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Abstract

Although large language models demonstrate
strong performance across various domains,
they still struggle with numerous bad cases in
mathematical reasoning. Previous approaches
to learning from errors synthesize training data
by solely extrapolating from isolated bad cases,
thereby failing to generalize the extensive pat-
terns inherent within these cases. This paper
presents Self-Error-Instruct (SEI), a framework
that addresses these model weaknesses and syn-
thesizes more generalized targeted training data.
Specifically, we explore a target model on two
mathematical datasets, GSM8K and MATH,
to pinpoint bad cases. Then, we generate er-
ror keyphrases for these cases based on the
instructor model’s (GPT-40) analysis and iden-
tify error types by clustering these keyphrases.
Next, we sample a few bad cases during each
generation for each identified error type and
input them into the instructor model, which
synthesizes additional training data using a
self-instruct approach. This new data is re-
fined through a one-shot learning process to
ensure that only the most effective examples
are kept. Finally, we use these curated data to
fine-tune the target model, iteratively repeating
the process to enhance performance. We apply
our framework to LLaMA3-8B-Instruct and
Qwen2.5-Math-7B-Instruct, achieving average
performance gains of 2.55% on in-domain eval-
uations and 11.19% on out-of-domain evalu-
ations. These results demonstrate the effec-
tiveness of self-error instruction in improv-
ing LLMs’ mathematical reasoning through
error generalization. Our code and dataset
are available at https://anonymous.4open.
science/r/SEI-7228/README.md.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Jiang et al., 2023;
Team, 2024) have demonstrated remarkable capa-
bilities across various domains, particularly after

instruction-based fine-tuning. Yet, LLMs are still
facing substantial challenges in complex reasoning
tasks, particularly in mathematical reasoning. They
continue to encounter numerous bad cases, often
committing errors that compromise their reliability.

Previous work has taken advantage of these
errors to improve model performance. Mistake-
tuning and self-rethinking (Tong et al., 2024b)
leverage the historical errors of LLMs to enhance
their performance during both the fine-tuning and
inference stages. LLMs like ChatGPT (Ouyang
et al., 2022) are utilized to synthesize training
datasets based on the bad cases from smaller mod-
els (Ying et al., 2024; Tong et al., 2024a). LLMs
are also employed to optimize the reasoning steps
of smaller models (An et al., 2024), generating
corrective data to train these models.

However, current methods predominantly syn-
thesize training data from individual bad cases.
While this can somewhat enhance model perfor-
mance, the data often suffers from a lack of gen-
eralization because it is too reliant on specific in-
stances, which limits its ability to cover a wider
array of error patterns. To overcome this limitation,
we introduce the Self-Error-Instruct (SEI) frame-
work, which aims to generalize training data based
on error types instead of focusing solely on indi-
vidual cases. For example, in Figure 1, the left
subfigure displays various error types of Qwen2.5-
Math. We enhanced its mathematical reasoning by
generalizing the data according to these error types,
which is depicted in the right subfigure. To the best
of our knowledge, we are the first to explore data
synthesis and selection for LLMs to generalize from
errors based on error types in math reasoning.

Specifically, we begin by assessing target model
to identify bad cases. An instructor model is first
used to pinpoint errors from these bad cases and
generate relevant keyphrases, then cluster these
keyphrases into distinct error types. We select a
few samples from each error type as prompts for
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Figure 1: The left table shows some error types of Qwen2.5-Math-7b-Instruct on Math and GSMS8K training set,
while the right presents the results after training on data generalized from error categories.

the instructor model in a self-instruct manner to
synthesize new data. We further apply a one-shot
learning-based refinement to the new data to ver-
ify its effectiveness to rectify the target model’s
deficiencies while maintaining the target model’s
current success, only keeping the data that works.
This refinement process is iteratively repeated to
improve the model’s performance.

We employ LLaMA3-8B-Instruct and Qwen2.5-
Math-Instruct-8B as the target models to identify
bad cases within the training datasets, GSM8K and
MATH. We conduct comprehensive evaluations
using both in-domain and out-of-domain testing.
For in-domain tests, we use test sets from GSM8K
and MATH. For out-of-domain tests, we utilize
four additional mathematical reasoning datasets:
TAL, GaoKao, SAT, and College.

Experimental results show that training the tar-
get models with our synthesized data significantly
improves performance on both in-domain and
out-of-domain test sets. Specifically, LLaMA3
achieves an average improvement of 2.55%, while
the Qwen2.5 model achieves a more notable gain
of 11.19%. Additionally, our one-shot learning-
based data selection method is highly effective, out-
performing both random selection and LESS (Xia
et al., 2024), a recently proposed gradient-based
data selection method. It also surpasses the perfor-
mance of models trained on the full dataset. This
demonstrates that our approach can accurately iden-
tify high-quality training data to enhance model
performance. Our experiments further highlight
the importance of resolving bad cases in the one-
shot learning selection process and maintaining the
model’s correctness on the original good cases. Fi-
nally, we analyze the fix rate of bad cases at each
iteration, examine the impact of generalized data
volume on model performance, and compare two
training strategies: iterative training with data syn-
thesized in each round versus training from scratch
with all synthesized data. In summary, our contri-

butions are as follows:

e We improve data generalization by organiz-
ing mathematical reasoning data according to error
types instead of individual bad cases.

e We propose the Self-Error-Instruct framework,
which analyzes bad cases through keyphrases ex-
traction and clustering, then performs data general-
ization for each cluster.

o Experiments show that our method efficiently
generalizes data based on error types, enhancing
mathematical reasoning skills and validating the
effectiveness of our data selection strategy.

2 Related Work

2.1 Mathematical Reasoning

With the rapid advancement of large language mod-
els, they have shown remarkable capabilities across
a wide range of NLP tasks, as demonstrated by
models like ChatGPT (Ouyang et al., 2022), Claude
(Anthropic, 2024), and Gemini (Team, 2024). How-
ever, mathematical reasoning remains a significant
challenge for these models. To address this issue,
many models, such as OpenAl ol (OpenAl, 2024),
Qwen-2.5-Math (Yang et al., 2024), and DeepSeek-
Math (Shao et al., 2024), have undergone special-
ized training for mathematical tasks. Researchers
have explored various strategies to enhance perfor-
mance in this area, including prompting, pretrain-
ing, and fine-tuning.

Among these techniques, some focus specifi-
cally on learning from errors to enhance model
performance. LEMA (An et al., 2024) leveraged
GPT-4 (OpenAl, 2024a) to correct the model’s erro-
neous reasoning paths and used the refined reason-
ing paths to fine-tune the model. Self-rethinking
and mistake tuning (Tong et al., 2024b) analyze the
causes of model errors to improve reasoning perfor-
mance. The former uses an iterative process to help
the model avoid repeating past mistakes, while the
latter fine-tunes the model by incorporating correct
and erroneous reasoning examples. LLM2LLM



(Tong et al., 2024a) generates new synthetic data
based on error cases to improve model performance
iteratively. Learning from error and learning from
error by contrast (Ying et al., 2024) are two strate-
gies designed to improve the performance of target
models. The former generates targeted training
data by analyzing erroneous responses, while the
latter by contrasting correct and incorrect responses.
In contrast to these approaches, which focus solely
on individual bad cases, our method generalizes
data based on error types. This allows for more sys-
tematic coverage of diverse issues, enhances data
diversity, and improves generalization ability.

2.2 Data Selection

Data selection plays a crucial role in instruction
tuning, as it helps identify high-quality data, en-
hancing model performance and generalization
while minimizing noise to optimize training. LIMA
(Zhou et al., 2023) achieved exceptional perfor-
mance by selecting 1,000 high-quality question-
answer pairs for instruction tuning, delivering re-
sults comparable to those obtained through large-
scale instruction tuning and reinforcement learn-
ing. Instruction-following difficulty (Li et al.,
2024a) was proposed to evaluate the difficulty of
following instructions for each sample. LESS (Xia
et al., 2024) identified training data most similar
to the validation set based on gradient features.
NUGGETS (Li et al., 2024b) assessed the impact
of candidate instructions on a predefined task set’s
perplexity using one-shot learning, comparing the
score differences between zero-shot and one-shot
learning as a reference for data selection. Building
on NUGGETS, we designed a one-shot learning
data selection method tailored for mathematical rea-
soning. This method selects data based on whether
the generated data can address the target model’s
bad cases while preserving its good cases.

3 Our Self-Error-Instruct Framework

Our framework aims to enhance the mathemati-
cal reasoning ability of the target model Miarger by
identifying its weaknesses, referred to as bad cases,
on an existing mathematical training dataset Dy,p.
These bad cases are analyzed to guide the synthesis
of targeted training data that directly addresses the
model’s specific shortcomings. By progressively
training on this tailored data, the mathematical ca-
pabilities of Mg are effectively improved.

As shown in Figure 2, our process consists

of four key steps: 1) Bad Case Extraction
(Section 3.1), which identifies the incorrect cases
where the target model Mg e fails on the existing
mathematical reasoning dataset Dyi,. 2) Self Er-
ror Instruct (Section 3.2) generates targeted data
for Marge; by first identifying error keyphrase, then
clustering similar errors, and finally synthesizing
data specifically tailored to address the identified
error types. 3) Data Selection (Section 3.3) filters
and selects high-quality data from the generated
dataset, ensuring that only the most relevant and
effective examples are used for training. 4) Itera-
tive Training (Section 3.4) uses the selected data
to retrain Mg, iterating this process to continu-
ously refine and enhance the model’s performance,
thereby improving its mathematical reasoning ca-
pabilities with each cycle.

3.1 Bad Case Extraction

For each problem with its correct reasoning path
(gi, ;) in the training dataset Drin, we use Miarget
to generate a reasoning path. During this process,
we identify and collect the bad case (g;, 7;, 7;) into
the error dataset Deyor, Where the answers derived
from the reasoning paths differ, i.e., Ans(7;) #
Ans(r;), where Ans(-) is the function that ex-
tracts the answer from a given reasoning path.
Thus, the error dataset is defined as:

Derror = {(inriafi) | Ans(fi) # AnS(Ti)}‘
(1

3.2 Self Error Instruct

In this phase, for each bad case in Deror, we lever-
age the Mipsyructor model to perform error analy-
sis by examining the reasoning paths and gener-
ating an error keyphrase that captures the nature
of the mistake. These error keyphrases are then
clustered into distinct groups based on similarity.
For each error type, targeted data synthesis gener-
ates new training samples specifically designed to
address model weaknesses. This process produces
the curated dataset Dggy, containing diversity and
error-specific training samples to enhance the target
model’s reasoning ability.

Error Keyphrase Generation. During this stage,
we address each bad case (g;, 7;, 7;) in the dataset
Derror using the Miygiructor model for detailed error
analysis. This process generates an error keyphrase
e;, which captures the specific nature of the error.
To achieve this, we employ a structured function
Extract[-] with a keyphrase extraction prompt to



Section 3.1 : Bad Case Extraction

Wrong Output: James trains for 4
hours twice a day, 5 days a week. So he
trains for 8 hours a week. There are 52
weeks in a year, so he trains for 8 * 52 =
416 hours a year. The answer is 416.
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Figure 2: An overview of our Self-Error-Instruct framework. It consists of four key steps: (1) Bad case extraction
identifies failure cases from the target model. (2) Self-error-instruct generates error keyphrases, clustering, and
synthesizes data for each error type. (3) One-shot learning data selection retains only high-quality and effective
examples for training. (4) Iterative training refines the target model by fine-tuning it with the curated data and

repeating the process to further improve performance.

analyze the incorrect reasoning path *; and produce
the corresponding error keyphrase. Details of the
prompt are provided in the Appendix A.1. The
process is mathematically represented as follows:

EK-Set = {ei | e; = Extract[Minsiuctor, (i, 74, 73)]
. (2)
V(Qi7 T4, T'i) c Derror},

where EK-Set represents the collection of error
keyphrases generated for all bad cases in Deor.
This approach ensures that each e; accurately cap-
tures the underlying issue in the model’s reasoning
path, providing a solid foundation for subsequent
clustering and data synthesis steps.

Error Keyphrases Clustering. After obtaining
the EK-Set, we utilize the M, structor model to clus-
ter the keyphrases within this set. This clustering
process identifies distinct error types, denoted as
the ET-Set. The process can be mathematically
expressed as:

ET-Set = Cluster|Miysructor, EK-Set],  (3)

where Cluster['] is a clustering prompt (see Ap-
pendix A.2) designed to group the error keyphrases
into coherent and distinct types. Each type is man-
ually reviewed to filter and validate its relevance
and appropriateness.

Error Type-Specific Data Synthesis. For each
error type within the E7-Set, we begin by sampling
a subset of bad cases from the same error type,
which serve as in-context learning prompts. These
prompts are then used to guide Miygiructor in gener-
ating additional data that falls under the same error
type. This process ensures that the generated data
remains consistent with the specific error patterns
of the given type, thereby expanding our dataset
with more diverse but relevant examples. Through
this process, we ultimately obtain a synthesized
dataset DSEI, which enriches our data with exam-
ples covering distinct error patterns. The specific
prompt used for this generalization process can be
found in the Appendix A.3.

3.3 One-shot Learning Selection

After obtaining the generalized dataset Dgg; tar-
geting specific errors, our goal is to select a small
subset of high-quality data for training the target
model. In previous work, NUGGETS (Li et al.,
2024b) uses a one-shot learning approach to filter
data. It calculates a score for each instruction ex-
ample based on its impact on the perplexity of a set
of pre-defined tasks, allowing for the identification
of the most beneficial data for instruction tuning.
In our approach to mathematical reasoning tasks,
instead of relying on perplexity, we directly eval-



uate whether the newly generalized data can ef-
fectively serve as a one-shot prompt to guide the
target model in resolving bad cases. Furthermore,
we aim to ensure that the target model maintains
its performance on good cases originally answered
correctly, preserving its effectiveness across chal-
lenging and straightforward examples. First, we
randomly sample a subset of bad cases and good
cases to create a validation set, Dgoy. Next, we
evaluate each sample in DSEI by measuring how
many cases in Ddev it can resolve when used as a
one-shot prompt. This evaluation serves as the cri-
terion for selecting high-quality data. The process
can be represented as:

J_
;= Mtarget(

Frl o) 4)
~~

One-Shot Prompt

5351 = Z]I[Ans(rg) = Ans(r;)] ®))

The expression ¢/r7 represents the j-th synthetic
data point from the dataset Dg.;. The score Sgsl is
the one-shot learning score, calculated by summing
the indicator function I[-], which is 1 if the answer
from TZJ. matches r;, and O otherwise. Here, ¢;r; are
elements from DYV . representing bad case where
r; is the correct reasoning path for ¢;. The prompt
for one-shot learning is shown in Appendix 9. For
each synthetic data in Dggj, calculate the set of
one-shot learning scores {S., S%,,...,S™}. By
sorting these scores, we obtain the selection DZ},.

3.4 Iterative Training Optimization

The selected data, D‘S’SElI, is used to train the tar-
get model, Myyge. After the model is enhanced
through this training, it is applied to Dy, once
more to identify new bad cases that it still struggles
with. This process is iterated, continuously opti-
mizing the target model by improving its ability to
handle challenging examples, thereby enhancing
its overall mathematical reasoning ability.

4 Experimental Setup
4.1 Data Synthetic

We identify bad cases from the training datasets
of GSM8K and MATH, using GPT-40 (OpenAl,
2024b) as the instruct model to generate error
keyphrases, perform clustering, and synthesize
data. For each error type, during the self-error
instruct process, we sample 5 data points from the
error dataset Deyor and 3 data points from the al-
ready generated data within the current error type

Dataset Difficulty  Difficulty Train Test
GSMEK Elementary Easy 7473 1,319
MATH Competition ExHard 7,498 5,000
TAL-SCQ K12 Math Medium 1,496
GaoKaoBech-Math  High School Hard - 508

SAT-MATH High School Hard - 102

CollegeMath College ExHard 2,818

Table 1: Statistics of Different Datasets. We extract bad
cases from the GSM8K and MATH training sets and
use the test sets of all datasets for evaluation. Datasets
marked with “-” indicate only test data is available and
are used for out-of-domain evaluation.

to serve as prompts. Each time, GPT-40 general-
izes 20 new math data. We then filter out data with
a Rouge-L score greater than 0.7 compared to the
GSMBSK and MATH training and test datasets to
enhance diversity and prevent test set leakage. We
randomly select 100 data points, comprising 50
good and 50 bad cases, to construct the validation
set Dgey. The number of iterations for data synthe-
sis and model training is 3. In each iteration, we
generate 10,000 data points by synthesizing 5,000
examples for the error types of GSM8K and 5,000
for MATH. We select the top 5% of the synthetic
data from each part and combine them into a uni-
fied dataset for training. Over three iterations, we
generate a total of 30,000 data points and select
1,500 for training. We also compared two meth-
ods for training the target model: iterative training,
which starts from the model trained in the previous
round, and training from scratch, which uses the
selected data in a single step. The results of these
two methods are shown in Table 5.

4.2 Target Model Setting

We use the instruction-tuned llama3-8b-instruct
model and the math-specialized Qwen2.5-Math-
7B-Instruct model as our target models. During
training, we employ LoRA (Hu et al., 2021) with a
maximum sequence length of 512 tokens, set the
number of training epochs to 3, and use a learn-
ing rate 2e-05. The model’s training and inference
stages use the alpaca prompt template (Taori et al.,
2023), as shown in Appendix A.5.

4.3 Evaluation

We used the GSM8K (Cobbe et al., 2021) and
Math (Hendrycks et al., 2021) test sets for in-
domain evaluation. For out-of-domain evaluation,
we utilized four challenging datasets: 1) TAL-SCQ
(TAL, 2023): A K-12 mathematics test set contain-



In-Domain

Out-of-Domain

Models AVG
GSMSK MATH TAL GaoKao SAT College

Llama-3-8B-Instruct 71.65 26.66 34.83 13.19 38.24 15.29 33.31

+ Training data 69.45 25.54 31.95 12.99 40.20 13.91 32.34

+ Bad Cases 65.67 24.88 31.68 12.20 36.27 14.44 30.86

+ Self-Instruct 72.71 27.79 34.16 13.97 43.09 14.92 34.77

+ LLM2LLM 7291 27.90 33.20 13.78 42.18 13.87 33.97

+ SEI-ICL 73.77(.,,2.12) 27.16(_*_0‘50) 35.83(.,.1,00) 16.14(.,.2.95) 45~10(+6.86) 16.29(4.1,00) 35.72(+2_41)
Qwen2.5-Math-7B-Instruct 75.51 47438 51.67 24.61 62.75 23.31 47.56

+ Training data 51.48 56.76 46.59 43.70 67.65 27.82 48.83

+ Bad Cases 33.28 50.74 34.22 13.98 57.84 21.86 35.32

+ Self-Instruct 84.00 62.04 54.81 37.40 64.71 28.60 55.26

+ LLM2LLM 85.60 63.24 55.35 41.34 66.67 29.84 57.00

+ SEI-ICL 87.34(11183) 605.14(11766) 56.62(1 405 446912008 608.63(15s3) 30.07676) 58.7511.19)

Table 2: Main results on in-domain and out-of-domain mathematical test sets, evaluated using the exact match
(EM). AVG represents the average performance across six test sets. Bold highlights the best-performing model.
All experiments are conducted in a zero-shot setting. SEI-ICL refers to our proposed method, which leverages the
self-error-instruct framework to generalize and trains using the top 5% of data selected through one-shot learning.
For fair comparison, the generalized data sizes for self-instruct and LLM2LLM are kept consistent with SEI-ICL.

ing 1,496 test examples. 2) GaoKaoBench-Math
(Zhang et al., 2024): Comprising 508 test exam-
ples, this dataset features math problems from the
Chinese high-school curriculum. 3) SAT-MATH
(Zhong et al., 2024): Consisting of 102 questions,
this dataset includes math problems from the U.S.
high-school curriculum. 4) CollegeMath (Tang
et al., 2024): This dataset contains 2,818 test exam-
ples of college-level math problems. The detailed
dataset statistics are provided in Table 1.

We evaluated the models on these datasets using
greedy decoding in a zero-shot setting. The per-
formance was measured using Exact Match (EM),
where answers were extracted from the generated
reasoning paths and compared with the correct an-
swers. All evaluations were conducted using the
MWPEVAL framework (Tang et al., 2024).

4.4 Baselines

We compare with several baselines: 1) Training
Data, where the model is trained on the combined
GSMSK and MATH datasets; 2) Bad Cases, using
bad cases from the initial target model; 3) Self-
Instruct (Wang et al., 2023), generating 1,500 data
points; 4) LLM2LLM (Tong et al., 2024a), also
generating 1,500 data points; 5) Rand, randomly
selecting 500 data points per iteration for a total
of 1,500; and 6) LESS (Xia et al., 2024), selecting
1,500 data points based on gradient similarity.

We adopt the same setting as SEI for self-
instruct, except that the sampled examples are se-
lected randomly. Eight samples (five bad cases and
three generated data) are selected in each iteration,

and GPT-40 generates 20 new samples. This pro-
cess is repeated to produce a total of 1,500 samples.
For LLM2LLM, one new sample is generated per
bad case using GPT-4o0, with 500 samples gener-
ated per round over three rounds, resulting in 1,500
samples. We filter out samples with a Rouge-L
similarity score above 0.7 during data synthesis by
comparing them against the GSM8K and MATH
training and test datasets.

For rand selection, data is proportionally sam-
pled from each error type, with more samples
drawn from types with more bad cases. For LESS,
following the original setting, we randomly select
10 examples from GSM8K and MATH as the val-
idation set, compute the average gradient of the
validation set, and select generated data with the
most similar gradients.

5 Experimental Results

5.1 Main Results

Table 2 presents our main results, from which we
can draw several conclusions. 1) Our method,
SEI-ICL, outperforms others by substantial mar-
gins in all math datasets. Specifically, Llama-
3-8B-Instruct improves by 2.41% after training,
while Qwen2.5-Math-7B-Instruct achieves an im-
pressive improvement of 11.19%, demonstrating
the effectiveness of our error-type-guided data gen-
eration approach. 2) Training solely on the original
GSMS8K and MATH training data or the identi-
fied bad cases leads to little improvement or even
performance degradation, indicating that existing
math training datasets provide limited benefits for



In-Domain

Out-of-Domain

Models # Samples AVG
GSMS8K MATH TAL Gaokao SAT College
Llama-3-8B-Instruct - 71.65 26.66 34.83 13.19 3824 1529 3331
SEI-FULL 100% 72.48 27.54 36.03 1437 4320 17.21 35.14
-Rand 5% (1,500) 72.86 2833 3483 1319 4510 1590 35.03
-LESS 5% (1,500) 73.99 2790 3570 1378 4437 13.88 3493
7777777777777777777 5% (1,500) 7377 2716 3583 1614 4510 1629 3572
-One-shot ICL 10% (3,000)  72.93 2894 3356 1614 46.09 16.11 35.63
20% (6,000)  74.98 2894 3516 1496 43.14 17.17 3573
Qwen2.5-Math-7B-Instruct - 75.51 4748 51.67 2461 6275 2331 47.56
SEI-FULL 100% 86.81 61.02 5495 3583 69.61 29.13 56.23
-Rand 5% (1,500) 84.69 62.31 55.08 41.13 70.59 30.52 57.39
-LESS 5% (1,500) 86.66 6540 5428 3681 68.63 30.55 57.06
7777777777777777777 5% (1,500)  87.34 6514 56.62 44.69 68.63 30.07 5875
-One-shot ICL 10% (3,000)  89.00 66.40 5588 44.88 7255 30.23 59.82
20% (6,000)  88.40 64.12 54.08 4429 67.65 29.84 58.06

Table 3: Model performance under different data selection strategies and samples. The bolded results highlight the
best performance achieved using the FULL dataset and the top 5% of samples selected through Rand, LESS, and

one-shot ICL methods.

already instruct-tuned models. It highlights the ne-
cessity of data synthesis. 3) With the same amount
of data, our data generation method outperforms
both Self-Instruct and LLM2LLM. As shown in
Table 2, the average improvement achieved by SEI-
ICL on both base models is higher than that of these
baselines. Furthermore, combined with the results
in Table 3, we observe that even without data se-
lection, randomly selecting the same amount of
data (Rand) performs better than self-instruct and
LLM2LLM, further demonstrating that our error-
type-guided data generation is more effective than
self-instruct (random generation) and LLM2LLM
(based on a single bad case).

5.2 Data Selection

Table 3 presents the results of different data se-
lection methods. By selecting the top 5% of the
data using our one-shot learning method, the perfor-
mance of the trained models on both base models
surpasses that of SEI-FULL, which uses the full
dataset for training. Furthermore, our models con-
tinue to outperform SEI-FULL as the amount of
selected data increases. Under the same data size,
the one-shot learning method achieves better results
than rand selection and LESS, shows the effective-
ness of our one-shot learning approach specifically
designed for mathematical problem selection.

We conducted analysis experiments on the data
selection validation set Dy, mentioned in Section
3.3. Specifically, we compared the approach of

using only bad cases as Dge, with the combined
approach that includes both good and bad cases.
The results of these experiments are shown in Fig-
ure 4. It can be observed that the combined ap-
proach outperforms the method using only bad
cases across most datasets. This demonstrates that,
when performing one-shot learning for data selec-
tion, it is important to ensure that the generated data
addresses bad cases effectively and to maintain the
correctness of the original good cases.

5.3 Iterative Improvement Result

Bad Case (Fix Rate) Testset (EM Score)

GSMSK MATH GSMSK MATH
Iter-0 (ori) 0 0 75.51 47.48
Iter-1 31.8 30.09 77.48 56.00
Iter-2 40.49 38.17 83.31 65.62
Iter-3 46.92 39.40 86.66 66.06

Table 4: Bad Case Fix Rate of Qwen2.5-Math-7b-
Instruct on GSM8K and MATH during iterative im-
provement, along with its performance on the test sets.
Bad cases refer to the errors made by Qwen2.5-Math-
7b-Instruct in the training data of GSM8K and MATH.

Table 4 presents the bad case fix rate and test set
performance of the Qwen2.5 math model across dif-
ferent iterations. As shown, with the increase in it-
erations, the bad case fix rate consistently improves
for both datasets, accompanied by a steady im-
provement in test set performance. This indicates
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that our method effectively identifies the model’s
error types in each iteration and generates targeted
data for training, thereby enhancing the model’s
overall performance.

Llama3 Qwen2.5
Training Method GSM8K MATH GSMS8K MATH
Iterative 72.48 26.80 86.66 66.06
From-scratch 73.77 27.16 87.34 65.14

Table 5: The performance of different training methods
is compared: Iterative trains the model incrementally,
building on previous rounds, while From-scratch trains
the model once using the final selected data.

5.4 Iterative vs. From-scratch Training

Table 4 highlights the differences between itera-
tive training and from-scratch training within our
framework. In iterative training, each new itera-
tion continues training the target model obtained
in the previous round. In contrast, from-scratch
training involves directly training the initial target
model once the data is obtained after three rounds
of data generation. The results show that from-
scratch training outperforms iterative training. A
possible explanation for this is that in each round

of iterative training, we only select the top 5% of
the data for training. With such a small amount of
data, iterative fine-tuning may lead to overfitting
over multiple rounds. On the other hand, training
from scratch aggregated datasets helps mitigate this
issue, resulting in better overall performance.

5.5 Different Synthetic Size

We conducted an analysis between the amount of
unfiltered synthetic data and performance, with the
results presented in Figure 3. It can be observed
that for both target models, the size of the gener-
alization data is not proportional to performance.
For Llama3, performance initially improves but
then starts to decline, while Qwen2.5 results are
relatively unstable. Specifically, on GSMS8K, the
best performance is achieved with 25,000 training
samples, whereas on MATH, the optimal result is
obtained with 10,000 samples. These findings fur-
ther highlight the importance of data selection. For
models like Llama3 and Qwen2.5, which have al-
ready undergone extensive instruction tuning, the
quantity of data may not be the key to improving
performance. Instead, the focus should shift to
constructing small but high-quality datasets.

6 Conclusion

We propose Self-Error-Instruct, a novel framework
to improve LLMs mathematical reasoning by gen-
eralizing training data based on error types rather
than individual bad cases. Our method enhances
data diversity and mitigates overfitting by analyz-
ing errors, clustering them into categories, and
synthesizing targeted data using a self-instruct ap-
proach. Experiments on LLaMA3-8B-Instruct and
Qwen2.5-Math-7B-Instruct show notable perfor-
mance improvements with our method, achieving
average gains of 2.55% and 11.19%, respectively,
across in-domain and out-of-domain evaluations.



Limitations

Our framework has two main limitations: the high
cost of using GPT-4o0 as the instructor model and
the focus on GSM8K and MATH datasets for bad
case extraction, which may limit error diversity.

One limitation of our approach is the reliance
on GPT-40 as the instructor model for error anal-
ysis and data synthesis. While GPT-4o is highly
effective in identifying error keyphrases and gen-
erating targeted training data, its use incurs sig-
nificant computational and financial costs, which
may limit the scalability and accessibility of the
framework. To address this, a promising direction
for future work is to train an open-source large lan-
guage model specifically designed to serve as the
instructor. Such a model could significantly reduce
costs while maintaining or even improving perfor-
mance, making the framework more practical and
widely applicable.

Another limitation lies in the scope of our bad
case extraction and iterative refinement process,
which is currently confined to the GSM8K and
MATH datasets. As a result, the error types identi-
fied and addressed may be limited to those specific
to these datasets, potentially restricting the gener-
alizability of the framework to other mathematical
reasoning tasks or datasets. In the future, a more
dynamic approach could be adopted, where bad
cases are extracted from the initial datasets and
continuously identified within the synthesized data
during the iterative process. This would allow the
framework to discover new and diverse error types
as the training data evolves, further broadening the
issues addressed and enhancing the model’s math-
ematical reasoning capabilities. This expansion
would help ensure the framework adapts to various
problems, improving its robustness and applicabil-
ity to real-world scenarios.

References

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2024. Learning
from mistakes makes llm better reasoner. Preprint,
arXiv:2310.20689.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024a. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7602-7635, Mexico City, Mexico. Association
for Computational Linguistics.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min
Yang, Lei Zhang, Shuzheng Si, Ling-Hao Chen, Jun-
hao Liu, Tongliang Liu, Fei Huang, and Yongbin
Li. 2024b. One-shot learning as instruction data
prospector for large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 45864601, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

OpenAl. 2024a. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

OpenAl 2024b. Gpt-4o.

OpenAl 2024. O1 Model. https://openai.com/o1/.
Accessed: 2024-12-11.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,


https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.acl-long.252
https://doi.org/10.18653/v1/2024.acl-long.252
https://doi.org/10.18653/v1/2024.acl-long.252
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/

Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-

cal reasoning in open language models. Preprint,
arXiv:2402.03300.

TAL. 2023.  Tal-scqSk. https://github.com/
math-eval/TAL-SCQ5K. GitHub repository.

Zhengyang Tang, Xingxing Zhang, Benyou Wang,
and Furu Wei. 2024. Mathscale: Scaling instruc-
tion tuning for mathematical reasoning. Preprint,
arXiv:2403.02884.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Gemini Team. 2024. Gemini: A family of highly capa-
ble multimodal models. Preprint, arXiv:2312.11805.

Terry Tong, Qin Liu, Jiashu Xu, and Muhao Chen.
2024a. Securing multi-turn conversational language
models from distributed backdoor attacks. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 12833-12846, Miami, Florida,
USA. Association for Computational Linguistics.

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei
Teng, and Jingbo Shang. 2024b. Can LLMs learn
from previous mistakes? investigating LLMs’ errors
to boost for reasoning. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3065—
3080, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484-13508, Toronto, Canada. Association
for Computational Linguistics.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Dangi Chen. 2024. LESS: Se-
lecting influential data for targeted instruction tuning.
In International Conference on Machine Learning
(ICML).

10

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. Preprint, arXiv:2409.12122.

Jiahao Ying, Mingbao Lin, Yixin Cao, Wei Tang,
Bo Wang, Qianru Sun, Xuanjing Huang, and
Shuicheng Yan. 2024. LLMs-as-instructors: Learn-
ing from errors toward automating model improve-
ment. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 11185-
11208, Miami, Florida, USA. Association for Com-
putational Linguistics.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2024. Evaluating the
performance of large language models on gaokao
benchmark. Preprint, arXiv:2305.12474.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2024. AGIEval: A human-centric
benchmark for evaluating foundation models. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 2299-2314, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. Preprint, arXiv:2305.11206.

A Overview of Prompts Used

A.1 Prompt for Error Keyphrase Generation

Figure 5 illustrates the prompt used to generate
error keyphrases for identifying and summarizing
mistakes in mathematical reasoning. The input
to the prompt includes a math question, the cor-
rect reasoning path leading to the answer, and the
model’s incorrect reasoning path. The prompt in-
structs the model to analyze where the error oc-
curred in its reasoning process, identify the cause,
and summarize it as a concise yet descriptive
keyphrase. The output is a single keyphrase in list
format, effectively capturing the primary reason for
the model’s mistake, which can then be used for
further error analysis and targeted data synthesis.

A.2 Prompt for Error Clustering Generation

Figure 5 presents a prompt designed to guide the
analysis and categorization of error keyphrases gen-
erated from a model’s reasoning mistakes. The in-
put to this prompt is a list of error keyphrases, and
the task involves clustering these keyphrases based
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Figure 5: Prompt for Generating Error Keyphrases.

Figure 6: Prompt for Clustering Error Keyphrases



on common themes, causes, or areas of occurrence.
For each cluster, the model is instructed to list the
included keyphrases, explain their grouping, and
assign a concise, descriptive name to the cluster.
This process helps identify patterns in the model’s
errors, offering meaningful insights into the types
of mistakes made and enabling targeted improve-
ments in the model’s reasoning capabilities.

A.3 Prompt for Error Type-Specific Data
Synthesis

Error Type-Specific Data Synthesis for GSMSK:

Based on the given examples and error type, create 20
difficult math problems that are likely to cause errors in
the model.

Requirement:

1. Identify the commonality in the given examples and
consider what issues in these examples might cause the
model to make mistakes.

2. Make the new problems more challenging and
diverse.

3. Format the output strictly as a string in this structure:
[{{"question":,"solution":} },
{{"question":,"solution":,} },...].

Ensure no additional output beyond the specified
structure. Output in JSON format.

4. The reasoning process for each step should be
provided in the solution.

5. Ensure the final answer is a number and place it on a
new line, denoted by \n#### num.

6. Don’t make any mathematical mistakes of your own!

Provided Questions:
{Sampled Error Question q4 }
{Sampled Error Question q,}
{Sampled Error Question q3}
{Sampled Error Question q4}
{Sampled Error Question qg}
{Sampled Error Question qg}
{Sampled Error Question g}
{Sampled Error Question qg}

Error Type:
{Error type}

Generated Questions:

Figure 7: Prompt for GSM8K Error Type-Specific Data
Synthetic.

The prompt in Figure 7 and 8 guides the creation
of 20 challenging math problems targeting specific
error types in the GSM8K and MATH datasets.
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Error Type-Specific Data Synthesis for Math:

Based on the given examples and error type, create 20
difficult math problems that are likely to cause errors in
the model.

Requirement:

1. Identify the commonality in the given examples and
consider what issues in these examples might cause the
model to make mistakes.

2. Make the new problems more challenging and
diverse.

3. Format the output strictly as a string in this structure:

n.n

[{{"question":,"solution":} },
{{"question":,"solution":,} },...].
Ensure no additional output beyond the specified
structure. Output in JSON format.
4. The reasoning process for each step should be
provided in the answer.
5. The final answer should be marked with \\boxed{{} }
When generating math problems in JSON format:

1) Use \W\( and \\\\) for inline math

2) Avoid complex LaTeX commands

3) Use simple alternatives for arrows and dots

4) Keep solutions concise and avoid unnecessary

formatting

5) Escape special characters properly

6) Test the JSON validity before finalizing
6.Don’t make any mathematical mistakes of your own!

Provided Questions:
{Sampled Error Question g4 }
{Sampled Error Question g }
{Sampled Error Question g3}
{Sampled Error Question g4}
{Sampled Error Question g5}
{Sampled Error Question q¢}
{Sampled Error Question q7}
{Sampled Error Question qg}

Error Type:
{Error type}

Generated Questions:

Figure 8: Prompt for MATH Error Type-Specific Data
Synthetic.
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By analyzing the examples provided, the instruct
model identifies patterns or issues causing errors
and generates diverse, difficult problems aligned
with these error types. The output follows a strict
JSON format with detailed solutions and final nu-
merical answers.

A.4 Prompt for One-shot Learning Selection

Figure 9: One-Shot Learning Prompt for Selecting Syn-
thetic Data

The prompt in Figure 9 generates a response to
a given task by providing an example pairing of a
synthetic question and solution, followed by a new
question requiring an appropriate response.

A.5 Prompt for Alpaca Template

Figure 10: Alpaca prompt for Model Training and Infer-
ence

Figure 10 illustrates the Alpaca-format prompt,
designed to facilitate training and inference for the
target model.
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