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Abstract
We introduce Mechanistic Error Reduction
with Abstention (MERA), a principled framework
for steering language models (LMs) to mitigate
errors through selective, adaptive interventions.
Unlike existing methods that rely on fixed, man-
ually tuned steering strengths, often resulting in
under or oversteering, MERA addresses these limi-
tations by (i) optimising the intervention direction,
and (ii) calibrating when, and how much to steer,
thereby provably improving performance or ab-
staining when no confident correction is possible.
Experiments across diverse datasets, and LM fam-
ilies demonstrate safe, effective, non-degrading
error correction, and that MERA outperforms ex-
isting baselines. Moreover, MERA can be applied
on top of existing steering techniques to further
enhance their performance, establishing it as a
general-purpose, and efficient approach to mecha-
nistic activation steering.

� https://github.com/annahedstroem/

MERA-steering

1. Introduction
Despite the impressive capabilities of current language mod-
els (LMs), they can be frustratingly error-prone. Failures
arise not only in open-ended tasks like reasoning, factual
consistency or planning (Kambhampati et al., 2024), but
also in simple prediction settings (Hendrycks et al., 2021b;
Webson & Pavlick, 2022; Zhou et al., 2024). Mitigating
such errors is an open research question.

Error reduction methods for LMs have evolved in several
directions, including fine-tuning (Hu et al., 2022; Wu et al.,
2024; Yin et al., 2024), and inference-time approaches like
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Figure 1. An illustration of traditional vanilla steering with fixed
steering strengths (left), leading to under-, and oversteering, and
MERA (right), providing calibrated steering thresholds.

prompt engineering (Kojima et al., 2022), and guided decod-
ing (Yang & Klein, 2021; Liu et al., 2021). While effective
for specific goals, these approaches are typically computa-
tionally intensive or context-sensitive.

An alternative approach is to intervene in the internal com-
putations of the model itself. Mechanistic steering (or “rep-
resentation engineering”) has emerged as a promising line
of research to influence model behaviour by intervening
on activations in inference-time, without permanent weight
updates (Li et al., 2023; Belrose et al., 2023; Todd et al.,
2024; Qiu et al., 2024; Turner et al., 2024).

One widely used instantiation of this approach is contrastive
steering (Arditi et al., 2024; Rimsky et al., 2024), where a
steering vector is constructed by taking the mean activation
difference between paired examples with, and without a tar-
geted concept (e.g. toxic vs non-toxic outputs). This vector
can then be added to the model’s activations to amplify or
suppress such concept in the model (Ball et al., 2024), under
the assumption that the concept is represented along a linear
direction in the model’s representation space (Elhage et al.,
2022; Marks & Tegmark, 2024; Park et al., 2024).

A natural extension is to explore whether such additive lin-
ear steering can be applied for the specific goal of error
mitigation: directly reducing model errors on prediction
tasks. That is, can we find a linear direction in LM’s ac-
tivation space that encodes the concept of “being wrong”,
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and then steer away from it? Unlike traditional alignment
tasks such as reducing toxicity or harmful responses, steer-
ing for error mitigation may be more challenging (Engels
et al., 2024). Errors are not necessarily tied to a single iden-
tifiable concept, but can manifest in various forms (Wang
et al., 2025; Orgad et al., 2024), rendering them resistant to
additive steering (Belrose et al., 2023).

An emerging line of research explores alternative steering
techniques for error-related properties like truthfulness, and
hallucination (Li et al., 2023; Qiu et al., 2024; Wang et al.,
2025; Bhattacharjee et al., 2024). They involve complex
departures from the elegant simplicity of additive steering
through the addition of clustering, architecture-specific in-
terventions, or label-based contrastive vectors. Rather than
advancing into such techniques, we address a simpler, and
more fundamental question: when, and how much should
we steer to mitigate errors effectively?

As Figure 1 (left) illustrates, traditional steering methods
rely on fixed steering strengths. This can lead to issues such
as understeering, where an insufficient change is made to
mitigate errors, and oversteering, where unnecessary (and
potentially detrimental) steering is applied (Tan et al., 2024;
Scalena et al., 2024). The dominant practice is to empiri-
cally find a fixed steering strength based on ad hoc hyper-
parameter sweeps (Liu et al., 2024; Turner et al., 2024;
Postmus & Abreu, 2024; Lee et al., 2025), which are costly,
model-specific, and lack generalisation. Others apply fixed
strengths or none at all (Arditi et al., 2024; Durmus et al.,
2024; Ball et al., 2024). There are also conditional ap-
proaches (Wang et al., 2025; Scalena et al., 2024; Cheng
et al., 2024) that adjust the steering strength dynamically,
but these are not adapted for the specific objective of error
mitigation (see further discussion in §A.3).

In this work, we address the challenge of steering strength
calibration for error mitigation. After identifying steering
directions using linear error estimation probes instead of
contrastive pairs (see §4), we show how to derive an optimal
steering strength to reduce empirical error. This results in
a steering method that does not use a fixed strength, but
rather a fixed threshold in the activation space to which
steering is applied; see Figure 1 (right). A by-product of
our approach is that we abstain from steering activations
that are beyond the threshold, for which error is already
predicted to be low. By formulating steering as a constrained
optimisation problem, we derive a closed-form solution (see
§3.1) which ensures that interventions grow proportionally
with the predicted error. The following calibration step
(see §3.2), checks per task whether a threshold exists that
confidently improves performance; if none can be found,
we abstain entirely. In this way, we steer only when it is
provably beneficial, effectively addressing both under-, and
oversteering.

We make the following contributions:

C1 We propose a principled steering framework to miti-
gate errors, which calibrates intervention intensity to
prevent both under-, and oversteeering, guaranteeing
improved or non-degrading performance (see §3).

C2 We investigate which representation spaces, sparse au-
toencoder (SAE) features or original activations, are
most effective for identifying error-mitigation direc-
tions in LMs using linear probes (see §4).

C3 We introduce mechanistic error reduction with ab-
stention (MERA, see §5), a practical method that em-
pirically achieves safe, effective, non-degrading error
correction, and improve upon existing baselines across
a range of models, and tasks (see §6).

This work highlights a broader vision for post-training align-
ment: lightweight interventions that are both effective, and
probabilistically safe by design. While our current focus is
error mitigation, by adapting the target signal with labeled
inputs, MERA could steer LMs toward diverse specialised
objectives (e.g., harmlessness, honesty, and fairness etc).
This positions MERA as a general-purpose framework for
principled, and minimal post-hoc model control.

2. Preliminaries
Consider an autoregressive, decoder-only transformer
language model f that maps n input tokens, x =
(x1, . . . , xn) ∈ Rn, to an output probability distribution
over all input, and generated tokens, a = (a1, . . . , am+n) ∈
R(m+n)×|V|, where V is the vocabulary set. The model
consists of L sequential blocks, each comprising attention,
feed-forward, and residual stream layers. At layer ℓ ∈ [L],
the activation for the token at position i is denoted h

(ℓ)
i (x).

For each input x, and a given task, we assume an error func-
tion E(a) ∈ [0, 1] that measures the quality of the model’s
generated output, where lower is better.

This setup is general, and applies to various LM tasks. For
instance, in multiple-choice question answering (MCQA),
E(a) can be 0 if the correct answer is within the gener-
ated tokens, and 1 otherwise. In summarisation, E(a) can
quantify the distance between the generated summary, and
a reference.

2.1. LMs for Supervised Tasks

In this work, we focus on supervised problems, where each
prompt x is associated with a ground truth label y ∈ V . Let
Y ⊂ V be the set of valid labels (see §A.5 for details), and
idx(y) ∈ {1, . . . , |V|} be the index of label y ∈ V in the
vocabulary. Given the model’s output distribution a, we
select a token position k, and parse a predicted label ŷ, and
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its probability probŷ as follows

ŷ = argmax
y∈Y

ak,idx(y) and probŷ =
ak,idx(ŷ)∑

y∈Y ak,idx(y)
.

We choose a token position k using one of two strategies: (i)
last, which uses the final token an in the input sequence; or
(ii) exact, a recently proposed method (Orgad et al., 2024)
that uses the first token that matches any valid ground truth
label. In supervised LM tasks, it is common to interpret the
logits at the final token position as the model’s prediction, as
this captures the model’s decision after processing the full
prompt. However, the last position does not always correlate
with how the model actually generates answers (Pres et al.,
2024). To address this, the exact position complements the
last prediction mode, selecting the first token that matches
any valid ground truth label, measuring how an LM model
behaves in its free-form, open-ended generated response.
Further experimental details are provided in §A.5.

For a given prompt-label pair (x, y), the error function is

E(a) = 1− proby, (1)

where proby is evaluated at the chosen token position k.
Additionally, we assess the model’s end-task performance,
which, in our supervised setting, corresponds to accuracy,
which is defined as

A(a) = 1[ŷ = y]. (2)

2.2. Steering

In this paper, we focus on the concept of additive steering
(or “activation addition”). Suppose E(a) ∈ {0, 1}, where
E(a) = 1 indicates that the generated output exhibits a
certain targeted concept (e.g. refusing harmful instructions).
Steering aims to add a vector v(ℓ)i (x) to the activations h at
one or more token positions, and layers as follows

h̃
(ℓ)
i (x) = h

(ℓ)
i (x) + λ v

(ℓ)
i (x), (3)

such that after this intervention, the new output ã satisfies
E(ã) = 0 (e.g. refusing harmful content). A scalar pa-
rameter λ ∈ R+ is introduced to control the strength of
the steering. Throughout the paper, we use the tilde nota-
tion ·̃ to represent the steered version of any quantity, and
let h := h

(ℓ)
i (x), and v := v

(ℓ)
i (x) for brevity. We de-

note f̃ the steered model with output ã := f̃(x). Several
methods have been proposed to extract steering directions
v, including contrastive pairs, linear probes, and principal
components (Wu et al., 2025). In this work, we focus on
the first two, which can be interpreted as deriving v from a
classifier of the targeted concept (Mallen et al., 2023).

Contrastive Steering A widely used technique (Zou et al.,
2023; Arditi et al., 2024; Ball et al., 2024; Rimsky et al.,
2024; Farquhar et al., 2023; Marks & Tegmark, 2024), in-
volves intervening across a token position i, and layer ℓ by
defining v

(ℓ)
i (x) as the difference-in-means between activa-

tion values of positive examples (E(a) = 1), and negative
examples (E(a) = 0). Given a dataset D = {(xj , yj)}Dj=1,
we define the set of positive examples as D+ = {j ∈
[D] : E(aj) = 1}, and the set of negative examples as
D− = {j ∈ [D] : E(aj) = 0}, where aj = f(xj). The
steering vector v(x) is then defined as

v(x) = µ+ − µ−, (4)

where the mean activations µ+, and µ− are given by

µ+ =
1

|D+|
∑
j∈D+

h(xj), µ− =
1

|D−|
∑
j∈D−

h(xj),

which is computed for each layer ℓ, and token position i as
h := h

(ℓ)
i (x), and v := v

(ℓ)
i (x).

Probe-based Steering An emerging alternative technique
is steering guided by probes (von Rütte et al., 2024; Cheng
et al., 2024), which leverages learned linear classifiers (or
“probes”) to guide intervention. A probe, p̂(h) = w⊤h,
is trained to classify targeted properties, and the classifier
weights w are directly used as the steering vector v. Con-
trastive steering can be viewed as a special case of this
framework, where the steering vector is derived from the
Linear Discriminant Analysis classifier , assuming isotropic
covariance between µ+, and µ− (Mallen et al., 2023).

Goal This paper focuses on error mitigation through steer-
ing by leveraging the interplay between probes, and activa-
tion adjustments. In what follows, we propose a principled
framework for utilising probe models in steering, address-
ing key challenges such as determining optimal steering
strength λ, and adaptively intervening across layers, and
token positions with the ability to abstain.

3. Conditional Steering for Error Mitigation
We extend probe steering to minimise continuous errors,
such as the model’s error E(a). Instead of training a classi-
fier, we train an error estimator p̂(h) to predict E(a) from
activations h.

In prior work (Mallen et al., 2023; Li et al., 2023; von Rütte
et al., 2024), the probe’s weights were used directly as the
steering vector. In contrast, we propose to use both the
probe’s predictions, and its weights. Since the probe’s pre-
dictions estimate the LM’s error, we construct the steering
vector to explicitly reduce the predicted error. This approach
provides a principled mechanism for determining the steer-
ing strength, as demonstrated in the next section.
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3.1. Optimising Steering with Abstention

We define steering as moving the activation h in a direction
that reduces the predicted error while staying close to the
original h. Formally, we solve the following constained
optimisation problem

min
v

∥v∥22 subject to p̂
(
h+ v

)
≤ α, (5)

where α represents the target threshold of error reduction.

Linear Case If p̂(h) is linear, i.e. p̂(h) = w⊤h, this
optimisation problem admits a closed-form solution as

v⋆ =


0, if w⊤h ≤ α,(
α− w⊤h

∥w∥22

)
w, if w⊤h > α.

(6)

Intuitively, if w⊤h is already at or below α, no intervention
is required. Otherwise, we adjust h to ensure w⊤(h+ v⋆)
satisfies the threshold α.

Equivalently, we can rewrite the resulting steering vector as
v⋆ = λ⋆w, where

λ⋆ = max

(
0,

α− w⊤h

∥w∥22

)
. (7)

This formulation offers intuitive interpretations:

• Selective Steering: Intervention are applied selec-
tively, only when p̂(h) = w⊤h > α at a given token,
and layer level.

• Adaptive Strength: The steering strength scales with
the residual α−w⊤h = α− p̂(h), leading to stronger
adjustments for larger estimated errors.

The normalisation by ∥w∥22 aligns with prior work (von
Rütte et al., 2024), where such scaling factors have been
shown to improve steering efficacy.

Extension to Non-linear Models A similar closed-form
solution arises when p̂(h) is an affine function composed
of an invertible transformation. For instance, if p̂(h) =
sigmoid(w⊤h), the constraint p̂(h + v) ≤ α translates to
w⊤(h+ v) ≤ logit(α). The steering strength will be

λ⋆ = max

(
0,

logit(α)− p̂(h)

∥w∥22

)
(8)

Although we focus on linear probes in this work, §A.1 dis-
cusses how to extend these ideas to non-linear probe func-
tions (e.g. a one-layer MLP).

3.2. Calibrating for Safety

In this framework, the steering threshold α is the key param-
eter that determines both when an intervention is triggered,
and how strongly the activations are shifted. We select α us-
ing a calibration set Dcal = {(xj , yj)}Nj=1 , which is distinct
from the dataset used to train the error regressor. For a given
α, let ∆cal(α) denote the change in some measure of LM’s
performance on Dcal, such as the accuracy A (Equation 2)
or (negative) error −E (Equation 1), after applying steering
with the corresponding steering strength λ⋆ (Equation 7).
Specifically, we define the optimal threshold α∗ as

α∗ = arg sup
α∈αvalid

∆cal(α), where

αvalid = {α ∈ {α1, . . . , αK} : ∆cal(α) > ϵ + b(δ,K,N)},
and α1, . . . , αK ∈ (0, 1) are candidates values for α.
b(δ,K,N) =

√
log(2K/δ)/(2N) is a confidence bound

derived by applying a union bound (Bonferroni correction,
using a Hoeffding inequality) over the K candidate hypothe-
ses αi (see §A.2 for derivation). This ensures that, with
probability at least 1− δ, the selected α∗ yields a genuine
performance improvement that exceeds ϵ .

Theoretical Guarantees This procedure guarantees either
a provable improvement in performance or abstains from
intervention if αvalid is empty. Assuming i.i.d. samples, it
satisfies

P (∆cal(α
∗) > ϵ) ≥ 1− δ. (9)

See proof in §A.2. More generally, this approach is flexible,
and can incorporate any valid bound b satisfying the desired
confidence guarantee in Equation 9.

Instead of relying on a Bonferroni-style correction, which
may be overly conservative, an alternative approach is to
split the calibration data: use one part to select the optimal
α⋆, and the other to verify that its confidence interval lower
bound exceeds ϵ.

By adjusting δ, practitioners can control the trade-off be-
tween conservativeness, and aggressiveness of the steering
policy. In our experiments, we set δ = 0.01, ϵ = 0, and
use difference in accuracy as ∆cal(α), though the method is
agnostic to the metric used, and can accommodate relevant
alternatives such as F1 score in classification tasks.

3.3. A Principled Framework

Our framework establishes a principled foundation for con-
ditional activation steering, grounded in three key ingredi-
ents. First, we use linear probes to obtain effective directions
for minimising the predicted error. Second, this direction is
then scaled using the closed-form solution at both the token,
and layer levels. Third, we calibrate the steering threshold
α against the true error on the calibration dataset, informed
by the user’s tolerance for uncertainty (i.e. set by δ).
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Figure 2. Layer-wise performance of linear error estimators for different LM families, separated by distinct token position, and input
feature strategies. RMSE, and standard error is reported. Extended results are provided in A.6.1.

A key advantage of this formulation lies in how it handles
the steering strength λ: defining the appropriate range of
values for this factor is nontrivial, and often requires careful
weight normalisation or manual tuning. In our approach,
this challenge is eliminated. The α value, and the estimated
error inherently determine the steering strength, providing a
natural, and intuitive interpretation of its role:

• Global Abstention. If calibration indicates that no α
offers improvement beyond a baseline ϵ, we refrain
from intervening altogether.

In this way, steering interventions remain both effective (re-
ducing error where needed), and safe (avoiding unnecessary
or detrimental modifications). In a similar spirit to Cheng
et al. (2024); Liu et al. (2024), which underscores the value
of theoretical guarantees for safe steering towards semantic,
binary properties, our method, to the best of our knowledge,
is the first error-mitigation approach whose objective is to
calibrate steering thresholds to lower true empirical error
with provable guarantees, thereby advancing this emerging
line of research.

4. Choosing Representations for Steering
In the previous section, we showed how to derive a condi-
tional steering direction for error mitigation from an arbi-
trary model activation h. A remaining question is: which
representations should be used to find steering directions?

The candidate set of activations h is large, spanning (n +
m)× L, where n+m denotes the total number of tokens
from both the prompt, and the generated answer, and L is the
number of layers. Existing studies on contrastive steering
navigate this extensive space by conducting computationally
expensive, and model-specific hyperparameter sweeps (Li
et al., 2023; Liu et al., 2024; Turner et al., 2024). In addition,
the strategies used for selecting layers, and token positions
for constructing the steering vector versus applying the vec-

tor in inference-time, often differ (see §A.4 for an extended
discussion). Lastly, it remains an open research question
whether such strategies extend to mitigating continuous er-
rors (as opposed to strictly binary alignment targets, e.g.
reducing toxicity).

To address these gaps, we investigate two central questions:

Q1 Token position. Does extracting activations from the
exact token position in the generated answer, as re-
cently recommended by Orgad et al. (2024), improve
probe performance?

Q2 Representation. Can sparse representations, such as
those obtained through SAEs (Lieberum et al., 2024;
Joseph Bloom & Chanin, 2024), enhance the learned er-
ror direction, and thus improve steering performance?

In line with prior work (Rimsky et al., 2024; Ball et al., 2024;
Tan et al., 2024; Arditi et al., 2024; Jorgensen et al., 2023;
Krasheninnikov & Krueger, 2024; Postmus & Abreu, 2024),
we focus on steering the residual stream (Elhage et al.,
2021), i.e. the aggregated “running sum” representation
across MLP, and attention layers (Zhao et al., 2021), rather
than selecting specific attention heads (Li et al., 2023; Wang
et al., 2025).

4.1. Experimental Setup

We systematically analyse how choices of token position,
and representation type affect probe quality across multiple
models, and tasks.

Models We evaluate a diverse set of decoder-only models,
including LLAMA (Team, 2024b), GEMMA (Team, 2024a),
and QWEN (Team, 2024c), spanning distinct sizes. Specif-
ically, we examine both the base-, and instruction-tuned
variants of LLAMA-3.2-1B, GEMMA-2-2B, and QWEN-
2.5-3B models. Details on these LMs, and their task per-
formance are provided in §A.5. For the Gemma models, we

5



Mechanistic Error Reduction with Abstention for Language Models

Figure 3. Visualisation of MERA methodology to mechanistically steer LMs: 1. cache activations, and errors, 2. train error estimators,

3. calibrate steering thresholds.

retrieve pre-trained SAEs from GEMMA-SCOPE (Lieberum
et al., 2024).

Datasets We evaluate our methods on supervised tasks
with varying label cardinalities (binary, ternary, and qua-
ternary), and class distributions, ranging from balanced
to highly imbalanced datasets. The datasets include SMS
SPAM (Almeida et al., 2011), YES/NO (AI, 2023), SENTI-
MENT (AI, 2023), and MMLU (Hendrycks et al., 2021a),
with subset of high-school, and professional level questions,
i.e. MMLU-HS, and MMLU-PROF. The training datasets
contain between 2600-300 training samples, with 30% used
for validation. Additional dataset details are provided in
Table 2 in §A.5.

Probes For each layer, we train a linear probe p̂, and
measure how well it predicts the model’s true error E(a)
across distinct token positions. Regularisation ensures that
the learned error estimators are sparse (see §A.6.3 for fur-
ther details). We use root mean squared error (RMSE) to
measure performance, where lower values indicate better
performance (see §A.6.4 for details).

Sparse Representations For sparse representations, we
specifically explore the encoding of a SAE, which maps the
original activations h ∈ Rd to a high-dimensional activation
space z(h) ∈ Rw as follows

z(h) = σ(Wenc(h− benc) + benc),

where σ is an activation function (e.g.
JumpReLU (Lieberum et al., 2024)), benc is a bias
vector, and Wenc is a learned weight matrix. Only a
subset of activations in z will be non-zero, and w ≫ d.
Empirically, we explore whether sparse activations enhance
linear probe performance (Templeton et al., 2024) to
potentially be used for steering (Zhao et al., 2024; Durmus
et al., 2024; Mayne et al., 2024; Bricken et al., 2024;
Kantamneni et al., 2025).

Results Figure 2 illustrates the RMSE, and standard error
across the top 5 performing regression probes (see §A.5
provides additional details). Generally, we find that the
exact position strategy performs at least as well as, if not
better than, the last position across most model families
(i.e. LLAMA, and GEMMA). Thus, we will use the exact
position to extract h to train p̂. For sparse representations,
we find no signal of improved probe performance. In §A.6.1,
we break down the results per model, and observe a high
variability across models. Since SAEs also impose high
compute costs, we find no compelling reason to use sparse
activations instead of original activations for the purpose of
probe-based steering.

5. Introducing MERA
In the following, we introduce MERA—a general mechanis-
tic steering methodology that practically operates in three
main steps. We refer to Figure 3 for an overview of these
steps.

1. Cache activations, and errors. Construct a training
Dtrain by pairing LM errors E(a) with activations h(ℓ)

k

at exact token position k for each layer ℓ ∈ {1, . . . , L}.
Prepare a calibration dataset Dcal with input prompts
x, and their corresponding true labels y.

2. Train error estimators. Train L linear probes p̂(h) =
w⊤h on Dtrain activations h to estimate the LM error
E(a), applying distinct sparsity constraints (see full
training methodology in §A.5).

3. Calibrate steering threshold. Calibrate the optimal
steering threshold α∗ on inputs x, and their correspond-
ing true labels y in Dcal to maximise ∆cal(α) (see §3.2),
given a user-specified confidence 1− δ.

A key advantage of MERA is its flexibility: while we train
linear error estimators to find a steering direction v for each
layer ℓ, both the optimisation of λ, and calibration of α
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remains generalisable to other definitions of v, such as con-
trastive steering (Farquhar et al., 2023) or weights from a
logistic regression probes (Cheng et al., 2024; von Rütte
et al., 2024). This means we can use MERA as a methodology
to improve existing steering methods. In §6, we empirically
quantify this improvement.

How we Calibrate We determine the optimal steering
threshold α⋆ via a gradient-free grid search over α ∈ [0, 1]
discretised into 10 equal intervals, selecting the value that
maximises ∆cal(α) while satisfying a predefined safety con-
straint as described in §3.2. The unsteered reference accu-
racy is first established on Dcal, then accuracy is reported
when steering at each candidate α. If no α yields a statisti-
cally significant improvement, we abstain from intervention,
ensuring λ⋆ = 0. In §A.7, we show that accuracy, and error
are closely related in our tasks. As discussed in §A.5, MERA
offers efficient inference, with the main computational bur-
den arising from the one-time, offline calibration.

6. Benchmarking
Our experiments aim to answer the following question:

Q1 Does MERA make steering more effective, and safe?

6.1. Evaluating Steering

In alignment tasks, steering is typically evaluated along two
complementary dimensions, i.e. its efficiency in producing
responses aligned with the high-level concept, and its ability
to preserve fluency, and naturalness of text (Pres et al., 2024).
In the context of error mitigation, however, the goal is to
steer LMs toward correct labels. Accordingly, we shift the
evaluation target to improving task accuracy.

Our main question is: how much does a steering method
actually help (or hurt) model performance? Comparing
raw performance deltas alone can be misleading, especially
when baseline accuracy is already high, making small degra-
dations disproportionately large. To address this, in the spirit
of Burns et al. (2023), we define a Steering Performance
Impact (SPI) score

SPI =


ÃDtest−ADtest

1−ADtest
, if ÃDtest > ADtest

ÃDtest−ADtest
ADtest

, otherwise
(10)

where ADtest is the test set accuracy Dtest defined as follows

ADtest =
1

|Dtest|
∑

i∈Dtest

A(ai), (11)

and ÃDtest denotes the accuracy computed analogously on
steered outputs ãi. SPI provides a bounded, symmetric

measure in [−1, 1]. If a steering method recovers the full
performance, i.e. matches perfect accuracy, SPI equals 1. If
steering degrades task accuracy fully to zero, SPI is −1. If
there is no effect from steering, SPI will be 0. By measuring
relative effects in this way, benchmarks across tasks, and
models with varying baselines become more meaningful.

6.2. Methods

We evaluate our steering proposal against several baselines.

• No steering. Without intervention.

• BASE-x (prompt-based steering). Appends suffix
“Think before you answer.” to the prompt (see §A.5),
serving as a prompt-based baseline (Kojima et al.,
2022).

• BASE-µk (contrastive steering). Following (Rimsky
et al., 2024; Tan et al., 2024), a steering vector is
defined as the contrastive mean (µ+ − µ−) at the
last token position in the prompt (k = n), using
the layer identified as most effective by a probe p̂
for steering. Contrastive pairs are constructed with
the top-k highest-, and lowest-error training samples
(k ∈ {50, 100, 200}).

• BASE-p̂, BASE-p̂log (probe-based steering). Uses
weights of linear error estimator p̂ or logistic probe p̂log
(i.e. trained with the LM’s predicted labels ŷ (Cheng
et al., 2024; von Rütte et al., 2024)) as additive steering
directions without optimisation.

To assess if MERA improves existing baselines, we include
the following methods.

• MERA. Trains a regressor p̂ to predict the LM’s error,
optimising both steering direction, and strength (see
§3).

• MERA-p̂log. Replaces p̂ with weights of a logistic re-
gression probe p̂log (see BASE-p̂log).

• MERA-µ100. Substitutes probe weights w by con-
trastive means, with k = 100 (see BASE-µ1).

For comparability, all MERA steering methods intervene
across all layers, and token positions (see §4). In §A.6.4,
we included an ablation study for such choices.

6.3. Results

Figure 4 provides an aggregate overview of steering perfor-
mance across models, and datasets, averaging both evalu-
ation modes (see §2.1), and error percentiles. Higher SPI
values indicate stronger error mitigation, while negative SPI
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Figure 4. Overview of steering results for various LMs, and datasets. The first, and second panels display model-, and dataset-specific
views, respectively, with δ = 0.05. The third panel shows error percentiles, aggregated over the “last”n setting.

suggests degradation. In contrast, Table 1 offers a more
detailed view, reporting SPI values, with δ = 0.01 for each
model, and dataset individually.

MERA Outperforms Baselines, and Enhances Existing
Steering Methods The aggregate views in Figure 4,
shows that MERA improves accuracy compared to both un-
steered models, and existing steering approaches in all set-
tings. The third panel in Figure 4 (right) shows that MERA
reduces errors across the percentiles. While these overall
positive trends are encouraging, Table 1 shows that per-
formance gains can vary with the model, and dataset, as
detailed next.

Certain LMs, and datasets benefit more than others. In
Table 1, LLAMA-3.2-1B, and QWEN-2.5-3B show the
largest improvements, particularly on binary tasks such as
SMS SPAM, and YES/NO, where SPI gains reach +0.87.
Base models benefit more from MERA steering compared
to instruction-tuned models. Corroborating Rimsky et al.
(2024), we note that the MMLU-HS, and MMLU-PROF
subset is overall difficult to steer.

• Contrastive steering without MERA is highly unreliable,
sometimes reducing accuracy (see Table 1 for exam-
ples). With MERA, it consistently improves accuracy,
turning -0.05 SPI into +0.52 in YES/NO, and -0.09
into +0.21 in MMLU-HS, which is in line with the
theoretical guarantees discussed in §3.2.

• Logistic probe-based steering mostly fails (-0.85 SPI
in SENTIMENT) but with exceptions (+0.83 SPI SEN-
TIMENT). MERA can help prevent task degradation
(+0.00 SPI) where its base version fails.

• Our primary proposal MERA proves highly effective.
Without MERA, BASE-p̂ is too weak to be useful (+0.00

SPI in MMLU-HS, and SMS SPAM) with negligible
or negative gains. With MERA, it becomes the best-
performing method, improving SPI by +0.64 in SEN-
TIMENT, and +0.53 in YES/NO, suggesting that error-
based steering is better than using binary probe targets.

As detailed in §A.6.2, to analyse how steering affects pre-
diction quality, we define transitions based on ground truth
labels, where 0 denotes an incorrect, and 1 a correct predic-
tion. Oversteering corresponds to unnecessary degrading
outcomes (1 → 0), while understeering reflects missed op-
portunities to correct (0 → 0). As shown in Figure 12,
while imperfect, MERA generally yields more corrective
transitions with fewer degradations than baseline methods.

7. Discussion
Today, LMs can be frustratingly error-prone, failing even in
simple supervised tasks. In this work, we establish a general-
purpose methodology to steer LMs towards the correct an-
swer. Unlike existing approaches that rely on expensive,
uncalibrated, model-specific hyperparameter sweeps to find
an appropriate strength for steering, our main contribution is
a theoretically grounded framework that answers questions
of when, and how much to steer.

Experiments across diverse datasets, and LM families con-
sistently show that MERA not only improves task accuracy
over baselines, but also enhances existing contrastive, and
probe-based steering methods. However, our current frame-
work is inherently linear, and thus limited in its capacity
to capture non-linear relationships between internal activa-
tions, and model error. Our results on MMLU subsets un-
derscore this limitation: certain datasets may be inherently
harder to steer due to factors like semantic class overlap,
task complexity, and label cardinality, warranting further
investigation (Tan et al., 2024). One of MERA’s strengths
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Table 1. Complete view of steering results for various LMs and tasks. SPI (Equation 10) is reported, capturing the relative increase or
decrease in accuracy for both the “last” (left) and “exact” (right) evaluation modes for δ = 0.01. Higher values are better.

DATASET METHOD LLAMA-3.1-1B LLAMA-3.1-1B-IT GEMMA-2-2B GEMMA-2-2B-IT QWEN-2.5-3B QWEN-2.5-3B-IT

YES/NO

BASE-x (-0.05) | (+0.10) (+0.16) | (+0.18) (-0.21) | (-0.39) (-0.23) | (+0.00) (+0.00) | (-0.01) (+0.02) | (+0.03)
BASE-µ50 (+0.00) | (+0.03) (-0.03) | (+0.03) (+0.01) | (+0.00) (-0.01) | (-0.02) (+0.02) | (+0.00) (+0.01) | (+0.01)
BASE-µ100 (-0.05) | (-0.06) (+0.03) | (+0.18) (+0.01) | (+0.00) (-0.01) | (-0.02) (+0.01) | (-0.03) (-0.01) | (+0.00)
BASE-µ200 (-0.04) | (-0.06) (-0.01) | (+0.00) (+0.01) | (+0.01) (+0.00) | (+0.00) (-0.01) | (-0.01) (+0.01) | (+0.01)
BASE- ˆpLOG (+0.52) | (-1.00) (-0.28) | (-1.00) (-0.12) | (+0.01) (-0.02) | (-0.11) (+0.38) | (+0.10) (+0.49) | (-0.31)
BASE-p̂ (-0.01) | (+0.01) (-0.04) | (-0.06) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.01) | (+0.01) (+0.01) | (+0.01)

MERA-µ100 (+0.52) | (+0.00) (+0.19) | (+0.00) (+0.00) | (+0.00) (+0.16) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA (+0.52) | (+0.28) (+0.44) | (+0.00) (+0.42) | (+0.00) (+0.15) | (+0.00) (+0.47) | (+0.52) (+0.53) | (+0.00)

SMS SPAM

BASE-x (+0.79) | (+0.03) (-0.79) | (-0.90) (+0.00) | (-1.00) (-0.52) | (+0.20) (-0.69) | (+0.44) (+0.00) | (+0.00)
BASE-µ50 (+0.84) | (-1.00) (-0.01) | (-0.15) (+0.00) | (-0.10) (+0.03) | (+0.00) (+0.15) | (+0.00) (+0.00) | (+0.00)
BASE-µ100 (+0.06) | (+0.10) (-0.03) | (-0.19) (+0.00) | (-0.19) (+0.03) | (+0.00) (+0.24) | (+0.00) (+0.00) | (+0.00)
BASE-µ200 (+0.00) | (-0.05) (+0.00) | (+0.04) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.20) | (+0.04) (+0.00) | (+0.00)
BASE- ˆpLOG (+0.88) | (-1.00) (-0.03) | (-1.00) (+0.00) | (+0.83) (+0.19) | (+0.00) (+0.09) | (-0.93) (+0.48) | (+0.02)
BASE-p̂ (+0.01) | (+0.02) (+0.00) | (+0.02) (+0.00) | (+0.00) (-0.02) | (+0.00) (+0.70) | (+0.00) (+0.00) | (+0.00)

MERA-µ100 (+0.44) | (+0.77) (+0.00) | (+0.50) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.08) (+0.00) | (+0.00) (+0.16) | (+0.00) (+0.00) | (+0.00)
MERA (+0.87) | (+0.71) (+0.00) | (+0.41) (+0.00) | (+0.12) (+0.00) | (+0.00) (+0.83) | (+0.70) (+0.87) | (+0.00)

SENTIMENT

BASE-x (+0.00) | (-0.65) (-0.10) | (+0.01) (-0.32) | (+0.09) (+0.12) | (-0.10) (-0.45) | (-0.35) (-0.50) | (-0.50)
BASE-µ50 (+0.00) | (-0.33) (+0.50) | (+0.50) (-0.19) | (+0.00) (-0.11) | (-0.72) (+0.03) | (+0.01) (+0.06) | (+0.06)
BASE-µ100 (+0.00) | (-0.28) (+0.45) | (+0.45) (+0.00) | (+0.00) (-0.07) | (-0.53) (+0.02) | (+0.00) (+0.07) | (+0.06)
BASE-µ200 (-0.04) | (-0.06) (-0.01) | (+0.00) (+0.01) | (+0.01) (+0.00) | (+0.00) (-0.01) | (-0.01) (+0.01) | (+0.01)
BASE- ˆpLOG (-0.21) | (-1.00) (+0.87) | (-1.00) (-0.26) | (-0.09) (-0.05) | (-0.54) (-0.85) | (+0.19) (+0.38) | (+0.24)
BASE-p̂ (+0.00) | (+0.03) (-0.07) | (-0.07) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.06) | (+0.00) (+0.00) | (+0.00)

MERA-µ100 (+0.00) | (+0.00) (+0.35) | (+0.35) (+0.00) | (+0.00) (+0.16) | (+0.17) (+0.24) | (+0.11) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.00) | (+0.00) (+0.21) | (+0.21) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.49) | (+0.33) (+0.16) | (+0.21) (+0.00) | (+0.00) (+0.70) | (+0.41)

MMLU-HS

BASE-x (+0.16) | (-0.59) (-0.12) | (-0.35) (+0.00) | (+0.00) (+0.00) | (+0.01) (+0.00) | (-0.26) (-0.30) | (-0.70)
BASE-µ50 (-0.02) | (-0.03) (-0.02) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (-0.05) | (-0.08) (-0.09) | (-0.09)
BASE-µ100 (-0.05) | (-0.05) (-0.05) | (-0.05) (+0.00) | (+0.00) (+0.00) | (-0.04) (-0.09) | (-0.12) (-0.07) | (-0.07)
BASE-µ200 (+0.01) | (-0.03) (+0.00) | (-0.05) (+0.00) | (+0.00) (+0.00) | (+0.01) (+0.05) | (-0.08) (-0.01) | (-0.01)
BASE- ˆpLOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
BASE-p̂ (+0.00) | (+0.00) (+0.01) | (-0.07) (+0.00) | (+0.05) (+0.00) | (+0.01) (+0.02) | (+0.00) (+0.02) | (+0.02)

MERA-µ100 (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.21) | (+0.13) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.21) | (+0.13) (+0.00) | (+0.00)
MERA (+0.00) | (+0.00) (+0.33) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (-0.01) | (-0.01)

MMLU-PROF

BASE-x (+0.01) | (-0.63) (-0.16) | (-0.42) (+0.00) | (+0.01) (+0.03) | (+0.01) (+0.01) | (-0.15) (+0.01) | (-0.27)
BASE-µ50 (-0.06) | (-0.06) (-0.19) | (-0.07) (+0.00) | (+0.00) (+0.00) | (-0.12) (-0.03) | (-0.02) (+0.07) | (+0.07)
BASE-µ100 (+0.01) | (+0.01) (-0.11) | (-0.09) (+0.00) | (+0.00) (+0.00) | (-0.05) (-0.03) | (+0.01) (+0.04) | (+0.04)
BASE-µ200 (+0.02) | (+0.01) (-0.05) | (-0.13) (+0.00) | (+0.00) (+0.00) | (-0.05) (-0.04) | (-0.02) (+0.01) | (+0.01)
BASE-p̂LOG (-0.06) | (-0.06) (+0.01) | (-0.80) (+0.00) | (+0.00) (+0.01) | (+0.02) (-0.24) | (-0.25) (+0.06) | (-0.35)
BASE-p̂ (-0.06) | (-0.06) (+0.01) | (-0.80) (+0.00) | (+0.00) (+0.01) | (+0.02) (-0.24) | (-0.25) (+0.06) | (-0.35)

MERA-µ100 (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.24) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA-p̂LOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.10) | (+0.10)

is to detect such unsteerable cases, and abstain from in-
tervention, making it a more cautious steering approach
compared to baseline methods. That said, while MERA im-
proves targeted error correction, it may inadvertently impair
general capabilities. For example, steering for specalised
tasks could reduce performance on unrelated generation or
reasoning tasks. Exploring these trade-offs, and develop-
ing safeguards to preserve generality, and text fluency is an
important direction for future work.

In this work, we focus our evaluation on MCQA classi-
fication tasks, as it allows for a controlled setup where
ground-truth error can be unambiguously read off from
token-level predictions (see §2). However, this choice of set-
ting does not reflect a fundamental limitation of MERA. The
framework is applicable to any task where labeled supervi-

sion over model behavior is available. For example, MERA
could be extended to alignment objectives such as toxic-
ity reduction, refusal behavior, and harmfulness mitigation;
directions that we plan to explore next.

There are also several promising directions for advancing
MERA as a general steering methodology. One promising
avenue is to replace the linear error probes with non-linear
estimators, such as neural networks, an extension we outline
in §A.1. Another is investigating the impact of the evalu-
ation metric used during calibration. For example, could
using F1 score instead of accuracy promote more balanced
steering in tasks with high class imbalance or cardinality?
We aim to explore such questions in future work.
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A. Appendix
A.1. Non-Linear Case

When p̂ is replaced by a non-linear function (e.g. a MLP), the constraint p̂(h + v) ≤ α cannot be expressed in a simple
linear form. In such cases, a closed-form solution does not exist.

One approach is to apply a first-order Taylor approximation of the non-linear function p̂(h + v) around the current
representation h. Specifically, we linearise p̂ as

p̂(h+ v) ≈ p̂(h) +∇hp̂(h)
⊤v,

where ∇hp̂(h) ∈ Rd is the gradient of p̂ with respect to h. Substituting this into the constraint p̂(h + v) ≤ α yields the
approximate linear constraint:

p̂(h) +∇hp̂(h)
⊤v ≤ α.

This transforms the problem into the following quadratic program

min
v

∥v∥22 s.t. ∇hp̂(h)
⊤v ≤ α− p̂(h).

which corresponds exactly to the problem solved in the main body in Section 3.1 by letting w := ∇hp̂(h).

Alternatively, we can directly solve the non-linear constrained problem using numerical optimization techniques, such as
projected gradient methods or interior-point solvers or adopting a penalty-based approach that converts the constraint into a
differentiable penalty term, resulting in the following unconstrained objective

min
v

{
∥v∥22 + ζ ·

(
max(0, p̂(h+ v)− α)

)2}
, (12)

where ζ > 0 is a scalar hyperparameter controlling how strictly we enforce the constraint. Because this formulation is
fully differentiable, any standard gradient-based optimiser (e.g. Adam or SGD) can be used to iteratively update v until
convergence.

Similarly to the linear case, we choose α, and δ using a calibration set to effectively minimise the true loss. However, note
that each candidate value requires solving the above problem 12 anew, which can be computationally demanding.

A.2. Calibration Step Detailed, and Theoretical Guarantees

The rationale behind our selection procedure is to ensure that we do not choose a value of α ∈ (0, 1) unless it demonstrates
a statistically significant improvement in performance. The strategy is as follows: we first identify the subset of α values
that provably yield a positive performance improvement with high probability, and then select the one among them with the
highest empirical performance.

To formalise this, suppose f(α,Xi) ∈ [0, 1] is a performance function, and Xi is a random input variable. Then, the
empirical performance on a calibration dataset Dn = {X1, . . . , Xn} is given by

P (α,Dn) =
1

n

n∑
i=1

f(α,Xi).

We denote P (α,D) as the theoretical performance.

Our approach proceeds in the following steps:

1. Discretise the interval [0, 1] into K points: {α1, . . . , αK}.

2. Construct confidence bands around each αj , using Hoeffding’s inequality, for example

Pr (|P (αj , Dn)− P (αj , D)| ≤ δn) ≥ 1− α

K
,

where δn =
√

ln(2K/α)
2n .
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3. Apply the union bound to ensure that, with probability at least 1− α, all the above intervals simultaneously hold

|P (αj , Dn)− P (αj , D)| ≤ δn for all j = {1, . . . ,K},

or equivalently

Pr

(
sup

α∈[0,1]

|P (α,Dn)− P (α,D)| ≤ εn

)
≥ 1− α.

With this in place, we define the valid set
αvalid = {α : L(α) > 0},

and select
α∗ = arg max

α∈αvalid
P (α,Dn).

Because the confidence bands hold uniformly over all α with high probability, we can guarantee that for every α ∈ αvalid, the
true performance P (α,D) is also positive. Thus, on this “good event”, α∗ indeed corresponds to a true positive performance
improvement.

This provides a formal guarantee, based on i.i.d. data, and bounded performance function, that our method yields a
statistically sound improvement or abstains with high probability.

Alternative Perspective An alternative to Bonferroni-style correction, which may sometimes be conservative is to split
the data into two parts:

• Use one part to select the empirically optimal α⋆,

• Then use the held-out part to estimate a confidence interval for the performance metric.

We accept the selected α⋆ only if the lower bound of its confidence interval exceeds the desired threshold. This approach
avoids the potentially conservative bounds introduced by Bonferroni correction, and can lead to tighter, and more adaptive
inference.

A.3. Related Works on Steering Strength

Several prior works have explored different strategies for determining the appropriate strength of steering in LMs. We
discuss these below.

Fixed Strengths, and Hyperparameter Sweeps Li et al. (2023); Liu et al. (2024); Turner et al. (2024); von Rütte et al.
(2024); Postmus & Abreu (2024); Rimsky et al. (2024); Tan et al. (2024); Cao et al. (2024) rely on brute-force testing of
different steering strengths across layers, and token positions, selecting the best-performing configuration. For example,
Postmus & Abreu (2024); Turner et al. (2024); Liu et al. (2024); Cao et al. (2024) performs an exhaustive grid search over
multiple layers, and multipliers, determining steering strength via empirical accuracy. Similarly, von Rütte et al. (2024)
evaluates steering at fixed increments for LLAMA, and MISTRAL, while adjusting layers. Durmus et al. (2024) uses a
heuristic range of (-5,5) across tasks, admittedly an “arbitrary” decision. This approach is computationally expensive, and
not generalisable across architectures or tasks.

Arditi et al. (2024); Bhattacharjee et al. (2024); Ball et al. (2024) bypass search entirely, applying a pre-set steering strength
across all instances, fixing λ at 1. While computationally efficient, unlike hyperparameter sweeps, no effort is made to select
an optimal λ⋆.

Conditional Methods Wang et al. (2025); Scalena et al. (2024) regulate steering strength dynamically. For example, Wang
et al. (2025) clusters attention heads based on truthfulness, applying a variable steering strength that scales inversely with
classifier confidence. Scalena et al. (2024) diminishes steering strength throughout model generation, reducing intervention
as logit divergence stabilises. Cheng et al. (2024) is most similar to our work, and formulates steering as a constrained
minimisation problem, selecting the minimal λ necessary to satisfy a safety threshold. A limitation of these methods is that
they rely on indirect heuristics rather than directly calibrating for error minimisation on a given task.
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Lee et al. (2025) also explore conditional steering, but differ from our approach in that they trigger interventions based
on cosine similarity with condition vectors, use PCA on contrastive examples to define steering directions, and select
intervention strength via grid search rather than a closed-form solution. Also, Luo et al. (2024) propose an intervention
method with some mathematical resemblance to ours, modulating steering strength via inner products, but differ in
motivation, and design, as their approach targets suppression of harmful concepts in a predefined dictionary via supervised
training, whereas MERA focuses on error mitigation with calibrated, layer-wise closed-form updates derived from held-out
data.

A.4. Related Works on Steering Options

To extract activations, contrastive steering often relies on a specific model layer (Arditi et al., 2024; Rimsky et al., 2024;
Turner et al., 2024), and the last token in the input prompt (Rimsky et al., 2024; Wang et al., 2025; Scalena et al., 2024), i.e.
k = n. The rationale behind using the last token position is that, with well-constructed prompts, and well-defined tasks
such as MCQA, the functional behaviour of the model can be captured locally at a single token position (Arditi et al., 2024;
Rimsky et al., 2024). Steering is then applied variously. That is, across all layers (Cheng et al., 2024; Liu et al., 2024), on
specific layers (Arditi et al., 2024; Rimsky et al., 2024; Marks & Tegmark, 2024), targeting all token positions (Cheng et al.,
2024) or selected ones, such as post-instruction or generated tokens (Arditi et al., 2024; Rimsky et al., 2024).

The generalisability of these extraction, and application strategies across tasks, and models remains an open question. We
contribute by addressing it in §4.

A.5. Experimental Details

Tables 2, and 3 summarise the datasets, and models used in our experiments. Table 2 provides an overview of the datasets,
including the number of classes, class distributions, and sample counts across training, calibration, and test sets. Table 3
details the models, specifying the number of layers, type, and parameter size.

Table 2. Datasets overview.

DATASET NR. CLASSES CLASS LABELS (DIST.) NR. TRAIN./CAL./TEST

YES/NO (AI, 2023) 2 YES (32.5), NO (67.5) 3000 / 250 / 250
SMS SPAM (ALMEIDA ET AL., 2011) 2 SPAM (86.4), HAM (13.6) 3000 / 250 / 250
SENTIMENT (AI, 2023) 3 POS (41.7), NEG (55.3), NEU (3.0) 3000 / 250 / 250
MMLU-HS (HENDRYCKS ET AL., 2021A) 4 A (20.7), B (23.9), C (24.8), D (30.7) 3000 / 210 / 210
MMLU-PROF (HENDRYCKS ET AL., 2021A) 4 A, B, C, D 2601 / 210 / 210

Table 3. Models overview.

MODEL NR. LAYERS TYPE PARAMETERS

LLAMA-3.1-1B (TEAM, 2024B) 16 IT 1B
LLAMA-3.1-1B-IT (TEAM, 2024B) 16 BASE 1B
GEMMA-2-2B (TEAM, 2024A) 26 BASE 2B
GEMMA-2-2B-IT (TEAM, 2024A) 26 IT 2B
QWEN-2.5-3B (TEAM, 2024C) 36 BASE 3B
QWEN-2.5-3B-IT (TEAM, 2024C) 36 IT 3B

Unsteered Task Accuracy Table 4 provides an overview of unsteered task accuracy across different models, presenting
accuracy on the test set (left), and error (right) for various tasks in both evaluation modes.

Absolute Differences in Task Accuracy Table 5 provides an overview of the absolute difference between unsteered, and
unsteered task accuracy across different models, presenting raw accuracy deltas in the “last” mode (left), and in the “exact”
mode (right) for various tasks, and each steering method.

Hardware All experiments were conducted on AWS instances, primarily using the G5.16XLARGE instances with NVIDIA
A10G GPUs. SAE caching experiments were exclusively run on G5.48XLARGE instances, offering enhanced 8 GPUs
capacity.
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Table 4. Unsteered task accuracy overview. Accuracy on the test dataset (left), and error (right) across datasets in both evaluation modes.

MODEL MODE YES/NO SMS SPAM SENTIMENT MMLU-HS MMLU-PROF

LLAMA-3.2-1B (BASE) “last” (0.336 | 0.571) (0.128 | 0.622) (0.056 | 0.893) (0.190 | 0.776) (0.267 | 0.561)
“exact” (0.380 | 0.311) (0.172 | 0.590) (0.376 | 0.467) (0.176 | 0.717) (0.409 | 0.543)

LLAMA-3.2-1B (IT) “last” (0.436 | 0.519) (0.892 | 0.179) (0.236 | 0.725) (0.195 | 0.779) (0.441 | 0.559)
“exact” (0.428 | 0.471) (0.784 | 0.201) (0.236 | 0.725) (0.205 | 0.721) (0.441 | 0.559)

GEMMA-2B (BASE) “last” (0.452 | 0.519) (0.108 | 0.741) (0.124 | 0.784) (0.152 | 0.814) (0.262 | 0.203)
“exact” (0.384 | 0.510) (0.084 | 0.146) (0.828 | 0.320) (0.000 | 0.000) (0.262 | 0.203)

GEMMA-2B (IT) “last” (0.644 | 0.394) (0.224 | 0.699) (0.900 | 0.135) (0.171 | 0.800) (0.437 | 0.552)
“exact” (0.428 | 0.456) (0.108 | 0.869) (0.884 | 0.335) (0.110 | 0.512) (0.339 | 0.555)

QWEN-2.5-3B (BASE) “last” (0.356 | 0.575) (0.356 | 0.535) (0.364 | 0.714) (0.267 | 0.719) (0.332 | 0.660)
“exact” (0.360 | 0.571) (0.108 | 0.831) (0.092 | 0.303) (0.238 | 0.633) (0.220 | 0.589)

QWEN-2.5-3B (IT) “last” (0.328 | 0.642) (0.108 | 0.892) (0.072 | 0.690) (0.319 | 0.709) (0.204 | 0.742)
“exact” (0.324 | 0.647) (0.108 | 0.892) (0.072 | 0.690) (0.319 | 0.709) (0.203 | 0.743)

Table 5. Complete view of absolute difference steering results for various LMs and tasks. Absolute difference is reported, capturing the
increase or decrease in accuracy for both the “last” (left) and “exact” (right) evaluation modes for δ = 0.01. Higher values are better.

DATASET METHOD LLAMA-3.1-1B LLAMA-3.1-1B-IT GEMMA-2-2B GEMMA-2-2B-IT QWEN-2.5-3B QWEN-2.5-3B-IT

YES/NO

BASE-x (-0.02) | (+0.06) (+0.09) | (+0.10) (-0.10) | (-0.15) (-0.15) | (+0.00) (+0.00) | (+0.00) (+0.02) | (+0.02)
BASE-µ50 (+0.00) | (+0.02) (-0.01) | (+0.02) (+0.00) | (+0.00) (-0.01) | (-0.01) (+0.02) | (+0.00) (+0.00) | (+0.00)
BASE-µ100 (-0.02) | (-0.02) (+0.02) | (+0.10) (+0.01) | (+0.00) (+0.00) | (-0.01) (+0.00) | (-0.01) (+0.00) | (+0.00)
BASE-µ200 (+0.12) | (-0.24) (-0.07) | (+0.03) (-0.04) | (-0.21) (-0.18) | (+0.06) (+0.00) | (+0.00) (+0.29) | (+0.30)
BASE- ˆpLOG (+0.35) | (-0.38) (-0.12) | (-0.43) (-0.05) | (+0.01) (-0.01) | (-0.05) (+0.24) | (+0.06) (+0.33) | (-0.10)
BASE-p̂ (+0.00) | (+0.00) (-0.02) | (-0.02) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.01) | (+0.00) (+0.01) | (+0.01)

MERA-µ100 (+0.35) | (+0.00) (+0.11) | (+0.00) (+0.00) | (-0.08) (+0.06) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.00) | (+0.00) (-0.01) | (-0.02) (+0.00) | (+0.02) (+0.00) | (+0.01) (+0.01) | (+0.01) (+0.00) | (+0.01)
MERA (+0.35) | (+0.18) (+0.25) | (+0.00) (+0.23) | (-0.04) (+0.05) | (+0.00) (+0.30) | (+0.34) (+0.36) | (-0.02)

SMS SPAM

BASE-x (+0.69) | (+0.03) (-0.70) | (-0.71) (+0.00) | (-0.08) (-0.12) | (+0.18) (-0.24) | (+0.40) (+0.00) | (+0.00)
BASE-µ50 (+0.74) | (-0.17) (-0.01) | (-0.12) (+0.00) | (-0.01) (+0.02) | (+0.00) (+0.10) | (+0.00) (+0.00) | (+0.00)
BASE-µ100 (+0.05) | (+0.08) (-0.02) | (-0.15) (+0.00) | (-0.02) (+0.02) | (+0.00) (+0.16) | (+0.00) (+0.00) | (+0.00)
BASE-µ200 (+0.04) | (-1.00) (+0.02) | (+0.00) (-0.09) | (-0.14) (-0.02) | (+0.06) (+0.00) | (+0.00) (+0.00) | (+0.00)
BASE- ˆpLOG (+0.76) | (-0.17) (-0.02) | (-0.78) (+0.00) | (+0.76) (+0.15) | (+0.00) (+0.06) | (-0.10) (+0.43) | (+0.02)
BASE-p̂ (+0.01) | (+0.02) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.45) | (+0.00) (+0.00) | (+0.00)

MERA-µ100 (+0.38) | (+0.64) (+0.00) | (+0.11) (+0.00) | (+0.00) (+0.03) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.02) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.07) (+0.00) | (+0.00) (+0.10) | (+0.02) (+0.00) | (+0.00)
MERA (+0.76) | (+0.59) (+0.00) | (+0.09) (+0.06) | (+0.11) (+0.00) | (+0.00) (+0.53) | (+0.62) (+0.78) | (+0.08)

SENTIMENT

BASE-x (+0.00) | (-0.24) (-0.02) | (+0.01) (-0.04) | (+0.02) (+0.01) | (-0.09) (-0.16) | (-0.03) (-0.04) | (-0.04)
BASE-µ50 (+0.00) | (-0.12) (+0.38) | (+0.38) (-0.02) | (+0.00) (-0.10) | (-0.64) (+0.02) | (+0.01) (+0.06) | (+0.06)
BASE-µ100 (+0.00) | (-0.10) (+0.34) | (+0.34) (+0.00) | (+0.00) (-0.06) | (-0.47) (+0.01) | (+0.00) (+0.06) | (+0.06)
BASE-µ200 (-0.35) | (+0.35) (-0.44) | (-0.92) (+0.00) | (-0.61) (+0.23) | (+0.36) (-0.79) | (-0.96) (+0.39) | (+0.10)
BASE- ˆpLOG (-0.01) | (-0.38) (+0.67) | (-0.24) (-0.03) | (-0.08) (-0.05) | (-0.48) (-0.31) | (+0.17) (+0.36) | (+0.22)
BASE-p̂ (+0.00) | (+0.02) (-0.02) | (-0.02) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.04) | (+0.00) (+0.00) | (+0.00)

MERA-µ100 (+0.00) | (+0.03) (+0.26) | (+0.26) (+0.00) | (+0.00) (+0.02) | (+0.02) (+0.15) | (+0.10) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.00) | (+0.01) (+0.16) | (+0.16) (+0.00) | (-0.01) (+0.00) | (+0.00) (+0.02) | (+0.01) (+0.00) | (+0.00)
MERA (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.43) | (+0.06) (+0.02) | (+0.02) (+0.00) | (+0.03) (+0.65) | (+0.38)

MMLU-HS

BASE-x +0.13) | (-0.10) (-0.02) | (-0.07) (+0.00) | (+0.00) (+0.00) | (+0.01) (+0.00) | (-0.06) (-0.10) | (-0.22)
BASE-µ50 (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (-0.01) | (-0.02) (-0.03) | (-0.03)
BASE-µ100 (-0.01) | (-0.01) (-0.01) | (-0.01) (+0.00) | (+0.00) (+0.00) | (+0.00) (-0.02) | (-0.03) (-0.02) | (-0.02)
BASE-µ200 (+0.00) | (+0.00) (+0.04) | (+0.06) (-0.10) | (-0.49) (+0.03) | (+0.02) (+0.03) | (-0.32) (-0.21) | (-0.24)
BASE- ˆpLOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
BASE-p̂ (+0.00) | (+0.00) (+0.01) | (-0.01) (+0.00) | (+0.05) (+0.00) | (+0.00) (+0.01) | (+0.00) (+0.01) | (+0.01)

MERA-µ100 (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.03) (+0.15) | (+0.10) (+0.00) | (+0.00)
MERA- ˆpLOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.14) | (+0.10) (+0.00) | (+0.00)
MERA (+0.00) | (+0.00) (+0.26) | (+0.01) (+0.00) | (+0.00) (+0.03) | (+0.01) (-0.01) | (+0.00) (+0.00) | (+0.00)

MMLU-PROF

BASE-x (+0.00) | (-0.15) (-0.05) | (-0.11) (+0.00) | (+0.01) (+0.02) | (+0.00) (+0.00) | (-0.05) (+0.00) | (-0.05)
BASE-µ50 (-0.01) | (-0.01) (-0.06) | (-0.02) (+0.00) | (+0.00) (+0.00) | (-0.02) (-0.01) | (+0.00) (+0.06) | (+0.06)
BASE-µ100 (+0.01) | (+0.01) (-0.03) | (-0.02) (+0.00) | (+0.00) (+0.00) | (-0.01) (-0.01) | (+0.00) (+0.03) | (+0.03)
BASE-µ200 (+0.01) | (+0.01) (-0.01) | (-0.03) (+0.00) | (+0.00) (+0.00) | (-0.01) (-0.01) | (+0.00) (+0.01) | (+0.01)
BASE-p̂LOG (-0.01) | (-0.01) (+0.00) | (-0.21) (+0.00) | (+0.00) (+0.00) | (+0.01) (-0.08) | (-0.08) (+0.05) | (-0.07)
BASE-p̂ (-0.01) | (-0.01) (+0.00) | (-0.21) (+0.00) | (+0.00) (+0.00) | (+0.01) (-0.08) | (-0.08) (+0.05) | (-0.07)

MERA-µ100 (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.24) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA-p̂LOG (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00)
MERA (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.00) | (+0.00) (+0.08) | (+0.08)
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Runtime MERA introduces two kinds of overhead: one at deployment, and one during calibration. At deployment, MERA
incurs negligible runtime cost, as the learned steering vector v can be applied via a standard forward hook. The cost is
equivalent to a single vector addition per intervention layer, and token position.

The main computational cost arises during calibration, after the probes have been trained, where a held-out calibration
dataset is used to select the optimal confidence threshold α. This process involves evaluating a small number of candidate α
values (e.g., 10-20) across a modest calibration set (e.g., 250 examples), computing the closed-form solution for each. Since
this is a one-time cost per model, and dataset pair, it is amortised across deployment.

In practice, calibration takes between 10 minutes and 1 hour on our hardware (see §A.5), though actual runtime depends on
model size, input length, and hardware configuration.

Constructing Prompts Prompts are tailored to each dataset. Each dataset contains 3000 training samples, 250 calibration
samples, and 250 test samples (except MMLU-HS, and MMLU-PROF, with 2061 training samples, and 210 calibration/test
samples available). Below are the prompt templates for the datasets used in the experiments.

Question: [question text]{Options: A. [Option A] B. [Option B] C. [Option C] D.

[Option D] Please select the correct answer. Only return one letter: A, B, C, or D.

Answer:\n

Figure 5. Prompt template for MMLU subsets.

This SMS (text message): "[SMS text]" is classified as either spam or ham. Please

evaluate the content of the SMS, and select the correct classification. Only return one

word: "ham" or "spam". Answer:\n

Figure 6. Prompt template for SMS SPAM.

You are a financial sentiment analysis expert. Your task is to analyze the sentiment

expressed in the given financial text. Only reply with positive, neutral, or negative.

Financial text: [financial text] Answer:\n

Figure 7. Prompt template for SENTIMENT.

You are a financial expert. Your task is to answer yes/no questions based on the given

headline or news content. Context: Headline: "[headline text]" Now answer this

question: [yes/no question] Answer:\n

Figure 8. Prompt template for YES/NO.

Parsing Model Completions To compute the error E(a), and labels ŷ, we extract the exact answers directly from model
completions, bypassing the need for external sources such as additional LMs to assess the ground truth (Orgad et al., 2024;
Arditi et al., 2024). This approach focuses on tasks where the correct label can be reliably identified at a single token
position, simplifying the evaluation process while ensuring a systematic, and linguistically informed parsing.

For each task, class labels are transformed into multiple semantic variants, including lowercase, uppercase, and capitalised
forms, with optional whitespace or newline prefixes. These string variants are tokenised, and their final token IDs are
extracted for each ground truth label, and the LM’s vocabulary.
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During evaluation, we employ flexible matching within the token ID space, where any token ID corresponding to the
semantic variants of a class is considered valid. The model’s output, a, is scanned starting from a specified position, and the
first occurrence of a matching token ID is recorded. If no match is found, a fallback index of −1 is assigned, indicating
no valid prediction. In the “exact” evaluation mode, a prediction is considered correct if, and only if the predicted token
matches the class token IDs.

Training Linear Probes For each layer of a given LM, we train a distinct set of linear probes given the training samples,
which are split into 70% for, and 30% for validation. The input features, X ∈ RN×d, were extracted from residual stream
activations at specific token positions (exact answer from open-ended model completion or the last prompt position) across
all layers. The target variable is the error E(a) of the LM.

To account for random variability, for each setting (i.e. layer, and token position), we trained 5 linear regression models
using Lasso regularisation strengths η ∈ {0.005, 0.01, 0.05, 0.1, 0.25, 0.5}, alongside an unregularised linear regression
with no sparsity. For simplicity, we omit the bias term in linear models, and focus on the weight vector. For each layer, we
selected the model weights with the lowest RMSE on the validation set.

For the logistic probes, we follow a similar methodology but the target variable is the accuracy A(a).

A.6. Extended Results

A.6.1. PROBE PERFORMANCE

Figures 9-10 show an extended version of Figure 2, separated by distinct datasets. RMSE, and standard error is reported
(see §A.5 for details). We do not average over the MMLU-PROF dataset.

Figure 9. Layer-wise performance of linear error estimators for different LM, separated by distinct token position, and representation
strategies.

Figure 11 shows the probe results for the logistic regression probes, used in §6. AUCROC, and standard error is reported
(see §A.5 for details). Higher is better.

A.6.2. TRANSITIONS

We report transitions in model predictions, before, and after steering using 2× 2 matrices, with δ = 0.00, i.e. without safety
constraints. Each cell corresponds to a transition between binary outcome classes, incorrect (0), and correct (1), and displays
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Figure 10. Layer-wise performance of linear error estimators for different LM, separated by distinct token position, and representation
strategies.

Figure 11. Layer-wise performance of linear error estimators for distinct LM families, separated by distinct token position, and input
feature strategies. AUCROC, and standard error is reported.

counts in both the “last” (left), and “exact” (right) evaluation modes, reflecting distinct prediction outcomes after steering.
Higher values in top-right cell is prefered.

As seen in Figure 12, MERA-based methods consistently induce a greater number of favourable transitions (0 → 1),
while maintaining relatively low rates of degradation (1 → 0). Baseline methods, by contrast, exhibit more heterogeneous
behaviour, often resulting in inconsistent effects across datasets. These results are averaged over the LMs.

A.6.3. SPARSE STEERING

Figure 13 illustrates the sparsity of features employed during steering across different layers, and datasets. On average, only
3-5% of the latent features are activated for steering, with notable variations observed for specific tasks like MMLU-HS,
where certain layers (e.g., around 15-25) exhibit lower sparsity.

A.6.4. ABLATION STUDY

The aggregated ablation study in Figure 14 demonstrates that steering on all token positions, a1:(m+n), and across all layers,
ℓ ∈ {1, . . . , L}, consistently provides stronger empirical results compared to steering on selected tokens or the best layer, as
identified by the highest performing probe. Specifically, the steering strategy on all tokens surpasses steering restrictions on
“generation tokens”, i.e. ak>n in improving task accuracy. Similarly, applying interventions across all L layers yields higher
overall performance compared to limiting interventions to the “best layer”.

20



Mechanistic Error Reduction with Abstention for Language Models

Figure 12. Transition matrices for each dataset, and method pair. Each cell quantifies the number of predictions transitioning from one
correctness state to another after steering: 0 → 0, 0 → 1, 1 → 0, and 1 → 1, where 0 denotes incorrect, and 1 denotes correct. Values
are shown for both the “last” (left), and “exact” (right) evaluation modes.

Figure 13. With probe steering, on average 3-5% of the latent features are employed for steering.

Token Position-wise Probe Performance As shown in Figure 15, the probe trained for a single token position demonstrates
consistently that the average RMSE is comparable across other token positions, including those not explicitly targeted during
training. Naturally, some variability is expected. That said, these results suggest that the probe generalises sufficiently well
to the remaining token positions retaining performance close to that of directly generated model tokens. For this analysis,
we selected four random combinations of models, and datasets.
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Figure 14. Ablation study, aggregated over all datasets but the MMLU-PROF dataset, and models.

Figure 15. Comparison of probe performance across all token positions, and layers, including those not explicitly targeted during training.

A.7. Accuracy vs Error

The plot in Figure 16 illustrates the relationship between Delta Test Accuracy (↑), and Delta Test Error (↓) across various
models. Each point represents a different steering method or baseline, highlighting the relationship between improving
accuracy, and reducing errors. The clustering along a diagonal trend suggests a strong negative correlation.

Figure 16. Delta Test Accuracy (↑) versus Delta Test Error (↓) across the different models, over the steering methods, and baselines.
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