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ABSTRACT

Graphs and hypergraphs provide powerful abstractions for modeling interactions
among a set of entities of interest and have been attracting a growing interest in
the literature thanks to many successful applications in several fields. In particular,
they are rapidly expanding in domains such as chemistry and biology, especially in
the areas of drug discovery and molecule generation. One of the areas witnessing
the fasted growth is the chemical reactions field, where chemical reactions can
be naturally encoded as directed hyperedges of a hypergraph. In this paper, we
address the chemical reaction classification problem by introducing the notion of a
Directed Line Graph (DLG) associated with a given directed hypergraph. On top
of it, we build the Directed Line Graph Network (DLGNet), the first spectral-based
Graph Neural Network (GNN) expressly designed to operate on a hypergraph
via its DLG transformation. The foundation of DLGNet is a novel Hermitian
matrix, the Directed Line Graph Laplacian L⃗N , which compactly encodes the
directionality of the interactions taking place within the directed hyperedges of
the hypergraph thanks to the DLG representation. L⃗N enjoys many desirable
properties, including admitting an eigenvalue decomposition and being positive
semidefinite, which make it well-suited for being adopted within a spectral-based
GNN. Through extensive experiments on chemical reaction datasets, we show that
DLGNet significantly outperforms the existing approaches, achieving on a collec-
tion of real-world datasets an average relative-percentage-difference improvement
of 3.27%, with a maximum improvement of 5.28%.

1 INTRODUCTION

In recent years, ground-breaking research in the graph-learning literature has been prompted by
seminal works on GNNs such as Scarselli et al. (2009); Micheli (2009); Li et al. (2016); Kipf &Welling
(2017); Veličković et al. (2018). However, representing data solely through graphs, either undirected
or directed, can be limiting in many real-world applications where more complex relationships exist.
In such cases, generalizations of graphs known as hypergraphs, which allow for higher-order (group)
relationships among the vertices, have emerged as powerful alternatives. Hypergraphs extend the
traditional concept of a graph by allowing hyperedges to connect an arbitrary number of nodes,
thereby capturing both pairwise (dyadic) and group-wise (polyadic) interactions (Schaub et al., 2021).
This has naturally led to a new stream of research devoted to the investigation of Hypergraph Neural
Networks (HNNs) (Feng et al., 2019; Chien et al., 2021; Huang &Yang, 2021; Wang et al., 2023a;b).

Among many successful applications, graph and hypergraph representations have recently been
applied in chemistry and biology to address various tasks such as drug discovery (Bongini et al.,
2021), molecule generation (Hoogeboom et al., 2022), and protein interaction modeling (Jha et al.,
2022). Several graph-based representations have also been developed and employed for the study
of chemical reactions, which has applications in areas such as reaction engineering, retrosynthetic
pathway design, and reaction feasibility evaluations. In particular, retrosynthetic modeling, where a
synthetic route is designed starting from the desired product and analyzed backward, benefits greatly
from accurate reaction type identification. This capability enables the elimination of unfeasible
pathways, thereby streamlining the discovery of efficient routes for chemical production. This is
particularly important in industries such as pharmaceutical and material sciences, where optimizing
synthetic routes can lead to significant cost savings and innovation. A similar situation holds, in
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reaction feasibility analysis, where predicting the likelihood of a reaction’s success based on the
molecular inputs is essential for designing scalable and efficient processes.

One of the most relevant techniques to model reactions is the directed graph (Fialkowski et al., 2005),
where molecules are represented as nodes and the chemical reactions are represented as directed edges
from reactants to products. Despite its popularity, such a directed graph model suffers from some key
limitations. In particular, modeling each reaction as a collection of individual directed edges between
each reactant-product pair fails to fully capture the complexity of multi-reactant or multi-product
reactions, which are key to many important applications (Restrepo, 2022; Garcia-Chung et al., 2023).
To mitigate this issue, Chang (2024) proposed a hypergraph representation in which molecules are
nodes and each reaction is captured by a hyperedge. However, this model lacks a mechanism to
represent the directionality of a reaction, thus failing to capture the reactant/product relationship
within it. As a further attempt, Restrepo (2023) introduced a directed hypergraph representation
which is able to model both the chemical reactions structure and their directionality, where directed
hyperedges model the directional interactions between reagents (heads) and products (tails), better
capturing the full complexity of chemical reactions. Let us note that this literature only focuses on
modeling reaction structures without considering any form of hypergraph learning methods. We set
ourselves out to developing one in this paper.

In contrast to prior studies that address node classification or link prediction tasks (Dong et al., 2020;
Wang et al., 2023b; Zhao et al., 2024), in this work we tackle the reaction classification problem (i.e.,
the problem of predicting the reaction type of a given set of reactants and products) as a hyperedge
classification task. This task can be reframed as a node classification task by using the concept of the
line graph.

Figure 1: Three reactions and their corresponding directed hypergraph representation (left). The
hypergraph is then transformed into its directed line graph (right). The hyperedges of H⃗ become
the nodes of DLG(H⃗)m and are connected if they overlap in H⃗ . Complex-valued edge weights in
DLG(H⃗) encode H⃗’s directionality, as detailed in Section 3.

With this goal in mind, we introduce the concept of a directed line graph of a given directed hypergraph
H⃗: the Directed Line Graph DLG(H⃗). In DLG(H⃗), the vertices correspond to the hyperedges of
H⃗ , and a directed edge connects two vertices if the corresponding hyperedges in H⃗ share at least
a vertex, as shown in Figure 1. Since the nodes of DLG(H⃗) correspond to hyperedges of H⃗ , this
modeling approach allows us to directly operate on hyperedge features, which are critical for solving
the reaction-classification task. To this end, we define the Directed Line-Graph Laplacian (L⃗N ), a
Laplacian matrix which is specifically designed to capture both directed and undirected adjacency
relationships between the hyperedges of H⃗ via its directed line graph DLG(H⃗). We prove that
L⃗N enjoys different key properties, among which being Hermitian (i.e., being a complex-valued
matrix with a symmetric real part and a skew-symmetric imaginary one) and positive semidefinite.
These properties allows us to introduce a spectral convolutional operator for DLG(H⃗). Thanks to the
association of DLG(H⃗) with the original directed hypergraph H⃗ , DLG(H⃗) serves as the foundation of
Directed Line Graph Network (DLGNet), the first (to our knowledge) spectral-based GNN designed
for the convolution of hyperedge features rather than node features.

For the task of hyperedge classification for the prediction of chemical reaction classes, transitioning
from a directed hypergraphs to a directed line graph representation proves to offer significant
advantages, as evidenced by our experimental results. Specifically, DLGNet achieves an average
relative percentage difference improvement of 3.27% over the second-best method across a collection
of real-world datasets, with a maximum improvement of 5.28%. We also carry out an extensive set of
ablation studies, which confirm the importance of the various components of DLGNet.
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Main Contributions of This Work

• We introduce the first formal definition of a directed line graph associated with a directed
hypergraph H⃗: the Directed Line Graph DLG(H⃗).

• We propose the Directed Line Graph Laplacian L⃗N , a Hermitian matrix that captures both
directed and undirected relationships between the hyperedges of a directed hypergraph via
its DLG. We also prove that L⃗N possesses many desirable spectral properties.

• We introduce DLGNet, the first spectral-based Graph Neural Network specifically designed
to operate on directed line graphs associated with directed hypergraphs by directly con-
volving hyperedge features rather than node features.

• We perform an extensive experimental evaluation on the chemical reaction-classification
task on real-world datasets. Our results highlight the advantages of our approach compared
to other methods presented in the literature.

2 BACKGROUND

An undirected hypergraph is defined as an ordered pair H = (V,E), with n := |V | and m := |E|,
where V is the set of vertices (or nodes) and E ⊆ 2V \ {} is the (nonempty) set of hyperedges. The
weights of the hyperedges are stored in the diagonal matrix W ∈ Rm×m, where we is the weight of
hyperedge e ∈ E (in the unweighted case we have W = I). The vertex degree du and hyperedge
degree δe are defined as du :=

P
e∈E:u∈e |we| for u ∈ V , and δe := |e| for e ∈ E. These degrees are

stored in two diagonal matrices Dv ∈ Rn×n and De ∈ Rm×m. In the case of 2-uniform hypergraphs,
the matrix A ∈ Rn×n is defined such that Auv = we for each e = {u, v} ∈ E and Auv = 0
otherwise; we refer to it as the adjacency matrix of the graph. Hypergraphs where δ(e) = k for some
k ∈ N for all e ∈ E are called k-uniform. Graphs are 2-uniform hypergraphs. Following Gallo et al.
(1993), we define a directed hypergraph H⃗ as a hypergraph where each node in each hyperedge e ∈ E
belongs to either a head set H(e) or a tail set T (e). If T (e) is empty, e is an undirected hyperedge.

The relationship between vertices and hyperedges in a undirected hypergraph H is classically
represented via an incidence matrix B of size |V | × |E|, where B is defined as:

Bve =

�
1 if v ∈ e

0 otherwise
v ∈ V, e ∈ E. (1)

From the incidence matrix B, one can derive the Signless Laplacian Matrix Q as well as its normalized
version QN (Chung &Graham, 1997):

Q := BWB⊤ QN := D
− 1

2
v BWD−1

e B⊤D
− 1

2
v , (2)

where W,De, Dv are the diagonal matrices defined above. Following Zhou et al. (2006), the Laplacian
for a general undirected hypergraph is defined as follows:

∆ := I −QN . (3)

The Laplacian matrix encodes the hypergraph’s connectivity and hyperedge weights.

2.1 GRAPH FOURIER AND GRAPH CONVOLUTIONS

Let L be a generic Laplacian matrix of a given 2-uniform hypergraph H . We assume that L admits an
eigenvalue decomposition L = UΛU∗, where U ∈ Cn×n represents (in its columns) the eigenvectors,
U∗ is its conjugate transpose, and Λ ∈ Rn×n is the diagonal matrix containing the eigenvalues.
Let x ∈ Cn be a graph signal, i.e., a complex-valued function x : V → Cn of the vertices of H .
We define x̂ = F(x) = U∗x as the graph Fourier transform of x and F−1(x̂) = Ux̂ its inverse
transform. The convolution y ⊛ x between x and another graph signal y ∈ Cn, acting as a filter, in
the vertex space is defined in the frequency space as y⊛x = Udiag(U∗y)U∗x. Letting Ŷ := UĜU∗

with Ĝ := diag(U∗y), we can write y ⊛ x as the linear operator Ŷ x. See Shuman et al. (2013) for
more details.

3
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In the context of GNNs, explicitly learning y as a non-parametric filter presents two significant
limitations. Firstly, computing the eigenvalue decomposition of L can be computationally too
expensive (Kipf &Welling, 2017). Secondly, explicitly learning y requires a number of parameters
proportional to the input size, which becomes inefficient for high-dimensional tasks (Defferrard et al.,
2016). To address these issues, the GNN literature commonly employs filters where the graph Fourier
transform is approximated as a degree-K polynomial of Λ, with K kept small for computational
efficiency. For further details, we refer the reader to Kipf &Welling (2017); Defferrard et al. (2016);
Huang et al. (2024). This leads to a so-called localized filter, thanks to which the output (i.e., filtered)
signal at a vertex u ∈ V is a linear combination of the input signals within K edges of u (Shuman
et al., 2013). By employing various polynomial filters and setting K = 1 (as commonly employed in
the literature), such as Chebyshev polynomials as in Hammond et al. (2011); Kipf &Welling (2017)
or power monomials as used by Singh &Chen (2022), one obtains a parametric family of linear
operators with two learnable parameters, θ0 and θ1: 1

Ŷ := θ0I + θ1L. (4)

3 THE DIRECTED LINE GRAPH AND ITS LAPLACIAN

The line graph L(H) of a generic undirected hypergraph H is classically defined as the undirected
graph whose vertex set is the hyperedge set of H . In L(H), two vertices i, j are adjacent—i.e.,
L(H) contains the edge {i, j}—if and only if their corresponding hyperedges i, j have a nonempty
intersection (Tyshkevich &Zverovich, 1998). By construction, L(H) is a 2-uniform graph. Its
adjacency matrix is defined as:

A(L(H)) := Q−WDe, (5)
where Q := B⊤B is, by construction, the Signless Laplacian of L(H). 2 The normalized version of
Q and the corresponding normalized Laplacian are defined as:

Q := W
1
2B⊤BW

1
2 QN := D

− 1
2

e W
1
2B⊤D−1

v BW
1
2D

− 1
2

e LN := I −QN . (6)

Notice that, from equation 2, one can define the weighted version of B as BW
1
2 . The definitions

in equation 6 rely on the same matrix, but transposed.

To the best of our knowledge, the literature does not offer any formal definition for the line graph
associated with a (weighted) directed hypergraph H⃗ (it does only for the undirected case). The
availability of such a definition could be crucial for tasks where the hyperedge direction is important.

To address this gap, we first define a complex-valued incidence matrix B⃗ which preserves the inherent
directionality of H⃗:

B⃗ve :=





1 if v ∈ H(e),

−i if v ∈ T (e),

0 otherwise.
v ∈ V, e ∈ E. (7)

Building on B⃗, we propose the following definition for the directed line graph associated with a
directed hypergraph H⃗:

Definition 1. The Directed Line Graph DLG(H⃗) of a directed hypergraph H⃗ is a 2-uniform
hypergraph whose vertex set corresponds to the hyperedge set of H⃗ and whose adjacency matrix is
the following complex-valued skew-symmetric matrix:

A(DLG(H⃗)) = W
1
2 B⃗∗B⃗W

1
2 −WDe. (8)

Using equation 8 of definition 1 and equations 5–6, we obtain the following formulas for the
normalized Signless Laplacian Q⃗N ∈ Cm×m and the normalized Laplacian L⃗N ∈ Cm×m of DLG,
which we refer to by Signless Directed Line-Graph and Directed Line Graph Laplacian:

Q⃗N := D⃗
− 1

2
e W

1
2 B⃗∗D⃗−1

v B⃗W
1
2 D⃗

− 1
2

e L⃗N := I − Q⃗N . (9)

1Following w.l.o.g. Singh &Chen (2022), we employ the approximation Ĝ =
PK

k=0 θkΛ
k, from which we

deduce Ŷ x = UĜU∗x = U(
PK

k=0 θkΛ
k)U∗x =

PK
k=0 θk(UΛkU∗)x =

PK
k=0 θkLkx.

2This follows from the fact that the incidence matrix of L(H) is B∗.
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To better understand how L⃗N encodes the directionality of H⃗ , we illustrate its definition in scalar
form for a pair of hyperedges i, j ∈ E (which correspond to vertices in DLG(H⃗)):

L⃗N (ij) =





1−
X

u∈i

wi

duδi
i = j


−

X

u∈H(i)∩H(j)
∨u∈T (i)∩T (j)

w
1
2
i w

1
2
j

du
− i


 X

u∈H(i)∩T (j)

w
1
2
i w

1
2
j

du
−

X

u∈T (i)∩H(j)

w
1
2
i w

1
2
j

du







1

δ
1
2
i

1

δ
1
2
j

i ̸= j
(10)

When i = j, we are in the self-loop part of the equation and L⃗N (ij) weights hyperedge i propor-
tionally to its weight wi and inversely proportionally to its density and the density of its nodes.
When i ̸= j, L⃗N (ij)’s value depends on the interactions between the hyperedges of H⃗ (which
correspond to the nodes of DGL(H⃗)). Let u ∈ V be a node and i, j ∈ E be two hyperedges in the
hypergraph H⃗ . If u belongs to the head set of both the hyperedges (i.e., u ∈ H(i) ∩ H(j)) or to
the tail set of both (i.e., u ∈ T (i) ∩ T (j)), its contribution to the real part of LN (ij), ℜ(L⃗N (ij)), is
negative. For the undirected line graph associated with an undirected hypergraph, this is the only
contribution, consistent with the behavior of LN (as described in equation 6). If u takes opposite
roles in hyperedges i and j, i.e, it belongs to the head set in i and to the tail set in j or vice versa, it
contributes to the imaginary part of LN , ℑ(L⃗N (ij), negatively when u ∈ H(i)∩T (j), and positively
when u ∈ T (i) ∩ H(j). Consequently ℑ(L⃗N (ij)) coincides with the net contribution of all the
vertices that are shared between the hyperedges i and j. An example illustrating the construction of
L⃗N for a directed line graph associated with a directed hypergraph is provided in Appendix G. Let us
point out that the behavior of Directed Line Graph Laplacian differs from every (to the best of our
knowledge) Laplacian matrix previously proposed in literature (see Appendix B for more details).

With the following theorem, we show that L⃗N is a generalization of LN (defined in equation 6) from
the undirected to the directed case:
Theorem 1. If H⃗ is undirected (i.e., H⃗ = H), L⃗N = LN and Q⃗N = QN holds.

The Directed Line Graph Laplacian enjoys several properties. First, to be able to adopt our
Laplacian within a convolution operator in line with Kipf &Welling (2017) and other literature
approaches (Zhang et al., 2021; Fiorini et al., 2023), we must show that our Laplacian is positive
semidefinite. For this, we work out the expression for the 2-Dirichlet energy function associated with
it. Such a function coincides with the Euclidean norm ||x||2L⃗N

induced by L⃗N for a signal x ∈ Cm:

Theorem 2. Letting 1 be the indicator function, the Euclidean norm induced by L⃗N of a complex-valued
signal x = a+ ib ∈ Cm with a component per hyperedge in E reads:

1

2

X

u∈V

1

d(u)

X

i,j∈E

  
w(j)

1
2 ai

δ(i)
1
2

− w(i)
1
2 aj

δ(j)
1
2

!2

+

 
w(j)

1
2 bi

δ(i)
1
2

− w(i)
1
2 bj

δ(j)
1
2

!2!
1u∈H(i)∩H(j)∨u∈T (i)∩T (j)

+

  
w(j)

1
2 ai

δ(i)
1
2

− w(i)
1
2 bj

δ(j)
1
2

!2

+

 
w(i)

1
2 aj

δ(j)
1
2

+
w(j)

1
2 bi

δ(i)
1
2

!2!
1u∈H(i)∩T (j)

+

  
w(j)

1
2 ai

δ(i)
1
2

+
w(i)

1
2 bj

δ(j)
1
2

!2

+

 
w(i)

1
2 aj

δ(j)
1
2

− w(j)
1
2 bi

δ(i)
1
2

!2!
1u∈T (i)∩H(j). (11)

Since the function in Theorem 2 is a real-valued sum of squares, we deduce the following spectral
property for L⃗N :

Corollary 1. L⃗N is positive semidefinite.

From equation 9, we have that L⃗N = I − Q⃗N . Thanks to Theorem 3, we show next that Q⃗N has a
nonnegative spectrum:

Theorem 3. Q⃗N is positive semidefinite.

By applying Theorem 3 and Corollary 1, we can derive upper bounds on the spectra of L⃗N and Q⃗N :

5
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Corollary 2. λmax(L⃗N ) ≤ 1 and λmax(Q⃗N ) ≤ 1.

The proofs of the theorems and corollaries of this section can be found in Appendix B.

4 THE DIRECTED LINE GRAPH NETWORK (DLGNET)

The properties of the proposed Laplacian make it possible to derive a well-defined spectral convolution
operator from it. In this work, this operator is integrated into the Directed Line Graph Network
(DLGNet). Specifically, based on equation 4, by setting L = L⃗N , the convolution operator is defined
as Ŷ x = θ0I + θ1L⃗N . The advantage of adopting two parameters θ0, θ1 within DLGNet’s localized
filter is explained by the following result:

Proposition 1. The convolution operator derived from equation 4 by setting L = L⃗N with parameters
θ0 and θ1 is the same as the convolution operator obtained by using L = Q⃗N with parameters are
rewritten as θ′0 = θ0 + θ1 and θ′1 = −θ1.

This shows that DLGNet, by selecting appropriate values for θ0 and θ1, can leverage either L⃗N or
Q⃗N as convolution operator to maximize the performance on the task at hand.

We define X ∈ Cm×c0 as a c0-dimensional graph signal (a graph signal with c0 input channels),
which we compactly represent as a matrix. This matrix serves as the feature matrix of the hyperedges
of H⃗ which we construct from the feature matrix of the nodes X ′ ∈ Cn×c0 of H⃗ . Specifically,
inspired by the operation used in the reduction component for graph pooling (Grattarola et al., 2022),
we define the feature matrix for the vertices of DGL(H⃗) as X = B⃗∗X ′. This approach combines
features through summation, based on the topology defined by B⃗. See Appendix E for more details.

In our network, the scalar parameters θ0 and θ1 are subsumed by two operators Θ0,Θ1 ∈ Cc0×c

which we use to carry out a linear transformation on the feature matrix X . A similar transformation,
which can also increase or decrease the number of channels of X , is adopted in other GNNs such as
MagNet (Zhang et al., 2021). DLGNet features ℓ convolutional layers. The output Z ∈ Cm×c′ of
any such layer adheres to the following equation:

Z(X) = ϕ
�
IXΘ0 + L⃗NXΘ1

�
, (12)

where ϕ is the activation function. Following (Fiorini et al., 2023; 2024), DLGNet employs a complex
ReLU where ϕ(z) = z if ℜ(z) ≥ 0 and ϕ(z) = 0 otherwise, with z ∈ C. DLGNet also utilizes a
residual connection for every convolutional layer except the first one, a choice which helps prevent
oversmoothing and has been proven to be helpful in a number of works, including (He et al., 2016;
Kipf &Welling, 2017). After the convolutional layers, following Zhang et al. (2021), we apply
an unwind operation where we transform Z(X) ∈ Cm×c′ into (ℜ(Z(X))||ℑ(Z(X))) ∈ Rm×2c′ ,
where || is the concatenation operator. To obtain the final results, DLGNet features S linear layers,
with the last one employing a Softmax activation function. DLGNet’s architecture is depicted in
Figure 2.

Figure 2: DLGNet’s architecture: after two complex convolutional layers and a residual connection,
we unwind the real and imaginary parts of the feature matrix and apply a fully connected layer.

Complexity of DLGNet. Let us assume (w.l.o.g.) that each of DLGNet’s convolutional layers has c
input and output channels, while the last layer has c input and c′ output channels (c′ is also the number
of input channel to the linear layers). Let d be number of output channel of the last linear layer (where

6
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d is the number of classes to be predicted). With ℓ convolutional layers and S linear layers, DLGNet’s
complexity is O(mnc0) + O(ℓ(m2c + mc2) + mc + (S − 1)(mc′2) + mc′d + md). Assuming
O(c) = O(c′) = O(d) = c̄, we have a complexity of O(ℓ(m2c̄) + (ℓ+ S)(mc̄2)). This shows that
DLGNet has a quadratic complexity w.r.t. the number of hyperpedges m and the asymptotic number
of channels c̄. For more details, see Appendix C.

5 EXPERIMENTAL RESULTS

We present three real-world datasets, the baseline models, and the results on the chemical reaction
classification task, where we predict the reaction type based on a given set of molecules.

5.1 DATASETS

We test DLGNet on common organic chemistry reaction classes, namely a variety of chemical
transformations that are fundamental to both research and industrial chemistry. Those include
molecular rearrangements, such as the interconversion (substitution) or the elimination of molecular
substituents, as well as the introduction of specific functional groups (e.g., acyl, alkyl, or aryl groups)
in a chemical compound. Other important reactions classes involve the formation of certain bond-
types (e.g., carbon-carbon: C–C) or structures (e.g., heterocyclic compounds). We rely on a standard
dataset (Dataset-1) and additionally construct two new ones (Dataset-2 and Dataset-3):—
see Figure 4 in Appendix D.

Dataset-1. As main source of data, we use the reactions from USPTO granted patents (Lugo-Martinez
et al., 2021), which is the most widely used dataset for retrosynthesis problems and contains about
480K reactions. After removing duplicates and erroneous reactions, we select a subset, namely
Dataset-1, comprising 50K atom-mapped reactions belonging to 10 different classes. An example
component from Dataset-1 is reported in Figure 4, left upper panel. The composition of the
dataset is detailed in Table 3, Appendix D.

Dataset-2. This dataset is the result of the merging of data from five different sources and contains
5300 reactions. It presents a smaller number of reaction types, but a larger variety of substituents and
reaction conditions, such as the presence of solvent or catalyst, hence providing additional complexity
on some specific classes for the model to predict. Figure 4, upper right panel illustrates an example
from it. Given that some elements are shared across the data sources, we combine them into three
major classes. Details about Dataset-2 composition are reported in Table 4, Appendix D.

Dataset-3. Since the wo datasets listed so far only include single-product reactions, in order to test the
model on a highly complex task we add a third collection, Dataset-3, comprised of double-product
bimolecular nucleophilic substitution (SN2) and triple-product bimolecular elimination (E2) reaction
classes, extracted from von Rudorff et al. (2020) and totaling 649 competitive reactions. A schematic
representation of Dataset-3 elements is reported in Figure 4, lower panel. Further details can be
found in Appendix D.

In all three datasets, the node features are build based on Morgan Fingerprints (MFs) Rogers &Hahn
(2010), which are one of the most widely used molecular descriptors. MFs encode a molecule by
capturing the presence or absence of specific substructures (fragments) within the molecular graph.
The algorithm iteratively updates the representation of each atom based on its local environment,
enclosed within a radius. A radius of r indicates that the environment up to r bonds away from each
atom is incorporated into the final representation.

5.2 BASELINES

We categorize our baseline models into two main groups: Hypergraph Neural Networks that handle
undirected hypergraphs and those designed specifically for directed hypergraphs. Similar to Graph
Neural Networks (GNNs), HNNs can be classified into spectral-based and spatial-based approaches.
Spatial-based HNNs treat the convolution operator as a localized aggregation function (Dong et al.,
2020). On the other hand, spectral-based HNNs define the convolution operator (based on the graph
Fourier transform theory) as a function of the eigenvalue decomposition of the Laplacian matrix
associated with the hypergraph Feng et al. (2019). Differently, the spectral-based one defines the
convolution operator (a rigorous one in this case) as a function of the eigenvalue decomposition of the
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Laplacian matrix associated with the hypergraph Feng et al. (2019). In the spectral-based category,
methods such as HGNN (Feng et al., 2019), HCHA in Dong et al. (2020), HGNN+ (Gao et al., 2022)
are analogous to GNNs applied on clique expansions of hypergraphs. For spatial-based methods,
HNNs such as HNHN (Dong et al., 2020), UniGCNII (Huang &Yang, 2021), HyperDN (Tudisco
et al., 2021), LEGCN Yang et al. (2022), as well as set-based models (Chien et al., 2021), AllDeepSets
and AllSetTransformer, incorporate hyperedge features and employ a message-passing framework,
which can be interpreted as GNNs applied to the star expansion graph. Additionally, ED-HNN (Wang
et al., 2023a) leverages gradient diffusion processes to generalize across a broad class of hypergraph
neural networks, while PhenomNN (Wang et al., 2023b) introduces a framework based on hypergraph-
regularized energy functions. Finally, in the context of directed HNNs, two state-of-the-art models
are considered: DHM (Zhao et al., 2024) and DHRL (Ma et al., 2024). The first one, DHM, encodes
high-order information in directed hypergraphs and captures the directional information of directed
hyperedges through an attention mechanism and a directed hypergraph momentum encoder. The
second method, DHRL, approximates the Laplacian of the directed hypergraph and formulates the
convolution operation on this directed hypergraph structure.

Differently from these baselines, as shown in Section 3, DLGNet is a spectral-based GCN that
leverages the Directed Line Graph Laplacian and convolves on the directed line graph derived from
the directed hypergraph.

5.3 EXPERIMENTAL DETAILS

To solve the task of hyperedge classification, it is essential to model the molecules and their inter-
actions within the dataset. For this reason, each molecule is represented as a node in the hyper-
graph, while the interactions between molecules are encoded as hyperedges. The nature of these
hyperedges—whether undirected or directed—depends on the specific capabilities of the methods.

We evaluate the performance of DLGNet against these 13 state-of-the-art (baseline) methods. Since all
the competitors operate directly on the undirected or directed hypergraph, we apply the feature transfer
operation X = B⃗∗X ′ described in Section 3 (more details in Appendix E) after the convolutional
layers. After this step, each method is equipped with ℓ linear layers. The hyperparameters of these
baselines and of our proposed model are selected via grid search (see Appendix E). The datasets are
split into 50% for training, 25% for validation, and 25% for testing. The experiments are conducted
with 5 random data splits, reporting the average F1-score across the splits. We choose the F1-score as
evaluation metric due to the class imbalance naturally present in the datasets. Throughout the tables
contained in this section, the best results are reported in boldface and the second best are underlined.
The datasets and code we used are available on GitHub (see Appendix A).

5.4 RESULTS

Quantitative. The F1-score along with the relative standard deviation across different methods,
datasets, and folds is presented in Table 1. The results show that, across the three datasets, DLGNet
achieves an average additive performance improvement over the best-performing competitor of
approximately 3.35 percentage points. In terms of Relative Percentage Difference (RPD)3, we have
an average RPD improvement of 3.27%. DLGNet achieves the best improvement on Dataset-2,
with a RPD improvement of approximately 5.28% and an average additive improvement of 5.43
percentage points over the second-best competitor.

A clear trend emerges: HNN-based methods for undirected hypergraphs consistently underperform
compared to those designed for directed hypergraphs, such as DHM and DHRL. Notably, our
proposed DLGNet, operating on the directed line graph, outperforms all competitors, including DHM
and DHRL.

Qualitative. To gain deeper insights into the capability of DLGNet of classifying different reaction
types, we analyze the confusion matrices for Dataset-1 and Dataset-2. The results of this
analysis are presented in Figure 5 and Figure 6 in Appendix F. The confusion matrix for Dataset-1
reveals that, while most of the classes are predicted extremely well, e.g., Protection and Functional

3The RPD of two values P1, P2 is the percentage ratio of their difference to their average, i.e., |P1 −
P2|/P1+P2

2
%.
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Table 1: Mean F1-score and standard deviation obtained on the hyperedge classification task.
Topology Method Dataset-1 Dataset-2 Dataset-3

HGNN 9.71 ± 3.02 36.40 ± 7.27 64.97 ± 1.36
HCHA/HGNN+ 9.99 ± 1.91 39.89 ± 4.93 63.46 ± 2.58
HCHA w/ Attention 9.90 ± 2.25 11.32 ± 0.16 35.55 ± 1.31

Hypergraph

HNHN 6.95 ± 0.97 25.04 ± 3.45 52.97 ± 5.17
UniGCNII 8.20 ± 2.39 29.86 ± 0.31 50.97 ± 6.84
HyperND 4.63 ± 0.04 28.98 ± 0.46 52.71 ± 12.32
AllDeepSets 7.64 ± 2.23 30.45 ± 0.27 51.72 ± 5.99
AllSetTransformer 8.63 ± 2.62 30.67 ± 0.57 49.24 ± 3.98
ED-HNN 9.19 ± 1.43 30.47 ± 0.56 50.52 ± 10.17
PhenomNN 8.33 ± 2.77 29.43 ± 0.39 51.82 ± 9.33

Directed Hypergraph DHM 46.04 ± 0.58 59.31 ± 4.04 68.10 ± 3.60
DHRL 58.15 ± 1.58 79.36 ± 3.94 99.27 ± 0.79

Directed-Line Graph DLGNet 60.55 ± 0.80 83.67 ± 3.41 99.75 ± 0.34

group addition reactions (accuracy of 88% and 77%, respectively), some are predicted not as well,
e.g., Functional group interconversion (41%). To better understand this behavior, we conducted
a thorough inspection of the structural features of Dataset-1’s components, selecting several
elements from pairs of classes among which the model yields the highest uncertainty. Two example
cases are reported in Figure 3. Overall, our analysis reveals that the pair of classes which are subject
to the higher degree of confusion are, structurally, highly similar, which well explains the poorer
performance that DLGNet achieves on them, as we illustrate in the following. The left panel illustrates
the mislabeling of Class 9 (Functional group interconversions, correctly predicted in 41% of the
cases) with Class 7 (Reductions, incorrectly predicted in 14% of the cases), while the right panel
presents an example of Class 4 (Heterocycle formations, correctly predicted in 44% of the cases)
with Class 1 (Arylations, incorrectly predicted 30% of the cases). Notably, in these examples, both
the main backbone structure of the molecules and the substituent groups (the segments affected
by the reactive process, highlighted in the figure) exhibit a high degree of similarity between the
two classes. In the left panel, the reactants of both classes present a 6-carbon ring (in grey) as
well as a iodine substituent (in purple). The atoms composing the highlighted groups are also of
the same types. On the other hand, in the right panel, the majority of the constituent parts of the
products are in common between the two classes. Specifically, despite the outcome of Class 4 is the
formation of a heterocycle, i.e., a hexagonal ring containing a heteroatom (nitrogen, in blue), such a
geometrical feature is also present in Class 1 arylation product, as the resulting molecule presents two
heterocycles rings. Similar considerations apply to the incorrect labeling of Dataset-2 N-arylation
sub classes, where the main difference between the reactants lies in the nature of the aryl halide that
participates in the coupling reaction. In summary, we conclude that the model demonstrates strong
predictive performance across the majority of the classes, although a few, particularly those with
shared elements, remain challenging to differentiate. Nevertheless, we are confident that DLGNet
will prove highly valuable to the chemistry community, allowing for the categorization of existing
data sources as well as for planning new synthetic routes.

Ablation study. Table 2 presents the results of an ablation study carried out on DLGNet to assess the
importance of directionality in DLGNet’s line graph. To do this, we test DLGNet using an undirected
line graph and demonstrate that DLGNet consistently outperforms its undirected counterpart on
all three data sets. This indicates that directionality plays a crucial role in solving the chemical
reaction classification task. Focusing on equation 12, we test DLGNet under two conditions: i) using
Q⃗N instead of L⃗N , and ii) setting Θ0 = 0, thus nullifying the first term in equation 12. The first
comparison shows identical results across all datasets, thus providing a computational confirmation
of the results of Proposition 1, while the restricted version of DLGNet with Θ0 = 0 performs worse.
Finally, we assess the architectural choice related to the incorporation of skip connections. While
DLGNet without skip connections exhibits a slight drop in performance, the results remain close to
those of the original architecture.
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Dataset-1 Class 1: ARYLATION

aryl group C – N bond

+ HBr

Dataset-1 Class 4: HETEROCYCLE FORMATION

cycle

open chain

+ H2O

Dataset-1 Class 9: FUNCTIONAL GROUP INTERCONVERSION

carboxyl
group

carbonyl
group

ester group
alcohol
group

Dataset-1 Class 7: REDUCTION

+ CO

reactant main product

reactant main product reactants

reactant main product

main product

Figure 3: Ball-and-stick 3D model of Dataset-1 mislabeled pairs of reaction classes. Color
code: grey for carbon, red for oxygen, blue for nitrogen, purple for iodine, green for chlorine, light
green for fluorine, brown for bromide, and white for hydrogen. (Left panel, upper): Reduction from
a ester to a alcohol substituent on a 6-carbon atoms ring. (Left panel, lower): Functional group
interconversion from carboxyl to carbonyl group in the analog hexagonal structure. (Right panel,
upper): arylation reaction between a amine compound and a aryl halide, yielding a C–N bond in the
final product. (Right panel, lower): heterocycle formation via amide intramolecular condensation,
producing a hexagonal ring containing a heteroatom (nitrogen).

Table 2: Ablation study. Average F1-score and standard deviation are reported.
Method Dataset-1 Dataset-2 Dataset-3
DLGNet 60.55 ± 0.80 83.67 ± 3.41 99.75 ± 0.34
DLGNet w/o directionality 52.07 ± 1.61 70.19 ± 0.65 81.65 ± 8.39
DLGNet w/ Signless Laplacian 60.24 ± 0.36 82.86 ± 1.96 99.75 ± 0.55
DLGNet w/ Θ0 = 0 53.82 ± 0.74 75.68 ± 3.59 91.45 ± 2.36
DLGNet w/o skip-connection 56.38 ± 3.02 80.63 ± 3.54 99.63 ± 0.34

6 CONCLUSIONS

We introduced the Directed Line Graph Network (DLGNet), the first spectral GNN specifically de-
signed to operate on directed line graphs associated with directed hypergraphs by directly convolving
hyperedge features. DLGNet leverages a novel complex-valued Laplacian matrix, the Directed Line
Graph Laplacian, which is a Hermitian matrix encoding the interactions among the hyperedges of a
hypergraph using complex numbers. This formulation allows for the natural representation of both
directed and undirected relationships between the hyperedges, capturing rich structural information.
Our proposed DLGNet network utilizes this new Laplacian matrix to perform spectral convolutions
on the line graph featuring both undirected and directed edges. Via the Directed Line Graph repres-
entation, our proposed model enables the seamless integration of the directionality present in the
hypergraph at hand, which is crucial for accurately modeling various real-world phenomena involving
asymmetric high-order interactions.

We evaluated our approach on the chemical reaction classification problem using three real-world
datasets. In these experiments, we demonstrated the superiority of DLGNet, which achieved an
average relative percentage difference improvement of 3.27% over the second-best method across the
three datasets. This highlights the importance of directly convolving the hypergraph features on the
directed line graph, instead of doing so in the undirecetd/directed hypergraph. Though an ablation
study, we demonstrated the relevance of encoding directional information via the directed line graph
associated with a directed hypergraph as opposed to ignoring it. We also provided a qualitative
analysis DLGNet’s results in light of the underlying chemical reaction classification task.

In light of the promising results we obtained and as a future perspective, we would like to address
more complex and challenging tasks, such as retrosynthetic planning and reaction discovery, which
require sophisticated analysis and deeper insights into the underlying chemical processes.
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