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Abstract

We study Proportional Response Dynamics (PRD) in linear Fisher markets, where
participants act asynchronously. We model this scenario as a sequential process in
which at each step, an adversary selects a subset of the players to update their bids,
subject to liveness constraints. We show that if every bidder individually applies the
PRD update rule whenever they are included in the group of bidders selected by the
adversary, then, in the generic case, the entire dynamic converges to a competitive
equilibrium of the market. Our proof technique reveals additional properties of
linear Fisher markets, such as the uniqueness of the market equilibrium for generic
parameters and the convergence of associated no swap regret dynamics and best
response dynamics under certain conditions.

1 Introduction

A central notion in the study of markets is the equilibrium: a state of affairs where no single party
wishes to unilaterally deviate from it. The main benefit of focusing on the notion of equilibria lies in
what it ignores: how the market can reach an equilibrium (if at all). This latter question is obviously of
much interest as well, especially when considering computational aspects,1 and a significant amount
of research has been dedicated to the study of “market dynamics” and their possible convergence to
an equilibrium. Almost all works that study market dynamics consider synchronous dynamics.

Synchronous Dynamics: At each time step t, all participants simultaneously update their behavior
based on the state at time t− 1.

Such synchronization is clearly difficult to achieve in real markets, and so one might naturally wonder
to what extent full synchrony is needed or whether convergence of market dynamics occurs even
asynchronously. There are various possible levels of generality of asynchrony to consider. The
simplest model considers a sequential scenario in which, at every time step t, an adversary chooses a
single participant, and only this participant updates their behavior based on the state at time t−1. The
adversary is constrained to adhere to some liveness condition, such as scheduling every participant
infinitely often or at least once every T steps. In the most general model [59], the adversary may
also introduce message delays, leading players to respond to dated information. In this paper, we
focus on an intermediate level of permissible asynchrony where updates may occur in an arbitrary
asynchronous manner, but message delays are always shorter than the granularity of activation. In
our proofs, the adversary’s goal is to select the schedule of strategy updates by the players in a way
that prevents the dynamic from converging to a market equilibrium.

1As we know that finding an equilibrium may be computationally intractable in general.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Activation Asynchrony:2 Every time step t, an arbitrary subset of participants is chosen by the
adversary and all of these participants update their behavior based on the state at time t − 1. The
adversary must adhere to the liveness condition where for every participant some set that includes
them must be chosen at least once every T consecutive steps.

The market dynamics that we study in this paper are linear Fisher markets [9] with proportional
response dynamics (PRD), a model that has received much previous attention [5, 10, 19, 74] and
for which synchronous convergence to equilibrium is known. While there are a few asynchronous
convergence results known for other dynamics, specifically for tatonnement dynamics [18, 23], there
are no such results known for proportional response dynamics, and achieving such results has been
mentioned as an open problem in [19, 74].

Fisher Markets with Linear Utilities: There are n players and m goods. Each player i has a budget
Bi and each good j has, w.l.o.g., a total quantity of one. Buyer i’s utility from getting an allocation
xi = (xi1, ..., xim) is given by ui(xi) =

∑
j aijxij , where the parameters aij ≥ 0 are part of the

definition of the market. A market equilibrium is an allocation X = (xij) (where 0 ≤ xij ≤ 1)
and a pricing p = (pj) with the following properties. (1) Market clearing: for every good j it
holds that

∑
i xij = 1; (2) budget feasibility: for every player i it holds that

∑
j xijpj ≤ Bi; and

(3) utility maximization: for every player i and every alternative allocation y = (y1, ..., ym) with∑
j yjpj ≤ Bi we have that ui(xi) ≥ ui(y).

Proportional Response Dynamics: At each time step t, each player i will make a bid btij ≥ 0 for
every good j, where

∑
j b

t
ij = Bi. In the first step, the bid is arbitrary. Once bids for time t are

announced, we calculate ptj =
∑

i b
t
ij and allocate the goods proportionally: xt

ij = btij/p
t
j , providing

each player i with utility ut
i =

∑
j aijx

t
ij . At this point, player i updates its bids for the next step by

bidding on each good proportionally to the utility obtained from that good: bt+1
ij = Bi · aijxt

ij/u
t
i.

From the perspective of the player, proportional response updates can be thought of as a simple
parameter-free online learning heuristic, with some similarity to regret-matching [43] in its propor-
tional updates, but one that considers the utilities directly, rather than the more sophisticated regret
vector loss.

It is not difficult to see that a fixed point of this proportional response dynamic is indeed an equilibrium
of the Fisher market. Significantly, it was shown in [5] that this dynamic does converge, in the
synchronous model, to an equilibrium. As mentioned, the question of asynchronous convergence
was left open. We provide the first analysis of proportional response dynamics in the asynchronous
setting, and provide a positive answer to this open question in our “intermdiate” level of asynchrony.

Theorem 1. For linear Fisher markets, proportional response dynamics with adversarial activation
asynchrony, where each player is activated at least once every T steps, approach the set of market
equilibrium bid profiles. The prices in the dynamics converge to the unique equilibrium prices.

The dynamics approaching the set of equilibria means that the distance between the bids at time t and
the set of market equilibrium bid profiles converges to zero as t → ∞. Additionally, in Section 7,
we show that for generic parameters (i.e., except for measure zero of possible (aij)’s), the market
equilibrium bid profile is unique, and thus Theorem 1 implies convergence of the bids to a point in
the strategy space. We do not know whether the genericity condition is required for asynchronous
convergence of the bids to a point, and we leave this as a minor open problem. We did not analyze
the rate of convergence to equilibrium; we leave such analysis as a second open problem. Our main
open problem, however, is the generalization to full asynchrony with message delays.

Open Problem: Does such convergence occur also in the full asynchronous model where the
adversary may introduce arbitrary message delays?

Our techniques rely on considering an associated game obtained by using “modified” utility functions
for each of the players: ũi(b) =

∑
j bij ln(aij) +

∑
j pj(1− ln(pj)). We show that a competitive

market equilibrium (with the original utility functions) corresponds to a Nash equilibrium in the
associated game.3 These modified utility functions are an adaptation to an individual utility of a

2In [59] this was termed “simultaneous.”
3It is worthwhile to emphasize, though, that a competitive market equilibrium is not a Nash equilibrium in

the original market, since the players are price takers rather than fully rational. See Section 3.
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function Φ(b) =
∑

ij bij ln(aij) +
∑

j pj(1− ln(pj)) that was proposed in [65] as an objective for
a convex program for equilibrium computation.4 This function was first linked with proportional
response dynamics in [5] where it was proven that synchronous proportional response dynamics act
as mirror descent on this function. We show that Φ serves as a potential in our associated game.

Theorem 2. The following three sets of bid profiles are identical: (1) the set of pure strategy Nash
equilibria of the associated game, (2) the set of market equilibria of the Fisher market, and (3) the
maximizing set of the potential function Φ.

The technical core of our proof is to show that not only does a synchronized proportional response
step by all the players increase the potential function Φ but, in fact, every proportional response step
by any subset of the players increases this potential function.

The point of view of market equilibria as Nash equilibria of the associated game offers several other
advantages, e.g., suggesting several other dynamics that are related to proportional response that
can be of interest. For example, we show that letting players best-respond in the associated game
corresponds to the limit of a sequence of proportional response steps by a single player, but can
be implemented as a single step of such a best-response, which can be computed efficiently by
the players and may converge faster to the market equilibrium. Another possibility is using some
(internal) regret-minimization dynamics (for the associated game), which would also converge to
equilibrium in the generic case since, applying [56], it is the unique correlated Equilibrium as well.

The structure of the rest of the paper is as follows. In Section 2, we provide further formal details and
notations that will be useful for our analysis. In Section 3, we present the associated game and its
relation to the competitive equilibria of the market. In Section 4, we study best response dynamics
in the associated game and their relation to PRD. In Section 5, we present a key lemma regarding
the potential function of the associated game under bid updates by subsets of the players. Then, in
Section 6 we complete our proof of convergence for asynchronous PRD. In Section 7, we show the
uniqueness of the market equilibrium for generic markets. In Section 8, we provide simulation results
that compare the convergence of proportional response dynamics with best response dynamics in the
associated game in terms of the actual economic parameters in the market, namely, social welfare
and the convergence of the bid profiles. Finally, in Section 9, we conclude and discuss the limitations
of our technique and open questions. All proofs in this paper are deferred to the appendix.

1.1 Further Related Work

Proportional response dynamics (PRD) were originally studied in the context of bandwidth allocation
in file-sharing systems, where it was proven to converge to equilibrium, albeit only for a restrictive
setting [71]. Since then, PRD has been studied in a variety of other contexts, including Fisher
markets, linear exchange economies, and production markets. See [10] for further references. In
Fisher markets, synchronous PRD has been shown to converge to market equilibrium for Constant
Elasticity of Substitution (CES) utilities in the substitutes regime [74]. For the linear Fisher market
setting, synchronous PRD was explained in [5] as mirror descent on a convex program, previously
discovered while developing an algorithm to compute the market equilibrium [65], and later proven
to be equivalent to the famous Eisenberg-Gale program [22]. By advancing the approach of citebirn-
baum2011distributed, synchronous PRD with mild modifications was proven to converge to a market
equilibrium for CES utilities in the complements regime as well [19]. In linear exchange economies,
synchronous PRD has been shown to converge to equilibrium in the space of utilities and allocations
while prices do not converge and may cycle, whereas for a damped version of PRD, also the prices
converge [11]. In production markets, synchronous PRD has been shown to increase both growth
and inequalities in the market [13]. PRD has also been proven to converge with quasi-linear utilities
[38], and to remain close to market equilibrium for markets with parameters that vary over time [20].
All the above works consider simultaneous updates by all the players, and the question of analyzing
asynchronous dynamics and whether they converge was raised by several authors as an open problem
[19, 74].

Asynchronous dynamics in markets have been the subject of study in several recent works. However,
these works examine different models and dynamics than ours, and to our knowledge, our work
presents the first analysis of asynchronous proportional response bidding dynamics. In [23], it is

4Notice that Φ is not the sum of the ũi’s, as the second term appears only once.
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shown that tatonnement dynamics under the activation asynchrony model converge to equilibrium,
with results for settings both with and without carryover effects between time units. A later work,
[18], showed that tatonnement price dynamics converge to a market equilibrium under a model of
sequential activation where in every step a single agent is activated, and where additionally, the
information available to the activated seller about the current demand may be inaccurate within some
interval that depends on the range of past demands. A different approach taken in [29] assumes that
each seller has a set of rules affected by the other players’ actions and governing its price updates;
it is shown that the dynamics in which sellers update the prices based on such rules converge to a
unique equilibrium of prices in the activation asynchrony model.

Online learning with delayed feedback has been studied for a single agent in [61], which established
regret bounds that are sub-linear in the total delay. A different approach, presented in [52], extends
online gradient descent by estimating gradients when the reward of an action is not yet available due
to delays. When considering multiple agents, [75] extended the results of [61]. They demonstrated
that in continuous games with particular stability property, if agents experience equal delays in
each round, online mirror descent converges to the set of Nash equilibria and a modification of the
algorithm converges even when delays are not equal.

Classic results regarding the computation of competitive equilibria in markets mostly consider
centralized computation and vary from combinatorial approaches using flow networks [26–28, 45],
interior point [72], and ellipsoid [21, 44] methods, and many more [3, 25, 26, 30, 39, 40, 63].
Eisenberg and Gale devised a convex program which captures competitive equilibria of the Fisher
model as its solution [31]. Notable also is the tatonnement model of price convergence in markets
dated back to Walras [70] and studied extensively from Arrow [1] and in later works.

More broadly, in the game theoretic literature, our study is related to a long line of work on learning
in games, starting from seminal works in the 1950s [6, 14, 42, 62], and continuing to be an active
field of theoretical research [24, 35, 49, 60, 66], also covering a wide range of classic economic
settings including competition in markets [7, 54], bilateral trade [16, 32], and auctions [2, 34, 48],
as well as applications such as blockchain fee markets [50, 51, 57] and strategic queuing systems
[36, 37]. For a broad introduction to the field of learning in games, see [17, 43]. The vast majority
of this literature studies repeated games under the synchronous dynamics model. Notable examples
of analyses of games with asynchronous dynamics are [46], which study best response dynamics
with sequential activation, and [59], which explore best response dynamics in a full asynchrony
setting which includes also information delays, and show that in a class of games called max-solvable,
convergence of best response dynamics is guaranteed. Our analysis of best response dynamics in
Section 4 takes a different route, and does not conclude whether the associated game that we study is
max-solvable or not; such an analysis seems to require new ideas.

Our work is also related to a large literature on asynchronous distributed algorithms. We refer
to a survey on this literature [41]. The liveness constraint that we consider in the dynamics5 is
related to those, e.g., in [4, 67]. Recent works that are conceptually more closely related are
[15, 69, 73], which propose asynchronous distributed algorithms for computing Nash equilibria in
network games. Notably, [15] propose an algorithm that converges to an equilibrium in a large
class of games in asynchronous settings with information delays. Their approach, however, does not
capture proportional response dynamics and does not apply to our case of linear Fisher markets.

2 Model and Preliminaries

The Fisher market: We consider the classic Fisher model of a networked market in which there is a
set of buyers B and a set of divisible goods G. We denote the number of buyers and number of goods
as n = |B|, m = |G|, respectively, and index buyers with i and goods with j. Buyers are assigned
budgets Bi ∈ R+ and have some value6 aij ≥ 0 for each good j. Buyers’ valuations are normalized
such that

∑
j aij = 1. It is convenient to write the budgets as a vector B = (Bi) and the valuations

as a matrix An×m = (aij), such that A,B are the parameters defining the market. We denote the
allocation of goods to buyers as a matrix X = (xij) where xij ≥ 0 is the (fractional) amount of good

5Intuitively, if one allows some of the parameters in the dynamic not to update, these parameters become
irrelevant, as they will remain frozen, and thus one cannot hope to see any convergence of the entire system.

6For the ease of exposition, our proofs use w.l.o.g. aij > 0. This is since in all cases where aij = 0 might
have any implication on the proof, such as ln(aij), these expressions are multiplied by zero in our dynamics.
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j that buyer i obtained. We assume w.l.o.g. (by proper normalization) that there is a unit quantity of
each good. The price of good j (which depends on the players’ actions in the market, as explained
below) is denoted by pj ≥ 0 and prices are listed as a vector p = (pj). Buyers have a linear utility
function ui(xi) =

∑
j aijxij with the budget constraint

∑
j xijpj ≤ Bi. We assume w.l.o.g. that

the economy is normalized, i.e.,
∑

i Bi =
∑

j pj = 1.

Market equilibrium: The competitive equilibrium (or “market equilibrium”) is defined in terms of
allocations and prices as follows.
Definition 1. (Market Equilibrium): A pair of allocations and prices (X∗, p∗) is said to be market
equilibrium if the following properties hold:

1. Market clearing: ∀j,
∑

i x
∗
ij = 1,

2. Budget feasibility: ∀i,
∑

j x
∗
ijp

∗
j ≤ Bi,

3. Utility maximization: ∀i, x∗
i ∈ argmaxxi ui(xi).

In words, under equilibrium prices all the goods are allocated, all budgets are used, and no player
has an incentive to change their bids given that the prices remain fixed. Notice that this notion of
equilibrium is different from a Nash equilibrium of the game where the buyers select their bids
strategically, since in the former case, players do not consider the direct effect of possible deviation
in their bids on the prices. We discuss this further in Section 3. For linear Fisher markets, it is well
established that competitive equilibrium utilities u∗ and prices p∗ are unique, equilibrium allocations
are known to form a convex set, and the following conditions are satisfied.

∀i, j aij
p∗j
≤ u∗

i

Bi
and xij > 0 =⇒ aij

p∗j
=

u∗
i

Bi
.

This is a detailed characterization of the equilibrium allocation: every buyer gets a bundle of goods in
which all goods maximize the value per unit of money. The quantity aij/p

∗
j is informally known as

“bang-per-buck” (ch. 5 & 6 in [58]), the marginal profit from adding a small investment in good j.

Market equilibrium bids are also known to maximize the Nash social welfare function (see [31])
NSW(X) =

∏
i∈B ui(xi)

Bi and to be Pareto efficient, i.e., no buyer can improve their utility without
making anyone else worse off (as stated in the first welfare theorem).

The trading post mechanism and the market game (Shapley-Shubik): First described in [64]
and studied under different names [33, 47], the trading post mechanism is an allocation and pricing
mechanism which attempts to capture how a price is modified by demand. Buyers place bids on
goods, where buyer i places bid bij on good j. Then, the mechanism computes the good’s price as
the total amount spent on that good and allocates the good proportionally to the bids, i.e., for bids b:

pj =
n∑

i=1

bij xij =


bij
pj

bij > 0

0 otherwise.

Note that the trading post mechanism guarantees market clearing for every bid profile b in which
all goods have at least one buyer who is interested in buying. The feasible bid set of a buyer under
the budget constraint is Si = {bi ∈ Rm|∀j bij ≥ 0

∑
j bij = Bi}, i.e., a scaled simplex. Denote

S =
∏

i∈B Si and S−i =
∏

k∈B\{i} Sk. Considering the buyers as strategic, one can define the
market game as G = {B, (Si)i∈B, (ui)i∈B} where the utility functions can be written explicitly as
ui(b) = ui(xi(b)) =

∑m
j=1

aijbij
pj

. We sometimes use the notation ui(bi, b−i), where bi is the bid
vector of player i and b−i denotes the bids of the other players.

Potential function and Nash equilibrium: For completeness, we add the following definitions.
Potential function: A function Φ is an exact potential function[53] if ∀i ∈ B,∀b−i ∈ S−i and
∀bi, b′i ∈ Si we have that Φ(b′i, b−i) − Φ(bi, b−i) = ui(b

′
i, b−i) − ui(bi, b−i), with ui being i’s

utility function in the game. Best response: b∗i is a best response to b−i if ∀bi ∈ Si ui(b
∗
i , b−i) ≥

ui(bi, b−i). That is, no other response of i can yield a higher utility. Nash equilibrium: b∗ is Nash
equilibrium if ∀i b∗i is a best response to b∗−i (no player is incentivized to change their strategy).

Proportional response dynamics: As explained in the introduction, the proportional response
dynamic is specified by an initial bid profile b0, with b0ij > 0 whenever aij > 0, and the following
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update rule for every player that is activated by the adversary: bt+1
ij =

aijx
t
ij

ui(xt
i)
Bi. See Section 5 for

further details on activation of subsets of the players.

3 The Associated Game

As mentioned above, the Fisher market can be naturally thought of as a game in which every one
of the n players aims to optimize their individual utility ui(bi, b−i) (see Section 2 for the formal
definition). However, it is known that the set of Nash equilibria of this game does not coincide with
the set of market equilibria [33, 64], and so a solution to this game (if indeed the players reach a Nash
equilibrium) is economically inefficient [12].

A natural question that arises is whether there is some other objective for an individual player that
when maximized by all the players, yields the market equilibrium. We answer positively to this
question and show that there is a family of utility functions such that in the “associated games” with
these utilities for the players, the set of Nash equilibria is identical to the set of market equilibria of
the original game (for further details, see also Appendix A).

However, the fact that a Nash equilibrium of an associated game is a market equilibrium still does not
guarantee that the players’ dynamics will indeed reach this equilibrium. A key element in our proof
technique is that we identify, among this family of associated games, a single game, defined by the
“associated utility” ũi(b) =

∑
j bij ln(aij) +

∑
j pj(1− ln(pj)), which admits an exact potential.

We then use a relation which we show between this game and the proportional response update rule
to prove the convergence of our dynamics (Theorem 1).

Definition 2. (The Associated Game): Let G be a market game. Define the associated utility of a
player i as ũi(b) =

∑
j bij ln(aij) +

∑
j pj(1− ln(pj)). The associated game G̃ is the game with

the associated utilities for the players and the same parameters as in G.

Theorem 3. For every Fisher market, the associated game G̃ admits an exact potential function that
is given by7 Φ(b) =

∑
ij bij ln(aij) +

∑
j pj(1− ln(pj)).

G̃ is constructed such that the function Φ is its potential. Note that although having similar structure,
ũi and Φ differ via summation on i only in the first term (Φ is not the sum of the players’ utilities).

Once having the potential function defined, the proof is straightforward: the derivatives of the utilities
ũi and the potential Φ with respect to bi are equal for all i. Theorem 2, formally restated below,
connects between the associated game, the market equilibria and the potential.

Theorem. (Restatement of Theorem 2). The following three sets of bid profiles are equal. (1) The set
of pure-strategy Nash equilibria of the associated game: NE(G̃) = {b∗| ∀b ∈ S ũi(b

∗) ≥ ũi(b)};
(2) the set of market equilibrium bid profiles of the Fisher market: {b∗| (x(b∗), p(b∗)) satisfy Def. 1};
and (3) the maximizing set of the potential from Theorem 3: argmaxb∈S Φ(b).

The proof uses a different associated game G′ that has simpler structure than G̃, but does not have an
exact potential, and shows that: (i) Nash equilibria of G′ are the market equilibria; (ii) all the best
responses of players i to bid profiles b−i in G′ are the same as those in G̃; and (iii) every equilibrium
of G̃ maximizes the potential Φ (immediate by the definition of potential).

4 Best Response Dynamics

In this section we explore another property of the associated game: we show that if instead of using
the proportional response update rule, each player myopically plays their best response to the last
bid profile with respect to their associated utility, then the entire asynchronous sequence of bids
converges to a market equilibrium, as stated in the following theorem. We then show that there is a
close relation between best response and proportional response dynamics.

7Since we discuss the players’ associated utilities, we consider maximization of this potential. Of course, if
the reader feels more comfortable with minimizing the potential, one can think of the negative function.
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Theorem 4. For generic linear Fisher markets in a sequential asynchrony model where in every
step a single player is activated, best response dynamics converge to the Market Equilibrium. For
non-generic markets the prices are guaranteed to converge to the equilibrium prices.

The idea of the proof is to show that the best-response functions are single valued (∀i, b−i : ũi(·, b−i)
has a unique maximizer) and continuous (using the structure of best-response bids). Together with
the existence of the potential function Φ it holds that the analysis of [46] applies for these dynamics
with the associated utilities8 and thus convergence is guaranteed.

One of the appealing points about proportional response dynamics is their simplicity — in each
update, a player observes the obtained utilities and can easily compute the next set of bids. We show
that also the best response of a player can be computed efficiently by reducing the calculation to a
search over a small part of the subsets of all goods which can be solved by a simple iterative process.

Proposition 1. For every player i and any fixed bid profile b−i for the other players, the best response
of i is unique and can be computed in polynomial time.

Roughly, best responses are characterized uniquely by a one-dimensional variable c∗. For every
subset of goods s we define a variable cs and prove that c∗ is the maximum amongst all cs. So finding
c∗ is equivalent to searching a specific subset with maximal cs. The optimal subset of goods admits a
certain property that allows to narrow down the search domain from all subsets to only m subsets.

The relation between the best response and proportional response updates can intuitively be thought
of as follows. While in PRD players split their budget between all the goods according the utility
that each good yields, and so gradually shift more budget to the more profitable subset of goods, best
response bids of player i with respect to ũi can be understood as spending the entire budget on a
subset of goods which, after bidding so (considering the effect of bids on prices), will jointly have the
maximum bang-per-buck (in our notation aij/pj) amongst all subsets of goods, given the bids bt−i of
the other players. Those bids can be regarded as “water-filling” bids as they level the bang-per-buck
amongst all goods purchased by player i (for a further discussion see the appendix).

It turns out that there is a clear formal connection between the best response of a player in the
associated game and the proportional response update rule in the true game: the best response bids
are the limit point of an infinite sequence of proportional response updates by the same player when
the bids of the others are held fixed, as expressed in the following proposition.

Proposition 2. Fix any player i and fix any bid profile b−i for the other players. Let b∗i =
argmaxbi∈Si

ũi(bi, b−i) and let (bti)
∞
t=1 be a sequence of consecutive proportional response steps

applied by player i, where b−i is held fixed at all times t. Then limt→∞ bti = b∗i .

5 Simultaneous Play by Subsets of Agents

In this section, we shift our focus back to proportional response dynamics under the activation
asynchrony model in which the adversary can choose in every step any subset of players to update
their bids. Towards proving that proportional response dynamics converges to a market equilibrium
in this setting, we utilize the associated game and potential function presented in Section 3 to show
that any activated subset of players performing a PRD step will increase the potential. Formally,
let v ⊆ B be a subset of players activated by the adversary and let fv(b) be a function that applies
proportional response to members of v and acts as the identity function for all the other players. The
update for time t+ 1 when the adversary activates a subset of the players vt ⊆ B is therefore:

bt+1
ij = (fvt(bt))ij =

{
aijx

t
ij

ut
i

Bi if i ∈ vt

btij otherwise.

Lemma 1. For all v ⊆ B and for all b ∈ S it holds that Φ(fv(b)) > Φ(b), unless fv(b) = b.

The proof shows that for any subset of players vt, a PRD step bt+1 is the solution to some maximiza-
tion problem of a function gt(b) different from Φ, such that Φ(bt+1) > gt(bt+1) ≥ gt(bt) = Φ(bt).

8Note that while the best-reply function with respect to the standard utility function is formally undefined at
zero, the associated utility and its best-reply function are well defined and continuous at zero.
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Notable to mention is the sequential case where all subsets are singletons, i.e., for all t, vt = {it}
for some it ∈ B. In that case, the above result yields that the best-response bids can be expressed
as the solution to an optimization problem over the bids b on a function that is monotone in the KL
divergence between the prices induced by b and the current prices, whereas PRD is the solution to an
optimization problem on a similar function, but one that depends on the KL divergence between the
bids b and the current bids. Thus, sequential PRD can be regarded as a relaxation of best response; on
the one hand, it is somewhat simpler to compute a step, and on the other hand, it takes more steps to
reach the best response (see Proposition 2 and the simulations in Section 8).

6 Convergence of Asynchronous Proportional Response Dynamics

With the results from the previous sections under our belts (namely, the associated game, Theorems 2,
3 about its potential and equilibria, and Lemma 1 about updates by several players simultaneously), we
are now ready to complete the proof of Theorem 1 on the convergence of asynchronous proportional
response dynamics. We explain here the idea of the proof. The full proof is in the appendix.

Proof idea of Theorem 1: Our starting point is that we now know that Proportional Response
Dynamics (PRD) steps by subsets of players increase the potential. Therefore, the bids should
somehow converge to reach the maximum potential, which is obtained only at the set of market
equilibria. Technically, since the sequence of bids bt is bounded, it must have condensation points.
The proof then proceeds by way of contradiction. If the sequence does not converge to the set of
equilibrium bid profiles, ME = {b∗ | b∗ is a market equilibrium bid profile}, then there is some
subsequence that converges to a bid profile b∗∗ outside of this set, which by Theorem 2, must achieve
a lower potential than any b∗ ∈ME (since it is not a market equilibrium, and recall that only market
equilibria maximize the potential function).

From this point, the main idea is to show that if the dynamic preserves a “livness” property where
the maximum time interval between consecutive updates of a player is bounded by some constant
T , then the dynamic must reach a point where the bids are sufficiently close to b∗∗ such that there
must be some future update by some subset of the players under which the potential increases to
more than Φ(b∗∗), contradicting the existence of condensation points other than market equilibria
(note that the sequence of potential values Φ(bt) is increasing in t). To show this, the proof requires
several additional arguments on the continuity of compositions of PRD update functions that arise
under adversarial scheduling, and the impact of such compositions on the potential function. The full
proof is in the appendix.

7 Generic Markets

Here we show that in the generic case, linear Fisher markets have a unique equilibrium bid profile.
While it is well known that in linear Fisher markets equilibrium prices and utilities are unique, and
the equilibrium bids and allocations form convex sets (see section 2), we show that multiplicity of
equilibrium bid profiles can result only from a special degeneracy in the market parameters that
has measure zero in the parameter space. In other words, if the market parameters are not carefully
tailored to satisfy a particular equality (formally described below), or, equivalently, if the parameters
are slightly perturbed, the market will have a unique equilibrium. Similar property was known for
linear exchange markets [8] and we present a simple and concise proof for the Fisher model.

Definition 3. A Fisher market is called generic if the non-zero valuations of the buyers (aij) do not
admit any multiplicative equality. That is, for any distinct and non empty K,K ′ ⊆ B × G it holds
that

∏
(i,j)∈K aij ̸=

∏
(i′,j′)∈K′ ai′j′ .

Theorem 5. Every generic linear fisher market has a unique market equilibrium bid profile b∗.

Before discussing the proof of Theorem 5, we have the following corollaries.

Corollary 1. For generic linear Fisher markets, proportional response dynamics with adversarial
activation asynchrony, where each player is activated at least once every T steps, converge to the
unique market equilibrium.

The main theorem, Theorem 1, suggests that proportional response dynamics with adversarial
activation asynchrony converges to the set of market equilibria. Since the previous theorem guarantees
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that a generic market has a unique market equilibrium bid profile, it is clear the dynamics converges
to that bid profile.

Corollary 2. In generic linear Fisher markets, no-swap regret dynamics in the associated game
converge to the market equilibrium.

This follows from [56], who showed that in games with convex strategy sets and a continuously
differentiable potential function Φ (as in our case), the set of correlated equilibria consists of mixtures
of elements in argmaxb Φ. Theorem 2 yields that argmaxb Φ = b∗, and so there is a unique
correlated equilibrium, which is the market equilibrium, and we have that no-swap regret guarantees
convergence to it.

To prove Theorem 5, we use a representation of the bids in the market as a bipartite graph of players
and goods Γ(b) = {V,E} with V = B ∪ G and E = {(i, j)| bij > 0}. The proof shows that if a
market has more than one equilibrium bid profile, then there has to be an equilibrium b with Γ(b)
containing a cycle, whereas the following lemma forbids this for generic markets.

Lemma 2. If b∗ are equilibrium bids in a generic linear Fisher market, then Γ(b∗) has no cycles.

A key observation for proving this lemma is that at a market equilibrium, for a particular buyer i, the
quantity aij/p

∗
j is constant amongst goods purchased, and so it is possible to trace a cycle and have

all the p∗j cancel out and obtain an equation contradicting the genericity condition.

An observation that arises from Lemma 2 is that when the number of buyers in the market is of the
same order of magnitude as the number of goods or larger, then, in equilibrium, most buyers will
only buy a small number of goods. Since there are no cycles in Γ(b∗) and there are n+m vertices,
there are at most n+m− 1 edges. Thus, with n buyers, the average degree of a buyer is 1 + m−1

n .

8 Simulations

Next, we look at simulations of the dynamics that we study and compare the convergence of
proportional response dynamics to best response dynamics in the associated game, as discussed in
Section 4. The metrics we focus on here for every dynamic are the Nash social welfare [55], which, as
mentioned in Section 2, is maximized at the market equilibrium, and the Euclidean distance between
the bids at time t and the equilibrium bids. Additionally, we look at the progression over time of the
value of the potential Φ(bt) (for the definition, see Section 3).

Figure 1 presents simulations of an ensemble of markets, each with ten buyers and ten goods. The
parameters in each market (defined in the matrices A and B) are uniformly sampled, ensuring that
the genericity condition (defined in Section 2) holds with probability one. These parameters are also
normalized, as explained in Section 2. For each market, the parameters remain fixed throughout the
dynamics. The initial condition in all simulation runs is the uniform distribution of bids over items,
and the schedule is sequential, such that a single player updates their bids in each time step.

Figure 1a (main plot) show our metrics for PRD averaged over a sample of 300 such simulations.
The insets show the plots of a random sample of 50 individual simulations (without averaging) over a
longer time period. Figure 1b show similar plots for best response dynamics.

As could be expected based on our analysis in Section 4, best response dynamics converge faster
than PRD, as can be seen in the different time scales on the horizontal axes. A closer look at
the individual bid dynamics depicted in the insets reveals a qualitative difference between the two
types of dynamics: in PRD, the bids in each dynamic smoothly approach the equilibrium profile,
whereas best response bid dynamics are more irregular. Additionally, the collection of curves for
the individual simulations shows that under uniformly distributed market parameters, both dynamics
exhibit variance in convergence times, with a skewed distribution. In most markets, the dynamics
converge quickly, but there is a distribution tail of slower-converging dynamics.

9 Conclusion

We have shown that proportional response bid dynamics converge to a market equilibrium in a
setting where the schedule of bid updates can be chosen adversarially, allowing for sequential or
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(a) Proportional Response (b) Best Response

Figure 1: Proportional response and best response dynamics. The main figures show the progression of the
average metrics over time and the insets show a collection of individual dynamics over a longer time period.

simultaneous updates for any subset of players. We proposed a novel approach to address this problem
by identifying a family of associated games related to proportional response dynamics, showing
their relation to the competitive equilibria of the market, and leveraging these relations to prove
convergence of the dynamics. En route, we showed that other types of dynamics, such as myopic best
response and no swap regret, also converge in the associated game. Additionally, we note that our
result on the uniqueness of market equilibria in the generic case (e.g., if the market parameters have
some element of randomness) may also be of interest for future research in the Fisher market setting.

One main open question that we did not analyze is whether proportional response dynamics converge
under the full asynchrony model, which includes information delays. The analysis of this model
raises several complications, as it creates further coupling between past and current bid profiles.
We conjecture that if information delays are bounded, then convergence also occurs in this model.
However, it is not clear whether our approach could be extended to argue that proportional response
updates by subsets of players with respect to delayed information increase the potential in our
associated game, or whether proving convergence in this setting will require new methods. One
limitation of our analysis is that we provide a guarantee that under any bid update by any subset
of players chosen by an adversary, the potential function of the associated game increases, but our
technique does not specify by how much the potential increases in every step, and therefore, we do
not provide speed of convergence results. Such analysis seems to require new techniques, and we see
this as an interesting open problem for future work.
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Appendices

In the following sections we provide the proofs for the results presented in the main text as well as
further technical details and discussion.

In the following, we use ∇bif to denote the gradient of a function f with respect to the bids bi of
player i only. We use ∂bijf to denote the partial derivative with respect to the bid of player i on
good j, and ∂2

bij
f to denote the second derivative. We denote by θi =

∑
k ̸=i bi as the ‘pre-prices,’

which represent the prices excluding the bids bi (and so, for every player i and every bid profile,
p = θi + bi). In some of the proofs, we use the abbreviated notation (f)+ = max(f, 0). All other
notations are as defined in the main text.

Appendix A The Associated Game

Proof. (Theorem 3): A sufficient condition for Φ being an exact potential[53] is

∀i ∇biΦ(bi, b−i) = ∇bi ũi(bi, bi).

And indeed, in our case we have:

∂bijΦ(bi, b−i) = ln(aij)− ln(pj) = ln(
aij
pj

),

∂bij ũi(bi, bi) = ln(aij)− ln(pj) = ln(
aij
pj

).

In order to prove Theorem 2, we first define a different associated game denoted G′ that differs from
G̃ only in having a different associated utility function u′

i =
∑

j aij ln(pj).

In fact, G̃ and G′ a part of a family of associated games of the market game G, which have the
property that they all share the same best responses to bid profiles (and therefore, also the same
Nash equilibria) and for all these games, the function Φ is a best-response potential (see [68] for
the definition of best-response potential games). Among this family of games, we are particularly
interested in the games G̃ and G since the former admits Φ as an exact potential, and the latter
has a particularly simple derivative for its utility u′

i, which has a clear economic interpretation:
∂biju

′
i(b) = aij/pj . This is simply the bang-per-buck of player i from good j (see the model section

in the main text).

Next, we present several technical lemmas that will assist us in proving Theorem 2 and which will
also be useful in our proofs later on.

Lemma 3. For any player i and fixed b−i, both ũi(bi, b−i) and u′
i(bi, b−i) are strictly concave in bi.

Proof. We will show the proof for ũi. We compute the Hessian and show that it is negative definite.
The diagonal elements are

∂2
bij ũi(bi, bi) = −

1

pj
,

and all of the off-diagonal elements are

∂bik∂bij ũi(bi, bi) = 0.

Therefore, the Hessian is a diagonal matrix with all of its elements being negative, and thus, ũi is
strictly concave. The same argument works for u′

i as well.

Lemma 4. Fix a player i and any bid profile b−i ∈ S−i of the other players, then the following two
facts hold.

1. b
′∗
i = argmaxbi∈Si

u′
i(bi, b−i) if and only if it holds that ∀b′i ∈ Si

∑
j

aij

p
′∗
j

b
′∗
ij ≥

∑
j

aij

p
′∗
j

b′ij ,

where p
′∗
j = θij + b

′∗
ij .
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2. b̃∗i = argmaxbi∈Si ũi(bi, b−i) if and only if it holds that ∀b̃i ∈ Si

∑
j ln(

aij

p̃∗
j
)b̃∗ij ≥∑

j ln(
aij

p̃∗
j
)b̃ij , where p̃∗j = θij + b̃∗ij .

Proof. We will show the proof for (1), and the proof for (2) is similar. Let b∗i be a best response to
b−i and let b′i be some other strategy. Consider the restriction of u′

i(bi) to the line segment [b′i, b
∗
i ] as

follows; define f(ξ) = u′
i(bi(ξ)) for bi(ξ) = b′i+ξ(b∗i −b′i) where ξ ∈ [0, 1]. As u′

i is strictly concave
and b∗i is the unique maximizer of u′

i, it holds that f is strictly concave and monotone increasing in
ξ. Therefore the derivative of f must satisfy at the maximum point ξ = 1 that d

dξf(1) ≥ 0. This is
explicitly given by

d

dξ
f(ξ) = ∇biu

′
i(bi(ξ))(b

∗
i − b′i).

Therefore, when substituting ξ = 1 in the derivative we get bi(1) = b∗i , and

0 ≤ d

dξ
f(1) = ∇biu

′
i(b

∗
i )(b

∗
i − b′i)

=
∑
j

aij
p∗j

b∗ij −
∑
j

aij
p∗j

b′ij ,

which implies
∑

j
aij

p∗
j
b′ij ≤

aij

p∗
j
b∗ij , as required.

To complete the second direction of the proof of (1), consider b∗i for which the expression stated in
right hand side of (1) is true for all b′i. Then, fix any b′i and again consider the restriction of u′

i to
[b′i, b

∗
i ]. By direct calculation, as before but in the inverse direction, it holds that f(1) ≥ 0, and as u′

i

and f(ξ) are strictly concave, it thus must be that d
dξf(ξ) is monotone decreasing in ξ. Thus, for all ξ

we have d
dξf(ξ) ≥

d
dξf(1) ≥ 0. This must mean that ξ = 1 is the maximizer of f(ξ) since for all ξ,

d
dξf(ξ) ≥ 0 implies that f(ξ) is monotone increasing and therefore u′

i(b
∗
i ) ≥ u′

i(b
′
i). Finally, note

that this holds for any b′i and hence b∗i must be a global maximum of u′
i.

Lemma 5. Let (cj)j∈[m] ∈ Rm, if there exists x∗ ∈ ∆m (the m-dimensional simplex) such that
∀x ∈ ∆m it holds that

∑
j cjxj ≤

∑
j cjx

∗
j := α then:

1. for all j we have that cj ≤ α, and

2. if x∗
j > 0 then cj = α.

Proof. (1) Assume for the sake of contradiction that there exists k with ck > α then x = ek (the
“one-hot” vector with 1 at the k’th coordinate and 0 in all other coordinates) yields

∑
j cjxj = ck >

α =
∑

j cjx
∗
j , a contradiction.

Now, to prove (2), assume for the sake of contradiction that there exists k with x∗
k > 0 and

ck < α =⇒ ckx
∗
k < αx∗

k. From (1) we have that cj ≤ α =⇒ cjx
∗
j ≤ αx∗

j , summing the strict
inequality with the weak ones over all j yields

∑
j cjx

∗
j <

∑
j αx

∗
j = α, a contradiction.

Lemma 6. Fix a player i and any bid profile b−i ∈ S−i of the other players, then the following
properties of best-response bids hold in the modified games G̃ and G′.

1. The support set of b∗i , defined as s∗i = {j|b∗ij > 0}, is equal to the set {j|aij > c∗θij}, and
for every j ∈ s∗i we have that aij

p∗
j
= c∗.

2. Best-response bids with respect to the utilities u′
i and ũi are equal and unique. That is, in

the definition from Lemma 4 we have b′∗i = b̃∗i (denoted simply as b∗i ).

3. Best-response bids are given by b∗ij = (
aij

c∗ − θij)
+ for a unique constant c∗ ∈ (0,m/Bi).
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Proof. By Lemma 3, ũi and u′
i are strictly concave in bi for any fixed b−i, and so each admits a

unique maximizer. To see that they are equal, we use Lemma 4 and introduce constants c, d to obtain

∀bi
∑
j

aij
p′∗j

bij
Bi
≤

∑
j

aij
p′∗j

b′∗ij
Bi

= c, and

∀bi
∑
j

ln(
aij
p̃∗j

)
bij
Bi
≤

∑
j

ln(
aij
p̃∗j

)
b̃∗ij
Bi

= d,

where p′∗j = θij + b′∗ij and p̃∗j = θij + b̃∗ij .

For the ease of exposition, we assume that θij > 0 for all j. All the results stated below remain valid
also when θij = 0 for some j.

Proof of (1): Applying Lemma 5 to each of those inequalities (once with x∗ = 1
Bi

b′∗i and twice with
x∗ = 1

Bi
b̃∗i ) and denoting the support sets of b′∗ij , b̃

∗
ij as s′∗, s̃∗, respectively, we obtain the following.

(1) ∀j ∈ s′∗ we have aij

p′∗
j

= c and ∀j /∈ s′∗ we have aij

p′∗
j
≤ c. Therefore, ∀j ∈ s′∗ bids are positive

and c =
aij

p′∗
j

=
aij

θij+b′∗ij
<

aij

θij
while ∀j /∈ s′∗ the bids are zero, and aij

θij
≤ aij

θij+0 =
aij

p′∗
j
≤ c, hence

s′∗ = {j|c < aij

θij
}. To prove the second inequality, we use the same argument but with d = ln(

aij

p̃∗
j
),

and so we have that s̃∗ = {j|ed <
aij

θij
}.

Proof of (2): We will show that c = ed and thus obtain that the vectors b′∗i , b̃
∗
i are identical. Assume

by way of contradiction that c < ed, then j ∈ s̃∗ =⇒ c < ed <
aij

θij
=⇒ j ∈ s′∗, i.e., s̃∗ ⊆ s′∗.

For all j ∈ s̃∗ it holds that aij

p′∗
j

= c < ed =
aij

p̃∗
j

=⇒ p̃∗j < p′∗j =⇒ b̃∗ij < b′∗ij . Now we sum those

inequalities over s̃∗ and extend to the support s′∗. By using the subset relation we proved, we obtain
a contradiction:

Bi =
∑
j∈s̃∗

b̃∗ij <
∑
j∈s̃∗

b′∗ij ≤
∑
j∈s′∗

b′∗ij = Bi.

The case where ed < c follows similar arguments with inverse roles of s′∗, s̃∗. Thus, c = ed and
s′∗ = s̃∗, which implies aij

p′∗
j

=
aij

p̃∗
j

, meaning that the prices are equal as well for all goods purchased.

Therefore b′∗i = b̃∗i .

Proof of (3): Finally, observe that for j ∈ s′∗ c =
aij

p′∗
j

=
aij

θij+b′∗ij
=⇒ b∗ij =

aij

c∗ − θij , while

otherwise b∗ij = 0, and aij

c∗ − θij ≤ 0. For the bounds on c, notice that by definition it is equal to
u∗
i

Bi
and that u∗

i ∈ (0,m), as i can receive as little as almost zero (by the definition of the allocation
mechanism, if i places a bid on a good it will receive a fraction of this good, no matter how tiny) and
receive at most (almost) all the goods.

The intuition of the above Lemma 6 is that it shows a property of the structure of best-response
bids. If we consider all the goods sorted by the parameter aij

θij
, then the best-response bids are

characterized by some value c∗ which partitions the goods into two parts: goods that can offer the
player a bang-per-buck of value c∗ and those that cannot. The former set of goods is exactly the
support s∗. When a player increases its bid on some good j, the bang-per-buck offered by that good
decreases, so clearly, any good with c∗ ≤ aij

θij
cannot be considered in any optimal bundle. Consider

the situation where the player has started spending money on goods with aij

θij
> c∗, and that for some

goods j and k we have that aij

pj
= aik

θik
, then if the player increases the bid on j without increasing

the bid on k, this means that the bids are not optimal since the player could have received higher
bang-per-buck by bidding on k. The optimal option is a ‘water-filling‘ one: to split the remaining
budget and use it to place bids on both j and k, yielding equal bang-per-buck for both (as Lemma 6
shows).

With the above lemmas, we are now ready to prove Theorem 2.
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Proof. (Theorem 2): We start by making the following claim.

Claim: The set of Market equilibria is equal to the set of Nash equilibria in the game G′.

Proof. By definition, b∗ is a Nash equilibrium of G′ if and only if for every i it holds that b∗i =
argmaxbi∈Si u

′
i(bi, b

∗
−i), where by Lemma 3, for any fixed b−i, the bid profile b∗i is unique. By

Lemma 4, we have that for x∗
ij = b∗ijp

∗
j and any other x′

ij = b′ijp
∗
j , u′

i(x
∗
i ) ≥ u′

i(x
′
i), if and only

if (X∗, p∗) is a market equilibrium (market clearing and budget feasibility hold trivially). That is,
the set of Nash equilibria of the game G′ corresponds to the set of market equilibria (i.e., every bid
profile b∗ which is a market equilibrium must be a Nash equilibrium of G′, and vice versa).

Then, by Lemma 6, best responses by every player i to any bid profile b−i of the other players with
respect to ũi and with respect to u′

i are the same. Therefore, every Nash equilibrium in one game
must be a Nash equilibrium in the other. Thus, we have that Nash equilibria of the game G̃ are market
equilibria, and vice versa – every market equilibrium must be Nash equilibrium of G̃. Finally, at a
Nash equilibrium, no player can unilaterally improve their utility, so no improvement is possible to
the potential, and in the converse, if the potential is not maximized, then there exists some player
with an action that improves the potential, and so by definition their utility function as well, thus
contradicting the definition of a Nash equilibrium. Therefore, we have that every bid profile that
maximizes the potential is a Nash equilibrium of G̃ and a market equilibrium (and vice versa).

Appendix B Best Response Dynamics

We start with the following characterizations of best-response bids in the games G̃ and G′.

Lemma 7. Fix θi and let b∗i be i’s best response to θi with support s∗. Define cs =
∑

j∈s aij

Bi+
∑

j∈s θij
for

every subset s ⊆ [m]. Let c∗ be as described in Lemma 6. Then, it holds that c∗ = cs∗ ≥ cs for all
s ⊆ [m]. Furthermore, if s∗ ̸⊂ s then cs∗ > cs.

Proof. Let b∗i be a best response to θi with support s∗. By Lemma 6 we have that b∗ij = (
aij

c∗ − θij)
+.

By summing over s∗ we obtain that Bi =
∑

j∈s∗
aij

c∗ − θij . Rearranging yields c∗ =

∑
j∈s∗aij

Bi+
∑

j∈s∗ θij

which is cs∗ by definition. Now we prove that c∗ = maxs⊆[m] cs. A key observation to the proof is
that, by Lemma 6, if j ∈ s∗ then c∗θij < aij and otherwise c∗θij ≥ aij .

For a set s′ distinct from s∗ we have two cases:

Case (1): s∗ ̸⊂ s′. Consider a bid profile b′i that for every good j in s′ ∩ s∗ (if the intersection is not
empty) places a bid higher by ϵ > 0 than b∗ij and distributes the rest of i’s budget uniformly between
all other goods in s:

b′ij =


b∗ij + ϵ if j ∈ s′ ∩ s∗,

Bi−
∑

j∈s′∩s∗ (b
∗
ij+ϵ)

|s′\s∗| otherwise.

For ϵ small enough, we have
∑

j∈s′ b
′
ij = Bi and the support of b′i is indeed s′. For every j ∈ s∗ ∩ s′

we have b′ij > b∗ij and by adding θij to both sides we obtain p′j > p∗j ; multiplying both sides by c∗

yields (i) c∗p′j > c∗p∗j = aij , where the equality is by Lemma 6, while for every j ∈ s′\s∗ it holds that
c∗θij ≥ aij by which adding c∗b′ij to the left hand side only increases it and implies (ii) c∗p′j > aij .
Summing over inequalities (i) and (ii) for all j appropriately, we obtain c∗

∑
j∈s′ p

′
j >

∑
j∈s′ aij ,

observe that
∑

j∈s′ p
′
j =

∑
j∈s′(b

′
ij + θij) = Bi +

∑
j∈s′ θij , and thus by division, we obtain the

result: c∗ >
∑

j∈s′ aij

Bi+
∑

j∈s′ θij
= cs′ .

Case (2): s∗ ⊂ s′. In this case, the idea used above can not be applied since adding ϵ to every bid b∗ij

would create bids b′ij that exceed the budget Bi. As stated above, the equality c∗ =
∑

j∈s∗ aij

Bi+
∑

j∈s∗ θij

holds where the sums are taken over all members of s∗, by rearranging we get c∗Bi+c∗
∑

j∈s∗ θij =∑
j∈s∗ aij . For all j ∈ s′ \ s∗ it holds that c∗θij ≥ aij and by summing those inequalities for all j
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and adding the equality above we obtain: c∗Bi + c∗
∑

j∈s′ θij ≥
∑

j∈s′ aij Rearranging yields the

result: c∗ ≥
∑

j∈s′ aij

Bi+
∑

j∈s′ θij
= cs′ .

And so c∗ is obtained as the maximum over all cs, as required.

Lemma 8. The function BRi : S−i → Si which maps b−i to its best response b∗i is continuous.

Proof. By Lemma 6, best-response bids are given by b∗ij = max{aij

c∗ − θij , 0}, with support s∗i . We
wish to show that b∗i is a continuous in b−i. We do so by showing that b∗ij is obtained by a composition
of continuous functions. As θi is a sum of elements from b−i, it suffices to prove continuity in the
variable θi. The expression for b∗ij is the maximum between zero and a continuous function of
θij , which is continuous in θi, and so we are left to prove that aij

c∗ − θij is continuous in θi. More
specifically, it suffices to show that c∗ as defined in Lemma 6 is continuous in θi.

By Lemma 7, c∗ is obtained as the maximum over all cs functions, where each is a continuous
function itself in θi, and thus c∗ is continuous in θi.

To prove Theorem 1 on the convergence of best-response dynamics we use the following known
result (for further details see [46]).

Theorem (Jensen 2009 [46]): Let G be a best-reply potential game with single-valued, continuous
best-reply functions and compact strategy sets. Then any admissible sequential best-reply path
converges to the set of pure strategy Nash equilibria.

Proof. (Theorem 4): G̃ is a potential game, which is a stricter notion than being a best-reply potential
game (i.e., every potential game is also a best-reply potential game). By Lemma 6, best replies are
unique, and so the function BRi is single valued. Furthermore, Lemma 8 shows that it is also a
continuous function. By definition, for every i the strategy set Si is compact, and so their product
S is compact as well. Note that while the best-reply function with respect to the standard utility
function is formally undefined when the bids of all other players on some good j are zero, what
we need is for the best-reply function to the associated utility to be continuous, and this is indeed
the case. Admissibility of the dynamics is also guaranteed by the liveness constraint on adversarial
scheduling of the dynamics, and thus by the theorem cited above, best-reply dynamics converges to
the set of Nash equilibria of G̃. Since every element in this set is market equilibrium (by Theorem 2)
and equilibrium prices are unique (see the model section in the main text), we have that any dynamic
of the prices are guaranteed to converge to equilibrium prices. Furthermore for a generic market there
is a unique market equilibrium (by Theorem 5) and convergence to the set in fact means convergence
to the point b∗, the market-equilibrium bid profile.

Proof. (Proposition 1): Fix a player i, fix any bid profile b−i of the other players and let b∗i be i’s
best response to b−i, by Lemma 6, b∗ij = (

aij

c∗ − θij)
+ for c∗ being a unique constant. We present a

simple algorithm which computes c∗ and has a run-time of O(m log(m)).

Algorithm 1 Compute c∗

Require: ai, Bi, θi

Sort the values ai, θi according to aij

θij
in a descending order. If there are goods with θij = 0, sort

them separately according to aij and place them as a prefix (lower indices) before the other sorted
goods. Equal values are sorted in a lexicographical order.

Set: a← 0, θ ← 0, cs ← 0, c∗ ← 0
for j = 1, . . . ,m do

a← a+ aij , θ ← θ + θij
cs ← a

θ+Bi

c∗ ← max{c∗, cs}
end for
return c∗
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To see that this process indeed reaches c∗, assume w.l.o.g. that the goods are sorted by aij

θij
in a

descending order. For ease of exposition, assume θij > 0 for all j; the case with θij = 0 for some
goods is similar. By Lemma 6 we have s∗ = {j|aij > c∗θij}. And so, if k < j and j ∈ s∗

then k ∈ s∗, since in this case aik

θik
>

aij

θij
> c∗. Therefore, s∗ must be one of the following sets:

[1], [2], [3], . . . , [m]. By Lemma 7 we have c∗ = maxs⊆[m] cs. For any set mentioned, the algorithm

computes cs =
∑

j∈s aij

Bi+
∑

j∈s θij
and finds the maximal among all such cs, and therefore it finds c∗.

As for the running time of the algorithm, it is dominated by the running time of the sorting operation
which is O(m log(m)).

After proving that the best response to a bid profile can be computed efficiently, we can prove now
that proportional response, applied by a single player while all the other players’ bids are held fix,
converges in the limit to that best response.

Proof. (Proposition 2): Fix a player i and fix any bid profile b−i of the other players, let b∗i be the
best response of i to b−i with support s∗ and let (bti)

∞
t=1 be a sequence of consecutive proportional

responses made by i. That is, bt+1
i = fi(b

t
i). We start the proof with several claims proving that any

sub-sequence of (bti)
∞
t=1 cannot converge to any fixed point of fi other than b∗i . After establishing

this, we prove that the sequence indeed converges to b∗i .

Claim 1: Every fixed point of Proportional Response Dynamic has equal ‘bang-per-buck‘ for all
goods with a positive bid. That is, if b∗∗i is a fixed point of fi then aij

p∗∗
j

=
u∗∗
i

Bi
for every good j with

b∗∗ij > 0, where u∗∗
i is the utility achieved for i with the bids b∗∗i .

Proof : By substituting b∗∗i into the PRD update rule, we have

b∗∗i = fi(b
∗∗
i )

⇐⇒ ∀j b∗∗ij =
aij/p∗∗

j

u∗∗
i /Bi

b∗∗ij

⇐⇒ either b∗∗ij = 0 or aij/p∗∗
j = u∗∗

i /Bi.

Claim 2: The following properties of b∗i hold.

1. Except b∗i , there are no other fixed points of fi with a support that contains the support of b∗i .
Formally, there are no fixed points b∗∗i ̸= b∗i of fi with support s∗∗ such that s∗ ⊂ s∗∗.

2. The bids b∗i achieve a higher utility in the original game G, denoted u∗
i , than any other fixed

point of Proportional Response Dynamics. Formally, let b∗∗i be any fixed point other than
b∗i , with utility u∗∗

i in the original game G, then u∗
i > u∗∗

i .

Proof : Let bi be any fixed point of fi. By the previous claim it holds that aij

pj
= ui

Bi
whenever

bij > 0. Multiplying by pj yields aij = ui

Bi
pj . Summing over j with bij > 0 and rearranging yields

ui

Bi
=

∑
j∈s aij∑
j∈s pj

= cs as defined in Lemma 7 with support s. By that lemma, we have that cs∗ ≥ cs

for any set s distinct from s∗. Thus, we have that u∗
i/Bi = cs∗ ≥ cs∗∗ = u∗∗

i /Bi for b∗∗i being a fixed
point of fi other than b∗i with support s∗∗ and utility value u∗∗

i .

Assume for the sake of contradiction that s∗ ⊂ s∗∗. If j ∈ s∗ then j ∈ s∗∗. By Claim 1 for every
such j the following inequality holds,

aij
p∗j

=
u∗
i

Bi
≥ u∗∗

i

Bi
=

aij
p∗∗j

,

implying that p∗∗j ≥ p∗j . Subtracting θij from both sides yields b∗∗ij ≥ b∗ij . Summing over j ∈ s∗

yields a contradiction:
Bi =

∑
j∈s∗

b∗ij ≤
∑
j∈s∗

b∗∗ij <
∑
j∈s∗∗

b∗∗ij = Bi,
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where the first inequality is as explained above, and the last by the strict set containment s∗ ⊂ s∗∗.

Finally, as there are no fixed points with support s∗∗ containing s∗, by Lemma 7, the inequality stated
above is strict, that is cs∗ > cs∗∗ and so u∗

i > u∗∗
i .

Claim 3: If b∗∗i ̸= b∗i is a fixed point of fi then b∗∗i is not a limit point of any sub-sequence of (bti)
∞
t=0.

Proof : The proof considers two cases: (1) When ui is continuous at b∗∗ (2) when continuity doesn’t
hold. Let (btk)∞k=1 be a converging subsequence of (bti)

∞
t=0.

Case (1): The utility function ui is continuous at b∗∗i when for every good j it holds that θij > 0 or
b∗∗ij > 0. i.e. that there is no good j with both θij = 0 and b∗∗ij = 0. This is implied directly from the
allocation rule xij =

bij
θij+bij

(see the formal definition in Section 2) and the fact that ui =
∑

j aijxij .
Examine the support of b∗∗i , by Claim 2 there are no fixed points with support set s∗∗ containing
s∗. Therefore s∗ ̸⊂ s∗∗ implying that there exists a good j ∈ s∗ \ s∗∗. That is, by definition of
the supports, there exists j with b∗ij > 0 and b∗∗ij = 0. Consider such j and assume for the sake of
contradiction that b∗∗i is indeed a limit point. Then, by definition, for every δ∗∗ > 0 exists a T s.t. if
t > T then ∥btki − b∗∗ij ∥ < δ∗∗. Specifically it means that |btkij − b∗∗ij | < δ∗∗ whenever t > T .

By Claim 2, u∗
i > u∗∗

i . Then, by continuity there exists a δ′ s.t. if ∥b∗∗i −bi∥ < δ′ then |ui(bi)−u∗∗
i | <

u∗
i −u∗∗

i . Take δ∗∗ < min{δ′, b∗ij} and, by the assumption of convergence, there is a T s.t. for t > T

and we have that ∥btki − b∗∗i ∥ < δ∗∗. This implies (I) |btkij − 0| < δ∗∗ < b∗ij as b∗∗ij = 0 and (II)
|utk

i − u∗∗
i | < u∗

i − u∗∗
i =⇒ utk

i < u∗
i . From these two, we can conclude that

aij

ptkj
=

aij

θij + btkij
>

aij
θij + b∗ij

=
u∗
i

Bi
>

utk
i

Bi
.

Finally, observe that by rearranging the PRD update rule we get bt+1
ij =

aij/p
tk
j

u
tk
i /Bi

btkij , implying that

btk+1
ij > btkij since

aij/p
tk
j

u
tk
i /Bi

> 1 for t > T and b0ij > 0. This means that for all tk > T we have

btkij > bT+1
ij . That is, btkij cannot converge to zero and thus the subsequence cannot converge to b∗∗i , a

contradiction.

Case (2): When there exists a good j with θij = 0 and b∗∗ij = 0 we have that ui is not continuous at
b∗∗i and the previous idea doesn’t work. Instead we will contradict the PRD update rule. Assume of
the sake of contradiction that b∗∗i is a limit point of a subsequence of PRD updates. Therefore for
every ϵ exists a T s.t. if tk > T then |btkij − b∗∗ij | < ϵ. Note that b∗∗ij = 0 in this case and set ϵ < aij

m Bi

and so, for tk > T it holds that aij

b
tk
ij

> m
Bi

. Also note that ptkj = θtkij + btkij = btkij and that the maximal

utility a buyer may have is m (when it is allocated every good entirely). Then overall we have that
aij

p
tk
j

> m
Bi

>
u
tk
i

Bi
. The PRD update rule is btk+1

ij =
aij/p

tk
j

u
tk
i /Bi

btki . But since the ratio
aij/p

tk
ij

u
tk
i /Bi

is greater

than 1 it must be that btk+1
ij > btkij . And so every subsequent element of the subsequence is bounded

below by bT+1
ij > 0 and as before, we reach a contradiction as the subsequence cannot converge to

b∗∗i .

Finally we can prove the convergence of the sequence (bti)
∞
t=1. As the action space Si is compact,

there exists a converging subsequence btki with the limit b∗∗i . If b∗∗i = b∗i for any such subsequence,
then we are done. Otherwise, assume b∗∗i ̸= b∗i . By the previous claim any fixed point of fi other than
b∗i is not a limit point of any subsequence, thus b∗∗i is not a fixed point of fi. By Lemma 1, any subset
of players performing proportional response, strictly increase the potential function unless performed
at a fixed point. When discussing a proportional response of a single player, with all others remaining
fixed, this implies, by the definition of potential function, that ũi is increased at each such step. Let
ϵ < ũi(fi(b

∗∗))− ũi(b
∗∗), this quantity is positive since b∗∗i is not a fixed point. The function ũi ◦ fi

is a continuous function and btki converges to b∗∗i therefore there exists a T such that for all tk > T
we have that |ũi(fi(b

∗∗)) − ũi(fi(b
tk))| < ϵ. Substituting ϵ yields ũi(fi(b

∗∗)) − ũi(fi(b
tk)) <

ũi(fi(b
∗∗)) − ũi(b

∗∗) which implies ũi(b
∗∗) < ũi(fi(b

tk)) = ũi(b
tk+1) ≤ ũi(b

tk+1). That is, the
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sequence ui(b
tk
i ) is bounded away from ũi(b

∗∗) and since ũi is a continuous function, this implies
that btki is bounded away from b∗∗i — a contradiction to convergence.

Appendix C Simultaneous Play by Subsets of Agents

In order to prove Lemma 1, we first need some further definitions and technical lemmas. We use
the notation D(x∥y) to denote the KL divergence between the vectors x and y, i.e., D(x∥y) =∑

j xj ln(
xj

yj
). For a subset of the players v ⊆ B, the subscript v on vectors denotes the restriction

of the vector to the coordinates of the players in v, that is, for a vector b we use the notation bv =
(bij)i∈v,j∈[m] to express the restriction to the subset. ℓΦ(bv; b′v) denotes the linear approximation of
Φ; that is, ℓΦ(bv; b′v) = Φ(b′v) +∇bvΦ(b

′
v)(bv − b′v).

The idea described in the next lemma to present the potential function as a linear approximation term
and a divergence term was first described in [5] for a different scenario when all agents act together in
a synchronized manner using mirror descent; we extend this idea to our asynchronous setting which
requires using different methods and as well as embedding it in a game.
Lemma 9. Fix a subset of the players v ⊂ B and a bid profile b−v of the other players. Then, for
all bv, b′v ∈ Sv we have that Φ(bv) = ℓΦ(bv; b

′
v) −D(p∥p′), where p =

∑
i/∈v bij +

∑
i∈v bij and

p′ =
∑

i/∈v bij +
∑

i∈v b
′
ij .

Proof. Calculating the difference Φ(bv)− ℓΦ(bv; b
′
v) yields

Φ(bv)− ℓΦ(bv; b
′
v) = Φ(bv)− Φ(b′v)−∇bvΦ(b

′
v)(bv − b′v).

We rearrange the term Φ(bv)− Φ(b′v) as follows.

Φ(bv)− Φ(b′v) =
∑

i∈v,j∈[m]

(bij − b′ij) ln(aij)−
∑
j

(pj ln(pj)− p′j ln(p
′
j))−

∑
j

(pj − p′j)

=
∑

i∈v,j∈[m]

(bij − b′ij) ln(aij)−
∑
j

(pj ln(pj)− p′j ln(p
′
j)),

where the last equality is since
∑

j pj = 1 for any set of prices because the economy is normalized
(see the model section in the main text).

The term ∇bvΦ(b
′
v)(bv − b′v) is expanded as follows.

∇bvΦ(b
′
v)(bv − b′v) =

∑
i∈v,j∈[m]

ln(
aij
p′j

)(bij − b′ij)

=
∑

i∈v,j∈[m]

ln(aij)(bij − b′ij)−
∑

i∈v,j∈[m]

ln(p′j)(bij − b′ij).

Subtracting the latter from the former cancels out the term
∑

i∈v,j∈[m] ln(aij)(bij − b′ij), and we are
left with the following.

Φ(bv)− ℓΦ(bv; b
′
v) = Φ(bv)− Φ(b′v)−∇bvΦ(b

′
v)(bv − b′v)

=
∑

i∈v,j∈[m]

ln(p′j)(bij − b′ij)−
∑
j

(pj ln(pj)− p′j ln(p
′
j))

= −
∑
j

pj ln(pj)− (p′j −
∑
i∈v

b′ij +
∑
i∈v

bij) ln(p
′
j)

= −
∑
j

pj ln(pj)− (θvj +
∑
i∈v

bij) ln(p
′
j)

= −
∑
j

pj ln(pj)− pj ln(p
′
j)

= −D(p∥p′).
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Lemma 10. For any subset of the players v ⊂ B and any bid profile b−v of the other players and for
every bv, b

′
v ∈ Sv it holds that D(p∥p′) ≤ D(bv∥b′v), with equality only when bv = b′v .

Proof. We begin by proving a simpler case where v = {i} for some player i and use it to prove
the more general statement. Fix i and b−i, which implies fixing some θi. KL divergence is convex
in both arguments with equality only if the arguments are equal; formally, for λ ∈ (0, 1) it holds
that D(λθi + (1 − λ)bi∥λθi + (1 − λ)b′i) ≤ λD(θi∥θi) + (1 − λ)D(bi∥b′i), which is equivalent
to D(λθi + (1 − λ)bi∥λθi + (1 − λ)b′i) ≤ (1 − λ)D(bi∥b′i), with equality only if bi = b′i (since
D(θi∥θi) = 0). Substituting λ = 1

2 and noting that pj = θij + bij (and the same for p′j and b′ij), we
obtain the following relation.

D(
1

2
p∥1

2
p′) = D(

1

2
θi +

1

2
bi∥

1

2
θi +

1

2
b′i)

≤ 1

2
D(bi∥b′i).

On the other hand, the expression D( 12p∥
1
2p

′) can be evaluated as follows.

D(
1

2
p∥1

2
p′) =

∑
j

1

2
pj ln(

1/2pj
1/2p′j

)

=
1

2

∑
j

pj ln(
pj
p′j

)

=
1

2
D(p∥p′).

And therefore, we have D(p∥p′) ≤ D(bi∥b′i), with equality only if bi = b′i.

Now we can prove the general case, as stated fix v and b−v and let bv, b′v ∈ Sv. We know that
for all i ∈ v it is true that D(p∥p′) ≤ D(bi∥b′i), summing those inequalities for all i ∈ v yields
|v|D(p∥p′) ≤

∑
i∈v D(bi∥b′i), on the one hand clearly D(p∥p′) ≤ |v|D(p∥p′) and on the other hand∑

i∈v D(bi∥b′i) =
∑

i∈v

∑
j bij ln(

bij
b′ij

) = D(bv∥b′v) and the result is obtained.

Lemma 11. Let v ⊆ B, let fv : S → S be a proportional response update function for mem-
bers of v and identity for the others, and let b′ ∈ S be some bid profile. Then, (fv(b′))v =
argmaxbv∈Sv

{ℓΦ(bv; b′v)−D(bv∥b′v)}.

Proof. By adding and removing constants that do not change the maximizer of the expression on the
right hand side, we obtain that the maximizer is exactly the proportional response update rule:

arg max
bv∈Sv

{ℓΦ(bv; b′v)−D(bv∥b′v)} = arg max
bv∈Sv

{Φ(b′v) +∇bvΦ(b
′
v)(bv − b′v)−D(bv∥b′v)}

= arg max
bv∈Sv

{∇bvΦ(b
′
v)bv −D(bv∥b′v)}

= arg max
bv∈Sv

{∇bvΦ(b
′
v)bv −D(bv∥b′v)−

∑
i∈v

Bi ln(
u′
i

Bi
)}.
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Rearranging the last expression by elements yields the following result,

∇bvΦ(b
′
v)bv −D(bv∥b′v)−

∑
i∈v

Bi ln(
u′
i

Bi
) =

=
∑

i∈v,j∈[m]

bij ln(
aij
p′j

)−
∑

i∈v,j∈[m]

bij ln(
bij

b′ij
)−

∑
i∈v,j∈[m]

bij ln(
u′
i

Bi
)

=
∑

i∈v,j∈[m]

bij ln(
aij
p′j

b′ij
bij

Bi

u′
i

)

=
∑

i∈v,j∈[m]

bij ln(

aijx
′
ij

u′
i

Bi

bij
)

= −
∑

i∈v,j∈[m]

bij ln(
bij

aijx′
ij

u′
i

Bi

),

which is exactly −D(bv∥(fv(b′))v), since (fv(b
′))ij =

aijx
′
ij

u′
i

Bi for i ∈ v by definition. That is, our
maximization problem is equivalent to argmin{D(bv∥(fv(b′))v)}. Finally, note that KL divergence
is minimized when both of its arguments are identical, and (fv(b

′
v))v ∈ Sv, the domain of the

minimization.

Proof. (Lemma 1): Let v ⊆ B be a subset of players and let b ∈ S be some bid profile. By combining
the lemmas proved in this section have that

Φ(fv(b)) ≥ ℓΦ(fv(b); b)−D(fv(b)∥b) ≥ ℓΦ(b; b)−D(b∥b) = Φ(b),

where the first inequality is by Lemmas 9 and 10 with the inequality being strict whenever fv(b) ̸= b,
and the second inequality is by Lemma 11, as fv(b) was shown to be the maximizer of this expression
over all b ∈ S.

An interesting case to note here is when v = i. In this case, the lemmas above show that if
the players’ bids are bt and i is being activated by the adversary, then the best response bids
of i to bt−i are the solutions to the optimization problem argmaxbi∈Si

{ℓũi
(bi; b

t
i) − D(p∥pt)}.

On the other hand, the proportional response to bt−i is the solution to the optimization problem
argmaxbi∈Si

{ℓũi
(bi; b

t
i)−D(bi∥bti)}. This can be seen as a relaxation of the former, as proportional

response does not increase ũi (or equivalently the potential) as much as best response does. However,
proportional response is somewhat easier to compute.

Appendix D Convergence of Asynchronous Proportional Response Dynamics

Proof. (Theorem 1): Denote the distance between a point x and a set S as d(x, S) = infx∗∈S ∥x−x∗∥.
By Theorem 2 we have that the set of potential maximizing bid profiles is identical to the set of
market equilibria. Denote this set by ME and the maximum value of the potential by Φ∗. More
specifically, every b∗ ∈ME achieves Φ(b∗) = Φ∗, and Φ∗ is achieved only by elements in ME.

We start with the following lemma.

Lemma 12. For every ϵ > 0 there exists a δ > 0 such that Φ(b) > Φ∗ − δ implies d(b,ME) < ϵ.

Proof. Assume otherwise that for some ϵ0 there exist a sequence (bt) such that Φ(bt) → Φ∗ but
infb∗∈ME ∥bt − b∗∥ ≥ ϵ0 for all t. Note that for all b∗ ∈ ME we have that Φ(b∗) = Φ∗ and
∥bt − b∗∥ ≥ infb′∈ME ∥bt − b′∥ ≥ ϵ0 for all t. Take a condensation point b∗∗ of this sequence and a
subsequence (tj) that converges to b∗∗. Thus by our assumption we have Φ(b∗∗) = limΦ(btj ) = Φ∗.
For any b∗ ∈ME we have ∥b∗∗ − b∗∥ = lim ∥btj − b∗∥ ≥ ϵ0 > 0. The former equality must imply
b∗∗ ∈ME, but the latter implies b∗∗ /∈ME.
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Next, for a subset of players A ⊂ B let fA : [0, 1]n → [0, 1]n be the continuous function where
i ∈ A do a proportional response update and the other players play the identity function. (i.e., do not
change their bids, see Section 5 in the main text).

By Lemma 1 from the main text we have that (i) For all A we have that fA(b) = b if and only if for
all i ∈ A it holds that fi(b) = b; and (ii) Φ(fA(b)) > Φ(b) unless fA(b) = b.

Definition. The stable set of b∗∗ is defined to be S(b∗∗) = {i|fi(b∗∗) = b∗∗}.

A corollary (i) and (ii) above is that if A ⊆ S(b∗∗) then fA(b
∗∗) = b∗∗, but if A \ S(b∗∗) ̸= ∅ then

Φ(fA(b
∗∗)) > Φ(b∗∗).

Lemma 13. : Let Φ(b∗∗) < Φ∗. Then there exists δ > 0 such that for every ∥b− b∗∗∥ ≤ δ and every
A \ S(b∗∗) ̸= ∅ we have that Φ(fA(b)) > Φ(b∗∗).

Proof. Fix a set A such that A \ S(b∗∗) ̸= ∅ and let α = Φ(fA(b
∗∗))−Φ(b∗∗) > 0. Since Φ(fA(·))

is continuous, there exists δ so that |b − b∗∗| ≤ δ implies Φ(fA(b
∗∗)) − Φ(fA(b)) < α and thus

Φ(fA(b)) > Φ(b∗∗). Now take the minimum δ for all finitely many A.

Lemma 14. Let Φ(b∗∗) < Φ∗ and let F be a finite family of continuous functions such that for
every f ∈ F we have that f(b∗∗) = b∗∗. Then there exists ϵ > 0 such that for every b such that
∥b− b∗∗∥ ≤ ϵ and every f ∈ F and every A \ S(b∗∗) ̸= ∅ we have that Φ(fA(f(b))) > Φ(b∗∗).

Proof. Fix f ∈ F and let δ be as promised by the previous lemma, i.e. for every ∥z − b∗∗∥ ≤ δ and
every A \ S(b∗∗) ̸= ∅ we have that Φ(fA(z)) > Φ(b∗∗). Since f(b∗∗) = b∗∗ and f is continuous
there exists ϵ > 0 so that ∥b − b∗∗∥ ≤ ϵ implies ∥f(b) − f(b∗∗)∥ = ∥f(b) − b∗∗∥ ≤ δ and thus
Φ(fA(f(b))) > Φ(b∗∗). Now take the minimum ϵ over the finitely many f ∈ F .

Definition. a sequence of sets At ⊆ B is called T -live if for every i and for every t there exists some
t ≤ t∗ ≤ t+ T such that i ∈ St∗ .

Lemma 15. Fix a sequence b = (bt) where bt+1 = fAt
(bt) such that the sequence At is T -live.

There are no condensation points of (bt) outside of ME.

Proof. Assume that exists a condensation point b∗∗ /∈ME and a subsequence that converges to it,
then Φ(b∗∗) < Φ(b∗). Notice that Φ(bt) is a non-decreasing sequence and so Φ(bt) ≤ Φ(b∗∗) for all
t. Let F be a set of functions achieved by composition of at most T functions from {fA|A ⊂ S(b∗∗)}.
So for every f ∈ F we have that f(b∗∗) = b∗∗, while for every B \ S(b∗∗) ̸= ∅ we have that
Φ(fB(b

∗∗)) > Φ(b∗∗). Let ϵ be as promised by the previous lemma, i.e., for every ∥b − b∗∗∥ ≤ ϵ
and every f ∈ F and every B such that B \ S(b∗∗) ̸= ∅ we have that Φ(fB(f(b))) > Φ(b∗∗).
Since the subsequence converges to b∗∗ there exists tj in the subsequence so that ∥btj − b∗∗∥ ≤ ϵ.
Now let t > tj be the first time that At \ S(b∗∗) ̸= ∅. Now bt+1 = fAt(f(btj )), where f is the
composition of all fA for the times tj to t. We can now apply the previous lemma to get that
Φ(bt+1) = Φ(fAt(f(btj )) > Φ(b∗∗), a contradiction.

Lemma 16. Fix a sequence b = (bt) where bt+1 = fAt(bt) such that the sequence At is T -live.
Then, it holds that limt→∞ d(bt,ME) = 0.

Proof. By lemma 1 we have that Φ(bt+1) ≥ Φ(bt) making the sequence Φ(bt) monotone and
bounded from above (Φ(·) is a bounded function). Hence it converges to some limit L. Either
L = Φ∗ or L < Φ∗. In the former case, the result is immediate by lemma 12 and bt approaches the
set ME. We show that the latter yields a contradiction. If L < Φ∗, this implies that bt is bounded
away from ME, i.e. there exists ϵ0 > 0 such that for all t d(bt,ME) ≥ ϵ0. To see why this is
true for all t and not just in the limit, we observe that since the sequence Φ(bt) is monotone, if we
have d(bT ,ME) = 0 at some time T , then we have Φ(bt) = Φ∗ for all t > T , which we currently
assume is not the case. Therefore, every subsequence of bt is bounded away from ME, implying
that every condensation point of bt is not in ME. The sequence bt is bounded and therefore has
a converging subsequence with a condensation point not in ME, which is a contradiction to the
previous lemma.

25



Regarding convergence of prices, as stated in section 2, equilibrium prices for each Fisher market are
unique and attained by any bid profile b∗ ∈ME, thus, since the prices are a continuous function of
the bids, the convergence of bids to this set implies the convergence of prices pt → p∗.

The last lemma concludes our proof of the Theorem 1.

Appendix E Generic Markets

Proof. (Theorem 5): Assume by way of contradiction that a generic linear Fisher market has two
distinct market equilibrium bid profiles b∗ ̸= b∗∗. For any market equilibrium b it must hold that:
(1) ∀j

∑
i bij = p∗j since equilibrium prices are unique, and (2) ∀i

∑
j bij = Bi by budget

feasibility. As b∗ ̸= b∗∗, there exists a pair (i, j) with b∗ij ̸= b∗∗ij , meaning that buyer i has a different
bid on good j between b∗ and b∗∗, and so by (1) it must be that exists a buyer k whose bid on good j
was also changed so that the price p∗j remains fixed; formally, b∗kj ̸= b∗∗kj . In such case, by (2) there
must be a good ℓ for which buyer k has a different bid as well, since it’s budget Bk is fixed and fully
utilized; formally b∗kℓ ̸= b∗∗kℓ . As the graph Γ = {B ∪ G, E} with E = {{i, j}|b′ij ̸= b∗ij} is finite,
following the process described above while satisfying the constraints (1) and (2) must lead to a cycle
in the graph Γ.

Finally, we will show that there exists a market equilibrium with a cycle in its corresponding graph.
Define b′ = λb∗ + (1 − λ)b∗∗ for some λ ∈ (0, 1) and note that b′ is also market equilibrium as
the set of market equilibria is a convex set (see the model section in the main text). Let Γ(b′) =
{B ∪ G, E(b′)} with E(b′) = {{i, j}|b′ij > 0} be the corresponding graph of b′. Observe that
E ⊆ E(b′) since if b∗ij ̸= b∗∗ij then it must be that b∗ij > 0 or b∗∗ij > 0 and in any such case b′ij > 0.
Thus, the graph Γ(b′) contains a cycle, contradicting Lemma 2 from the main text

Proof. (Lemma 2): Assume for the sake of contradiction that exists a cycle C in Γ(b∗), w.l.o.g.
name the vertices of buyers and goods participating in the cycle in an ascending order; that is,
C = b1g1b2g2 . . . bk−1gkb1, where bi and gi represent buyers and goods i, respectively. Recall that
for any market equilibrium if x∗

ij > 0 then aij

p∗
j
= ci for some constant ci (see the model section in

the main text). Applying this to the cycle C yields the following equations. (1) By considering edges
from buyers to goods bi → gi we obtain for i ∈ [k − 1] ai,i = cip

∗
i , and (2) by considering edges

from goods to buyers gi → bi+1 we obtain for i ∈ [k− 1] ai+1,i = ci+1p
∗
i and the edge closing the

cycle yields a1,k = c1p
∗
k. Finally, by considering the product of ratios between valuations of buyers

participating in the cycle we have the following condition.

a21
a11

a32
a22

a43
a33

. . .
ai+1,i

ai,i
. . .

ak,k−1

ak−1,k−1

a1,k
ak,k

=
c2p

∗
1

c1p∗1

c3p
∗
2

c2p∗2

c4p
∗
3

c3p∗3
. . .

ci+1p
∗
i

cip∗i
. . .

ckp
∗
k−1

ck−1p∗k−1

c1p
∗
k

ckp∗k

=
c2
c1

c3
c2

c4
c3

. . .
ci+1

ci
. . .

ck
ck−1

c1
ck

= 1,

which contradicts the genericity condition.
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