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ABSTRACT

Connectionist Temporal Classification (CTC) is a widely used criterion for train-
ing supervised sequence-to-sequence (seq2seq) models. It learns the alignments
between the input and output sequences by marginalizing over the perfect align-
ments (that yield the ground truth), at the expense of the imperfect ones. This di-
chotomy, and in particular the equal treatment of all perfect alignments, results in a
lack of controllability over the predicted alignments. This controllability is essen-
tial for capturing properties that hold significance in real-world applications. Here
we propose Align With Purpose (AWP), a general Plug-and-Play framework for
enhancing a desired property in models trained with the CTC criterion. We do
that by complementing the CTC loss with an additional loss term that prioritizes
alignments according to a desired property. AWP does not require any interven-
tion in the CTC loss function, and allows to differentiate between both perfect and
imperfect alignments for a variety of properties. We apply our framework in the
domain of Automatic Speech Recognition (ASR) and show its generality in terms
of property selection, architectural choice, and scale of the training dataset (up to
280,000 hours). To demonstrate the effectiveness of our framework, we apply it to
two unrelated properties: token emission time for latency optimization and word
error rate (WER). For the former, we report an improvement of up to 590ms in
latency optimization with a minor reduction in WER, and for the latter, we report
a relative improvement of 4.5% in WER over the baseline models. To the best of
our knowledge, these applications have never been demonstrated to work on this
scale of data. Notably, our method can be easily implemented using only a few
lines of code1 and can be extended to other alignment-free loss functions and to
domains other than ASR.

1 INTRODUCTION

Figure 1: The Align With Purpose flow: N alignments are sampled from the output of a pre-trained
CTC model on which fprop is applied to create N pairs of alignments. Then, hinge loss with an
adjustable weight is applied on the probabilities of each pair of alignments, trained jointly with a
CTC loss. See full details in section 2.2

∗Equally contributed. email: {first.last}@orcam.com
1The code will be made publicly available in the supplementary materials.
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Sequence-to-sequence (seq2seq) tasks, in which the learner needs to predict a sequence of la-
bels from unsegmented input data, are prevalent in various domains, e.g. handwriting recognition
(Graves & Schmidhuber, 2008), automatic speech recognition (Collobert et al., 2016; Hannun et al.,
2014), audio-visual speech recognition (Afouras et al., 2018), neural machine translation (Huang
et al., 2022), and protein secondary structure prediction (Yang et al., 2022), to name a few. For years,
optimizing a seq2seq task required finding a suitable segmentation, which is an explicit alignment
between the input and output sequences. This is a severe limitation, as providing such segmentation
is difficult (Graves, 2012).

Two main approaches were introduced to overcome the absence of an explicit segmentation of the
input sequence, namely soft and hard alignment. Soft alignment methods use attention mechanism
(Chan et al., 2016; Vaswani et al., 2017) that softly predict the alignment using attention weights.
Hard alignment methods learn in practice an explicit alignment (Graves et al., 2006; Graves, 2012;
Collobert et al., 2016), by marginalizing over all alignments that correspond to the ground truth (GT)
labels.

As streaming audio and video become prevalent (Cisco, 2018), architectures that can work in a
streaming fashion gain attention. Although soft alignment techniques can be applied in chunks for
streaming applications (Bain et al., 2023), their implementation is not intuitive and is less computa-
tionally efficient compared to hard alignment methods, which are naturally designed for streaming
processing. Among the hard alignment methods, the CTC criterion (Graves et al., 2006) is a com-
mon choice due to its simplicity and interpretability. During training, CTC minimizes the negative
log-likelihood of the GT sequence. To overcome the segmentation problem, CTC marginalizes over
all possible input-GT output pairings, termed perfect alignments. This is done using an efficient
forward-backward algorithm, which is the core algorithm in CTC.

CTC has a by-product of learning to predict an alignment without direct supervision, as CTC poste-
riors tend to be peaky (Zeyer et al., 2021; Tian et al., 2022), and hence the posterior of a few specific
alignments are dominant over the others. While this implicit learning is useful, it comes at the cost
of the inability to control other desired properties of the learned alignment. This can be explained by
the inherent dichotomy of the CTC, which leads to a lack of additional prioritization within perfect
or imperfect alignments.

However, many real-world seq2seq applications come with a property that can benefit from or even
require such prioritization. For example, in the contexts of ASR and OCR, a standard metric to test
the quality of a system is the word error rate (WER). Therefore, prioritizing imperfect alignments
with low WER can improve the performance of a system measured by this metric, thereby reducing
the gap between the training and testing criteria (Graves & Jaitly, 2014). Another example is a
low-latency ASR system. Here, even a perfect CTC score can only guarantee a perfect transcription
while completely disregard the latency of the system. Clearly, in this setting, for an application that
requires fast response, prioritizing alignments with fast emission time is crucial. Figure 2 visualizes
the aforementioned properties. In general, there are many other properties that also necessitate
prioritization between alignments, whether perfect or imperfect.

Figure 2: A visualization of two properties that are not captured by CTC. (a) Emission Time: Two
alignments that yield the same text, but the green alignment emits the last token of ’CAT’ at times-
tamp 3 (t 3) while the purple alignment emits it at t 6. (b) Word-Error-Rate: two imperfect predic-
tions with the same CER but different WER.
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To exemplify the importance of prioritization, Table 1 shows that a CTC score is not a good proxy
for some properties of the predicted alignment. It shows two different models with a similar training
loss that have different WER and emission time, although trained on the same data.

Table 1: CTC score is not a good proxy for WER and latency of a system. The reference and the
streaming models are CTC models with different architectures, which results in different predicted
alignments. The latency of the streaming model is the delay in token emission time in comparison
to the reference model. The Results are shown on the LibriSpeech test clean dataset.

ASR Model Type CTC Score WER (%) Latency (ms)

Reference 0.0033 4.28 0
Streaming 0.003 5.43 217

To complement the CTC with an additional prioritization, we propose Align With Purpose (AWP)
- a Plug-and-Play framework that allows enhancing a given property in the outputs of models
trained with CTC while maintaining their transcription abilities. We add a loss term, LAWP , that
expresses a more subtle differentiation between alignments so that the final loss becomes L =
LCTC + αLAWP . Specifically, for a given property, we design a function fprop that receives an
alignment as an input, and outputs an improved alignment with respect to the property. Then, we
sample N alignments based on the output probabilities of the pre-trained CTC model, apply fprop
on the sampled alignments, to create N pairs of alignments. Finally, we implement LAWP as hinge
loss over the N pairs, thus encouraging the model to increase the probability mass of the preferable
alignments, as described in Figure 1.

Previous research has proposed controllability to model predictions. Liu et al. (2022) introduced an
additional loss term that prioritizes a ranked list of alternative candidates during the training of gen-
erative summarization models. Specifically, for the case of hard alignment criteria like CTC, many
proposed solutions are restricted to handling perfect alignments only, and some require interven-
tion in the forward-backward algorithm (Tian et al., 2022; Yu et al., 2021; Shinohara & Watanabe,
2022; Yao et al., 2023; Laptev et al., 2023), as opposed to AWP. Alternative approaches address the
imperfect alignments through additional loss terms, as seen in Prabhavalkar et al. (2018); Graves
& Jaitly (2014). The aforementioned frameworks are less straightforward for implementation and
might require a considerable amount of development time and optimization. In contrast, AWP offers
a relatively simple implementation, requiring only a few lines of code.

To summarize, our main contributions are as follows: (1) Align With Purpose - a simple and general
Plug-and-Play framework to enhance a general property in the outputs of a CTC model. (2) We show
promising results in two properties that are independent of each other- we report an improvement
of up to 590ms in latency optimization, and a relative improvement of 4.5% WER over the baseline
models for the minimum WER (mWER) optimization. (3) We demonstrate the generality of our
framework in terms of property selection, scale of the training dataset and architectural choice. To
the best of our knowledge, these applications have never been demonstrated to work on a scale of
data as large as ours. (4) The framework enables prioritization between both perfect and imperfect
alignments.

We apply our approach to the ASR domain, specifically to models that are trained with CTC crite-
rion. However, this method can be extended to other alignment-free objectives, as well as to other
domains besides ASR.

2 CTC AND ALIGN WITH PURPOSE

The outline of this section is as follows: We start with a description of the CTC loss in subsection 2.1,
followed by a detailed explanation of the proposed ”Align With Purpose” method in subsection 2.2.
Finally, we showcase two applications: low latency in subsection 2.3 and mWER in subsection 2.4.
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2.1 CTC

The Connectionist Temporal Classification criterion (Graves et al., 2006) is a common choice for
training seq2seq models. To relax the requirement of segmentation, an extra blank token ∅ that
represents a null emission is added to the vocabulary V , so that V ′ = V ∪ {∅}.

Given a T length input sequence x = [x1, ...xT ] (e.g. audio), the model outputs T vectors vt ∈
R|V ′|, each of which is normalized using the softmax function, where vk

t can be interpreted as the
probability of emitting the token k at time t. An alignment a is a T length sequence of tokens taken
from V ′, and P (a|x) is defined by the product of its elements:

P (a|x) =
T∏

t=1

p(at|x). (1)

The probability of a given target sequence y (e.g. text) of length U , y = [y1, ..., yU ] where U ≤ T ,
is the sum over the alignments that yield y:

P (y|x) =
∑

a:a∈B−1(y)

p(a|x), (2)

where B is the collapse operator that first removes repetition of tokens and then removes blank
tokens.

The CTC objective function minimizes the negative log-likelihood of the alignments that yield y, as
seen in Eq. 3

LCTC(x) = − logP (y|x). (3)

By definition, the CTC criterion only enumerates over perfect alignments and weighs them equally.
This means that CTC considers all perfect alignments as equally good Tian et al. (2022) and all
imperfect alignments as equally bad Graves & Jaitly (2014)

2.2 ALIGN WITH PURPOSE

In this section, we present the suggested method, Align With Purpose (AWP). AWP complements
the CTC loss with an additional loss term which aims at enhancing a desired property by adding a
more subtle prioritization between alignments.

Given a desired property to enhance, we define a property-specific function fprop : V ′T → V ′T , that
takes as input an alignment a and returns an alignment ā with the same length. fprop is designed
to output a better alignment w.r.t. the property. During training, at each step we sample N random
alignments according to the distribution induced by the output of the seq2seq model, such that
ai
t ∼ vt for t ∈ [1..T ] and i ∈ [1..N ] (see Appendix B for more details on the sampling method). We

then apply āi = fprop(a
i) to obtain better alignments. This results in N pairs of alignments (ai, āi),

where āi is superior to ai in terms of the property. Finally, to enhance the desired property the model
is encouraged to increase the probability mass of āi, by applying hinge loss on the probabilities of
the alignment pairs:

LAWP (x) =
1

N

N∑
i=1

max{P (ai|x)− P (āi|x) + λ, 0}, (4)

where λ is a margin determined on a validation set. See Fig. 1 for an illustration of the proposed
framework.

As pointed out in (Graves & Jaitly, 2014; Prabhavalkar et al., 2018), sampling from a randomly
initialized model is less effective since the outputs are completely random. Therefore, we train the
model to some extent with a CTC loss as in Eq. 3, and proceed training with the proposed method.

Putting it all together, the training loss then becomes:

L(x) = LCTC(x) + αLAWP (x), (5)

where α is a tunable hyper-parameter that controls the trade-off between the desired property and
the CTC loss.
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2.3 APPLICATIONS: LOW LATENCY

Streaming ASR systems with low latency is an active research field, as it serves as a key component
in many real world applications such as personal assistants, smart homes, real-time transcription of
meetings, etc. (Song et al., 2023). To measure the overall latency of a system, three elements
should be considered: data collection latency (DCL) which is the future context of the model,
computational latency (CL) and drift latency (DL), as defined by Tian et al. (2022). For the latter,
we slightly modified their definition, see Appendix A.2 for more details. We also leave the CL
component out of the scope of this work as it is sensitive to architectural choice, hardware, and
implementation. Thus, we denote by TL=DCL+DL the total latency of the system.

Several techniques were suggested to reduce the TL: input manipulation (Song et al., 2023), loss
modification (Tian et al., 2022), loss regularization (Yu et al., 2021; Yao et al., 2023; Shinohara &
Watanabe, 2022; Tian et al., 2023), and architectural choice (Pratap et al., 2020). These methods
are specific to low latency settings, or require intervention in the forward-backward algorithm. See
Appendix D for more details and comparison to other works.

Figure 3: Drift in emission time in a CTC model. Bottom purple text: An offline Stacked ResNet
model with symmetric padding, with 6.4 seconds of context divided equally between past and future
contexts. Top green text: An online Stacked Resnet with asymmetric padding, with 430ms future
context and 5.97 seconds past context. It can be seen that the output of the online model has a drift
≥200 ms.

One way to reduce the DCL is by limiting the future context of the model. In attention based models
it can be achieved by left context attention layers (Yu et al., 2021), and in convolutional NN it can
be achieved using asymmetrical padding (Pratap et al., 2020). However, Pratap et al. (2020) have
shown that training with limited future context results in a drift (delay) in the emission time of tokens
(DL), as can be seen in Fig. 3. The cause of the drift was explained by Wang et al. (2020), who
made the observation that less future context deteriorates performance. Therefore, by delaying the
emission time, the model effectively gains more context, which in turn improves its performance.

Figure 4: Defining flow latency. To obtain ā, we shift the sampled alignment a one token to the left,
starting from a random position (second token in this example) within the alignment, and pad ā with
a trailing blank token, marked by a black rectangle

To mitigate the DL using AWP, given an alignment a, we sample a random position within it, and
shift a one token to the left from that position to obtain ā as seen in Fig. 4. Clearly, tokens emission
time of ā is one time step faster than a starting from the random position. By limiting the initial shift
position to correspond to tokens that are repetitions, we ensure that the collapsed text of ā remains
the same as a. To make ā a T length alignment, we pad it with a trailing blank token.

Formally, we define the function flow latency. Given an alignment a, define the subset of indices
[j1, .., jT ′ ] ⊆ [2..T ] as all the indices such that ajk = ajk−1, meaning that ajk is a repetition of the
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previous token. Then we sample a random position j from [j1, .., jT ′ ], and obtain ā:

āt =


at if t < j − 1

at+1 if j − 1 ≤ t < T

∅ if t == T

(6)

2.4 APPLICATIONS: MINIMUM WORD ERROR RATE

The most common metric to assess an ASR system is the word error rate (WER). Nevertheless,
training objectives such as CTC do not fully align with this metric, resulting in a gap between
the training and testing criteria. Therefore, the system’s performance could improve by adding a
prioritization over the imperfect alignments w.r.t. their WER. This gap was previously addressed
by Graves & Jaitly (2014), who suggested approaching it by minimizing the expected WER but this
method requires extensive optimization. Prabhavalkar et al. (2018) suggested a similar objective for
training attention models with the cross-entropy (CE) loss.

Figure 5: Defining fmWER. Given a target transcription ’the cat’, the (upper) sampled alignment
yields the text ’tha cet’, which has 100% WER. Substituting the occurrences of the token ’e’ with
the token ’a’ produces the text ’tha cat’, which has 50% WER.

As illustrated in Figure 5, to apply AWP for mWER training, we define fmWER. Given a sampled
imperfect alignment a and a GT transcription y, to obtain ā we select the word in the collapsed
text B(a) which requires the minimum number of substitutions in order for it to be correct. Then
we fix the alignment of this word according to the GT, so that the number of word errors in B(ā) is
reduced by 1.

3 EXPERIMENTAL SETUP

We evaluate AWP on two end-tasks: low latency and mWER, by conducting experiments using
multiple architectures and different scales of datasets. The general settings are listed below. For
more details on the setup see Appendix A.

Datasets. We examine our framework on 3 scales of the data, ranging from 1K to 280K hours.
The small scale dataset is LibriSpeech (Panayotov et al., 2015) (LS-960). The medium scale dataset
consists of 35K hours curated from LibriVox2 (LV-35K). The large scale is an internal dataset of
280K hours of audio-transcript pairs (Internal-280K), which, to the best of our knowledge, is the
largest dataset that was used to train a low-latency model. We test our framework on the test splits
of LibriSpeech.

Architecture. To validate that our method is invariant to architecture selection, we trained 3 dif-
ferent architectures: Stacked ResNet (He et al., 2016), Wav2Vec2 (Baevski et al., 2020) and a Con-
former (Gulati et al., 2020) model.

We used a pre-trained Wav2Vec2 base model with 90M parameters, available on HuggingFace 3.
This architecture was used in the mWER training experiments.

The Conformer employed is a medium-sized model with 30.7M parameters. As an offline model,
given its attention layers, its future context was not limited. To transition from an offline to an online
model, during inference, the right context (DCL) was restricted to 430ms. The left context was also
limited to 5.57s, resulting in a 6s of context in total. The model consumes the input in chunks,
similarly to Tian et al. (2022).

2http://www.openslr.org/94/
3https://huggingface.co/facebook/wav2vec2-base-100k-voxpopuli
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Lastly, the Stacked ResNet consists of 66M parameters. This architecture can be implemented in
a streaming manner and can be highly optimized for edge devices. Therefore, it’s a good fit for an
online system in a low-resource environment. In our implementation, the model has 6.4s of context.
In the offline version of this model, the 6.4s are divided equally between past and future context,
i.e. it has a DCL of 3.2s. The online version, implemented with asymmetric padding as suggested
by Pratap et al. (2020), has also 6.4s context, but its DCL is only 430ms, which makes it feasible to
deploy it in online ASR systems. We used the offline implementation in both end tasks- as a baseline
in the mWER training and as an offline model in the low latency training.

Decoding. Models were decoded using an in-house implementation of a beam search decoder de-
scribed in (Graves & Jaitly, 2014).

Training. To test the effectiveness of AWP, we train the models for several epochs, and then apply
our framework, namely adding the AWP loss to the CTC loss as stated in Eq. 5. The epoch in which
we start to apply our framework is denoted as ’start epoch’ in tables 2, 3.

The Wav2Vec2 model was finetuned using SpecAugment (Park et al., 2019) on LS-960 using the
Adam optimizer (Kingma & Ba, 2014) with a flat learning rate (LR) scheduler Baevski et al. (2020).
The Conformer was trained on LS-960 with the same training scheme described in Gulati et al.
(2020). The Stacked ResNet models were optimized with RAdam optimizer (Liu et al., 2019) with
a ReduceLROnPlateau scheduler4 on different data scales.

Evaluation Metrics. To test AWP, in the mWER setting we evaluated models with a standard
implementation of WER. In the low latency setting we evaluated DL and TL as defined in section
2.3.

4 RESULTS

In this section, we present the results achieved by training using AWP in the low latency and mWER
applications.

4.1 LOW LATENCY

Table 2 shows the results when training the Stacked ResNet model on small, medium and large scales
of data. We can see a clear trend across all scales that the AWP training successfully decreases the
DL. The DL for each model is computed in comparison to its relevant offline model. It can also be
seen that some models achieve negative DL, meaning that the TL is reduced beyond its expected
lower bound induced by the DCL. In most cases, achieving such low TL solely by reducing the
architectural future context using another padding optimization would not have been possible. This
trend also holds for various implementations of the property function, as can be seen in Appendix
C.

Table 2 also shows our implementation (or adjustment of public code) of selected prior work in the
field of low latency in CTC training: BayesRisk CTC (Tian et al., 2022), Peak First CTC (Tian et al.,
2023) and TrimTail (Song et al., 2023). It can be seen that AWP outperforms the other methods,
both in terms of WER and latency. See Appendix D and F for more details.

We can also see that as the scale of the data increases, the WER decreases. This statement holds
independently for the offline models and for the online models, and remains valid also after adding
the AWP loss. This shows that AWP does not affect the ability of the model to improve its basic
transcription capabilities using larger scales of data, which aligns with previous observations on
large scale training Baevski et al., 2020; Radford et al., 2023.

In almost all the experiments, the WER increases with the latency reduction. This is a known trade-
off between latency and accuracy as reported in prior work (Pratap et al., 2020). The choice of
the operating point in terms of the balance between latency and accuracy can be determined by the
weight of the AWP loss, α, and the scheduling of when we add the AWP loss (’start epoch’), as can
be seen in Fig. 6.

The Conformer with AWP experiment demonstrates a DL reduction and a trade-off between latency
and accuracy, thus affirming that AWP is not limited to a specific architecture. Given the unrestricted

4https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html
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future context of the offline model, DCL matches the input size, making TL measurement irrelevant.
The online model, not trained in an online fashion (see Appendix A.2) is expected to lack a DL. Yet,
AWP can reduce the DL to negative values, which in turn reduces the TL.

Table 2: Low Latency model training with and without AWP on different data scales, and with other
frameworks. ’Start Epoch’ denotes the step that we added AWP, and was chosen based on a list of
milestones WER of the online model. The different entries in the table are reported based on the
best checkpoint in terms of WER, for each model separately. Results are on Libri Test-Clean.

Model Training Data Start Epoch DL (ms) TL (ms) WER

Stacked ResNet Offline Internal-280K - 0 3.2K 2.34
Stacked ResNet Online Internal-280K - 249 679 2.6
+AWP Internal-280K 5.7 50 480 2.71

Stacked ResNet Offline LV-35K - 0 3.2K 2.42
Stacked ResNet Online LV-35K - 341 771 2.72
+AWP LV-35K 0.1 -251 179 3.28

Stacked ResNet Offline LS-960 - 0 3.2K 3.72
Stacked ResNet Online LS-960 - 278 708 4.06
+AWP LS-960 0.9 -79 351 4.38
+Peak First CTC LS-960 - 186 616 4.41
+TrimTail LS-960 - -76 354 4.46
+Bayes Risk LS-960 - 63 493 4.78

Conformer Offline LS-960 - 0 - 3.7
Conformer Online LS-960 - 2 432 3.75
+AWP LS-960 12 -172 263 3.74
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Figure 6: The effect of the ’start epoch’ and α on the word error rate (WER) and the drifting (DL).
While the ’start epoch’ has more effect on the DL, the WER only slightly changes (Left). To test
the effect of the α, we fixed the ’start epoch’ to 2.7 and applied AWP with different weights. The
selection of α has a significant impact on both the latency and the WER (Right).

4.2 MINIMUM WORD ERROR RATE

Table 3 shows a significant relative improvement of 4-4.5% in Word Error Rate (WER) when ap-
plying AWP. It also shows that AWP yields similar results to our adaptation of MWER optimization
(MWER OPT), as suggested by Prabhavalkar et al. (2018) (originally designed for soft alignments
models trained with a CE loss). This emphasizes that AWP is competitive with application-specific
methods while maintaining its general nature and simplicity. Improvement in WER also gained with
various implementations of the property function, as can be seen in Appendix C.

Furthermore, our proposed framework proves to be versatile, as it successfully operates on both
streaming (Stacked ResNet) and offline (Wav2Vec2) architectures. The ability of our approach to
adapt to different architectures highlights its applicability across various ASR systems.
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Table 3: WER of baseline models and of models optimized for WER with AWP or MWER OPT.

Model Start Epoch % WER Libri Test-Clean % WER Libri Test-Other
(% Relative improvement) (% Relative improvement)

Stacked ResNet - 2.63 7.46
+AWP 4.3 2.57 (2.2) 7.16 (4)
+MWER OPT 4.3 2.54 (3.4) 7.31 (2)

Wav2Vec - 2.38 5.82
+AWP 2.3 2.33 (2.1) 5.56 (4.5)

5 DISCUSSION & FUTURE WORK

The results obtained from our study provide valuable insights regarding the potential for improve-
ment in ASR models trained with the CTC criterion. Although not tested, this framework could
be easily applied to other hard-alignment criteria such as Transducer (Graves, 2012). Furthermore,
by adapting and extending the concepts from our framework, it may be possible to enhance soft-
alignment methods, even in domains beyond ASR.

In addition, an intriguing aspect for future research is the formalization of the properties that can be
enhanced using AWP. By establishing a formal framework, researchers can systematically identify,
define, and prioritize the properties to be enhanced. This can lead to targeted improvements and a
deeper understanding of the impact of different properties on ASR performance. Finally, our study
showcases the capability of enhancing a single property at a time. In some applications, multiple
properties should be enhanced simultaneously, potentially leading to better performance. It could
be especially intriguing in scenarios where the distinct properties exhibit a trade-off, like the low
latency and WER properties. Utilizing AWP on both properties can provide a more nuanced control
over their trade-off.

6 LIMITATION & BROADER IMPACT

Although the AWP framework is relatively easy to use, its main limitation is that one needs to
think carefully about the property function fprop. When formulated elegantly, the implementation
is straight forward.

The proposed AWP framework enables one to enhance a desired property of an ASR model trained
with CTC. As mentioned in 5, this method can be applied or adapted to domains other than ASR.
On the choice of the property to enhance, especially in generative AI, one should be thoughtful not
to increase bias, malicious or racist content of models.

7 CONCLUSIONS

The dichotomy between perfect and imperfect alignments in CTC highlights its limitation in cap-
turing additional alignment properties, which is a key requirement in many real-world applications.
To overcome this limitation, we introduce Align With Purpose, a general Plug-and-Play framework
designed to enhance specific properties in models trained using the CTC criterion. Our experimental
results demonstrate promising outcomes in two key aspects: latency and minimum Word Error Rate
optimization. Importantly, these optimizations are independent of each other, highlighting the ver-
satility of AWP. The reduced latency achieved by our approach indicates faster transcription while
maintaining transcription quality even with significantly reduced drift. Furthermore, our improved
WER emphasizes the importance in enabling differentiation between imperfect alignments for en-
hancing the transcription quality of ASR systems. One of the strengths of AWP lies in its generality.
It offers flexibility in selecting specific alignment properties, applies to large-scale training datasets,
and is versatile to architectural choice. Our method does not require modifications to the CTC loss
function and can be implemented using only a few lines of code.
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A APPENDIX: ADDITIONAL EXPERIMENTAL SETTINGS

A.1 GENERAL EXPERIMENTAL SETTINGS

Datasets. For the small scale, we train models on the LibriSpeech dataset (Panayotov et al., 2015),
which consists of 960 training hours (LS-960). For the medium scale, we train models on a 35K
hours curated subset of LibriVox5 (LV-35K), where samples with low confidence of a reference
model were filtered out. For the large scale, we train models on an internal dataset of 280K hours
of audio-transcript pairs (Internal-280K), which, to the best of our knowledge, is the largest dataset
that was used to train a low-latency model. We test our framework on the test splits of LibriSpeech.
Audio is sampled at 16KHz, 16 bits/sample.

Architecture. We trained Stacked ResNet (He et al., 2016), Wav2Vec2 (Baevski et al., 2020), and
Conformer (Gulati et al., 2020) models. The ResNet consists of 20 ResNet blocks (66M parameters).
For the Wav2Vec2, we used a pre-trained version of the base Wav2Vec2 model (90M parameters)
available on HuggingFace 6. The model was pre-trained for 30 epochs on the 100K hours from
VoxPopuli dataset (Wang et al., 2021). Lastly, we trained a medium Conformer model (30.7M
parameters) implemented according to the setup described in (Gulati et al., 2020). All models output
29 English lower-case characters, including apostrophes, spaces, and blank tokens.

Regarding the Stacked ResNet model, we extracted 80-channel Mel filter-banks features computed
from a 32ms window with a stride of 16ms. For each frame, we stacked the filter banks with a first
and second derivative, resulting in a 240-dimensional input vector. We down-sample the audio input
from 16ms to 32ms by applying MaxPool layer within the first layer of the first Stacked ResNet
block, then stacked 20 ResNet blocks (He et al., 2016) with a kernel size of 5. Skip connections
are added every 4 ResNet blocks. The model consists of 66M parameters in total. This architecture
induces 6.4 seconds of context in total. The results are shown using an exponential moving average
(EMA) model, which is aggregated alongside the model.

Decoding. Models were decoded using an in-house implementation of a beam search decoder de-
scribed in (Graves & Jaitly, 2014), using a beam size of 100, and two language models: an open-
source 5-gram language model7 (WordLM) trained on the LibriSpeech LM corpus, and a character-
level language model (CharLM) that we trained on the same corpus. The beam search picks tran-
scriptions y which maximize the quantity L(y) defined by:

L(y) = Pacoustic(y|x) + βPCharLM (y) + γPWordLM (y) (7)

where β = 0.8 and γ = 0.8 are the CharLM and WordLM weights, respectively.

Text Normalization. We used an in-house implementation of text normalization to remain in a
vocabulary of 29 English characters.

A.2 LOW LATENCY EXPERIMENTAL SETTINGS

Architecture. Experiments detailed in this section are conducted with the Stacked ResNet and
Conformer architectures described in A.1.

5http://www.openslr.org/94/
6https://huggingface.co/facebook/wav2vec2-base-100k-voxpopuli
7https://www.openslr.org/11/
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The ResNet architecture can be implemented in a streaming manner and can be highly optimized for
edge devices. Therefore, it’s a natural choice for an online system in a low- resource environment.
Our offline version of it has 6.4 seconds of context in total, divided equally between past and future
contexts. Although the model can be implemented in a streaming fashion, it has a large DCL of 3.2s.
The online version has a similar architecture and the same total context, but it has a DCL of 430ms,
achieved by asymmetric padding as suggested by Pratap et al. (2020). The small DCL of this model
makes it feasible to deploy it in an online ASR system.

For the Conformer, we only trained it in an offline fashion, with or without AWP. To transform the
Conformer into an online model, at inference the DCL was to restricted 430ms and the left context
was restricted to 5.57s. The input was fed into the model chunk by chunk, similarly to Tian et al.
(2022).

Training. For training the ResNet with AWP on LS-960, LV-35K, and Internal-280K, the hyper-
parameters α and λ were set to 0.001, 0.001, 0.0005, and 0.01, 0, 0, respectively.

RAdam optimizer (Liu et al., 2019) with α = 0.9, β = 0.999 and weight decay of 0.0001 were used.
We set the LR to 0.001, with a ReduceLROnPlateau scheduler 8.

To train the Conformer with AWP, a scheduling for α was required - 0.1 at commencement and 1e-6
after 7K training steps. λ remained constant and was set to 0.01.

For both models, we set N = 5, the number of sampled alignments.

Measuring DL. Measuring the DL of an online model is relative to the offline model of the same ar-
chitecture that was trained on the same data. To measure the DL, we force-align the target transcript
(GT) of the offline and online models independently and take the difference between the index of the
first appearance of each token in the two force-aligned texts. Then, we take the average difference
between all tokens. We empirically verified that the DL of the offline models compared to the true
emission time is negligible, and for some instances, it even appears to be negative. This behavior
was also observed by (Tian et al., 2023).

A.3 MINIMUM WORD ERROR RATE EXPERIMENTAL SETTINGS

Architecture. In this setting, we applied AWP to a Stacked ResNet and a Wav2Vec2 models, as
described in subsection A.1. The Stacked ResNet model that was used here is the same as the offline
model described in subsection A.2.

Training. The baseline Stacked ResNet model was pre-trained on the Internal-280K dataset. Then
we continue its training solely on LS-960 for 4.3 epochs before we apply AWP. The AWP hyper-
parameters were α = 0.1, λ = 0. The baseline and the model with AWP were trained for 4.2
additional epochs, reaching 8.5 epochs in total. We used the RAdam optimizer (Liu et al., 2019)
with the same hyper parameters as in subsection A.1.

The Wav2Vec2 baseline model was finetuned with SpecAugment (Park et al., 2019) (with p=0.05
for time masking and p=0.0016 for channel masking) solely on LS-960 for 2.3 epochs before we
applied AWP, and both the baseline and the AWP models were trained for another 27.5 epochs. We
used the Adam optimizer (Kingma & Ba, 2014) for this training, as well as a flat LR scheduler
Baevski et al. (2020). AWP hyper-parameters were set to α = 0.05 and λ = 0.

While training all models with AWP, we used a softmax temperature of 0.5 for the sampling of the
N alignments. Additionally, we set N = 10 under these settings.

B SAMPLING METHOD

Throughout our experiments, we used the standard torch library for sampling9. To verify that the
results weren’t compromised by the lack of differentiability of the sampling process, we conducted
similar experiments with Gumbel Softmax (Jang et al., 2016). As can be seen in Fig. 7, the Gumbel
Softmax had not effect on results.

8https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html

9https://pytorch.org/docs/stable/data.html#torch.utils.data.Sampler
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Figure 7: A Stacked ResNet low latency model, with AWP applied after 2.7 epochs. The sampling
method was either the standard torch implementation or Gumbel Softmax. It can be seen that the
sampling method has minimal impact on the drifting (DL) and on the WSR, which is the word
success rate (100-WER).
C VARIANTS OF THE PROPERTY FUNCTION

For both applications, low latency and WER, we verified that AWP is robust to the choice of the
property function. Table 4 shows different implementations for the low latency function presented
in section 2.3. Specifically, instead of shifting alignments by one token to the left, we shift them
by multiple tokens in random positions. It can be seen that gradual changes in alignments, i.e.
fewer shifts, have a positive effect on the latency. Although the changes are gradual, the overall
improvement is far greater than a shift in a few tokens, as the model improves throughout the training
process, and at every training step it is optimized to improve its (current) latency by a shift of a few
tokens.

Table 4: Different property function implementations for the Low Latency application. The different
implementations vary in the number of tokens to shift and are reported after the same number of
training steps.

Tokens Shifted DL (ms) WER

1 -79 4.38
2 -68 4.46
4 21 4.39

As for the WER application, table 5 shows a variation for the property function defined in section
2.4, when correcting 2 words instead of 1.

Table 5: Different property function implementations for the WER application. The different imple-
mentations vary in the number of words to correct and are reported after the same number of training
steps.

Words Corrected % WER Libri Test-Clean % WER Libri Test-Other

1 2.57 7.16
2 2.54 7.29
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D DETAILS AND RESULTS OF PRIOR WORK

In this section, we present both the findings and the specific details of prior work that address latency
reduction in CTC training. Since most of the prior work used different datasets and architectures,
we implemented or adjusted existing implementations to work in our setting.

Methods. The different methods we tried are TrimTail (Song et al., 2023), Peak First CTC (PFR)
(Tian et al., 2023) and Bayes Risk CTC (BRCTC) (Tian et al., 2022).

Implementation. We implemented TrimTail and PFR in accordance with the relevant paper. In the
case of BRCTC, we utilized an open-source implementation from ESPnet library10.

Experimental Settings And Results. We trained the models on LS-960, using the same online
ResNet model as described in 3. Decoding, training optimizer and scheduler are the same as in A.2

As for the hyper-parameters, the TrimTail has a max trim value, PFR has a weight and BRCTC has
a risk factor value. These parameters are responsible for controlling the method’s effectiveness. For
the PFR we used a dynamic weight w with a fixed ratio α, s.t. loss CTC

α∗loss PFR = w.

We conducted extensive research in order to find the best hyper-parameters that fit our model and
setup to achieve the best drift latency with minimum degradation in the WER results. The best
parameters we found are max trim value=50 for TrimTail, α=0.001 for PFR, and risk factor=200
for Bayes Risk. We used this set of parameters for the results reported in table 2.

Table 6 presents the full results of these models using various ranges of hyper-parameters.

Table 6: Other low latency methods results. DL was calculated using the Offline model trained on
LS-960 dataset. Results are on Libri Test-Clean.

Model Hyper-parameter DL (ms) TL (ms) WER

Peak First CTC α=0.01 198 628 4.22
Peak First CTC α=0.001 235 665 4.11
Peak First CTC α=0.0001 186 616 4.41
TrimTail max trim=30 47 477 4.38
TrimTail max trim=50 -76 354 4.46
TrimTail max trim=70 -126 304 4.79
Bayes Risk risk factor=100 199 629 4.21
Bayes Risk risk factor=200 63 493 4.78
Bayes Risk risk factor=250 91 521 4.82

E FURTHER COMPARISON BETWEEN AWP AND PRIOR WORK

To enable additional comparison between AWP and prior work, table 7 shows that for a similar
WER value, the latency varies across methods. This specific WER value was taken since this was
the minimal WER that one of the other methods achieved. It can be seen that AWP outperforms in
terms of latency.

10https://github.com/espnet/espnet
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Table 7: AWP and other low latency methods results, when the WER is similar across the different
methods. The models were trained on LS-960 dataset and are the same models used in table 2. DL
was calculated using the Stacked ResNet Offline model trained on LS-960 dataset. Results are on
Libri Test-Clean.

Method WER DL (ms)

Peak First CTC 4.7 186
Bayes Risk 4.78 64
TrimTail 4.81 -59
AWP 4.75 -96

F DETAILED LOW LATENCY EXPERIMENTAL RESULTS

Table 8: Full results with and without AWP, with other frameworks and on different data scales.
Results are on Libri Test-Clean.

Model Training Data Start Epoch DL (ms) TL (ms) WER

Stacked ResNet Offline Internal-280K - 0 3.2K 2.34
Stacked ResNet Online Internal-280K - 249 679 2.6
+AWP Internal-280K 0.03 33 463 3.13
+AWP Internal-280K 5.7 50 480 2.71

Stacked ResNet Offline LV-35K - 0 3.2K 2.42
Stacked ResNet Online LV-35K - 341 771 2.72
+AWP LV-35K 0.1 -251 179 3.28

Stacked ResNet Offline LS-960 - 0 3.2K 3.72
Stacked ResNet Online LS-960 - 278 708 4.06
+AWP LS-960 0.9 -79 351 4.38
+AWP LS-960 2.7 -54 376 4.11
+AWP LS-960 5.4 -18 412 4.13
+AWP LS-960 7.2 -32 398 4.07
+AWP LS-960 9 -24 406 3.92
+AWP LS-960 10.8 53 483 4.06
+AWP LS-960 16.7 136 566 3.92
+Peak First CTC LS-960 - 186 616 4.41
+TrimTail LS-960 - -76 354 4.46
+Bayes Risk LS-960 - 63 493 4.78

Conformer Offline LS-960 - 0 - 3.7
+AWP LS-960 12 -172 - 3.74

Table 9: Low Latency model training w/ & w/o AWP, with different AWP loss weight. Results are
on Libri Test-Clean

Model Training Data AWP loss weight DL (ms) TL (ms) WER

Stacked ResNet Offline LS-960 - 0 3.2K 3.72
Stacked ResNet Online LS-960 - 278 708 4.06
+AWP LS-960 0.01 -402 28 6.52
+AWP LS-960 0.005 -346 84 5.69
+AWP LS-960 0.001 -54 376 4.11
+AWP LS-960 0.0005 114 566 3.9
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