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Abstract

A growing line of work has investigated the
development of neural NLP models that can
produce rationales—subsets of input that can
explain their model predictions. In this paper,
we ask whether such rationale models can also
provide robustness to adversarial attacks in ad-
dition to their interpretable nature. Since these
models need to first generate rationales (“ratio-
nalizer”) before making predictions (“predic-
tor”), they have the potential to ignore noise or
adversarially added text by simply masking it
out of the generated rationale. To this end, we
systematically generate various types of ‘Ad-
dText’ attacks for both token and sentence-level
rationalization tasks and perform an extensive
empirical evaluation of state-of-the-art ratio-
nale models across five different tasks. Our
experiments reveal that the rationale models
promise to improve robustness over AddText at-
tacks while they struggle in certain scenarios—
when the rationalizer is sensitive to position
bias or lexical choices of attack text. Further,
leveraging human rationale as supervision does
not always translate to better performance. Our
study is a first step towards exploring the inter-
play between interpretability and robustness in
the rationalize-then-predict framework.'

1 Introduction

Rationale models aim to introduce a degree of inter-
pretability into neural networks by implicitly bak-
ing in explanations for their decisions (Lei et al.,
2016; Bastings et al., 2019; Jain et al., 2020). These
models are carried out in a two-stage ‘rationalize-
then-predict’ framework, where the model first se-
lects a subset of the input as a rationale and then
makes its final prediction for the task solely us-
ing the rationale. A human can then inspect the
selected rationale to verify the model’s reasoning
over the most relevant parts of the input for the
prediction at hand.

!Code and data will be made available publicly.
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Figure 1: Top: input text is processed by a rationale
model (rationalizer and predictor) and a full-context
model (making predictions directly based on the whole
input) separately in a beer review sentiment classifi-
cation dataset. Both models make correct predictions.
Bottom: when an attack sentence “The tea looks horri-
ble.” is inserted to the text, the full-context model fails.
The rationalizer successfully excludes the negative sen-
timent word “horrible” from the selected rationales (yel-
low highlights) and the predictor is hence not distracted
by the attack.

While previous work has mostly focused on the
plausibility of extracted rationales and whether they
represent faithful explanations (DeYoung et al.,
2020), we ask the question of how rationale models
behave under adversarial attacks (i.e., do they still
provide plausible rationales?) and whether they can
help improve robustness (i.e., do they provide bet-
ter task performance?). Our motivation is that the
two-stage decision-making could help models ig-
nore noisy or adversarially added text within the in-
put. For example, Figure 1 shows a state-of-the-art
rationale model (Paranjape et al., 2020) smoothly
handles input with adversarially added text by se-
lectively masking it out during the rationalization
step. Factorizing the rationale prediction from the
task itself effectively ‘shields’ the predictor from
having to deal with adversarial inputs.

To answer these questions, we first generate ad-
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versarial tests for a variety of popular NLP tasks.
We focus specifically on model-independent, ‘Ad-
dText’ attacks (Jia and Liang, 2017), which aug-
ment input instances with noisy or adversarial text
at test time, and study how the attacks affect ratio-
nale models both in their prediction of rationales
and final answers. For diversity, we consider in-
serting the attack sentence at different positions
of context, as well as three types of attacks: ran-
dom sequences of words, arbitrary sentences from
Wikipedia, and adversarially-crafted sentences.

We then perform an extensive empirical eval-
uation of multiple state-of-the-art rationale mod-
els (Paranjape et al., 2020; Guerreiro and Martins,
2021), across five different tasks that span review
classification, fact verification, and question an-
swering. In addition to the attack’s impact on task
performance, we also assess rationale prediction
by defining metrics on gold rationale coverage and
attack capture rate. We then investigate the effect
of incorporating human rationales as supervision,
the importance of attack positions, and the lexical
choices of attack text. Finally, we also investigate
an idea of improving rationale prediction by adding
augmented pseudo-rationales during training.

Our key findings are the following:

1. Rationale models show promise in providing
robustness. Under our strongest type of attack,
rationale models in many cases achieve less
than 10% drop in task performance while full-
context models suffer more (11% to 27%).

2. However, robustness of rationale models can
vary considerably with the choice of lexical
inputs for the attack and is quite sensitive to
the attack position.

3. Training models with explicit rationale super-
vision does not guarantee better robustness to
attacks. In fact, their accuracy drops under
attack are higher by 4-10 points compared to
rationale models without supervision.

4. Performance under attacks is significantly
improved if the rationalizer can effectively
mask out the attack text. Hence, our simple
augmented-rationale training strategy can ef-
fectively improve robustness (up to 4.9%).

Overall, our results indicate that while there is
promise in leveraging rationale models to improve
robustness, current models may not be sufficiently
equipped to do so. Furthermore, adversarial tests
may provide an alternative form to evaluate ratio-
nale models in addition to prevalent plausability

metrics that measure F-1 scores using human ratio-
nales. We hope our findings can inform the develop-
ment of better models and algorithms for rationale
predictions and instigate more research into the
interplay between interpretability and robustness.

2 Related Work

Rationalization There has been a surge of work
on explaining predictions of neural NLP systems,
from post-hoc explanation methods (Ribeiro et al.,
2016; Alvarez-Melis and Jaakkola, 2017), to an-
alyzing attention mechanisms (Jain and Wallace,
2019; Serrano and Smith, 2019). We focus on ex-
tractive rationalization (Lei et al., 2016), which
generates a subset of inputs or highlights as “ra-
tionales” such that the model can condition pre-
dictions on them. Recent development has been
focusing on improving joint training of rationalizer
and predictor components (Bastings et al., 2019; Yu
et al., 2019; Jain et al., 2020; Paranjape et al., 2020;
Guerreiro and Martins, 2021; Sha et al., 2021), or
extensions to text matching (Swanson et al., 2020)
and sequence generation (Vafa et al., 2021). These
rationale models are mainly compared based on
predictive performance, as well as agreement with
human annotations (DeYoung et al., 2020). In this
work, we question how rationale models behave
under adversarial attacks and whether they can pro-
vide robustness benefits through rationalization.

Adversarial examples in NLP Adversarial ex-
amples have been designed to reveal the brittle-
ness of state-of-the-art NLP models. A flood of
research has been proposed to generate different ad-
versarial attacks (Jia and Liang, 2017; Iyyer et al.,
2018; Belinkov and Bisk, 2018; Ebrahimi et al.,
2018, inter alia), which can be broadly catego-
rized by types of input perturbations (e.g., sentence,
word or character-level attacks), and the access of
model information (e.g., black-box, white-box). In
this work, we focus on model-independent, label-
preserving attacks, in which we insert a random
or an adversarially-crafted sentence into input ex-
amples (Jia and Liang, 2017). We hypothesize that
a good extractive rationale model is expected to
learn to ignore these distractor sentences and hence
achieve better performance under attacks.

Interpretability and robustness A key motiva-
tion of our work is to bridge the connection be-
tween interpretability and robustness, which we
believe is an important and under-explored theme.



Alvarez-Melis and Jaakkola (2018) argued that
robustness of explanations is a key desideratum
for interpretability. Slack et al. (2020) explores
unreliablitily of attribution methods against input
perturbations. Camburu et al. (2020) introduces
an adversarial framework to sanity check models
against their generated inconsistent free-text expla-
nations. Zhou et al. (2020) proposes to evaluate
attribution methods through dataset modification.
Noack et al. (2021) showed promising results of
image recognition models that achieve better ad-
versarial robustness when they are trained to have
more interpretable gradients. To the best of our
knowledge, we are the first to quantify the perfor-
mance of rationale models under textual adversarial
attacks and understand whether rationalization can
inherently provide robustness.

3 Background

Extractive neural rationale models” output predic-
tions through a two-stage process: the first stage
(“rationalizer”) selects a subset of the input as a
rationale, while the second stage (“predictor”) pro-
duces the prediction using only the rationale as
input. Rationales can be any subset of the input,
and we characterize them roughly into either token-
level or sentence-level rationales, which we will
both investigate in this work. The task of predict-
ing rationales is often framed as a binary classifi-
cation problem over each atomic unit depending
on the type of rationales. The rationalizer and the
predictor are often trained jointly using task su-
pervision, with gradients back-propagated through
both stages. We can also provide explicit rationale
supervision, if human annotations are available.

3.1 Formulation

Formally, let us assume a supervised classifica-
tion dataset D = {(z,y)} ., where each input
xr = x1,%9,...,2T 1S a concatenation of 7' sen-
tences and y refers to the task label for each in-
stance. Each sentence x; = (x¢1,%t2,..-Ttn,)
contains n; tokens, and y is the task label. A ratio-
nale model consists of two main components: 1) a
rationalizer module z = R(x; @), which generates
a discrete mask z € {0, 1} such that z ® x selects
a subset from the input (L. = T for sentence-level
rationalization or L = the total number of tokens

2 Abstractive models (Wiegreffe et al., 2021; Narang et al.,
2020), which generate rationales as free text, are an alternative
class of models that we do not consider in this work.

for token-level rationales), and 2) a predictor mod-
ule § = C(x, z; ¢) that makes a prediction ¢ us-
ing the generated rationale z. The entire model
M (z) = C(R(x)) is trained end-to-end using the
standard cross-entropy loss. We describe detailed
training objectives in §5.

3.2 Evaluation

Rationale models are traditionally evaluated along
two dimensions: a) their downstream task perfor-
mance, and b) the quality of generated rationales.
To evaluate rationale quality, prior work has used
metrics like token-level F1 or Intersection Over
Union (IOU) scores between the predicted ratio-
nale and a human rationale (DeYoung et al., 2020):

ou = P&
|z U z*|
where z* is the human annotated gold rationales.
A good rationale model should not sacrifice task
performance while generating rationales that con-
cur with human rationales. However, metrics like
F1 score may not be the most appropriate way to
capture this as it only captures plausibility instead
of faithfulness (Jacovi and Goldberg, 2020).

4 Robustness Tests for Rationale Models
4.1 AddText Attacks

Our goal is to construct attacks that can test the
capability of extractive rationale models to ignore
spurious parts of the input. Broadly, we used two
guiding criteria for selecting the type of attacks: 1)
they should be additive since an extractive rationale
model can only “ignore” the irrelevant context. For
other attacks such as counterfactually edited data
(CAD) (Kaushik et al., 2020), even if the rational-
izer could identify the edited context, the predictor
is not necessarily strong enough to reason about
the counterfactual text, 2) they should be model-
independent since our goal is to compare the per-
formance across different types of rationale and
baseline models. Choosing strong gradient-based
attacks (Ebrahimi et al., 2018; Wallace et al., 2019)
would probably break all models, but that is beyond
the scope of our hypothesis. An attack is suitable as
long as it reduces performance of standard classifi-
cation models by a non-trivial amount (our attacks
reduce performance from 10%-36%).

Keeping these requirements in mind, we fo-
cus on label-preserving text addition (AddText) at-
tacks Jia and Liang (2017) which can test whether



rationale models are invariant to the addition of
extraneous information and remain consistent with
their predictions. Attacks are only added at test
time and are not available during model training.

Attack construction Formally, an AddText at-
tack A(x) modifies the input x by adding an attack
sentence x,4y, without changing the ground truth
label y. In other words, we create new perturbed
test instances (A(z),y) for the model to be eval-
vated on. While some prior work has considered
the addition of a few tokens to the input (Wallace
et al., 2019), we add complete sentences to each
input, similar to the attacks in Jia and Liang (2017).
This prevents unnatural modifications to the exist-
ing sentences in the original input = and also allows
us to test both token-level and sentence-level ratio-
nale models (§5.1). We experiment with adding
the attack sentence x,qy across various positions in
the input z, including the beginning, the end and a
random position in between.

Types of attacks We explore three different types
of attacks: (1) AddText-Rand: We simply add
a random sequence of tokens uniformly sampled
from the task vocabulary. This is a weak attack
that is easy for humans to spot and ignore since
it does not guarantee grammaticality or fluency.
(2) AddText-Wiki: We add an arbitrarily sampled
sentence from Wikipedia into the task input (e.g.,
“Sonic the Hedgehog, designed for ...”). This at-
tack is more grammatical than AddText-Rand, but
still adds text that is likely not relevant in the con-
text of the input x. (3) AddText-Adv: We add an
adversarially constructed sentence that has signifi-
cant lexical overlap with tokens in the input  while
ensuring the output label is unchanged. This type
of attack is inspired by prior attacks such as Ad-
dOneSent (Jia and Liang, 2017) and is the strongest
attack we consider since it is more grammatical,
fluent, and contextually relevant to the task. The
construction of this attack is also specific to each
task we consider, hence we provide examples listed
in Table 1 and the exact details in §5.3.

4.2 Robustness Evaluation

We measure the robustness of rationale models un-
der our attacks along two dimensions: task perfor-
mance, and generated rationales. The change in
task performance is simply computed as the differ-
ence between the average scores of the model on

the original vs perturbed test sets:

L SY p(M(z),y) - F(M(A@)), y),

A=
D)
(z,y)€D

where f denotes a scoring function (F1 scores in
extractive question answering and [(y = ¢) in text
classification). To measure the effect of the attacks
on rationale generation, we use two metrics:

Gold rationale F1 (GR) This is defined as the F1
score between the predicted rationale and a human-
annotated rationale, either computed at the token-
level or sentence-level. The token-level GR score
is equivalent to F1 scores reported in previous work
(Lei et al., 2016; DeYoung et al., 2020). A good
rationalizer should generate plausible rationales
and be not affected by the addition of attack text.

Attack capture rate (AR) We define AR as the
recall of the inserted attack text in the rationale
generated by the model:

1
AR = —
oI,

z,y)~D

|[Zaay N (2 © A(z))]
|xadv‘

)

where x,4v 1S the attack sentence added to each
instance (i.e., A(z) is the result of inserting x,qy
into x), z ® A(x) is the predicted rationale. The
metric above applies on both token or sentence
level (|xaay| = 1 for sentence-level rationalization
and number of tokens in the attack sentence for
token-level rationalization). This metric allows us
to measure how often a rationale model can ignore
the added attack text—a maximally robust rationale
model should have an AR of 0.

5 Models and Tasks

We investigate two different state-of-the-art selec-
tive rationalization approaches: 1) sampling-based
stochastic binary masks (Bastings et al., 2019;
Paranjape et al., 2020), and 2) constrained mask
inference using a factor graph (Guerreiro and Mar-
tins, 2021). We adapt these models, using two sep-
arate BERT encoders for the rationalizer and the
predictor, and consider training scenarios with and
without explicit rationale supervision. We also con-
sider a full-context model as baseline. We provide a
brief overview of each model here and leave details
including loss functions and training to §A.1.

5.1 Models without Rationale Supervision

Variational information bottleneck (VIB) This
model (Alemi et al., 2017; Paranjape et al., 2020)



Dataset Query — Attack Full Attacked Input Label
Query: Jennifer Lopez was married.
FEVER Jennifer Lopez was married. ‘ Context.: Jennifer ijnn ljopez (born July 24 , 1969), also known Supports
— Jason Bourne was unmarried. as JLo, is an American singer . . .
... Jason Bourne was unmarried.
Query: Where did Super Bowl 50 take place?
Where did Super Bowl 50 take place? Context: Super Bowl 50 was an American football game to Qe
SQuAD — The Champ Bowl 40 took place in Chicago. determine the champion . .. was played on February 7, 2016, Levi’s Stadium
at ... The Champ Bowl 40 took place in Chicago.
Beer Positive appearance (no query) This beer poured a copper reddish color—it Positive
— The tea looks horrible. was with an average head . .. The tea looks horrible.

Table 1: AddText-Adv attack applied to the three datasets. The query (blue) is transformed into an attack (red). The
query together with the context forms the input. The attack is inserted to the context. We only show insertion at the
end, but the attack can be inserted at any position between sentences. A model needs to associate the query and the
evidence in the context (orange) and not be distracted by the inserted attack to make the correct prediction.

imposes a discrete bottleneck objective to select a
subset z from the input x. The rationalizer sam-
ples z using Gumbel-Softmax and the predictor
uses only z for final prediction. During inference,
we select the top-k scored rationales, where k is
determined by the sparsity 7.

Sparse structured text rationalization (SPEC-
TRA) This model (Guerreiro and Martins, 2021)
extracts a deterministic structured mask z by solv-
ing a constrained inference problem by applying
factors to the global scoring function while op-
timizing the end task performance. The entire
computation is deterministic and allows for back-
propagation through the LP-SparseMAP solver
(Niculae and Martins, 2020). We use the BUDGET
factor to control the sparsity 7.

Full-context model (FC) As a baseline, we also
consider a full-context model, which is a BERT-
based encoder (Devlin et al., 2019) with task spe-
cific final layers such as an MLP layer for classifi-
cation task or two MLPs for span prediction. The
model is trained with a standard cross-entropy loss
using task supervision.

5.2 Models with Rationale Supervision

VIB with human rationales (VIB-sup) When
human annotated rationales z* are available, they
can be used to guide predicting the sampled masks
z by adding a loss term. VIB-sup leverages the
supvervision signal in to guide rationale prediction.

Full-context model with human rationales (FC-
sup) We also extend the FC model to leverage hu-
man annotated rationales supervision during train-
ing (FC-sup) by adding a linear layer on top of the
sentence/token representations. Essentially, it is

multi-task learning of rationale prediction and the
original task, shared with the same BERT encoder.

5.3 Tasks

We evaluate the models on five datasets that cover
both sentence-level (FEVER, MultiRC, SQuAD)
and token-level (Beer, Hotel) rationalization (ex-
amples in Table 1). We summarize the dataset
characteristics in §A.3.

FEVER FEVER is a sentence-level binary classi-
fication fact verification dataset from the ERASER
benchmark (DeYoung et al., 2020). The input
contains a claim specifying a fact to verify and
a passage of multiple sentences supporting or re-
futing the claim. For the AddText-Adyv attacks, we
add modified query text to the claims by replacing
nouns and adjectives in the sentence with antonyms
from WordNet (Fellbaum, 1998).

MultiRC MultiRC (Khashabi et al., 2018) is
a sentence-level multi-choice question answering
task (reformulated as ‘yes/no’ questions). For the
AddText-Adv attacks, we transform the question
and the answer separately using the same procedure
we used for FEVER.

SQuAD SQuAD (Rajpurkar et al., 2016) is a pop-
ular question answering dataset. We use the Ad-
dOneSent attacks proposed in Adversarial SQuAD
(Jia and Liang, 2017). We use the sentence that con-
tains the correct answer span as the ground truth
rationale sentence since SQuAD does not contain
human rationales. We report F1 score for SQuAD.

Beer BeerAdvocate is a multi-aspect sentiment
analysis dataset (McAuley et al., 2012), modeled
as a token-level rationalization task. We use the
appearance aspect in out experiments. We convert



the scores into the binary labels following Chang
et al. (2020). This task does not have a query as
in the previous tasks, we insert a sentence with the
template “{SUBJECT} is {ADJ}” into a negative
review where the adjective is positive (e.g., “The
tea looks fabulous.”) and vice versa.

Hotel TripAdvisor Hotel Review is also a multi-
aspect sentiment analysis dataset (Wang et al.,
2010). We use the cleanliness aspect in our ex-
periments. We generate AddText-Adv attacks in
the same way as we did for the Beer dataset.

6 Results

For all attacked test sets, we report the average
score with attack sentence inserted at the beginning
and the end of the inputs. Our findings shed light
on the relationship between GR, AR, and drop in
performance (R1-R5), and include a promising di-
rection to improve performance of rationale models
under attacks (R6).

(R1) Rationalization is a promising approach to
improving robustness. Figure 2 summarizes the
average scores on all the datasets for each model un-
der the three attacks we consider. We first observe
that all models (including the full-context models
FC and FC-sup) are less affected by AddText-Rand
and AddText-Wiki, with score drops of around 1-
2% only. However, the AddText-Adv attack leads
to significant drops in performance for all models,
as high as 46% for SPECTRA on Hotel review.
We break out the AddText-Adv results in a more
fine-grained manner in Table 2. Our main observa-
tion is that the rationale models (VIB, SPECTRA,
VIB-sup) are generally more robust than their non-
rationale counterparts (FC, FC-sup) on four out of
the five tasks, and in some cases dramatically better.
For instance, on Beer reviews, SPECTRA only suf-
fers a 5.7% drop (95.4 — 89.7) compared to FC’s
huge 34.3% drop (93.8 — 59.5) under attack. The
only exception is the Hotel reviews dataset, where
both the VIB and SPECTRA models perform worse
under attack compared to FC. We analyze this phe-
nomena and provide a potential reason below.

(R2) Robustness is correlated with high GR and
low AR. We report the Gold Rationale F1 (GR)
and Attack Capture Rate (AR) for all models in
Table 3. When attacks are added, GR consistently
decreases for all tasks. However, AR ranges widely
across datasets. VIB and SPECTRA have lower
AR and higher GR compared to FC-sup across

all tasks, which is correlated with their superior
robustness to AddText-Adv attacks.

Next, we investigate the poor performance of
VIB and SPECTRA on Hotel reviews by analyz-
ing the choice of words in the attack. Using the
template “My car is {ADJ}.”, we measure the per-
centage of times the rationalizer module selects
the adjective as part of its rationale. When the ad-
jectives are “dirty” and “clean”, the VIB model
selects them a massive 98.5% of the time. For “old”
and “new”, VIB still selects them 50% of the time.
On the other hand, the VIB model trained on Beer
reviews with attack template “The tea is {ADJ}.”
only selects the adjectives 20.5% of the time (when
the adjectives are “horrible” and “fabulous”). This
shows that the bad performance of the rationale
models on Hotel reviews is down to their inability
to ignore task-related adjectives in the attack text,
hinting that the lexical choices made in construct-
ing the attack can significantly impact robustness.

(R3) Explicit rationale supervision does not help
robustness. Perhaps surprisingly, adding explicit
rationale supervision does not help improve ro-
bustness (Table 2). Across FEVER, MultiRC and
SQuAD, VIB-sup consistently has a higher A be-
tween its scores on the original and perturbed in-
stances. We observe that models trained with hu-
man rationales generally have higher GR, but they
also capture a much higher AR across the board.
On MultiRC, for instance, the VIB-sup model out-
performs VIB in task performance because of its
higher GR (36.1 versus 15.8). However, when un-
der attack, VIB-sup’s high 58.7 AR, hindering the
performance compared to VIB, which has a smaller
35.8 AR. This highlights an overlooked aspect of
prior work only considering metrics like IOU (sim-
ilar in spirit to GR) to assess rationale models.

(R4) Rationale models are sensitive to attack po-
sitions. We further analyze the effect of attack
text on rationale models by varying the attack po-
sition. Figure 3 displays the performance of VIB,
VIB-sup and FC on FEVER and SQuAD when
the attack sentence is inserted into the first, last or
a random position of the original text input. We
observe performance drops on both datasets when
inserting the attack sentence at the beginning of the
context text as opposed to the end. For example,
when the attack sentence is inserted at the begin-
ning, the VIB model drops from 77.1 F1 to 40.9
F1, but it only drops from 77.1 F1 to 72.1 F1 for a
last position attack. This hints that rationale models
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Figure 2: Original performance (Orig) and the three type of attacks AddText-Rand (Rand), AddText-Wiki (Wiki),
and AddText-Adv (Adv) evaluated on five datasets and all of the models. *-sup models used human rationales.

FEVER MultiRC SQuAD Beer Hotel

Orig. Attack A ] Orig. Attack A | Orig. Attack A ] Orig. Attack A ] Orig. Attack A |
Majorityt / Random}  50.7t - - 54.8% - - 4.1% - - 6897 - - 50.0f - -
FC 90.7 779 128 70.7 63.0 77 872 59.1  28.1 938 595 343 995 793 202
VIB 87.8 82.6 52 654 63.6 1.8  77.1 565 206 938 88.0 5.8 940 593 348
SPECTRA 84.0 76.5 76 638 63.3 0.5 655 455 200 954 89.7 57 945 513 432
FC-sup 91.9 77.1 148 715 64.0 75 87.0 573  29.7 - - - - - -
VIB-sup 90.2 81.4 8.8 687 63.7 5.0 865 56.5 300 - - - - - -

Table 2: Original versus attacked task performance on the five selected datasets under the AddText-Adv attack. We
report accuracy for all datasets except for SQuAD, which we report F1 score. The attacked performance is the
average of inserting the attack at the start and at the end of the text input. { indicates the Majority baseline and

indicates the Random baseline.
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Figure 3: Accuracy when attack is inserted at differ-
ent sentence positions, highlighting the positional bias
picked up by the models.

may implicitly be picking up positional biases from
the dataset, similar to their non-rationale counter-
parts (Ko et al., 2020). We provide fine-grained
plots for AR versus attack positions in §A.5.

(R5) Extracting good rationales and avoiding
attack text is crucial to robustness. We exam-
ine where the rationale model gains robustness by
inspecting the generated rationales. Table 4 shows
the accuracy breakdown under attack for VIB and
VIB-sup models. Intuitively, both models perform
best when the gold rationale is selected and the
attack is avoided, peaking at 91.1 for VIB and
92.4 for VIB-sup. Models perform much worse
when the gold rationale is omitted and the attack

is included (73.6 for VIB and 74.1 for VIB-sup),
highlighting the importance of choosing good and
skipping the bad as rationales.

(R6) Augmented rationale training can improve
robustness. From our previous result (RYS), it is
clear that avoiding attack sentences in rationales
is a viable way to make such models more ro-
bust. Note that this is not obvious by construc-
tion since the addition of attacks affects other pa-
rameters such as position of the original text and
discourse structure, which may thrown off the “pre-
dictor’ component of the model. As a more explicit
way of encouraging ‘rationalizers’ to ignore spuri-
ous text, we propose a simple method called aug-
mented rationale training (ART). Specifically, we
sample two sentences at random from Wikipedia
(the wikitext—103 dataset) and insert them into
the input passage at random position, setting their
pseudo rationale labels zP*U4° = 1 and the labels
for all other sentences as z = 0. We then add an
auxiliary negative binary cross entropy loss to train
the model to not predict the pseudo rationale. This
encourages the model to ignore spurious text that
is unrelated to the task. Note that this procedure
is both model-agnostic and does not require prior
knowledge of the type of AddText attack.

Table 5 shows that ART improves robustness



FEVER MultiRC SQuAD Beer Hotel
GR 1 AR | GR 1 AR | GR 1 AR | GR 1 AR | GR 1 AR |
VIB 369 —303 594 158—139 358 862—849 637 205—181 119 235226 184
SPECTRA 269 —21.5 406 11.9—11.8 226 67.1—608 526 28.6—27.8 152 195—183 31.6
FC-sup 51.5—455 659 50.0—427 557 99.6—988 97.8 - - - -
VIB-sup 50.6 —+443 670 36.1—227 587 995—-978 972 - - - -

Table 3: Gold rationale F1 (GR) (original — perturbed input) and attack capture rate (AR) for the AddText-Adv
attack on the five tasks (defined in §4.2). The reported number is the average of inserting the attack at the start and

at the end of the text input.

+ART
VIB VIB-sup VIB VIB-sup
Acc (%) Acc (%) Acc (%) Acc (%)
Original 87.8 (100) 90.2 (100) | 87.6 (100) 90.0 (100)
Overall Attack | 83.0 (100) 84.9 (100) | 86.5 (100) 84.9 (100)
G/ A 833 (34) 855 (77)| 79.4 (6) 79.7 (25)
Gv/ AX 91.1 (32) 924 (11) | 91.1 (65) 90.9 (64)
GX A 73.6 (22) 741 (12) | 732 (3) 726 (4
GX AX 7717 (12) 68.0 (0)| 779 (25 783 (7)

Table 4: Accuracy breakdown of the VIB and VIB-sup
models without (left) and with (right) ART training on
the FEVER dataset. The attack is inserted at the begin-
ning of the passage. v indicates the Gold (G) or Attack
(A) sentence is selected as rationale and X otherwise. We
show the percentage of examples in parenthesis. Pink
highlights show the desirable category to have high ac-
curacy and percentage.

FEVER MultiRC

Ori Attt A] Or Attt A

FC-sup | 919 77.1 148 | 715 640 175
+ART | 91.8 78.7 13.1 | 693 648 4.5
VIB 87.8 826 42654 636 0.7
+ART | 87.6 87.0 0.6 | 658 655 03
VIB-sup | 90.2 814 88 | 68.7 63.7 5.0
+ART | 90.0 86.1 39| 703 657 4.6

Table 5: Augmented Rationale Training (ART) reduces
the effect of adversarial attacks. Ori: original input, Att:
input with attack text.

across the board for all models (FC-sup, VIB and
VIB-sup) in both FEVER and MultiRC, dropping
A scores by as much as 5.9% (VIB-sup on FEVER).
We further analyzed these results to break down
performance in terms of attack and gold sentence
capture rate. Table 4 shows that ART greatly im-
proves the percentage of sentences under the “Gold
Attack X category (31.8% — 65.4% for VIB
and 11.3% — 63.5% for VIB-sup). This corrobo-
rates our expectations for ART and shows its effec-
tiveness at keeping GR high while lowering AR.
An interesting point to note is that the random
Wikipedia sentences we added in ART are not topi-

cally or contextually related to the original instance
text at all, yet they seem to help the trained model
ignore adversarially constructed text that is tai-
lored for specific test instances. This points to
the promise of ART in future work, where perhaps
more complex generation schemes or use of attack
information could provide even better robustness.

7 Discussion

In this work, we investigated whether neural ratio-
nale models are robust to adversarial attacks. We
constructed a variety of AddText attacks across five
different tasks and evaluated several state-of-the-
art rationale models. Our findings raise two key
messages for future research in both interpretability
and robustness of NLP models:

Interpretability: We identify an opportunity
to use adversarial attacks as a means to evaluate
rationale models (especially extractive ones). In
contrast to existing metrics like IOU used in prior
work (DeYoung et al., 2020; Paranjape et al., 2020),
robustness more accurately tests how crucial the
predicted rationale is to the model’s decision mak-
ing. Further, our analysis reveals that even state-
of-the-art rationale models may not be consistent
in focusing on the most relevant parts of the input,
despite performing well on tasks they are trained
on. This points to the need for better model ar-
chitectures and training algorithms to better align
rationale models with human judgements.

Robustness: For adversarial attack research, we
show that extractive rationale models are promising
for improving robustness, while being sensitive to
factors like the attack position or word choices in
the attack text. Research that proposes new attacks
can use rationale models as baselines to assess their
effectiveness. Finally, the effectiveness of ART
points to the potential for data augmentation in
improving robustness of NLP systems, even against
other types of attacks beyond AddText.

We hope our results can inspire more research at
the intersection of interpretability and robustness.
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A Appendix
A.1 Model details

VIB details The sentence or token level logits
s € R (A.2 describes how the logits are obtained)
parameterize a relaxed Bernoulli distribution p(z; |
x) = RelaxedBernoulli(s) (also known as the
Gumbel distribution (Jang et al., 2017)), where
zt € {0, 1} is the binary mask for sentence ¢. The
relaxed Bernoulli distribution also allows for sam-
pling a soft mask z; = o*(log%ﬂ) € (0,1), where
g is the sampled Gumbel noise. The soft masks
z2* = (2,25,..., 2) are sampled independently
to mask the input sentences such that the latent
z = m”* ® « for training. The following objective
is optimized:

Oyis(x,y) :sz(Iax-@) [— logp(y | z © x; qﬁ)]

+ BKL[p(z | 2;0) || p(2)],

where ¢ denotes the parameters of the predictor C,
6 denotes the parameters of the rationalizer R, p(z)
is a predefined prior distribution parameterized by
a sparsity ratio 7, and 3 € R controls the strength
of the regularization.

During inference, we take the rationale as z; =
1[s; € top-k(s)], where s € RY is the vector of
token or sentence-level logits, and k is determined
by the sparsity 7.

VIB-sup details With human raitonale supervi-

sion z*, the objective below is optimized:

E

zevp(z|z:0)

+ BKL[p(z | :0) || p(2)]

+9) =z logp(z | 2;0),
t

EVIB-sup(x> y) = [ - Ing(y | kA0 > d))]

where 3,7 € R are hyperparameters. During in-
ference, the rationale module generates the mask
z the same way as the VIB model by picking the
top-k scored positions as the final hard mask. The
third loss term will encourage the model to predict
human annotated rationales, which is the ability we
expect a robust model should exhibit.

SPECTRA details
lowing objective:

SPECTRA optimizes the fol-

lspecTrRA (7, y) = —logp(y | 2 © 23 ¢),

z = argmax (score(z’; s;0) — % HZ/H2))

2'€{0,1}%
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where s € R” is the logit vector of tokens or sen-
tences, and a global score(-) function that incorpo-
rates all constraints in the predefined factor graph.
The factors can specify different logical constraints
on the discrete mask z, e.g a BUDGET factor that
enforces the size of the rationale as ), z; < B.
The entire computation is deterministic and allows
for back-propagation through the LP-SparseM AP
solver (Niculae and Martins, 2020). We use the
BUDGET factor in the global scoring function. To
control the sparsity at 7 (e.g., 7 = 0.4 for 40%
sparsity), we can choose B = L X .

FC-sup details The FC model can be extended
to leverage human annotated rationales supervision
during training (FC-sup). We add a linear layer on
top of the sentence/token representation and obtain
the logits s € R”. The logits are passed through
the sigmoid function into mask probabilities to op-
timize the following objective:

EFC—sup(-% y) = 1ng(y ‘ z; ¢)
+9 >~z logp(z | 759, €),
t

where z; is the human ratioanle, & accounts for
the parameters of the extra linear layer, and the
hyperparameter -y is selected based on the original
performance by tuning on the development set.

A.2 Implementation Details

We use two BERT-base—uncased (Wolf et al.,
2020) as the rationalizer and the predictor compo-
nents for all the models and one BERT-base for
the Full Context (FC) baseline. The rationales for
FEVER, MultiRC, SQuAD are extracted at sen-
tence level, and Beer and Hotel are at token-level.

14,2
BERT(;U) = (h[CLS] ah()a hOa ] hgoa h[SEP] )
1 1,2 1 2
hl’ hl’ ”.7h717/17 ceey hT’ hT, ceey hg—vT, h[SEP])v

where the input text is formatted as query with
sentence index 0 and context with sentence index
1 to T'. For sentiment tasks, the 0-th sentence and
the first [SEP] token are omitted. For sentence-
level representations, we concatenate the start and
end vectors of each sentence. For instance, the
t-th sentence representation is hy [h?; h?(t)].
For token-level representations, we use the hidden
vectors directly. The representations are passed to a
linear layer {w, b} to obtain logit for each sentence
s=wTh; +b.



Training Both the rationalizer and the predic-
tor in the rationale models are initialized with pre-
trained BERT (Devlin et al., 2019). We predeter-
mine rationale sparsity before fine-tuning based on
the average rationale length in the development set
following previous work (Paranjape et al., 2020;
Guerreiro and Martins, 2021). We set 7 = 0.4
for FEVER, m = 0.2 for MultiRC, ©# = 0.7 for
SQuAD, 7 = 0.1 for Beer, and m = 0.15 for Hotel.
The hyperparameter k (for top-k ratioanle extrac-
tion) is selected based on the percentage 7 of the
human annotated rationales in the development set
(following Paranjape et al. (2020)). During evalu-
ation, for each passage k = m x #sentences. We
select the model parameters based on the highest
fine-tuned task performance on the development
set. The models with rationale supervision will se-
lect the same amount of text as their no-supervision
counterparts.

The epoch/learning rate/batch size for the differ-
ent datasets are 10/5e — 5/32 for FEVER and Mul-
tiRC, 3/1e — 5/32 for SQuAD, and 20/5¢ — 5/64
for Beer and Hotel.

A.3 Dataset Characteristics

We provide dataset characteristics in Table 6 such
as the granularity of the extracted rationales, the
type of predictions, the nature of the task, and
whether or not the human annotated rationale su-
pervision is available for training.

A4 Qualitative Examples

We provide qualitative examples of the rationale
model predictions for each dataset in Table 7.

A.5 Effect of Attack Position

Figure 4 shows a more fine-grained trend reflecting
the sensitivity of AR against inserted attack posi-
tion. As the attack position move from the begin-
ning of the passage towards the end, AR decreases
across all models. With ART training (R6 in §6),
the AR also becomes less sensitive to positions.

A.6 Varying Adjectives for Sentiment Attack

We also experimented with various adjectives re-
lated to appearance as the attack and observe the
same trend. For example, when inserting “The car-
pet looks really ugly/beautiful.” to the Beer dataset,
VIB performance drops 93.8 — 83.1 while FC
drops 93.8 — 61.6.
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Dataset  Rationale Granularity Prediction Task Available Human Rationale Supervision
FEVER Sentence-level Classification Fact Verification v
MultiRC Sentence-level Classification ~ Question Answering v
SQuAD Sentence-level Span Prediction Question Answering v
Beer Token-level Classification Sentiment Analysis X
Hotel Token-level Classification Sentiment Analysis X
Table 6: Dataset characteristics.
FEVER MultiRC
VIB = VIB-sup == VIB(ART) == VIB-sup (ART) VIB == VIB-sup == VIB (ART) == VIB-sup (ART)
100 100.0
75 75.0
50 50.0
25 25.0
0 0.0
S N N LS, NP SN PNPD SIS
F & §F &S &S FEESEFEFFESFSE &S & Qofol Qo"”

Figure 4: The attack capture rate (AR) changes with respect to different attack positions for FEVER and MultiRC.
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Dataset  Query Passage Predicted / Gold Label

FEVER The Silver Surfer appears only The Silver Surfer is a fictional superhero appearing in American comic Refutes / Refutes

in Icelandic comic books. books published by Marvel Comics. The character also appears in a num-
ber of movies , television , and video game adaptations. The character
was created by Jack Kirby , and first appeared in the comic book Fantas-
tic Four # 48 , published in 1966. The Silver Surfer is a humanoid with
metallic skin who can travel space with the aid of his surfboard-like craft.
Originally a young astronomer named Norrin Radd on the planet Zenn-La
, he saved his homeworld from the planet devourer , Galactus , by serving
as his herald. Imbued in return with a tiny portion of Galactus ’s Power
Cosmic , Radd acquired vast power , a new body and a surfboard-like
craft on which he could travel faster than light. Now known as the Silver
Surfer , Radd roamed the cosmos searching for planets for Galactus to
consume. When his travels took him to Earth , he met the Fantastic Four ,
a team of powerful superheroes who helped him rediscover his humanity
and nobility of spirit. Betraying Galactus , the Surfer saved Earth but
was exiled there as punishment. The Carey Hayes appears only in scottish
comic books.

MultiRC ~ What did Jenny and her friends Jenny was a 13 year old girl with blond hair and blue eyes . She had gotten False / True
enjoy when they walked to the out of her last day of school and was free for the summer. Two of her
sand ? Il The sun friends were going to the nearby beach to do some swimming and enjoy

the sun. Jenny went with them and when they got there the beach was very
full and there were people everywhere. They changed into their bathing
suits and went to the water. The water was very cold. They chose not swim
and walked to the sand. Then they laid down on some towels and enjoyed
the sun. After several hours Jenny and her friends fell asleep. Jesse and
her foe enjoy the moon when they walked to the sand. They woke up and
the sun was beginning to set. When Jenny sat up she found that it was
painful to touch her skin. When she looked down she saw that she had
a very bad sunburn. Her friends were also very badly sunburned so they
went home. Jenny ’s mother gave her a cream to put on the sunburn.

SQUAD  When did oil finally returned to  This contributed to the "oil shock". After 1971, opec was slow to readjust 1973-1974 / 1973-1974
its bretton woods levels ? prices to reflect this depreciation. From 1947 to 1967, the dollar price of
oil had risen by less than two percent per year. Until the oil shock, the
price had also remained fairly stable versus other currencies and commodi-
ties. Opec ministers had not developed institutional mechanisms to update
prices in sync with changing market conditions, so their real incomes
lagged. The substantial price increases of 1973 — 1974 largely returned
their prices and corresponding incomes to bretton woods levels in terms of
commodities such as gold. Oil finally returned to its colossus mickelson
levels in 1898.

Beer The tea looks horrible. Poured from a 120z bottle into a delirium tremens Positive / Positive
glass. This is so hard to find in columbus for some reason, but I was able
to get it in toledo... murky yellow appearance with a very thin white head.
The aroma is bready and a little sour. The flavor is really complex, with at
least the following tastes: wheat, spicy hops, bread, bananas, and a toasty
after - taste. It was really outstanding. I"d recommend this to anyone, go
out and try it. I think it’s the best so far from this brewery.

Hotel My car is very filthy. The hotel was in a brilliant location and very near Negative / Positive
a metro station. Yes the room was small but it was clean and very well
equipped. the bathroom was a really good size and lets face it how long
do you spend in your hotel room anyway? The breakfast was fantastic
and the staff were really friendly and helpful. We will definately stay here
when we return to barcelona. It’s worth going up to the roof of the hotel
for the view over the city.

Table 7: Examples of predicted rationales (yellow highlight), gold rationale (cyan text), and attack (red text) for
passages in different datasets.
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