens
glass. This is so hard to find in columbus for some reason, but I was able
to get it in toledo... murky yellow appearance with a very thin white head.
The aroma is bready and a little sour. The flavor is really complex, with at
least the following tastes: wheat, spicy hops, bread, bananas, and a toasty
after - taste. It was really outstanding. I’d recommend this to anyone, go
out and try it. I think it’s the best so far from this brewery.

Positive / Positive

Hotel My car is very filthy. The hotel was in a brilliant location and very near
a metro station. Yes the room was small but it was clean and very well
equipped. the bathroom was a really good size and lets face it how long
do you spend in your hotel room anyway? The breakfast was fantastic
and the staff were really friendly and helpful. We will definately stay here
when we return to barcelona. It’s worth going up to the roof of the hotel
for the view over the city.

Negative / Positive

Table 7: Examples of predicted rationales (yellow highlight), gold rationale (cyan text), and attack (red text) for
passages in different datasets.
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