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Abstract

A major issue with real-time monitoring is to collect com-

plete data. Hardware or software failures, network issues or,

more frequently, time delays can disrupt such a collection.

This results in having two versions of the same information:

one in real-time but with potentially missing data, and the

another, albeit complete, is delayed. Many works have stud-

ied how to handle missing data for classification and predic-

tion. However, to the best of our knowledge, they do not

consider how to leverage the delayed complete data to as-

sist in learning the representation of real-time available data

with missing values. This is despite the fact that the delayed

complete data contain all the information (e.g., periodici-

ties and trends). In this paper, we propose a framework to

enhance the representation learning of the real-time avail-

able data by aligning the representation of past real-time

but with missing data to that of past delayed but complete

data. We test both a distance metric and contrastive learn-

ing to achieve this alignment. We implement our frame-

work on a Transformer-based model and experiment it on

three datasets. The efficiency of our solution is evaluated

against seven baselines and considering four distinct patterns

of missing data. Our experiments show that this proposal

has a significant improvement in prediction accuracy (5.21%

on average) over the baselines.

Keywords: multivariate time series prediction, time delay,

representation alignment, contrastive learning

1 Introduction

Real-time data is information that is available as soon
as — without any delay — it is created and acquired.
The timeliness of this information is crucial for support-
ing live, this-instant decision making to ensure reliable,
high-quality services. This data is ubiquitous, powering
everything from health monitoring, bank transactions,
online education delivery, energy generation and con-
sumption, to COVID-19 information maps that have
emerged during this years-long pandemic.
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Day 1 Day 2 Day 1 Day 2

(1) Real-time data at 00:00 on Day 3 (2) Complete data available later than 00:00 on Day 3

Figure 1: Example of time-delayed Multivariate Time
Series data from an electricity retailer. The figures show
the average household electricity consumption (HEC) in
three postcode areas for two days (Day 1-2). Left figures
depict data collected in real-time at 00:00 on Day 3,
at which real-time predictions should be performed for
electricity planning. Right figures represent the same
plots, with the data that were later retrieved (dotted
line). As the characteristic of the delay varies depending
on the emerging issue, delayed data are usually ignored
when performing real-time predictions.

However, missing values in real-time data are preva-
lent due to network communication failure, device re-
placement, equipment malfunctions, among many other
reasons. Missing data refers to the absence of values
for the variables of interest. The presence of missing
values in real-time data can diminish its usability and
interpretability, leading to skewed results in subsequent
statistical analyses. In most cases, the missing data are
not permanently lost. They can still be recovered, but
not void of delay. A delay is contingent to the associ-
ated issue, such as a network congestion or transmission
delay that slows down data retrieval [33]. Another ex-
ample is when energy smart-meters are functioning, but
communications are out of service, requiring a techni-
cian to physically retrieve the monitored data at a later
time, e.g., for billing. Data will eventually arrive, yes,
but be delayed.
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In light of the above, there can be two versions of
the same information: the one in real-time but with
potentially missing data (we refer hereafter as real-time
available data (RAD)), and the one that is delayed but
without missing data (hereafter, delayed complete data
(DCD)). Figure 1 illustrates both, depicting two days
of average Household Electricity Consumption (HEC)
in three different postal code areas. The left part
shows real-time data at a given time step with missing
values (depicted by the blank sections). The right
part exhibits the same information, but now including
data that were later on retrieved (plotted with dotted
lines), hence, delayed but completing parts that were
previously missing.

Further, the real-time data being Multivariate Time
Series (MTS) adds more complexity to the problem. As
shown in Figure 1, missing data in the various instances
do not necessarily start at the same moment nor last
within the same time period. It becomes even more
difficult when both the dependent and independent
variables contain missing information. Such issues make
it harder to correctly learn the possible relations or
dependencies between the different variables of interest.
Add to these the high variability in the length of the
delay (e.g., a few seconds to several days), and data
later retrieved are just conveniently retained, e.g., to
be treated as ground truth afterward. Several methods
exist to handle missing data in MTS. Some attempt to
fill-in the missing values: the simplest is to perform zero
imputation, which treats the value of a missing entry as
zero; or use interpolation (e.g., linear or polynomial)
based on the available data. More recent works use
Neural Networks (NN) to make sense of data patterns in
order to perform a more complex imputation. Another
way is to directly treat MTS with missing data as
an irregularly sampled MTS, i.e., the time between
two consecutive measurements varies. Nevertheless,
handling missing data in MTS remains a daunting
problem [2].

In this work, we leverage delayed complete MTS
data to improve predictions of MTS when only using
real-time available data, which may contain missing
portions. To accomplish this, our proposed framework
learns a representation of each version of the informa-
tion (RAD and DCD). The representation of RAD is
partial (based on what is incompletely known), while
the one for DCD contains all known aspects of the data.
Finally, and equally non-trivial, we enhance the repre-
sentation of RAD by aligning it with the representation
of DCD. This alignment is first realized by reducing
the distance between them. However, a representation
distance loss may not capture the plausibly various dis-
parities across samples (depending on the nature of the

dataset). Hence, we introduce contrastive learning, in
which portions of the RAD and DCD that completely
overlap are considered as positive pairs, and portions
that differ in starting times to constitute the negative
pairs. With a contrastive loss, therefore, our framework
can learn meaningful representations by optimizing the
similarity of positive pairs in contrast to the similarity
of negative pairs, thereby accounting for discrepancies
in the representations. To the best of our knowledge,
using DCD to enhance the representation of RAD has
not been previously investigated.

Our work’s main contributions are as follows:

• A new application-oriented (i.e., time-delayed)
MTS prediction task where only RAD (with po-
tentially missing parts) are available for real-time
prediction, but historical DCD are also accessible.

• A novel MTS prediction framework, namely En-
hanced Representation Learning (ERL), which en-
hances the representation learning of RAD with the
aid of DCD through representation alignment. In
ERL, both versions of the data are necessary in
the training phase, but only RAD is required dur-
ing testing. In addition, ERL adopts both distance
metric and contrastive learning for this alignment.

• Experiments on both public and proprietary MTS
datasets to evaluate our solution using ERL against
baseline methods that could handle missing data
for time-delayed MTS prediction. ERL improves
the performance of its base model and beats other
baseline methods. On average, it improves the pre-
diction accuracy by 5.21%. In a liberal electricity
market scenario, such improvements help electricity
retailers mitigate under- or over-procuring electric-
ity, ultimately leading to significant cost reduction
when balancing procurement and actual demand.

2 Related Works

Missing data is a real challenge, as it can significantly
hinder the performance of various services, such as pre-
dictions. Handling missing data is still an important
research topic. Especially, the latest advancement in
AI provides additional ways to treat them. As men-
tioned previously, NN can be used to fill in missing val-
ues, e.g., IPnet [22] and SSGAN [18]. Other works,
like [4, 5], further study the importance of missing pat-
terns. It is also possible to consider real-time available
data with potentially missing parts as irregularly sam-
pled data. In such a consideration, techniques such as
Neural Ordinary Differential Equations [6, 21] or At-
tention mechanism [23] can be used to account for any
missing information. Finally, in the past years, Trans-
former [26]-based models have proved to be efficient in
many tasks such as image classification [25], Natural
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Figure 2: ERL’s main process, and examples of the positive and negative pairs for contrastive learning.

Language Processing (NLP) tasks [10] and time series
predictions [17, 34]. It is therefore not surprising to see
it applied to the missing data issue [7]. In addition, [20]
demonstrates that a modified version of Informer [34]
could outperform existing methods for the data impu-
tation task.

In recent years, Contrastive Learning (CL) has
demonstrated its superiority in computer vision appli-
cations [12, 14]. Such a technique helps models learn
meaningful representations of samples by maximizing
the similarity of positive pairs against the similarity of
negative pairs. Lately, this solution has shown rising
interest and has been applied to several other domains
such as NLP [3, 8], or recommendation [31, 35]. In the
case of time series applications, [24] treats neighbor-
hood samples as positive pairs, while in [32], the rep-
resentations at the same timestamp in different sam-
ples are regarded as the positive pairs. Besides, CL
can also be considered within the frequency domain as
studied in [29]. In addition to contrastive loss, some
works also highlight the importance of representation
alignment with distance metrics [9, 27, 28].

3 Task Formulation

We consider the time-delayed MTS data: VN,T ∈
RN×T , where N is the number of variables and T is
the number of time steps. As we deal with time-delayed
data, there are two versions of the same information:
Va

N,T , the real-time available data, in which at a given
moment in time, some values may be unavailable for
some variables at potentially different time steps; and
Vc

N,T , the delayed complete data where all values are
known but potentially acquired later. Note that in this
work we dismiss scenarios where some values are really
lost (e.g., device failure without a redundant design).

Our task is to perform real-time MTS prediction
using only the RAD with potential missing portions as
inputs. Considering that tk is the current time, and

that there are p future steps to predict using o past
steps of observation, we aim to predict Yc

k = Vc
N,Tk

+p

using Xa
k = Va

N,Tk
−o
, where T k

+p = [tk+1, · · · , tk+p]

and T k
−o = [tk−o+1, · · · , tk]. In other words, we train

a prediction model f such that Yc
k = f (Xa

k) + ϵ, ϵ
being the prediction error of the model. In historical
data beyond the previous d time steps, both Yc

i =
Vc

N,T i
+p

and Xc
i = Vc

N,T i
−o

(i ≤ k − d) are available.

Apart from treating Yc
i as ground truth, Xc

i can be
additionally used to assist the training of the model f ,
which motivates our framework.

4 Proposed Framework: ERL

In this paper, we posit to use Xc
i to enhance the

representation learning of Xa
i and so, aid in training

the model f .

4.1 Main Process We consider that a prediction
model f is composed of two parts: the representation
learning block fr and the prediction block ff . As
shown in Figure 2, we first train a model f c (thereby,
composed of f c

r and f c
f ) using Xc

i as the input and
Yc

i as the ground truth. Considering that Rc(i) is the

representation of Xc
i by f c

r , the prediction obtained Ŷc
i

′

can be expressed as:

(4.1) Ŷc
i

′
= f c

f (R
c(i)) ,Rc(i) = f c

r (X
c
i ) .

The loss used to train this model can be written as:

(4.2) Lc = L
(
Ŷc

i

′
,Yc

i

)
,

where L is a generic loss function for time series
prediction (e.g., Mean Squared Error (MSE)). The
second step of our proposal is to train a representation
block fa

r using Xa
i as input and align its representation

to the one of Xc
i . R

a(i) = fa
r (Xa

i ) is the representation
of Xa

i with this block.
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The loss function of this alignment is defined as:

(4.3) Lalign (R
a,Rc) .

In this way, we leverage the representations learned from
the DCD to assist the representation learning for RAD.

At last, we combine the aligned representation of
the RAD with the prediction block of the DCD model
f c
f . This combination model is then fine tuned in order
to obtain our real-time prediction block fa

f . To do
this fine tuning, we train the combined model with the
samples Xa

i , using the following loss:

(4.4) La = L
(
Ŷc

i ,Y
c
i

)
.

For the evaluation phase (and also real-time appli-
cation), we obtain the future p prediction steps, using
both fa

r and fa
f blocks:

(4.5) Ŷc
j = fa

f

(
fa
r

(
Xa

j

))
,

where j ≥ k. This process enables us to use DCD Xc

only during the training phase. After completion of the
training, we can perform predictions using only RAD
Xa. The process is summarized in Algorithm 1.

Algorithm 1 Main process of ERL for time-delayed
MTS prediction

Input: Time-delayed MTS data (Xa,Xc,Yc)
Output: Trained prediction model

Ŷc = fa
f (fa

r (Xa))
*Train:
1. Initialize parameters

2. Train Ŷc
i

′
= f c

f (f
c
r (X

c
i )) with loss of Eqn. (4.2)

3. Train fa
r with loss of Eqn. (4.3)

4. Train fa
f with loss of Eqn. (4.4)

*Test/Application: Perform prediction with RAD

test set Xa
j according to Ŷc

j = fa
f

(
fa
r

(
Xa

j

))

4.2 Distance-based alignment As for the repre-
sentation alignment, the first and intuitive method is
to reduce the distance between them like [9, 27, 28].
For this alignment loss, we used the Euclidean Dis-
tance (ED) as defined by

(4.6) Lalign (R
a,Rc)ED = ED(Ra,Rc) .

However, such a distance loss considers only the
closeness of the representations of the same sample from
both RAD and DCD, but does not reflect the degree
of disparity among different samples (e.g., in a dataset
the weekdays and weekends may have totally different
profiles). This issue might affect prediction performance
depending on the datasets. Thus, we also explored CL
to account for differences between samples.

4.3 Contrastive learning-based alignment Con-
trary to ED, CL accounts for sample differences. The
major step of CL is to generate positive and negative
pairs. In our framework, we want the mth RAD sample
(i.e., Xa

m) to be as close as possible to the correspond-
ing DCD sample (i.e., Xc

m). As a result, we treat them
as positive pairs. In addition, we consider Xa

m and Xa
n

or Xc
n (n ̸= m) as negative pairs. Therefore, we can

express our contrastive loss as follows:
(4.7)
Lalign (R

a,Rc)CL =

−log
exp (Ra(m) ·Rc(m))∑

n (exp (R
a(m) ·Ra(n)) + exp (Ra(m) ·Rc(n)))

.

4.4 Combine versus Fuse alignment Similarly
to [28] both distance and contrastive losses could be
summed when training the representation block fa

r . In
such a version, the alignment loss definition becomes:

(4.8) Lalign (R
a,Rc)ED + αLalign (R

a,Rc)CL .

However, to avoid the arduous tuning of the hyper-
parameter α, we propose to simply fuse the predicted
results of different prediction models. For instance,

denoting the outputs of the ED version Ŷc
jED

and those

of the CL version Ŷc
jCL

, the fusion of these outputs is:

(4.9) Ŷc
jED−CL

=
(
Ŷc

jED
+ Ŷc

jCL

)
/2.

Furthermore, aligning the representation of RAD to
that of DCD may result in information loss of missing
patterns involved in RAD, and thus we propose to
further fuse the results of the original base model trained
using Xa and Yc as the input and output directly. As
a result, the final prediction result is:

(4.10) Ŷc
j =

(
Ŷc

jED
+ Ŷc

jCL
+ Ŷc

jBase

)
/3.

We denote this framework as ERL in this paper.

4.5 Implementation on a Transformer-based
model In this work, we decided to implement ERL on
Informer, because it has shown excellent performance
with imputed data, as aforementioned in the Related
Works section1. In addition, for any Transformer-based
models that define an Encoder/Decoder architecture,
the Decoder can be seen as our prediction block (i.e.,
ff ). This block has two inputs as shown in Figure 3.

1We are aware that other Transformer-based models, such as
Autoformer [30] and Pyraformer [16], recently demonstrated bet-
ter performance. But, these models share a similar architecture.

Our framework can also be implemented onto them. Conclusions
similar to the ones presented in this paper can be expected.
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Embedding Embedding

+ +

Encoder Decoder

Positional
Encoding

Positional
Encoding

Inputs

Outputs

R1

R2

Inputs’

Figure 3: Illustration of the Encoder/Decoder architec-
ture of some Transformer-based models. R1 and R2
represent the points of representation alignment.

The first one is the output of the Encoder. The second
one is the concatenation of both the embedding and the
positional encoding of the padded input. For ERL, we
implemented the representation alignment for both as
illustrated in Figure 3.

5 Experiments and Results

5.1 Datasets and baselines We test our proposed
framework on three different MTS datasets: two open
datasets, namely, Solar Energy (SE) [13, 19] and PEMS-
Bay (PB) [15], and the commercial HEC dataset. Ta-
ble 1 shows statistics and task settings of each dataset
in our experiments. We have selected these datasets
since each variable represents the same physical quan-
tity, but measured at a different location: Photovoltaics
(PV) generation from 137 solar power plants for SE,
traffic speed from 325 sensors for PB, and electricity
consumption from 20 postal code areas for HEC. In the
rest, a variable refers to data from one location.

SE PB HEC
period 2006.01-2006.12 2017.01-2017.06 2019.05-2020.07
time step size 30min 5min 30min
variables 137 325 20
input length 2 days/96 steps 1 day/288 steps 2 days/96 steps
output length 1 day/48 steps half day/144 steps 1 day/48 steps

Table 1: Datasets and task descriptions.

As illustrated in Figure 4, all these datasets depict
clear daily periodicity, but at the same time they have
their own specificity. For instance, SE does not generate
electricity during night and its daily pattern is stable.
Indeed, apart from the time, the other variable that
greatly alter PV generation is the weather, which yields
big difference in magnitude between different days. But,
even though the weather at different locations might
be different, nearby locations often have very similar
conditions. As a result, their PV generation will also
be similar with more or less latency. PB has its own
complexity. Traffic speed is quite stable. Nevertheless,
it is highly subject to variations due to events (e.g.,

SE

PB

HEC

MP1 MP2 MP3 MP4

Figure 4: Representation of the missing patterns and
fluctuations of the input samples (using 10 days, missing
ratio = 0.5, and 3 variables for example).

sports events), weather conditions and other effects [1].
It often results in unexpected traffic congestion. Such
sudden changes are not necessarily area specific, which
lead to potentially have some variables with different
patterns. On the other hand, daily patterns in HEC are
relatively regular and, except for weekends or holidays,
the magnitude does not fluctuate much. In addition, at
the postal code level, areas with similar attributes (e.g.,
residential versus office areas) have similar consumption
patterns [11]. As a consequence, for each of the selected
datasets, sets of variables share similarities (similar
geographical locations for SE, similar roads for PB,
and similar attributes for HEC). Such similarities can
strengthen our solution. Indeed, if one variable has
missing data, knowledge acquired from past correlations
with other similar variables could be used to better
account for the missing data.

Originally, the datasets we selected do not have
missing data. In order to exhaustively evaluate the im-
pact of our framework, we simulate missing data us-
ing different Missing Data Patterns (MPs) and different
Missing Data Rates (MRs). As shown in Figure 4, we
defined four specific MPs belonging to two categories:

• Category 1: The number of missing blocks, their
positions and sizes are randomly drawn.
-MP1: Each variable has the same missing blocks.
-MP2: Each variable has different missing blocks.

• Category 2: There is only one missing block at the
end of the input sample (most recent values).
-MP3: The missing block size is the same and fixed
for each variable.
-MP4: The missing block size is randomly drawn
for each variable, but the overall average amount
of missing data corresponds to the MR.
We performed our experiments on a Linux server

with a TITAN V 12GB GPU. Our task was to perform
day-ahead prediction using two days of historical real-
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MP1 MP2 MP3 MP4
MR 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
Metric RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE

Solar Energy
GRU-D 61.22 56.52 61.36 56.65 61.35 56.65 61.66 56.95 61.38 56.67 61.4 56.7 61.3 56.6 61.3 56.6 61.3 56.61 61.38 56.68 61.34 56.64 61.17 56.47
BRITS 33.82 16.95 33.99 17.13 34.12 17.08 34.0 17.15 34.17 17.2 34.58 17.61 33.91 16.95 33.91 16.95 32.39 16.97 33.27 16.79 31.97 16.25 33.69 17.1
SSGAN 32.38 16.32 32.56 16.46 32.78 16.77 37.24 18.38 36.72 18.46 36.0 18.24 32.62 16.51 32.62 16.41 32.35 16.35 32.37 16.48 32.37 16.43 32.62 16.42
L-ODE 30.94 18.62 32.5 18.63 34.07 19.97 30.98 18.44 33.3 19.82 33.78 19.55 31.24 18.87 31.23 18.41 32.23 19.5 30.08 17.81 29.44 17.07 30.18 17.98
mTAN 32.3 16.51 33.25 16.87 34.22 18.08 31.8 17.62 32.22 16.42 31.61 18.23 30.14 15.76 33.18 16.59 33.32 16.61 30.77 16.22 32.64 17.26 33.54 16.48
Informer* 29.92 16.6 30.69 16.32 33.66 17.96 28.22 15.94 29.12 16.43 29.97 16.93 28.04 15.7 29.93 15.86 30.27 16.2 29.73 16.36 29.69 15.91 28.93 15.19
Informer- 30.49 16.85 29.15 16.29 31.24 17.16 30.33 16.4 32.49 18.27 31.31 18.4 27.57 16.19 30.47 16.73 32.94 18.52 29.98 15.99 29.22 15.31 30.81 16.57
ERL 27.99 15.35 28.53 15.36 30.69 15.92 27.87 15.32 28.27 15.37 29.08 15.99 27.49 15.13 29.58 15.61 29.95 15.44 27.81 15.09 28.04 15.03 28.2 15.01

PEMS-Bay
GRU-D 10.22 5.53 10.24 5.53 10.35 5.55 10.18 5.49 10.23 5.51 10.27 5.52 10.17 5.5 10.17 5.5 10.17 5.5 10.18 5.52 10.15 5.49 10.18 5.52
BRITS 7.87 4.48 8.08 4.6 8.45 4.84 7.91 4.5 8.05 4.66 8.33 4.85 7.62 4.3 7.62 4.3 7.62 4.3 7.74 4.36 7.84 4.4 7.9 4.44
SSGAN 9.04 5.57 9.03 5.51 9.16 5.57 9.33 5.71 9.02 5.45 6.11 3.73 5.92 3.58 8.94 5.36 8.9 5.38 8.93 5.43 5.93 3.58 5.98 3.61
L-ODE 10.24 5.69 9.69 5.38 9.88 5.7 9.85 5.35 10.04 5.52 10.36 5.91 10.09 5.53 10.38 5.85 9.79 5.57 10.09 5.75 9.79 5.81 10.15 5.84
mTAN 9.57 5.05 9.62 5.05 10.01 5.52 9.34 4.88 9.79 5.24 9.55 5.14 9.45 4.84 9.83 5.3 9.59 5.18 9.52 4.97 9.96 5.23 9.92 5.35
Informer* 5.85 3.09 6.11 3.16 6.41 3.35 5.67 2.95 6.1 3.27 6.29 3.28 5.74 3.01 6.46 3.29 6.95 3.66 5.7 2.96 5.58 2.93 5.88 3.1
Informer- 5.83 3.08 6.02 3.2 6.48 3.38 5.7 3.01 6.01 3.16 6.18 3.21 5.75 3.04 6.43 3.32 6.98 3.72 5.66 2.94 5.64 2.9 6.55 3.38
ERL 5.58 2.89 5.83 3.0 6.14 3.22 5.53 2.84 5.74 2.99 6.0 3.14 5.51 2.84 6.2 3.19 6.75 3.53 5.5 2.82 5.49 2.82 5.7 2.95

Household Electricity Consumption
GRU-D 4.77 4.18 4.95 4.35 4.94 4.34 4.69 4.09 4.78 4.18 4.84 4.24 4.66 4.06 4.66 4.06 4.82 4.22 4.68 4.08 4.73 4.13 4.74 4.14
BRITS 3.38 2.71 3.51 2.82 3.64 2.95 3.47 2.8 3.44 2.78 3.57 2.88 3.41 2.73 3.41 2.73 3.65 2.96 3.36 2.69 3.35 2.68 3.49 2.8
SSGAN 2.96 2.41 2.93 2.42 2.92 2.41 3.67 2.9 4.23 3.28 4.4 3.42 2.89 2.38 2.83 2.32 2.81 2.32 2.89 2.39 2.85 2.35 2.82 2.32
L-ODE 2.17 1.63 2.44 1.84 3.17 2.39 2.53 1.94 2.7 2.14 2.59 2.0 2.36 1.86 2.71 2.16 2.53 2.02 2.12 1.6 2.3 1.72 2.28 1.75
mTAN 2.26 1.69 2.69 2.02 3.02 2.26 2.17 1.62 2.19 1.62 2.25 1.66 2.31 1.74 2.36 1.73 2.35 1.75 2.21 1.64 2.26 1.67 2.29 1.7
Informer* 2.11 1.57 2.45 1.78 2.95 2.22 2.12 1.55 2.12 1.58 2.34 1.73 2.2 1.62 2.45 1.82 2.41 1.81 1.99 1.47 2.35 1.74 2.29 1.7
Informer- 2.16 1.61 2.32 1.73 2.85 2.18 2.1 1.53 2.26 1.69 2.42 1.79 2.17 1.58 2.23 1.68 2.57 1.93 2.1 1.53 2.16 1.63 2.42 1.82
ERL 1.96 1.44 2.25 1.65 2.62 1.97 2.0 1.45 2.03 1.5 2.1 1.53 2.13 1.54 2.24 1.66 2.4 1.78 1.98 1.44 2.1 1.55 2.18 1.6

Table 2: Experiment results of our final solution (ERL) and the baselines for three datasets with different Missing
Data Pattern (MP) and different Missing Data Rate (MR).

time available data for SE and HEC. Because of
its granularity, we conducted half-day-ahead prediction
using one day of historical data for PB. We generated
samples using (i) a sliding window with one day [resp.
half a day] stride for SE and HEC [resp. PB], (ii) one
MP, and (iii) one MR. In addition, we constructed the
train, validation, and test datasets with 60%, 20%, and
20% of the data, respectively (considering the samples
in their temporal order).

We compared our proposal to seven baselines: five
models designed for handling missing data (GRU-D [5],
BRITS [4], SSGAN [18], Latent ODE (L-ODE) [21] and
mTAN [23]), and two versions of the Informer [34]. For
the methods that were originally designed for classifi-
cation, similarly to Informer, we use a fully connected
layer after the output to realize long-term prediction
with one forward step. Contrary to the other baselines,
Informer was not originally designed for handling miss-
ing data and does not have a specific mechanism for
such a task. Therefore, Informer* [resp. Informer-] is
an Informer where zero-imputation [resp. linear inter-
polation] has been applied beforehand. ERL is based
on Informer*, as shown in our experiment, it beats all
the baselines as well as in most cases Informer-.

5.2 Prediction performance Table 2 lists the pre-
diction performance over different MPs and different
MRs for the considered datasets. The selected evalu-
ation metrics are Root Mean Squared Error (RMSE)

and Mean Absolute Error (MAE). Each scenario (i.e.,
a combination of one MP and one MR) is conducted
three times. The table shows the average of the ob-
tained results (we magnified the one for HEC by 100
for readability). The best [resp. second-best] result in
each scenario is emphasized in bold [resp. underscore].
We can observe from these results that: (1) imputed-
Informer (* and -) is better than other baselines in MTS
prediction when some missing data need to be handled;
(2) Informer* outperforms Informer- in 41 over the 72
cases; (3) ERL achieves the best performance in almost
all of the cases with only three exceptions for HEC (but
still gets the second place).

Informer with simple imputation techniques shows
excellent performance compared to the baselines. How-
ever, using DCD only as the ground truth is not enough
to learn the full patterns involved in the data (especially
for high MRs). Conversely, our proposal can benefit
from this knowledge by aligning the representation of
RAD to that of DCD.

5.3 Ablation study To obtain ERL’s results, we
fused the outputs of: (1) Informer with zero-imputation
(*), (2) Algorithm 1 with Euclidean Distance alignment
loss (referred to as P-ED), and (3) Algorithm 1 with
Contrastive Learning alignment loss (referred to as P-
CL). P-ED and P-CL use Informer* as their base model.
Table 3 presents separately the performance of each
version. In addition, we also provide results using the
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MP1 MP2 MP3 MP4
MR 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 Mean
Metric RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSEMAE RMSE MAE RMSEMAE RMSEMAE RMSEMAE

Solar Energy
Informer* 29.92 16.60 30.69 16.32 33.66 17.96 28.22 15.94 29.12 16.43 29.97 16.93 28.04 15.70 29.93 15.86 30.27 16.20 29.73 16.36 29.69 15.91 28.93 15.19
P-ED 28.52 15.62 28.69 15.31 30.25 15.66 28.99 16.00 28.93 15.81 30.32 16.30 28.33 15.46 29.29 15.94 30.37 16.14 28.71 15.65 28.58 15.56 28.80 15.44
Imp(%) 4.7 5.9 6.5 6.2 10.1 12.8 -2.7 -0.4 0.7 3.8 -1.2 3.7 -1.0 1.5 2.1 -0.5 -0.3 0.4 3.4 4.3 3.7 2.2 0.4 -1.6 2.70

P-CL 28.82 16.14 29.34 16.47 30.95 16.59 28.22 16.03 29.19 15.99 30.05 17.19 27.81 15.85 31.60 17.58 31.04 16.15 27.93 15.62 28.13 15.42 28.30 15.72
Imp(%) 3.7 2.8 4.4 -0.9 8.1 7.6 0.0 -0.6 -0.2 2.7 -0.3 -1.5 0.8 -1.0 -5.6 -10.8 -2.5 0.3 6.1 4.5 5.3 3.1 2.2 -3.5 1.02

P-ED+CL 28.20 16.03 28.48 15.29 30.23 15.85 28.76 15.54 29.21 16.04 30.02 15.94 27.81 15.42 29.22 15.66 30.16 15.90 28.6 15.31 28.83 15.37 28.63 15.59
Imp(%) 5.7 3.4 7.2 6.3 10.2 11.7 -1.9 2.5 -0.3 2.4 -0.2 5.8 0.8 1.8 2.4 1.3 0.4 1.9 3.8 6.4 2.9 3.4 1.0 -2.6 3.18

P-ED-CL 28.27 15.65 28.45 15.59 30.23 15.84 28.34 15.77 28.73 15.64 29.77 16.47 27.76 15.41 29.86 16.27 30.27 15.74 28.00 15.34 28.17 15.33 28.27 15.35
Imp(%) 5.5 5.7 7.3 4.5 10.2 11.8 -0.4 1.1 1.3 4.8 0.7 2.7 1.0 1.8 0.2 -2.6 0.0 2.8 5.8 6.2 5.1 3.6 2.3 -1.1 3.36

ERL 27.99 15.35 28.53 15.36 30.69 15.92 27.87 15.32 28.27 15.37 29.08 15.99 27.49 15.13 29.58 15.61 29.95 15.44 27.81 15.09 28.04 15.03 28.20 15.01
Imp(%) 6.5 7.5 7.0 5.9 8.8 11.4 1.2 3.9 2.9 6.5 3.0 5.6 2.0 3.6 1.2 1.6 1.1 4.7 6.5 7.8 5.6 5.5 2.5 1.2 4.72

PEMS-Bay
Informer* 5.85 3.09 6.11 3.16 6.41 3.35 5.67 2.95 6.10 3.27 6.29 3.28 5.74 3.01 6.46 3.29 6.95 3.66 5.70 2.96 5.58 2.93 5.88 3.10
P-ED 5.71 2.96 6.01 3.09 6.36 3.33 5.67 2.94 5.85 3.05 6.15 3.22 5.61 2.94 6.54 3.32 7.44 3.75 5.62 2.93 5.62 2.88 5.84 3.07
Imp(%) 2.4 4.2 1.6 2.2 0.8 0.6 0.0 0.3 4.1 6.7 2.2 1.8 2.3 2.3 -1.2 -0.9 -7.1 -2.5 1.4 1.0 -0.7 1.7 0.7 1.0 1.04

P-CL 5.73 3.01 6.14 3.21 6.77 3.56 5.70 2.98 5.95 3.13 6.30 3.34 5.62 2.92 6.86 3.56 6.93 3.70 5.67 2.95 5.70 2.94 5.91 3.05
Imp(%) 2.1 2.6 -0.5 -1.6 -5.6 -6.3 -0.5 -1.0 2.5 4.3 -0.2 -1.8 2.1 3.0 -6.2 -8.2 0.3 -1.1 0.5 0.3 -2.2 -0.3 -0.5 1.6 -0.70

P-ED+CL 5.74 2.96 6.01 3.07 6.32 3.27 5.64 2.93 5.86 3.06 6.15 3.16 5.64 2.92 6.64 3.46 6.92 3.55 5.59 2.89 5.61 2.94 5.85 3.01
Imp(%) 1.9 4.2 1.6 2.8 1.4 2.4 0.5 0.7 3.9 6.4 2.2 3.7 1.7 3.0 -2.8 -5.2 0.4 3.0 1.9 2.4 -0.5 -0.3 0.5 2.9 1.62

P-ED-CL 5.65 2.93 5.94 3.07 6.32 3.32 5.63 2.92 5.83 3.04 6.14 3.23 5.55 2.87 6.46 3.33 6.94 3.60 5.57 2.88 5.60 2.87 5.77 2.99
Imp(%) 3.4 5.2 2.8 2.8 1.4 0.9 0.7 1.0 4.4 7.0 2.4 1.5 3.3 4.7 0.0 -1.2 0.1 1.6 2.3 2.7 -0.4 2.0 1.9 3.5 2.26

ERL 5.58 2.89 5.83 3.00 6.14 3.22 5.53 2.84 5.74 2.99 6.00 3.14 5.51 2.84 6.20 3.19 6.75 3.53 5.50 2.82 5.49 2.82 5.70 2.95
Imp(%) 4.6 6.5 4.6 5.1 4.2 3.9 2.5 3.7 5.9 8.6 4.6 4.3 4.0 5.6 4.0 3.0 2.9 3.6 3.5 4.7 1.6 3.8 3.1 4.8 4.29

Household Electricity Consumption
Informer* 2.11 1.57 2.45 1.78 2.95 2.22 2.12 1.55 2.12 1.58 2.34 1.73 2.20 1.62 2.45 1.82 2.41 1.81 1.99 1.47 2.35 1.74 2.29 1.70
P-ED 2.00 1.46 2.33 1.75 2.57 1.95 1.99 1.45 2.11 1.55 2.09 1.54 2.09 1.51 2.26 1.68 2.71 2.05 2.02 1.47 2.07 1.57 2.24 1.65
Imp(%) 5.2 7.0 4.9 1.7 12.9 12.2 6.1 6.5 0.5 1.9 10.7 11.0 5.0 6.8 7.8 7.7 -12.4 -13.3 -1.5 0.0 11.9 9.8 2.2 2.9 4.47

P-CL 1.97 1.47 2.35 1.72 2.79 2.11 2.02 1.47 2.07 1.53 2.11 1.55 2.22 1.62 2.27 1.69 2.33 1.74 2.09 1.53 2.08 1.56 2.21 1.64
Imp(%) 6.6 6.4 4.1 3.4 5.4 5.0 4.7 5.2 2.4 3.2 9.8 10.4 -0.9 0.0 7.3 7.1 3.3 3.9 -5.0 -4.1 11.5 10.3 3.5 3.5 4.46

P-ED+CL 2.00 1.46 2.35 1.75 2.85 2.16 1.96 1.43 2.11 1.56 2.06 1.52 2.06 1.51 2.28 1.70 2.46 1.84 2.02 1.48 2.06 1.56 2.23 1.64
Imp(%) 5.2 7.0 4.1 1.7 3.4 2.7 7.5 7.7 0.5 1.3 12.0 12.1 6.4 6.8 6.9 6.6 -2.1 -1.7 -1.5 -0.7 12.3 10.3 2.6 3.5 4.78

P-ED-CL 1.94 1.43 2.25 1.67 2.60 1.97 2.00 1.45 2.07 1.52 2.07 1.53 2.14 1.56 2.23 1.66 2.47 1.83 2.03 1.47 2.04 1.53 2.20 1.62
Imp(%) 8.1 8.9 8.2 6.2 11.9 11.3 5.7 6.5 2.4 3.8 11.5 11.6 2.7 3.7 9.0 8.8 -2.5 -1.1 -2.0 0.0 13.2 12.1 3.9 4.7 6.18

ERL 1.96 1.44 2.25 1.65 2.62 1.97 2.00 1.45 2.03 1.50 2.10 1.53 2.13 1.54 2.24 1.66 2.40 1.78 1.98 1.44 2.10 1.55 2.18 1.60
Imp(%) 7.1 8.3 8.2 7.3 11.2 11.3 5.7 6.5 4.2 5.1 10.3 11.6 3.2 4.9 8.6 8.8 0.4 1.7 0.5 2.0 10.6 10.9 4.8 5.9 6.62

Table 3: Comparison of the different versions’ performance for the considered datasets with different Missing
Data Pattern (MP) and different Missing Data Rate (MR).

loss of Eqn. (4.8) (referred as P-ED+CL), and the
fusion following Eqn. (4.9) (referred as P-ED-CL).
For P-ED+CL, we set α = 0.01 so that each loss has
the same order of magnitude. In this table, the error
reduction (or increase) of the considered version derived
from our proposal is also compared to the Informer*
performance (cf. rows Imp(%)). The positive [resp.
negative] value indicates the percentage decrease [resp.
increase] of the considered RMSE (or MAE).

We observe: (1) P-ED is better than Informer* for
all datasets, and (2) P-CL is better than Informer* for
SE and HEC. These results show the effectiveness of
leveraging the DCD in our framework. (3) P-CL is
worse than Informer* for PB, especially for high MRs.
The likely reason behind this trend is that, the lack
of pattern similarities makes it difficult to accurately
see the difference between positive and negative pairs.
(4) Both P-ED+CL and P-ED-CL beat Informer* for
all datasets. However, without careful tuning of α, P-
ED+CL is worse than P-ED-CL. (5) ERL achieves the
best performance improvement, in average by 5.21%.

5.4 Predicted samples Figure 5 plots some pre-
dicted results in order to better appreciate the improve-
ments achieved by ERL. For these visualizations, we

consider MP3 with an MR of 0.8 using all of the three
datasets. Each row represents a variable of the MTS.
Plots on the left [resp. right] part of the blue vertical
line illustrate the inputs [resp. outputs] of the mod-
els. For SE, we observe that the peak shape predicted
by ERL (red curve) is closer to the ground truth. Be-
sides, for the “zero electricity generation” at night, ERL
forecasts fewer fluctuations compared to the imputed-
Informer (dark blue curve). For PB, we can also notice
that the predicted curves of ERL have a better match
with the ground truth. For HEC, ERL performs better
during morning and evening (when patterns are more
regular). But, it is slightly worse in daytime, where
there might be more fluctuations.

All these plots show that ERL manages to better
grasp the pattern despite a high MR. They also confirm
that SE’s and HEC’s variables have more similar shapes
compared to those of PB.

5.5 Further discussion and limitations First, our
experiments validate that Informer with simple impu-
tation techniques performs better than methods with a
specific mechanism for handling missing data. In partic-
ular, when several consecutive data points are missing,
it is more difficult to accurately interpolate these values.
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Solar Energy Household Electricity ConsumptionPEMS-Bay

Figure 5: Examples of predicted samples for three variables on three datasets (each row represents a variable).

In such scenarios, complex interpolation techniques are
required, but a zero-imputation associated with an at-
tention mechanism can already help identify these miss-
ing blocks and probably give them less attention.

As shown in Figure 5, all three MTS datasets have
more or less spatial dependencies among their variables.
Such correlations can benefit the model when data are
missing in one or several variables. In addition, in
Table 2, if we focus on Informer-based results (baselines
and our proposal), we can observe that despite the
MR, results for MP2 are better than those of MP1.
This observation shows that Informer can benefit from
the spatial correlations between variables in order to
account for the missing data. Such a trend is true
for all considered datasets and especially for high MR.
However, one limitation of our study is actually the
selected datasets. Indeed, our experiments focus on
spatial MTS, and even if it is clear that models benefit
from spatial correlation, it prevents from fully perceive
the impact of our framework. Therefore, in the future,
we will investigate its performance with univariate and
generic multivariate time series datasets.

Additionally, when comparing the efficiency of the
Euclidean Distance (ED) and Contrastive Learning
(CL) versions, we noticed that ED usually has a greater
effect for reducing the error. This trend is especially
true for PB. As previously mentioned, sudden changes
reduce the pattern similarities among variables, which
may make the defined positive pairs dissimilar and
close to being negative. We therefore assume that the
spatial dependencies associated with our definition of
the positive and negative pairs are influencing the effect
of CL in the proposed framework. As a consequence,
more complex definitions of positive and negative pairs
could increase the efficiency of CL. Such complex
definitions will be explored in the future in order to
better account for the impact of CL on our framework.

Finally, our current definition of positive and neg-
ative pairs does not account for the periodicity of the
dataset. For example, in the case of HEC that has a
strong weekly pattern, the samples of one day and the
same day a week later could be considered as positive
pairs. We hypothesize that such a revised definition
might help CL have superiority over ED for any MPs
and MRs. However, it supposes that the model is aware
of the major periodicity of the dataset. In the future,
we will conduct some experiments in order to determine
the feasibility of such an idea.

6 Conclusion

In this paper, when performing time-delayed Multivari-
ate Time Series (MTS) predictions, we proposed to use
the representations of delayed complete data (DCD) to
assist the representation learning of real-time available
data (RAD) with representation alignment. Then, we
connected the representation block of RAD with the
prediction block of DCD, and fine-tuned the prediction
block to perform predictions using only RAD. We inves-
tigated two types of representation alignment: distance
metric and contrastive learning. In our experiments, we
adopted Informer as our base model due to its superi-
ority to predict with incomplete data. Our experimen-
tal results confirm that our proposal with either of the
two alignments can achieve a better performance than
Informer with few exceptions. Moreover, simply fusing
the results of both alignments further improved the per-
formance, and combining it with the results of Informer
obtains the best performance. In the future, we will
mainly focus on more effective methods for generating
the positive and negative pairs in contrastive learning.
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