
Self-Error-Instruct: Generalizing from Errors for
LLMs Mathematical Reasoning

Anonymous ACL submission

Abstract

Although large language models demonstrate001
strong performance across various domains,002
they still struggle with numerous bad cases in003
mathematical reasoning. Previous approaches004
to learning from errors synthesize training data005
by solely extrapolating from isolated bad cases,006
thereby failing to generalize the extensive pat-007
terns inherent within these cases. This paper008
presents Self-Error-Instruct (SEI), a framework009
that addresses these model weaknesses and syn-010
thesizes more generalized targeted training data.011
Specifically, we explore a target model on two012
mathematical datasets, GSM8K and MATH,013
to pinpoint bad cases. Then, we generate er-014
ror keyphrases for these cases based on the015
instructor model’s (GPT-4o) analysis and iden-016
tify error types by clustering these keyphrases.017
Next, we sample a few bad cases during each018
generation for each identified error type and019
input them into the instructor model, which020
synthesizes additional training data using a021
self-instruct approach. This new data is re-022
fined through a one-shot learning process to023
ensure that only the most effective examples024
are kept. Finally, we use these curated data to025
fine-tune the target model, iteratively repeating026
the process to enhance performance. We apply027
our framework to LLaMA3-8B-Instruct and028
Qwen2.5-Math-7B-Instruct, achieving average029
performance gains of 2.55% on in-domain eval-030
uations and 11.19% on out-of-domain evalu-031
ations. These results demonstrate the effec-032
tiveness of self-error instruction in improv-033
ing LLMs’ mathematical reasoning through034
error generalization. Our code and dataset035
are available at https://anonymous.4open.036
science/r/SEI-7228/README.md.037

1 Introduction038

Large language models (LLMs) (Brown et al.,039

2020; Ouyang et al., 2022; Jiang et al., 2023;040

Team, 2024) have demonstrated remarkable capa-041

bilities across various domains, particularly after042

instruction-based fine-tuning. Yet, LLMs are still 043

facing substantial challenges in complex reasoning 044

tasks, particularly in mathematical reasoning. They 045

continue to encounter numerous bad cases, often 046

committing errors that compromise their reliability. 047

Previous work has taken advantage of these 048

errors to improve model performance. Mistake- 049

tuning and self-rethinking (Tong et al., 2024b) 050

leverage the historical errors of LLMs to enhance 051

their performance during both the fine-tuning and 052

inference stages. LLMs like ChatGPT (Ouyang 053

et al., 2022) are utilized to synthesize training 054

datasets based on the bad cases from smaller mod- 055

els (Ying et al., 2024; Tong et al., 2024a). LLMs 056

are also employed to optimize the reasoning steps 057

of smaller models (An et al., 2024), generating 058

corrective data to train these models. 059

However, current methods predominantly syn- 060

thesize training data from individual bad cases. 061

While this can somewhat enhance model perfor- 062

mance, the data often suffers from a lack of gen- 063

eralization because it is too reliant on specific in- 064

stances, which limits its ability to cover a wider 065

array of error patterns. To overcome this limitation, 066

we introduce the Self-Error-Instruct (SEI) frame- 067

work, which aims to generalize training data based 068

on error types instead of focusing solely on indi- 069

vidual cases. For example, in Figure 1, the left 070

subfigure displays various error types of Qwen2.5- 071

Math. We enhanced its mathematical reasoning by 072

generalizing the data according to these error types, 073

which is depicted in the right subfigure. To the best 074

of our knowledge, we are the first to explore data 075

synthesis and selection for LLMs to generalize from 076

errors based on error types in math reasoning. 077

Specifically, we begin by assessing target model 078

to identify bad cases. An instructor model is first 079

used to pinpoint errors from these bad cases and 080

generate relevant keyphrases, then cluster these 081

keyphrases into distinct error types. We select a 082

few samples from each error type as prompts for 083

1

https://anonymous.4open.science/r/SEI-7228/README.md
https://anonymous.4open.science/r/SEI-7228/README.md
https://anonymous.4open.science/r/SEI-7228/README.md

0 50 100 150 200 250 300 350 400

Problem Understanding Errors
Variable and Setup Errors

Mixed Calculation and Setup Errors
Arithmetic Errors
Algebraic Errors

Probability and Counting Errors
Logical and Reasoning Errors

Geometric Errors

206

126

45

261

397

159

265

346

GSM8K MATH TAL GaoKao SAT College0

20

40

60

80

100

Pe
rf

or
m

an
ce

 (
%

)

+11.8

+17.7
+4.9

+20.1

+5.9

+6.8

Qwen2.5-Math-7B-Instruct
Train with SEI

Figure 1: The left table shows some error types of Qwen2.5-Math-7b-Instruct on Math and GSM8K training set,
while the right presents the results after training on data generalized from error categories.

the instructor model in a self-instruct manner to084

synthesize new data. We further apply a one-shot085

learning-based refinement to the new data to ver-086

ify its effectiveness to rectify the target model’s087

deficiencies while maintaining the target model’s088

current success, only keeping the data that works.089

This refinement process is iteratively repeated to090

improve the model’s performance.091

We employ LLaMA3-8B-Instruct and Qwen2.5-092

Math-Instruct-8B as the target models to identify093

bad cases within the training datasets, GSM8K and094

MATH. We conduct comprehensive evaluations095

using both in-domain and out-of-domain testing.096

For in-domain tests, we use test sets from GSM8K097

and MATH. For out-of-domain tests, we utilize098

four additional mathematical reasoning datasets:099

TAL, GaoKao, SAT, and College.100

Experimental results show that training the tar-101

get models with our synthesized data significantly102

improves performance on both in-domain and103

out-of-domain test sets. Specifically, LLaMA3104

achieves an average improvement of 2.55%, while105

the Qwen2.5 model achieves a more notable gain106

of 11.19%. Additionally, our one-shot learning-107

based data selection method is highly effective, out-108

performing both random selection and LESS (Xia109

et al., 2024), a recently proposed gradient-based110

data selection method. It also surpasses the perfor-111

mance of models trained on the full dataset. This112

demonstrates that our approach can accurately iden-113

tify high-quality training data to enhance model114

performance. Our experiments further highlight115

the importance of resolving bad cases in the one-116

shot learning selection process and maintaining the117

model’s correctness on the original good cases. Fi-118

nally, we analyze the fix rate of bad cases at each119

iteration, examine the impact of generalized data120

volume on model performance, and compare two121

training strategies: iterative training with data syn-122

thesized in each round versus training from scratch123

with all synthesized data. In summary, our contri-124

butions are as follows: 125

• We improve data generalization by organiz- 126

ing mathematical reasoning data according to error 127

types instead of individual bad cases. 128

• We propose the Self-Error-Instruct framework, 129

which analyzes bad cases through keyphrases ex- 130

traction and clustering, then performs data general- 131

ization for each cluster. 132

• Experiments show that our method efficiently 133

generalizes data based on error types, enhancing 134

mathematical reasoning skills and validating the 135

effectiveness of our data selection strategy. 136

2 Related Work 137

2.1 Mathematical Reasoning 138

With the rapid advancement of large language mod- 139

els, they have shown remarkable capabilities across 140

a wide range of NLP tasks, as demonstrated by 141

models like ChatGPT (Ouyang et al., 2022), Claude 142

(Anthropic, 2024), and Gemini (Team, 2024). How- 143

ever, mathematical reasoning remains a significant 144

challenge for these models. To address this issue, 145

many models, such as OpenAI o1 (OpenAI, 2024), 146

Qwen-2.5-Math (Yang et al., 2024), and DeepSeek- 147

Math (Shao et al., 2024), have undergone special- 148

ized training for mathematical tasks. Researchers 149

have explored various strategies to enhance perfor- 150

mance in this area, including prompting, pretrain- 151

ing, and fine-tuning. 152

Among these techniques, some focus specifi- 153

cally on learning from errors to enhance model 154

performance. LEMA (An et al., 2024) leveraged 155

GPT-4 (OpenAI, 2024a) to correct the model’s erro- 156

neous reasoning paths and used the refined reason- 157

ing paths to fine-tune the model. Self-rethinking 158

and mistake tuning (Tong et al., 2024b) analyze the 159

causes of model errors to improve reasoning perfor- 160

mance. The former uses an iterative process to help 161

the model avoid repeating past mistakes, while the 162

latter fine-tunes the model by incorporating correct 163

and erroneous reasoning examples. LLM2LLM 164

2

(Tong et al., 2024a) generates new synthetic data165

based on error cases to improve model performance166

iteratively. Learning from error and learning from167

error by contrast (Ying et al., 2024) are two strate-168

gies designed to improve the performance of target169

models. The former generates targeted training170

data by analyzing erroneous responses, while the171

latter by contrasting correct and incorrect responses.172

In contrast to these approaches, which focus solely173

on individual bad cases, our method generalizes174

data based on error types. This allows for more sys-175

tematic coverage of diverse issues, enhances data176

diversity, and improves generalization ability.177

2.2 Data Selection178

Data selection plays a crucial role in instruction179

tuning, as it helps identify high-quality data, en-180

hancing model performance and generalization181

while minimizing noise to optimize training. LIMA182

(Zhou et al., 2023) achieved exceptional perfor-183

mance by selecting 1,000 high-quality question-184

answer pairs for instruction tuning, delivering re-185

sults comparable to those obtained through large-186

scale instruction tuning and reinforcement learn-187

ing. Instruction-following difficulty (Li et al.,188

2024a) was proposed to evaluate the difficulty of189

following instructions for each sample. LESS (Xia190

et al., 2024) identified training data most similar191

to the validation set based on gradient features.192

NUGGETS (Li et al., 2024b) assessed the impact193

of candidate instructions on a predefined task set’s194

perplexity using one-shot learning, comparing the195

score differences between zero-shot and one-shot196

learning as a reference for data selection. Building197

on NUGGETS, we designed a one-shot learning198

data selection method tailored for mathematical rea-199

soning. This method selects data based on whether200

the generated data can address the target model’s201

bad cases while preserving its good cases.202

3 Our Self-Error-Instruct Framework203

Our framework aims to enhance the mathemati-204

cal reasoning ability of the target model Mtarget by205

identifying its weaknesses, referred to as bad cases,206

on an existing mathematical training dataset Dtrain.207

These bad cases are analyzed to guide the synthesis208

of targeted training data that directly addresses the209

model’s specific shortcomings. By progressively210

training on this tailored data, the mathematical ca-211

pabilities of Mtarget are effectively improved.212

As shown in Figure 2, our process consists213

of four key steps: 1) Bad Case Extraction 214

(Section 3.1), which identifies the incorrect cases 215

where the target model Mtarget fails on the existing 216

mathematical reasoning dataset Dtrain. 2) Self Er- 217

ror Instruct (Section 3.2) generates targeted data 218

for Mtarget by first identifying error keyphrase, then 219

clustering similar errors, and finally synthesizing 220

data specifically tailored to address the identified 221

error types. 3) Data Selection (Section 3.3) filters 222

and selects high-quality data from the generated 223

dataset, ensuring that only the most relevant and 224

effective examples are used for training. 4) Itera- 225

tive Training (Section 3.4) uses the selected data 226

to retrain Mtarget, iterating this process to continu- 227

ously refine and enhance the model’s performance, 228

thereby improving its mathematical reasoning ca- 229

pabilities with each cycle. 230

3.1 Bad Case Extraction 231

For each problem with its correct reasoning path 232

(qi, ri) in the training dataset Dtrain, we use Mtarget 233

to generate a reasoning path. During this process, 234

we identify and collect the bad case (qi, ri, r̂i) into 235

the error dataset Derror, where the answers derived 236

from the reasoning paths differ, i.e., Ans(r̂i) ̸= 237

Ans(ri), where Ans(·) is the function that ex- 238

tracts the answer from a given reasoning path. 239

Thus, the error dataset is defined as: 240

Derror = {(qi, ri, r̂i) | Ans(r̂i) ̸= Ans(ri)}.
(1) 241

3.2 Self Error Instruct 242

In this phase, for each bad case in Derror, we lever- 243

age the Minstructor model to perform error analy- 244

sis by examining the reasoning paths and gener- 245

ating an error keyphrase that captures the nature 246

of the mistake. These error keyphrases are then 247

clustered into distinct groups based on similarity. 248

For each error type, targeted data synthesis gener- 249

ates new training samples specifically designed to 250

address model weaknesses. This process produces 251

the curated dataset DSEI, containing diversity and 252

error-specific training samples to enhance the target 253

model’s reasoning ability. 254

Error Keyphrase Generation. During this stage, 255

we address each bad case (qi, ri, r̂i) in the dataset 256

Derror using the Minstructor model for detailed error 257

analysis. This process generates an error keyphrase 258

ei, which captures the specific nature of the error. 259

To achieve this, we employ a structured function 260

Extract[·] with a keyphrase extraction prompt to 261

3

Wrong Output: James trains for 4
hours twice a day, 5 days a week. So he
trains for 8 hours a week. There are 52
weeks in a year, so he trains for 8 * 52 =
416 hours a year. The answer is 416.

Target Model

Section 3.1 : Bad Case Extraction

"incorrect conversion from feet to yards"

“excluded relevant planks”

“weekly hours miscalculation”

General Calculation
Errors

1 k

Time and Duration
Calculation Errors

Error Keyphrase Generation

Error Keyphrase Clustering

Error Type-Specific Data Synthesis

Section 3.2: Self Error Instruct

Question: James trains for the Olympics.
He trains twice a day for 4 hours each time

for all but 2 days per week. How many
hours does he train a year?

Synthetic DataSelected Data

Section 3.3: One-shot Learning Selction

Section 3.4: Iterative Training
Optimization

Ignored
Calculations and

Omissions

2 ...

Figure 2: An overview of our Self-Error-Instruct framework. It consists of four key steps: (1) Bad case extraction
identifies failure cases from the target model. (2) Self-error-instruct generates error keyphrases, clustering, and
synthesizes data for each error type. (3) One-shot learning data selection retains only high-quality and effective
examples for training. (4) Iterative training refines the target model by fine-tuning it with the curated data and
repeating the process to further improve performance.

analyze the incorrect reasoning path r̂i and produce262

the corresponding error keyphrase. Details of the263

prompt are provided in the Appendix A.1. The264

process is mathematically represented as follows:265

EK-Set =
{
ei | ei = Extract[Minstructor, (qi, ri, r̂i)],

∀(qi, ri, r̂i) ∈ Derror
}
,

(2)266

where EK-Set represents the collection of error267

keyphrases generated for all bad cases in Derror.268

This approach ensures that each ei accurately cap-269

tures the underlying issue in the model’s reasoning270

path, providing a solid foundation for subsequent271

clustering and data synthesis steps.272

Error Keyphrases Clustering. After obtaining273

the EK-Set, we utilize the Minstructor model to clus-274

ter the keyphrases within this set. This clustering275

process identifies distinct error types, denoted as276

the ET-Set. The process can be mathematically277

expressed as:278

ET-Set = Cluster[Minstructor,EK-Set], (3)279

where Cluster[·] is a clustering prompt (see Ap-280

pendix A.2) designed to group the error keyphrases281

into coherent and distinct types. Each type is man-282

ually reviewed to filter and validate its relevance283

and appropriateness.284

Error Type-Specific Data Synthesis. For each 285

error type within the ET-Set, we begin by sampling 286

a subset of bad cases from the same error type, 287

which serve as in-context learning prompts. These 288

prompts are then used to guide Minstructor in gener- 289

ating additional data that falls under the same error 290

type. This process ensures that the generated data 291

remains consistent with the specific error patterns 292

of the given type, thereby expanding our dataset 293

with more diverse but relevant examples. Through 294

this process, we ultimately obtain a synthesized 295

dataset DSEI, which enriches our data with exam- 296

ples covering distinct error patterns. The specific 297

prompt used for this generalization process can be 298

found in the Appendix A.3. 299

3.3 One-shot Learning Selection 300

After obtaining the generalized dataset DSEI tar- 301

geting specific errors, our goal is to select a small 302

subset of high-quality data for training the target 303

model. In previous work, NUGGETS (Li et al., 304

2024b) uses a one-shot learning approach to filter 305

data. It calculates a score for each instruction ex- 306

ample based on its impact on the perplexity of a set 307

of pre-defined tasks, allowing for the identification 308

of the most beneficial data for instruction tuning. 309

In our approach to mathematical reasoning tasks, 310

instead of relying on perplexity, we directly eval- 311

4

uate whether the newly generalized data can ef-312

fectively serve as a one-shot prompt to guide the313

target model in resolving bad cases. Furthermore,314

we aim to ensure that the target model maintains315

its performance on good cases originally answered316

correctly, preserving its effectiveness across chal-317

lenging and straightforward examples. First, we318

randomly sample a subset of bad cases and good319

cases to create a validation set, Ddev. Next, we320

evaluate each sample in DSEI by measuring how321

many cases in Ddev it can resolve when used as a322

one-shot prompt. This evaluation serves as the cri-323

terion for selecting high-quality data. The process324

can be represented as:325

rji = Mtarget(qjrj︸︷︷︸
One-Shot Prompt

⊕qi) (4)326

Sj
osl =

∑
i

I[Ans(rji) = Ans(ri)] (5)327

The expression qjrj represents the j-th synthetic328

data point from the dataset Dsei. The score Sj
osl is329

the one-shot learning score, calculated by summing330

the indicator function I[·], which is 1 if the answer331

from rji matches ri, and 0 otherwise. Here, qiri are332

elements from Ddev
error, representing bad case where333

ri is the correct reasoning path for qi. The prompt334

for one-shot learning is shown in Appendix 9. For335

each synthetic data in DSEI, calculate the set of336

one-shot learning scores {S1
osl, S

2
osl, . . . , S

m
osl}. By337

sorting these scores, we obtain the selection Dosl
SEI.338

3.4 Iterative Training Optimization339

The selected data, Dosl
SEI, is used to train the tar-340

get model, Mtarget. After the model is enhanced341

through this training, it is applied to Dtrain once342

more to identify new bad cases that it still struggles343

with. This process is iterated, continuously opti-344

mizing the target model by improving its ability to345

handle challenging examples, thereby enhancing346

its overall mathematical reasoning ability.347

4 Experimental Setup348

4.1 Data Synthetic349

We identify bad cases from the training datasets350

of GSM8K and MATH, using GPT-4o (OpenAI,351

2024b) as the instruct model to generate error352

keyphrases, perform clustering, and synthesize353

data. For each error type, during the self-error354

instruct process, we sample 5 data points from the355

error dataset Derror and 3 data points from the al-356

ready generated data within the current error type357

Dataset Difficulty Difficulty Train Test

GSM8K Elementary Easy 7,473 1,319
MATH Competition ExHard 7,498 5,000
TAL-SCQ K12 Math Medium - 1,496
GaoKaoBech-Math High School Hard - 508
SAT-MATH High School Hard - 102
CollegeMath College ExHard - 2,818

Table 1: Statistics of Different Datasets. We extract bad
cases from the GSM8K and MATH training sets and
use the test sets of all datasets for evaluation. Datasets
marked with “-” indicate only test data is available and
are used for out-of-domain evaluation.

to serve as prompts. Each time, GPT-4o general- 358

izes 20 new math data. We then filter out data with 359

a Rouge-L score greater than 0.7 compared to the 360

GSM8K and MATH training and test datasets to 361

enhance diversity and prevent test set leakage. We 362

randomly select 100 data points, comprising 50 363

good and 50 bad cases, to construct the validation 364

set Ddev. The number of iterations for data synthe- 365

sis and model training is 3. In each iteration, we 366

generate 10,000 data points by synthesizing 5,000 367

examples for the error types of GSM8K and 5,000 368

for MATH. We select the top 5% of the synthetic 369

data from each part and combine them into a uni- 370

fied dataset for training. Over three iterations, we 371

generate a total of 30,000 data points and select 372

1,500 for training. We also compared two meth- 373

ods for training the target model: iterative training, 374

which starts from the model trained in the previous 375

round, and training from scratch, which uses the 376

selected data in a single step. The results of these 377

two methods are shown in Table 5. 378

4.2 Target Model Setting 379

We use the instruction-tuned llama3-8b-instruct 380

model and the math-specialized Qwen2.5-Math- 381

7B-Instruct model as our target models. During 382

training, we employ LoRA (Hu et al., 2021) with a 383

maximum sequence length of 512 tokens, set the 384

number of training epochs to 3, and use a learn- 385

ing rate 2e-05. The model’s training and inference 386

stages use the alpaca prompt template (Taori et al., 387

2023), as shown in Appendix A.5. 388

4.3 Evaluation 389

We used the GSM8K (Cobbe et al., 2021) and 390

Math (Hendrycks et al., 2021) test sets for in- 391

domain evaluation. For out-of-domain evaluation, 392

we utilized four challenging datasets: 1) TAL-SCQ 393

(TAL, 2023): A K-12 mathematics test set contain- 394

5

Models In-Domain Out-of-Domain AVG
GSM8K MATH TAL GaoKao SAT College

Llama-3-8B-Instruct 71.65 26.66 34.83 13.19 38.24 15.29 33.31
+ Training data 69.45 25.54 31.95 12.99 40.20 13.91 32.34
+ Bad Cases 65.67 24.88 31.68 12.20 36.27 14.44 30.86
+ Self-Instruct 72.71 27.79 34.16 13.97 43.09 14.92 34.77
+ LLM2LLM 72.91 27.90 33.20 13.78 42.18 13.87 33.97
+ SEI-ICL 73.77(+2.12) 27.16(+0.50) 35.83(+1.00) 16.14(+2.95) 45.10(+6.86) 16.29(+1.00) 35.72(+2.41)

Qwen2.5-Math-7B-Instruct 75.51 47.48 51.67 24.61 62.75 23.31 47.56
+ Training data 51.48 56.76 46.59 43.70 67.65 27.82 48.83
+ Bad Cases 33.28 50.74 34.22 13.98 57.84 21.86 35.32
+ Self-Instruct 84.00 62.04 54.81 37.40 64.71 28.60 55.26
+ LLM2LLM 85.60 63.24 55.35 41.34 66.67 29.84 57.00
+ SEI-ICL 87.34(+11.83) 65.14(+17.66) 56.62(+4.95) 44.69(+20.08) 68.63(+5.88) 30.07(+6.76) 58.75(+11.19)

Table 2: Main results on in-domain and out-of-domain mathematical test sets, evaluated using the exact match
(EM). AVG represents the average performance across six test sets. Bold highlights the best-performing model.
All experiments are conducted in a zero-shot setting. SEI-ICL refers to our proposed method, which leverages the
self-error-instruct framework to generalize and trains using the top 5% of data selected through one-shot learning.
For fair comparison, the generalized data sizes for self-instruct and LLM2LLM are kept consistent with SEI-ICL.

ing 1,496 test examples. 2) GaoKaoBench-Math395

(Zhang et al., 2024): Comprising 508 test exam-396

ples, this dataset features math problems from the397

Chinese high-school curriculum. 3) SAT-MATH398

(Zhong et al., 2024): Consisting of 102 questions,399

this dataset includes math problems from the U.S.400

high-school curriculum. 4) CollegeMath (Tang401

et al., 2024): This dataset contains 2,818 test exam-402

ples of college-level math problems. The detailed403

dataset statistics are provided in Table 1.404

We evaluated the models on these datasets using405

greedy decoding in a zero-shot setting. The per-406

formance was measured using Exact Match (EM),407

where answers were extracted from the generated408

reasoning paths and compared with the correct an-409

swers. All evaluations were conducted using the410

MWPEVAL framework (Tang et al., 2024).411

4.4 Baselines412

We compare with several baselines: 1) Training413

Data, where the model is trained on the combined414

GSM8K and MATH datasets; 2) Bad Cases, using415

bad cases from the initial target model; 3) Self-416

Instruct (Wang et al., 2023), generating 1,500 data417

points; 4) LLM2LLM (Tong et al., 2024a), also418

generating 1,500 data points; 5) Rand, randomly419

selecting 500 data points per iteration for a total420

of 1,500; and 6) LESS (Xia et al., 2024), selecting421

1,500 data points based on gradient similarity.422

We adopt the same setting as SEI for self-423

instruct, except that the sampled examples are se-424

lected randomly. Eight samples (five bad cases and425

three generated data) are selected in each iteration,426

and GPT-4o generates 20 new samples. This pro- 427

cess is repeated to produce a total of 1,500 samples. 428

For LLM2LLM, one new sample is generated per 429

bad case using GPT-4o, with 500 samples gener- 430

ated per round over three rounds, resulting in 1,500 431

samples. We filter out samples with a Rouge-L 432

similarity score above 0.7 during data synthesis by 433

comparing them against the GSM8K and MATH 434

training and test datasets. 435

For rand selection, data is proportionally sam- 436

pled from each error type, with more samples 437

drawn from types with more bad cases. For LESS, 438

following the original setting, we randomly select 439

10 examples from GSM8K and MATH as the val- 440

idation set, compute the average gradient of the 441

validation set, and select generated data with the 442

most similar gradients. 443

5 Experimental Results 444

5.1 Main Results 445

Table 2 presents our main results, from which we 446

can draw several conclusions. 1) Our method, 447

SEI-ICL, outperforms others by substantial mar- 448

gins in all math datasets. Specifically, Llama- 449

3-8B-Instruct improves by 2.41% after training, 450

while Qwen2.5-Math-7B-Instruct achieves an im- 451

pressive improvement of 11.19%, demonstrating 452

the effectiveness of our error-type-guided data gen- 453

eration approach. 2) Training solely on the original 454

GSM8K and MATH training data or the identi- 455

fied bad cases leads to little improvement or even 456

performance degradation, indicating that existing 457

math training datasets provide limited benefits for 458

6

Models # Samples In-Domain Out-of-Domain AVG
GSM8K MATH TAL Gaokao SAT College

Llama-3-8B-Instruct - 71.65 26.66 34.83 13.19 38.24 15.29 33.31
SEI-FULL 100% 72.48 27.54 36.03 14.37 43.20 17.21 35.14
-Rand 5% (1,500) 72.86 28.33 34.83 13.19 45.10 15.90 35.03
-LESS 5% (1,500) 73.99 27.90 35.70 13.78 44.37 13.88 34.93

-One-shot ICL
5% (1,500) 73.77 27.16 35.83 16.14 45.10 16.29 35.72
10% (3,000) 72.93 28.94 33.56 16.14 46.09 16.11 35.63
20% (6,000) 74.98 28.94 35.16 14.96 43.14 17.17 35.73

Qwen2.5-Math-7B-Instruct - 75.51 47.48 51.67 24.61 62.75 23.31 47.56
SEI-FULL 100% 86.81 61.02 54.95 35.83 69.61 29.13 56.23
-Rand 5% (1,500) 84.69 62.31 55.08 41.13 70.59 30.52 57.39
-LESS 5% (1,500) 86.66 65.40 54.28 36.81 68.63 30.55 57.06

-One-shot ICL
5% (1,500) 87.34 65.14 56.62 44.69 68.63 30.07 58.75
10% (3,000) 89.00 66.40 55.88 44.88 72.55 30.23 59.82
20% (6,000) 88.40 64.12 54.08 44.29 67.65 29.84 58.06

Table 3: Model performance under different data selection strategies and samples. The bolded results highlight the
best performance achieved using the FULL dataset and the top 5% of samples selected through Rand, LESS, and
one-shot ICL methods.

already instruct-tuned models. It highlights the ne-459

cessity of data synthesis. 3) With the same amount460

of data, our data generation method outperforms461

both Self-Instruct and LLM2LLM. As shown in462

Table 2, the average improvement achieved by SEI-463

ICL on both base models is higher than that of these464

baselines. Furthermore, combined with the results465

in Table 3, we observe that even without data se-466

lection, randomly selecting the same amount of467

data (Rand) performs better than self-instruct and468

LLM2LLM, further demonstrating that our error-469

type-guided data generation is more effective than470

self-instruct (random generation) and LLM2LLM471

(based on a single bad case).472

5.2 Data Selection473

Table 3 presents the results of different data se-474

lection methods. By selecting the top 5% of the475

data using our one-shot learning method, the perfor-476

mance of the trained models on both base models477

surpasses that of SEI-FULL, which uses the full478

dataset for training. Furthermore, our models con-479

tinue to outperform SEI-FULL as the amount of480

selected data increases. Under the same data size,481

the one-shot learning method achieves better results482

than rand selection and LESS, shows the effective-483

ness of our one-shot learning approach specifically484

designed for mathematical problem selection.485

We conducted analysis experiments on the data486

selection validation set Ddev mentioned in Section487

3.3. Specifically, we compared the approach of488

using only bad cases as Ddev with the combined 489

approach that includes both good and bad cases. 490

The results of these experiments are shown in Fig- 491

ure 4. It can be observed that the combined ap- 492

proach outperforms the method using only bad 493

cases across most datasets. This demonstrates that, 494

when performing one-shot learning for data selec- 495

tion, it is important to ensure that the generated data 496

addresses bad cases effectively and to maintain the 497

correctness of the original good cases. 498

5.3 Iterative Improvement Result 499

Bad Case (Fix Rate) Testset (EM Score)

GSM8K MATH GSM8K MATH

Iter-0 (ori) 0 0 75.51 47.48
Iter-1 31.8 30.09 77.48 56.00
Iter-2 40.49 38.17 83.31 65.62
Iter-3 46.92 39.40 86.66 66.06

Table 4: Bad Case Fix Rate of Qwen2.5-Math-7b-
Instruct on GSM8K and MATH during iterative im-
provement, along with its performance on the test sets.
Bad cases refer to the errors made by Qwen2.5-Math-
7b-Instruct in the training data of GSM8K and MATH.

Table 4 presents the bad case fix rate and test set 500

performance of the Qwen2.5 math model across dif- 501

ferent iterations. As shown, with the increase in it- 502

erations, the bad case fix rate consistently improves 503

for both datasets, accompanied by a steady im- 504

provement in test set performance. This indicates 505

7

86

88

90

5000 10000 15000 20000 25000 30000
Synthetic Data Size

70.0

72.5

75.0

GSM Performance with Different Synthetic Data Sizes

G
SM

8K
 P

er
fo

rm
an

ce

58

60

62

64
Qwen2.5-Math-7B-Instruct
Llama-3-8B-Instruct

5000 10000 15000 20000 25000 30000
Synthetic Data Size

25

30

MATH Performance with Different Synthetic Data Sizes

M
AT

H
 P

er
fo

rm
an

ce

Figure 3: Comparison of GSM8K and MATH performance under different synthetic data sizes.

GSM8K MATH TAL GaoKao SAT College0

5

10

15

20

25

Im
pr

ov
em

en
t

(%
)

11.83

17.66

4.95

20.08

5.88
6.76

12.13

16.34

3.61

19.68

1.62

7.39

One-shot ICL Strategy: Combine(Bad+Good) vs Bad Cases
Bad+Good Cases
Bad Cases

Figure 4: One-shot ICL Strategy: Combine (Bad +
Good) vs. Bad Cases.

that our method effectively identifies the model’s506

error types in each iteration and generates targeted507

data for training, thereby enhancing the model’s508

overall performance.

Llama3 Qwen2.5

Training Method GSM8K MATH GSM8K MATH

Iterative 72.48 26.80 86.66 66.06
From-scratch 73.77 27.16 87.34 65.14

Table 5: The performance of different training methods
is compared: Iterative trains the model incrementally,
building on previous rounds, while From-scratch trains
the model once using the final selected data.

509

5.4 Iterative vs. From-scratch Training510

Table 4 highlights the differences between itera-511

tive training and from-scratch training within our512

framework. In iterative training, each new itera-513

tion continues training the target model obtained514

in the previous round. In contrast, from-scratch515

training involves directly training the initial target516

model once the data is obtained after three rounds517

of data generation. The results show that from-518

scratch training outperforms iterative training. A519

possible explanation for this is that in each round520

of iterative training, we only select the top 5% of 521

the data for training. With such a small amount of 522

data, iterative fine-tuning may lead to overfitting 523

over multiple rounds. On the other hand, training 524

from scratch aggregated datasets helps mitigate this 525

issue, resulting in better overall performance. 526

5.5 Different Synthetic Size 527

We conducted an analysis between the amount of 528

unfiltered synthetic data and performance, with the 529

results presented in Figure 3. It can be observed 530

that for both target models, the size of the gener- 531

alization data is not proportional to performance. 532

For Llama3, performance initially improves but 533

then starts to decline, while Qwen2.5 results are 534

relatively unstable. Specifically, on GSM8K, the 535

best performance is achieved with 25,000 training 536

samples, whereas on MATH, the optimal result is 537

obtained with 10,000 samples. These findings fur- 538

ther highlight the importance of data selection. For 539

models like Llama3 and Qwen2.5, which have al- 540

ready undergone extensive instruction tuning, the 541

quantity of data may not be the key to improving 542

performance. Instead, the focus should shift to 543

constructing small but high-quality datasets. 544

6 Conclusion 545

We propose Self-Error-Instruct, a novel framework 546

to improve LLMs mathematical reasoning by gen- 547

eralizing training data based on error types rather 548

than individual bad cases. Our method enhances 549

data diversity and mitigates overfitting by analyz- 550

ing errors, clustering them into categories, and 551

synthesizing targeted data using a self-instruct ap- 552

proach. Experiments on LLaMA3-8B-Instruct and 553

Qwen2.5-Math-7B-Instruct show notable perfor- 554

mance improvements with our method, achieving 555

average gains of 2.55% and 11.19%, respectively, 556

across in-domain and out-of-domain evaluations. 557

8

Limitations558

Our framework has two main limitations: the high559

cost of using GPT-4o as the instructor model and560

the focus on GSM8K and MATH datasets for bad561

case extraction, which may limit error diversity.562

One limitation of our approach is the reliance563

on GPT-4o as the instructor model for error anal-564

ysis and data synthesis. While GPT-4o is highly565

effective in identifying error keyphrases and gen-566

erating targeted training data, its use incurs sig-567

nificant computational and financial costs, which568

may limit the scalability and accessibility of the569

framework. To address this, a promising direction570

for future work is to train an open-source large lan-571

guage model specifically designed to serve as the572

instructor. Such a model could significantly reduce573

costs while maintaining or even improving perfor-574

mance, making the framework more practical and575

widely applicable.576

Another limitation lies in the scope of our bad577

case extraction and iterative refinement process,578

which is currently confined to the GSM8K and579

MATH datasets. As a result, the error types identi-580

fied and addressed may be limited to those specific581

to these datasets, potentially restricting the gener-582

alizability of the framework to other mathematical583

reasoning tasks or datasets. In the future, a more584

dynamic approach could be adopted, where bad585

cases are extracted from the initial datasets and586

continuously identified within the synthesized data587

during the iterative process. This would allow the588

framework to discover new and diverse error types589

as the training data evolves, further broadening the590

issues addressed and enhancing the model’s math-591

ematical reasoning capabilities. This expansion592

would help ensure the framework adapts to various593

problems, improving its robustness and applicabil-594

ity to real-world scenarios.595

References596

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,597
Jian-Guang Lou, and Weizhu Chen. 2024. Learning598
from mistakes makes llm better reasoner. Preprint,599
arXiv:2310.20689.600

Anthropic. 2024. The claude 3 model family: Opus,601
sonnet, haiku.602

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie603
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind604
Neelakantan, Pranav Shyam, Girish Sastry, Amanda605
Askell, Sandhini Agarwal, Ariel Herbert-Voss,606
Gretchen Krueger, Tom Henighan, Rewon Child,607

Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 608
Clemens Winter, Christopher Hesse, Mark Chen, 609
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin 610
Chess, Jack Clark, Christopher Berner, Sam Mc- 611
Candlish, Alec Radford, Ilya Sutskever, and Dario 612
Amodei. 2020. Language models are few-shot learn- 613
ers. Preprint, arXiv:2005.14165. 614

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 615
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 616
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 617
Nakano, Christopher Hesse, and John Schulman. 618
2021. Training verifiers to solve math word prob- 619
lems. Preprint, arXiv:2110.14168. 620

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 621
Arora, Steven Basart, Eric Tang, Dawn Song, and 622
Jacob Steinhardt. 2021. Measuring mathematical 623
problem solving with the math dataset. Preprint, 624
arXiv:2103.03874. 625

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 626
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 627
Weizhu Chen. 2021. Lora: Low-rank adaptation of 628
large language models. Preprint, arXiv:2106.09685. 629

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 630
sch, Chris Bamford, Devendra Singh Chaplot, Diego 631
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 632
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 633
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 634
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 635
and William El Sayed. 2023. Mistral 7b. Preprint, 636
arXiv:2310.06825. 637

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang 638
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and 639
Jing Xiao. 2024a. From quantity to quality: Boosting 640
LLM performance with self-guided data selection 641
for instruction tuning. In Proceedings of the 2024 642
Conference of the North American Chapter of the 643
Association for Computational Linguistics: Human 644
Language Technologies (Volume 1: Long Papers), 645
pages 7602–7635, Mexico City, Mexico. Association 646
for Computational Linguistics. 647

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min 648
Yang, Lei Zhang, Shuzheng Si, Ling-Hao Chen, Jun- 649
hao Liu, Tongliang Liu, Fei Huang, and Yongbin 650
Li. 2024b. One-shot learning as instruction data 651
prospector for large language models. In Proceed- 652
ings of the 62nd Annual Meeting of the Association 653
for Computational Linguistics (Volume 1: Long Pa- 654
pers), pages 4586–4601, Bangkok, Thailand. Associ- 655
ation for Computational Linguistics. 656

OpenAI. 2024a. Gpt-4 technical report. Preprint, 657
arXiv:2303.08774. 658

OpenAI. 2024b. Gpt-4o. 659

OpenAI. 2024. O1 Model. https://openai.com/o1/. 660
Accessed: 2024-12-11. 661

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 662
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 663

9

https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.acl-long.252
https://doi.org/10.18653/v1/2024.acl-long.252
https://doi.org/10.18653/v1/2024.acl-long.252
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/

Sandhini Agarwal, Katarina Slama, Alex Ray, John664
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,665
Maddie Simens, Amanda Askell, Peter Welinder,666
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.667
Training language models to follow instructions with668
human feedback. In Advances in Neural Information669
Processing Systems, volume 35, pages 27730–27744.670
Curran Associates, Inc.671

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,672
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan673
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.674
Deepseekmath: Pushing the limits of mathemati-675
cal reasoning in open language models. Preprint,676
arXiv:2402.03300.677

TAL. 2023. Tal-scq5k. https://github.com/678
math-eval/TAL-SCQ5K. GitHub repository.679

Zhengyang Tang, Xingxing Zhang, Benyou Wang,680
and Furu Wei. 2024. Mathscale: Scaling instruc-681
tion tuning for mathematical reasoning. Preprint,682
arXiv:2403.02884.683

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann684
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,685
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:686
An instruction-following llama model. https://687
github.com/tatsu-lab/stanford_alpaca.688

Gemini Team. 2024. Gemini: A family of highly capa-689
ble multimodal models. Preprint, arXiv:2312.11805.690

Terry Tong, Qin Liu, Jiashu Xu, and Muhao Chen.691
2024a. Securing multi-turn conversational language692
models from distributed backdoor attacks. In Find-693
ings of the Association for Computational Linguistics:694
EMNLP 2024, pages 12833–12846, Miami, Florida,695
USA. Association for Computational Linguistics.696

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei697
Teng, and Jingbo Shang. 2024b. Can LLMs learn698
from previous mistakes? investigating LLMs’ errors699
to boost for reasoning. In Proceedings of the 62nd700
Annual Meeting of the Association for Computational701
Linguistics (Volume 1: Long Papers), pages 3065–702
3080, Bangkok, Thailand. Association for Computa-703
tional Linguistics.704

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa705
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh706
Hajishirzi. 2023. Self-instruct: Aligning language707
models with self-generated instructions. In Proceed-708
ings of the 61st Annual Meeting of the Association for709
Computational Linguistics (Volume 1: Long Papers),710
pages 13484–13508, Toronto, Canada. Association711
for Computational Linguistics.712

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,713
Sanjeev Arora, and Danqi Chen. 2024. LESS: Se-714
lecting influential data for targeted instruction tuning.715
In International Conference on Machine Learning716
(ICML).717

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, 718
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian- 719
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu, 720
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang 721
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech- 722
nical report: Toward mathematical expert model via 723
self-improvement. Preprint, arXiv:2409.12122. 724

Jiahao Ying, Mingbao Lin, Yixin Cao, Wei Tang, 725
Bo Wang, Qianru Sun, Xuanjing Huang, and 726
Shuicheng Yan. 2024. LLMs-as-instructors: Learn- 727
ing from errors toward automating model improve- 728
ment. In Findings of the Association for Compu- 729
tational Linguistics: EMNLP 2024, pages 11185– 730
11208, Miami, Florida, USA. Association for Com- 731
putational Linguistics. 732

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, 733
Liang He, and Xipeng Qiu. 2024. Evaluating the 734
performance of large language models on gaokao 735
benchmark. Preprint, arXiv:2305.12474. 736

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, 737
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen, 738
and Nan Duan. 2024. AGIEval: A human-centric 739
benchmark for evaluating foundation models. In 740
Findings of the Association for Computational Lin- 741
guistics: NAACL 2024, pages 2299–2314, Mexico 742
City, Mexico. Association for Computational Lin- 743
guistics. 744

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 745
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 746
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, 747
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less 748
is more for alignment. Preprint, arXiv:2305.11206. 749

A Overview of Prompts Used 750

A.1 Prompt for Error Keyphrase Generation 751

Figure 5 illustrates the prompt used to generate 752

error keyphrases for identifying and summarizing 753

mistakes in mathematical reasoning. The input 754

to the prompt includes a math question, the cor- 755

rect reasoning path leading to the answer, and the 756

model’s incorrect reasoning path. The prompt in- 757

structs the model to analyze where the error oc- 758

curred in its reasoning process, identify the cause, 759

and summarize it as a concise yet descriptive 760

keyphrase. The output is a single keyphrase in list 761

format, effectively capturing the primary reason for 762

the model’s mistake, which can then be used for 763

further error analysis and targeted data synthesis. 764

A.2 Prompt for Error Clustering Generation 765

Figure 5 presents a prompt designed to guide the 766

analysis and categorization of error keyphrases gen- 767

erated from a model’s reasoning mistakes. The in- 768

put to this prompt is a list of error keyphrases, and 769

the task involves clustering these keyphrases based 770

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/math-eval/TAL-SCQ5K
https://github.com/math-eval/TAL-SCQ5K
https://github.com/math-eval/TAL-SCQ5K
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2024.findings-emnlp.750
https://doi.org/10.18653/v1/2024.findings-emnlp.750
https://doi.org/10.18653/v1/2024.findings-emnlp.750
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

Error Keyphrase Generation Prompt:

Based on the given mathematical problem, identify the step where the model made an error in its reasoning
process. Analyze the reason for this error and summarize it using a keyphrase. The input consists of a math
question, the correct answer, and the model's incorrect answer. Please output the result in the following format:

[”Error keyphrase"]

Ensure that your analysis focuses on the mistake in the model's problem-solving process. The keyphrases should
be concise yet descriptive, effectively summarizing the primary reason for the model's mistake. Strictly adhere to
the list format output without any additional information.

Math Question: {Question 𝒒𝒊}
Answer: {Correct Reasoning Path 𝒓𝒊 }
Model Output: {Incorrect Model Reasoning Path 𝒓#𝒊}

Figure 5: Prompt for Generating Error Keyphrases.

Error Keyphrases Clustering Prompt:

You are an expert in error analysis and categorization. You will be given a list of error keyphrases. Your task is to:

1. Analyze the given error keyphrases and identify common themes or patterns.
2. Group similar keyphrases together based on their likely causes, effects, or areas of occurrence.
3. For each cluster:

a. List the keyphrases in the cluster.
b. Explain why these keyphrases are grouped together.
c. Assign a concise but descriptive name to the cluster that captures its essence.
4. Clusters should cover all the keyphrases.

5. Present your results in a clear, structured format.

Strictly output in plain text according to the following format, do not output in other formats or with extra
symbols:
[
{{"Cluster name":, "Keyphrases":[], "explanation":,}},
{{"Cluster name":, "Keyphrases":[], "explanation":,}} ...
]

Your clustering should aim to provide meaningful insights that can help in understanding and addressing the errors
more effectively.
Here is the list of error keyphrases: {Error Keyphrases Set 𝐄-𝐬𝐞𝐭}

Figure 6: Prompt for Clustering Error Keyphrases

11

on common themes, causes, or areas of occurrence.771

For each cluster, the model is instructed to list the772

included keyphrases, explain their grouping, and773

assign a concise, descriptive name to the cluster.774

This process helps identify patterns in the model’s775

errors, offering meaningful insights into the types776

of mistakes made and enabling targeted improve-777

ments in the model’s reasoning capabilities.778

A.3 Prompt for Error Type-Specific Data779

Synthesis780

Error Type-Specific Data Synthesis for GSM8K:

Based on the given examples and error type, create 20
difficult math problems that are likely to cause errors in
the model.

Requirement:
1. Identify the commonality in the given examples and
consider what issues in these examples might cause the
model to make mistakes.
2. Make the new problems more challenging and
diverse.
3. Format the output strictly as a string in this structure:
[{{"question":,"solution":}},
{{"question":,"solution":,}},...].
Ensure no additional output beyond the specified
structure. Output in JSON format.
4. The reasoning process for each step should be
provided in the solution.
5. Ensure the final answer is a number and place it on a
new line, denoted by \n#### num.
6. Don’t make any mathematical mistakes of your own!

Provided Questions:
{Sampled Error Question 𝒒𝟏}
{Sampled Error Question 𝒒𝟐}
{Sampled Error Question 𝒒𝟑}
{Sampled Error Question 𝒒𝟒}
{Sampled Error Question 𝒒𝟓}
{Sampled Error Question 𝒒𝟔}
{Sampled Error Question 𝒒𝟕}
{Sampled Error Question 𝒒𝟖}

Error Type:
{Error type}

Generated Questions:

Figure 7: Prompt for GSM8K Error Type-Specific Data
Synthetic.

The prompt in Figure 7 and 8 guides the creation781

of 20 challenging math problems targeting specific782

error types in the GSM8K and MATH datasets.783

Error Type-Specific Data Synthesis for Math:

Based on the given examples and error type, create 20
difficult math problems that are likely to cause errors in
the model.

Requirement:
1. Identify the commonality in the given examples and
consider what issues in these examples might cause the
model to make mistakes.
2. Make the new problems more challenging and
diverse.
3. Format the output strictly as a string in this structure:
[{{"question":,"solution":}},
{{"question":,"solution":,}},...].
Ensure no additional output beyond the specified
structure. Output in JSON format.
4. The reasoning process for each step should be
provided in the answer.
5. The final answer should be marked with \\boxed{{}}
When generating math problems in JSON format:

1) Use \\\\(and \\\\) for inline math
2) Avoid complex LaTeX commands
3) Use simple alternatives for arrows and dots
4) Keep solutions concise and avoid unnecessary

formatting
5) Escape special characters properly
6) Test the JSON validity before finalizing

6.Don’t make any mathematical mistakes of your own!

Provided Questions:
{Sampled Error Question 𝒒𝟏}
{Sampled Error Question 𝒒𝟐}
{Sampled Error Question 𝒒𝟑}
{Sampled Error Question 𝒒𝟒}
{Sampled Error Question 𝒒𝟓}
{Sampled Error Question 𝒒𝟔}
{Sampled Error Question 𝒒𝟕}
{Sampled Error Question 𝒒𝟖}

Error Type:
{Error type}

Generated Questions:

Figure 8: Prompt for MATH Error Type-Specific Data
Synthetic.

12

By analyzing the examples provided, the instruct784

model identifies patterns or issues causing errors785

and generates diverse, difficult problems aligned786

with these error types. The output follows a strict787

JSON format with detailed solutions and final nu-788

merical answers.789

A.4 Prompt for One-shot Learning Selection790

Ono–shot Learning Prompt:

Below is an instruction that describes a task. Write a
response that appropriately completes the request.

Here is an example:
Instruction: {Synthetic Question from 𝑫𝑺𝑬𝑰}
Response: {Synthetic Solution from 𝑫𝑺𝑬𝑰}

Instruction: {Question from 𝑫𝒅𝒆𝒗}
Response:

Figure 9: One-Shot Learning Prompt for Selecting Syn-
thetic Data

The prompt in Figure 9 generates a response to791

a given task by providing an example pairing of a792

synthetic question and solution, followed by a new793

question requiring an appropriate response.794

A.5 Prompt for Alpaca Template795

Alpaca Prompt:

Below is an instruction that describes a task. Write a
response that appropriately completes the request.

Instruction: {Math Question}
Response:

Figure 10: Alpaca prompt for Model Training and Infer-
ence

Figure 10 illustrates the Alpaca-format prompt,796

designed to facilitate training and inference for the797

target model.798

13

	Introduction
	Related Work
	Mathematical Reasoning
	Data Selection

	Our Self-Error-Instruct Framework
	Bad Case Extraction
	Self Error Instruct
	One-shot Learning Selection
	Iterative Training Optimization

	Experimental Setup
	Data Synthetic
	Target Model Setting
	Evaluation
	Baselines

	Experimental Results
	Main Results
	Data Selection
	Iterative Improvement Result
	Iterative vs. From-scratch Training
	Different Synthetic Size

	Conclusion
	Overview of Prompts Used
	Prompt for Error Keyphrase Generation
	Prompt for Error Clustering Generation
	Prompt for Error Type-Specific Data Synthesis
	Prompt for One-shot Learning Selection
	Prompt for Alpaca Template

