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ABSTRACT

In this paper, we propose a 3D asset-referenced diffusion model for image gen-
eration, exploring how to integrate 3D assets into image diffusion models. Ex-
isting reference-based image generation methods leverage large-scale pretrained
diffusion models and demonstrate strong capability in generating diverse images
conditioned on a single reference image. However, these methods are limited to
single-image references and cannot leverage 3D assets, constraining their practical
versatility. To address this gap, we present a cross-domain diffusion model with
dual-branch perception that leverages multi-view RGB images and point maps of
3D assets to jointly model their colors and canonical-space coordinates, achiev-
ing precise consistency between generated images and the 3D references. Our
spatially aligned dual-branch generation architecture and domain-decoupled gen-
eration mechanism ensure the simultaneous generation of two spatially aligned
but content-disentangled outputs, RGB images and point maps, linking 2D image
attributes with 3D asset attributes. Experiments show that our approach effec-
tively uses 3D assets as references to produce images consistent with the given
assets, opening new possibilities for combining diffusion models with 3D content
creation.

1 INTRODUCTION

In recent years, text-to-image diffusion models (Ho et al., 2020; Ramesh et al., 2022; Rombach
et al., 2021; Saharia et al., 2022; Labs, 2024) have made remarkable progress in image synthesis,
enabling the generation of high-quality and diverse images from textual prompts. However, relying
solely on text prompts is often insufficient to capture fine-grained semantics and complex visual
details (Witteveen & Andrews, 2022). This limitation is particularly pronounced in scenarios that
require faithful preservation of a subject’s identity, such as personalized content creation, advertis-
ing, marketing, and artistic design. Although existing methods (Gal et al., 2022; Ruiz et al., 2023;
Ye et al., 2023; Li et al., 2023; 2024b; Shi et al., 2024; Cai et al., 2025; Tan et al., 2025) have concen-
trated on preserving object identity within 2D images, identity-preserving generation conditioned on
3D assets remains underexplored and represents a promising direction for future research.

Current subject-driven generation methods preserve identity by leveraging either local features or
global semantics from reference images. Some methods (Gal et al., 2022; Hu et al., 2022; Ruiz
et al., 2023) fine-tune diffusion models or text embeddings separately for each subject to capture
fine-grained details, which is computationally expensive. More recent approaches (Shi et al., 2024;
Cai et al., 2025; Tan et al., 2025) improve efficiency by introducing attention mechanisms between
generated and reference images, enabling the model to effectively learn reference-guided generation.
Other approaches (Ye et al., 2023; Li et al., 2023) map images into the text space to encode global
semantics, which is computationally efficient but tends to oversimplify representations. Compress-
ing an image into a few text tokens results in the loss of spatial information, making it difficult for
the generated images to faithfully correspond to the fine-grained details of the reference.

While extensive subject-driven generation (Tan et al., 2025; Kumari et al., 2025) has demonstrated
that image generation conditioned on a single or a few 2D reference images can maintain identity
consistency, 3D asset-referenced image generation remains unexplored. In practical applications,
creators often require the direct use of 3D assets, such as meshes, as references to visualize how an
object would manifest across diverse scenes and environments. Such scenarios go beyond the scope
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inside a train on the desktop in the room

in the garden in a corner of a cramped room3D asset

3D asset

Figure 1: Results of our RefAny3D. Given a 3D asset, our method can generate high-quality and 3D
asset-consistent images.

of purely 2D references and give rise to a new problem: how to leverage 3D assets as conditioning
signals to generate images that are not only identity-consistent, but also geometry-consistent and
texture-consistent.

Although existing methods (Cai et al., 2025; Tan et al., 2025) have achieved impressive results with
2D reference images, they remain fundamentally limited when extended to the task of generation
conditioned on 3D assets. Unlike 2D settings, 3D asset-referenced generation requires not only
semantic-level identity preservation, but also strict consistency with the geometry and texture of the
reference 3D asset. This goes beyond the capability of existing methods. Specifically, first, the con-
sistency capability of current methods remains inadequate for 3D asset-referenced generation, where
the synthesized images are required to align precisely with the geometric structure and texture of
the reference 3D asset. Second, approaches (Ye et al., 2023; Tan et al., 2025) limited to a single ref-
erence image are inherently unable to capture the full appearance of the object. Finally, in methods
based on multi-image conditioning (Kumari et al., 2025; Zeng et al., 2024), or in straightforward
extensions of existing approaches to multiple inputs, the absence of 3D structural priors prevents
consistent spatial correspondence across views, leading to viewpoint conflicts and cross-view in-
consistencies. In addition, recent image editing models (Labs et al., 2025; Wu et al., 2025) have
shown strong instruction-following and image understanding capabilities. However, they remain
insufficient for effectively addressing the challenge of 3D alimitationsset-referenced generation. A
straightforward way to leverage such models is to manually select a viewpoint of the 3D asset, render
it into an image, and then apply editing instructions to the rendered view. The primary shortcoming
of this approach is that the resulting images often suffer from foreground–background inconsistency
and may hallucinate non-existent content. Overall, the key challenge of 3D asset-referenced gener-
ation lies in effectively leveraging the structural and textural priors of 3D assets to achieve faithful,
view-consistent, and detail-preserving image synthesis.

In this paper, we propose RefAny3D , a 3D asset-referenced and 3D structure-aware image genera-
tion framework, which is designed to synthesize images with faithful fidelity and consistent align-
ment to the 3D assets. The core idea is to construct a 3D-aware generative framework that leverages
the correspondence between normalized object coordinates (point maps) (Wang et al., 2019) and
their associated RGB values, thereby ensuring consistent alignment with the 3D assets. This consis-
tency stems from two key properties of point maps. First, while texture information alone may in-
troduce ambiguities or repetitions across different views, point maps are uniquely tied to the object’s
geometry, enabling more reliable cross-view correspondence. Second, point maps are continuous
and invariant to object pose or position, making them easier to learn and more effective anchors
for linking geometric structure with texture. Specifically, we formalize the generation process as
modeling the joint distribution of RGB appearance and point maps. Conditioned on multi-view
RGB images and point maps of the 3D asset, the framework is trained to simultaneously generate
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photorealistic images of the object together with their corresponding point maps. To achieve this,
we introduce a spatially aligned, domain-decoupled dual-branch generation strategy that enables
the model to synthesize both RGB images and point maps in a unified manner. Unlike prior ap-
proaches, our method explicitly leverages object coordinates to build structural awareness of the 3D
object, while the point maps establish pixel-level correspondences across different views, which is
otherwise difficult to achieve without such guidance. Consequently, our approach maintains faithful
consistency of complex geometry and texture.

In summary, our main contributions are as follows: (1) We propose a 3D asset-referenced image gen-
eration framework that ensures faithful alignment and consistency with the underlying 3D assets. (2)
We design a spatially aligned, domain-decoupled dual-branch generation strategy that enables the
model to jointly generate RGB images and point maps, thereby enhancing its 3D structural aware-
ness. (3) We demonstrate that our approach achieves accurate preservation of the visual identity of
3D objects. Extensive qualitative and quantitative evaluations show that it consistently outperforms
existing baselines on the 3D asset-referenced generation task, delivering superior fine-grained con-
sistency and robust fidelity even for complex models with intricate geometric and textural details.

2 RELATED WORK

Diffusion Models. Recently, diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Ramesh
et al., 2022; Rombach et al., 2021) trained on large-scale datasets (Schuhmann et al., 2022; Byeon
et al., 2022) have achieved significant breakthroughs in generating photorealistic and diverse visual
content, excelling across a wide range of image generation tasks, including image editing (Batifol
et al., 2025; Wu et al., 2025), controllable content generation (Zhang et al., 2023), and subject-
driven generation (Gal et al., 2022; Ruiz et al., 2023; Ye et al., 2023). Pioneering works (Ramesh
et al., 2022; Rombach et al., 2021) first showcased the strong generative and generalization ca-
pabilities of diffusion models trained on large-scale datasets. To further enhance their generative
capability, Transformer (Vaswani et al., 2017) architectures have been incorporated into diffusion
models (Peebles & Xie, 2023), enabling greater scalability. More recent model (Labs, 2024) adopts
flow-matching (Lipman et al., 2022) training in conjunction with MMDiT (Esser et al., 2024) archi-
tectures and large-scale datasets, achieving state-of-the-art performance in text-to-image generation.
Despite these advances, text-to-image models still lack effective approaches for generating images
conditioned on 3D assets as references.

Subject-Driven Generation. The goal of subject-driven generation is to capture the characteristics
of a given reference subject, enabling the synthesis of realistic images of the subject across diverse
scenes. Early methods (Gal et al., 2022; Hu et al., 2022; Ruiz et al., 2023) typically adapt the text
embedding layer (Gal et al., 2022) or the model (Hu et al., 2022; Ruiz et al., 2023) using only a few
reference images, while applying regularization (Ruiz et al., 2023) to maintain the model’s general-
ization capability. Because these methods require retraining and fine-tuning for each subject, they
entail significant computational and time costs, limiting their practical applicability. To reduce train-
ing overhead, some works (Ye et al., 2023; Li et al., 2023) learn an adapter from image space to text
space, enabling direct encoding of images into text embeddings without per-subject training. How-
ever, these approaches compress an image into only a few text tokens, often limiting fine-grained
fidelity to the reference. Recent approaches (Cai et al., 2025; Tan et al., 2025) concatenate the gen-
erated and reference images into a unified token sequence and leverage shared attention to better
capture fine-grained correspondences, addressing the challenge of limited detail fidelity. Beyond
image-guided subject-driven generation, several works (Wu & Zheng, 2022; Wu et al., 2023; Wang
et al., 2024a;b) investigate 3D-guided generation using single or few 3D exemplars. Wu & Zheng
(2022) generate 3D shapes from a single reference 3D shape using multi-scale 3D representations;
Sin3DM (Wu et al., 2023) learns a diffusion model from a single textured 3D shape; ThemeSta-
tion (Wang et al., 2024a) produces theme-aware 3D assets from few exemplars; and Phidias (Wang
et al., 2024b) enables text-, image-, and 3D-conditioned content creation via reference-augmented
diffusion. While these methods leverage 3D inputs, they primarily focus on 3D asset generation,
rather than using provided 3D assets to guide 2D subject-driven image generation. Despite their
merits, these methods often lack precision when using 3D assets with complex textures as refer-
ences. In contrast, our approach effectively leverages 3D structural cues to achieve more faithful
and consistent reference generation.
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Figure 2: Overview of RefAny3D. Given a 3D asset, we render multi-view inputs as conditioning
signals for the diffusion model and simultaneously generate the point map of the target RGB image.
To ensure pixel-level consistency across different viewpoints, we adopt a shared positional encoding
strategy. Moreover, to disentangle the RGB domain from the point map domain, we incorporate
Domain-specific LoRA and Text-agnostic Attention. Benefiting from this 3D-aware disentangle-
ment design, our method is able to generate high-quality images that maintain strong consistency
with the underlying 3D assets.

Multi-modal Image Generation. Recent studies (Ke et al., 2024; Long et al., 2024; Yang et al.,
2024; Li et al., 2024a; Huang et al., 2024; Fu et al., 2024; He et al., 2024; Ye et al., 2024; Zhang
et al., 2024) have demonstrated that diffusion models are capable of generating not only high-fidelity
RGB images but also diverse physical property images, such as albedo, normal, roughness, and ir-
radiance. Several recent multi-view generation works (Long et al., 2024; Li et al., 2024a; Huang
et al., 2024) improve 3D reconstruction quality by jointly generating multi-view normals and color
images. Moreover, an increasing number of studies (Ke et al., 2024; He et al., 2024; Fu et al., 2024;
Ye et al., 2024) leverage the multi-modal generation capability of diffusion models to perform dense
prediction tasks. These methods typically condition on RGB images to predict pixel-aligned nor-
mal or depth maps. However, these multi-modal image generation methods either jointly generate
multiple modalities but remain constrained to multi-view settings (Liu et al., 2023), or they simply
translate one modality into another single modality (Ke et al., 2024; Gu et al., 2025). In contrast,
our approach simultaneously generates information across multiple modalities and is not restricted
to object-centric multi-view settings.

3 METHOD

We propose a 3D asset-conditioned image generation framework, which jointly models RGB image
and point map distributions to create high-quality images for a 3D object. The overall generation
pipeline is shown in Fig. 2.

Overview. Given a conditional 3D object y, we represent it as a set of multi-view RGB–point
map pairs {(CIi , CPi)|i = 0, 1, · · · , N}, where N is the total number of views, CIi ∈ Rh×w×3

denotes the RGB images from the i-th viewpoint, and CPi ∈ Rh×w×3 denotes the corresponding
rasterized 3D coordinates of the object. The RGB images and point maps are pixel-wise aligned,
jointly encoding the color and its associated 3D position. Formally, our objective is to learn the
conditional distribution given a reference 3D model y and a text prompt c

p(xI , xP |y, c)

where xI denotes the target RGB image, and xP denotes its corresponding point map. To accu-
rately preserve the visual identity of a 3D object, we adopt a dual-branch conditional generation
framework that jointly generate the RGB image and point map, leveraging 3D spatial constraints
to reinforce reference consistency (3.1). However, generating spatially aligned images from two
domains introduces the challenge of texture bleeding. To address this, we propose a domain decou-
pling generation strategy (3.2). For training RefAny3D , we prepare an object pose-aligned datasets,
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which consists of images containing the objects of interest, their corresponding 3D object models,
and the associated object poses (3.3).

3.1 SPATIALLY ALIGNED DUAL-BRANCH GENERATION

We simultaneously generate spatially aligned RGB images and point maps to provide precise 3D
spatial information of the reference object for conditional image generation. To achieve conditional
generation for the diffusion model, similar to prior works (Tan et al., 2025; Wang et al., 2025), we
concatenate the target tokens and condition tokens into a unified sequence. Furthermore, to generate
spatially-aligned cross-domain images, we employ shared positional embeddings.

Conditional Token Sequence. We encode the RGB images and point maps of the 3D model into
latent conditional tokens using a pretrained VAE encoder, which are subsequently concatenated with
the noisy target latent. To preserve the fidelity of the conditional features, we set the timestep of the
conditional tokens to 0 during the diffusion denoising process.

Shared Positional Embedding for Cross-Domain. To maintain spatial alignment between the
RGB image and point map during generation, we apply shared positional encodings to tokens across
both domains. This approach exploits an inherent property of DiT, induced by positional encod-
ing, to naturally assign higher attention scores to tokens with the same positional embeddings. To
mitigate biases caused by inconsistent distances among conditional tokens, we introduce a unified
positional shift term. Specifically, for a conditional token at spatial position (i, j), the positional
encoding is set to (i − w, j), where w is the width of the target latent image. This shift guarantees
that the conditional tokens and target tokens remain spatially disjoint.

3.2 DOMAIN DECOUPLING GENERATION

The core challenge of jointly generating point maps and RGB images lies in their inherent informa-
tion asymmetry. A point map defines only the object’s 3D geometry and pose, while the RGB image
contains photorealistic details of the entire scene. In a unified framework, this asymmetry often
causes the point map, which lacks background information, to be affected by interference from the
RGB branch and text prompt. Therefore, we introduce domain-specific LoRA and a text-agnostic
attention to achieve accurate generation in both domains.

Domain-specific LoRA. We decouple domain knowledge using a domain switcher and a dual LoRA
structure. The domain switcher specifies the domain of each token to guide the generation of RGB
images and point maps. Specifically, we associate each domain with a learnable embedding, which is
then concatenated with the timestep embedding. To further decouple the learning of domain-specific
knowledge, we also introduce two independent LoRA (Hu et al., 2022) modules, termed Reference-
LoRA and Domain-LoRA, to separately learn the 3D object reference generation and point map
domain generation. The Reference-LoRA is activated for all conditioning tokens to learn general
appearance features, while the specialized Domain-LoRA is activated only for point map tokens to
learn specific geometric information. This design enables the model to generate high-fidelity point
maps and RGB images.

Text-agnostic Attention. To further suppress background information leakage into the point map,
we introduce a text-agnostic attention mask in the point map branch. This design minimizes the in-
fluence of text tokens on the point map, as textual descriptions often contain substantial background
information that is irrelevant to the point map. In contrast, the RGB tokens can attend to all tokens,
allowing them to fully exploit the information from both the text and the point map. This design
ensures the point map is generated as a geometric proxy, reducing the influence of background cor-
ruption, while the RGB branch can fully utilize the accurate geometric guidance to render detailed
shapes and textures.

3.3 DATASETS

To train our model for 3D asset-reference generation, we require an object pose-aligned dataset.
Specifically, this dataset is composed of images containing the objects of interest, their correspond-
ing 3D assets, and the associated object poses, which are used to generate the corresponding point
maps. However, existing public datasets do not provide all the required data. We build upon Sub-
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(a) Data construction pipeline
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(b) Examples from the dataset

Figure 3: (a) Data construction pipeline. We first use GroundingDINO (Liu et al., 2024) to extract
the objects of interest, then convert the images into 3D models using Hunyuan3D (Zhao et al., 2025),
and finally apply FoundationPose (Wen et al., 2024) to estimate the poses of the 3D models in the
images. (b) Examples from the dataset.

jects200k, a subject-driven generation image dataset, and further enhance it by incorporating 3D
assets along with object pose annotations for each image. The overall construction pipeline is illus-
trated in Fig. 3. First, for each image, we use the object names provided in Subjects200k as prompts
to GroundingDINO (Liu et al., 2024) to extract the corresponding objects of interest. Next, we
convert each extracted object from the image into a 3D asset using Hunyuan3D (Zhao et al., 2025).
Finally, taking the generated 3D asset as input, we estimate its pose using FoundationPose (Wen
et al., 2024). To ensure reliable pose estimation, we calculate the Mask IoU between the object’s
2D mask in the image and the mask rendered from the pose-aligned 3D model, and retain only
samples with an IoU exceeding 0.8. This filtering method excludes failure cases such as incorrect
orientations, mismatched viewpoints, or object localization errors. To further ensure that the gen-
erated 3D mesh truly matches the appearance of the object in the 2D image, we place the 3D asset
at the estimated pose and compute the LPIPS between the rendered object and the corresponding
image region, retaining only samples with an LPIPS value below 0.3. This step filters out texture
mismatches or reconstruction artifacts in the 3D assets.These two complementary checks, Mask IoU
for geometric and pose alignment and LPIPS for texture and appearance fidelity, form a reliable data
filtering pipeline.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Implementation details. We use Flux.1-dev as our base model. Following Tan et al. (2025), we
train the model with the Prodigy optimizer (Li et al., 2023). Our model is trained for 30k steps on
8 H800 GPUs. To enable classifier-free guidance (Ho & Salimans, 2022), we randomly drop the
text and the reference multi-view images with a probability of 0.1 each. The number of views in the
multi-view images is set to 8.

Baselines. We adopt Textual Inversion (Gal et al., 2022), DreamBooth (Ruiz et al., 2023), IP-
Adapter (Ye et al., 2023), DSD (Cai et al., 2025), and OminiControl (Tan et al., 2025) as our baseline
methods. For personalized text-to-image generation methods that require training (e.g., Textual
Inversion and DreamBooth), we use multi-view images of each 3D asset as training data, fine-tune
the model accordingly, and then sample from the customized model to obtain generated images.
For methods that do not require additional training (e.g., IP-Adapter, DSD, and OminiControl), we
use their official pre-trained models. Since these models do not support multiple images as input
conditions, we select a single view of each 3D asset as input to generate images for comparison with
our approach.

Metrics. We employ both foundational vision models and LVLMs to comprehensively evaluate
ID consistency, texture consistency, and aesthetic quality of the generated images and 3D assets.
Specifically, we measure semantic consistency by computing CLIP (Radford et al., 2021) and
DINO (Caron et al., 2021) feature similarities between the generated images and the multi-view
renderings of the 3D assets. In addition, we compute the CLIP text–image similarity score for
each generated image and its corresponding text prompt. We assess texture consistency by using
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3D Assets Ours OminiControl DSD IP-Adapter DreamBooth Textual Inversion

Figure 4: Qualitative comparison with other methods. Our approach achieves superior geometric
and texture consistency compared to alternative methods.

GPT-eval CLIP DINO GIM
Method Texture↑ Geometric↑ Aesthetic↑ Overall↑ Img/Avg.↑ Img/Max.↑ Text↑ Avg.↑ Max.↑ Count↑

Textual Inversion 2.894 4.421 6.263 4.526 0.827 0.878 0.323 0.548 0.653 3359.895
DreamBooth 5.368 6.684 6.894 6.315 0.867 0.912 0.328 0.695 0.809 3483.368

IP-Adapter 3.833 5.278 5.167 4.759 0.863 0.913 0.312 0.652 0.760 3137.167
DSD 4.842 6.473 7.105 6.140 0.832 0.884 0.329 0.644 0.761 3568.737
OminiControl 5.631 6.578 6.893 6.367 0.855 0.901 0.332 0.665 0.783 3474.211
Ours 6.315 7.368 7.687 7.123 0.873 0.923 0.340 0.720 0.843 3901.316

Table 1: Quantitative results comparing our method against the baselines, with the best scores high-
lighted in bold and the second-best underlined. Our approach achieves the best performance across
all evaluation metrics, including both GPT-based measures and baseline model metrics. In particu-
lar, our method yields substantial gains on the GPT-eval Texture and Geometric scores, as well as the
GIM metric, which are particularly indicative of fine-grained geometric and textural fidelity. These
results demonstrate the effectiveness of our framework in faithfully preserving 3D asset consistency
and generating high-quality outputs beyond existing baselines.

GIM (Shen et al., 2024) to count the number of matched keypoints between the generated images
and the multi-view images. Furthermore, we leverage GPT evaluation by providing both the gener-
ated and multi-view images to GPT-5 to obtain scores on textual consistency, geometric consistency,
and aesthetic quality, thereby enabling a more comprehensive assessment of the generation results.
We then compute the average of these three scores as an overall score.

4.2 COMPARISONS

Qualitative results. As shown in Fig. 4, we present qualitative comparisons between our method
and baseline methods. Our method achieves superior geometric and texture consistency with the 3D
assets compared to others. In the first row of Fig. 4, our method accurately captures the undulating
geometric surface of the chair cushion, whereas other methods fail to reproduce these fine structures.
For 3D assets with complex textures (second row), our method faithfully reproduces the characters
and illustrations on the vase, while other methods fail to maintain such consistency. Moreover, un-
like DreamBooth (Ruiz et al., 2023) and Textual Inversion (Gal et al., 2022), our method requires no
additional training on the reference 3D asset to produce consistent results, highlighting its practical
advantage. Fig. 5 further shows the point map results generated by our method, demonstrating that
it can simultaneously generate the foreground object and its corresponding point map to indicate
relative coordinate relationships. In addition, our method can be integrated with multi-view to 3D
generation models (Zhao et al., 2025), enabling the synthesis of images conditioned on multiple
reference views. Fig. 6 illustrates the effectiveness of our approach on multi-view inputs. By mod-
ifying the prompt or adjusting the 3D asset’s local coordinate system, the generated images exhibit
diverse perspectives, as illustrated in Fig. 9.
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Figure 5: Qualitative results with different 3D assets as references. Our method takes a given 3D
mesh as input and generates both RGB images and point maps in a unified manner. By enforcing
pixel-level spatial alignment between the point maps and RGB outputs, the framework ensures con-
sistent geometry–texture correspondence across views. Moreover, the incorporation of point maps
enhances the model’s 3D structural awareness, thereby improving the fidelity and consistency of
image generation with respect to the reference 3D assets.

Method Faithful↑ ID↑ Aesthetic↑ Rank↓

Textual Inversion 2.182 3.053 3.526 5.158
DreamBooth 3.836 4.315 4.421 2.526

IP-Adapter 1.982 2.947 2.053 5.737
DSD 4.145 4.368 4.158 2.842
OminiControl 3.909 4.263 4.526 3.158
Ours 4.655 4.737 4.632 1.579

Table 2: Quantitative results of the user study.
We evaluate 3D consistency (Faithful), identity
preservation (ID), aesthetic quality, and overall
ranking (Rank).

Multi-view Images "in the room" "on the balcony" "on the beach"

"in the kitchen" "in the garden" "in the bedroom"

Figure 6: Qualitative results on multi-view im-
ages. Our method can be integrated into existing
multi-view image-to-3D generation pipelines.

Quantitative Results. The quantitative evaluation results comparing our method with other base-
lines are shown in Table 1. We report the evaluation results from both large-scale vision-language
models (LVLMs) and vision foundation models. For LVLM evaluation, we employ GPT-5 to assess
texture consistency, geometric consistency, and aesthetic quality, and additionally report an overall
score as their average. Specifically, we concatenate the generated image and the multi-view im-
ages of the 3D asset into a 3×3 grid and prompt GPT-5 to rate the generated image on each metric
from 0 to 10, where higher scores indicate better consistency and quality. Our method achieves the
best performance across all GPT metrics compared to other baselines, with notably superior results
on texture and geometric consistency. For evaluation using vision foundation models, we adopt
CLIP (Radford et al., 2021) and DINO (Caron et al., 2021) as image encoders to compute feature
similarities as a measure of semantic consistency. Since the reference consists of multiple images,
we compute both the average and the maximum similarity between the generated image and the
multi-view references to obtain a more comprehensive assessment. To reduce background effects
on the CLIP scores, we remove the background from all images before comparing them with the
reference renderings. Our method outperforms all other approaches on CLIP and DINO metrics
except IP-Adapter (Ye et al., 2023).

To further capture fine-grained correspondences, we employ GIM (Shen et al., 2024), a state-of-the-
art image matching method, to compute the number of matched keypoints between the generated
image and the multi-view references, thereby quantifying the correspondence with the real 3D asset
details. Our method also outperfor ms all competing baselines on the vision foundation model met-
rics. As shown in Table 2, we also conduct a user study to evaluate generation quality along four
dimensions: Faithfulness, Identity, Aesthetic Quality, and Overall Rank. Faithfulness measures the
3D consistency between the generated image and the reference 3D asset, while Identity evaluates
whether the generated object preserves the identity of the 3D asset. Aesthetic Quality reflects the
visual appeal of the generated image, and Overall Rank asks participants to provide a holistic com-
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Input Mesh (a) Full (b) W/O Shared PE (c) W/O Text-agnostic Attention (c) W/O Domain-sepcific LoRA

Figure 7: Ablation studies on different components of our method: (a) full model; (b) without
Shared Positional Embedding for Cross-Domain; (c) without Text-agnostic Attention; (d) without
Domain-specific LoRA.

Ours w/o PointmapRender-and-edit 4view6view3D Assets

Figure 8: Comparisons of ablation studies and the editing-based baseline.

parison across methods. The results indicate that our method is competitive across all metrics, with
particularly strong performance in Faithfulness and Identity consistency.

4.3 DISCUSSIONS

In this section, we further design a set of experiments to validate the effectiveness of our proposed
components, including Shared Positional Embedding for Cross-Domain, Domain-specific LoRA,
and Text-agnostic Attention.

Without Shared Positional Embedding for Cross-Domain. As shown in Fig. 7 (b), we remove
the specially designed positional embeddings and train the model with token sequences arranged in
their natural order, then compare the results against our full model. This comparison demonstrates
the necessity of sharing positional embeddings between the RGB and point map under the same
viewpoint. Without shared positional embeddings, the network lacks positional priors and strug-
gles to learn accurate pixel-level correspondences between the point maps and RGB images. The
resulting misalignment leads to degraded geometric consistency with the reference 3D asset. For
example, the top of the “backpack” and the overall contour of the “griffin” fail to remain consistent
with the reference.

Without Domain-Decoupling Generation. To evaluate the effectiveness of our proposed cross-
domain decoupling generation strategy, we trained two models without the Domain-specific LoRA
and Text-agnostic Attention modules and tested their performance. As shown in Fig. 7 (b) and (c),
the generated point maps and RGB images exhibit color blending, particularly in the background re-
gions of the point maps. When Text-agnostic Attention is removed, the point maps are influenced by
the input text, which often contains rich background semantics, causing the point map background
to align with that of the RGB branch. In addition, without Domain-specific LoRA, although the
influence of text semantics is mitigated, a single LoRA is overburdened with simultaneously gen-
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(a) Input Mesh (b) Generated images from different views.

Figure 9: An example of controllable generation
of object images from different viewpoints.

(a) Input Assets (b) Generated Images

Figure 10: Limitation on non-rigid objects.
While our method achieves high fidelity to the
input 3D assets, it does not account for physical
interactions in the scene.

erating two domains and learning reference consistency, which still results in background artifacts
and further degrades the overall generation quality.

Without Pointmap Generation. To assess the role of pointmap prediction, we trained a model
without the pointmap. As shown in Fig. 8, removing this branch eliminates explicit 3D cues, making
training unstable and resulting in poor 3D consistency and mismatch with the reference asset.

Number of Conditional Views. To evaluate the effect of the number of views on the results, we
trained models with 6 and 4 views and compared them with our 8 view model. As shown in Fig. 8,
the results show that our method still works effectively with fewer views, and performance consis-
tently improves as the number of views increases.

Comparison with Editing-based Methods. A straightforward approach to generating images of 3D
objects is to first render the 3D model and then apply an editing model to modify the rendered image.
However, this requires manual selection of viewpoints, object placement, and renderer quality. Poor
choices can lead to foreground-background mismatches or unrealistic floating objects. Furthermore,
the method is limited to a single visible viewpoint. For novel viewpoints, the editing model may
hallucinate nonexistent parts, leading to inconsistencies with the 3D model. We tested using Qwen-
Image-Edit-2509 (Wu et al., 2025), and the results are shown in Fig. 8. For the rear of the tank, the
model hallucinates parts that are inconsistent with the 3D asset. For the helmet, the editing model
clearly produces a mismatch between the rendered foreground and the real background, with the
object unrealistically floating in midair.

5 CONCLUSION

In this paper, We propose RefAny3D a new 3D asset-referenced image generation framework that
possesses 3D awareness and can synthesize high-quality images with precise consistency to the
given references. Our key idea is to leverage normalized object coordinates (point maps) as structural
anchors, jointly modeling RGB appearance and point maps to achieve reliable geometry–texture
correspondence. To this end, we design a spatially aligned, domain-decoupled dual-branch strategy
that enables simultaneous generation of RGB images and point maps, thereby enhancing the model’s
structural awareness. Experiments demonstrate the effectiveness of our approach, showing that it de-
livers superior fine-grained consistency and robust fidelity compared to existing baselines on the 3D
asset-referenced generation task. Limitations. Although RefAny3D enables 3D asset-referenced
generation with strong geometric and texture consistency, it is less effective in handling non-rigid
object references due to dataset limitations. As demonstrated in Fig. 10, deformable assets such as
ropes and cushions retain an rigidity, failing to exhibit physically-plausible environmental adapta-
tion. In addition, conditioning the diffusion model on an extended number of viewpoints introduces
significant computational and time overhead. Nevertheless, this limitation could be alleviated in
the future by employing more efficient attention optimization strategies to improve computational
efficiency.
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ETHICS STATEMENT

This work focuses on developing and evaluating image generation models. We acknowledge that
such models carry potential ethical risks, particularly in relation to the generation of synthetic images
that could be misused for the creation of deceptive or misleading content. In addition, the outputs of
generative models may inadvertently infringe upon copyright or intellectual property rights if they
resemble existing works too closely. To mitigate these risks, our experiments were conducted solely
for research purposes, and all generated examples in this paper are used exclusively for scientific
illustration. We emphasize that our work does not intend to promote harmful applications, and
further safeguards, such as watermarking, usage policies, and responsible release practices, should
be considered in future deployment of such systems.
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A APPENDIX

A.1 DATASETS DETAILS

To train our 3D asset-reference generation model, we require a dataset of pose-aligned objects.
We construct this dataset using Subjects200k, a large-scale subject-driven image collection. Our
process begins by filtering for high-quality images, selecting those with the highest image quality
scores provided in the dataset. Next, we remove the backgrounds from these images to prepare
them for mesh extraction with the HunYuan 3D model (Zhao et al., 2025). For each image, we
leverage the object names supplied by Subjects200k as prompts for GroundingDINO (Liu et al.,
2024), which generates bounding boxes to accurately localize the objects of interest. Then we use
Segment Anything Model (SAM) (Kirillov et al., 2023) to obtain the objects within the bounding
box. The foreground generated by the SAM model may not be very good, so we set a threshold for
the mask area ratio, and discard the results that exceed it. With the obtained foregrounds, we place
all these objects into Hunyuan3D to first generate a white model. Since Hunyuan3D-Paint is too
slow in unfolding UVs, we first reduce the number of faces of the objects and then use Open3D’s
UV-unwrapping script to handle this task, which significantly improves the generation speed. For
pose estimation, the inputs consist of RGB images of the target object, depth maps estimated from
these images using Depth Pro, object masks that segment the target from the background, and a
reference 3D mesh model. The masked depth maps are calibrated to match the canonical scale of
the mesh, ensuring consistency between the observed geometry and the model. With the calibrated
depth and object mask, FoundationPose is employed to estimate the object’s 6D pose relative to the
camera. From the aligned model, a scene pointmap is rendered, where each pixel encodes the 3D
coordinates of the visible surface point in the camera frame. The outputs include the estimated 6D
pose, the rendered pointmaps (both standalone and overlaid on the input image), and consolidated
RGB-D samples with pose annotations. To filter out low-quality point maps, we compared each
generated point map with the original object mask and discarded the samples with low IoU scores.
After this filtering step, we use the estimated pose together with the 3D mesh, we additionally
rendered videos showing the object rotating around its axis as well as the corresponding rotating
pointmaps. Last, the remaining valid samples were consolidated and organized into the training
dataset.

A.2 IMPLEMENTATION DETAILS

The training is conducted at a resolution of 512 × 512, with the LoRA rank fixed to 16. Multi-
view conditioning is realized by uniformly sampling N = 8 viewpoints at equal angular intervals,
ensuring balanced geometric coverage. The model is trained on 8 NVIDIA H800 GPUs for 30k steps
(approximately eight days), starting from the Flux-dev pretrained checkpoint. To incorporate multi-
view conditions, we adopt the MMDiT architecture, which enables effective fusion of multimodal
signals. To address the asymmetry between point maps and RGB images, we introduce Domain-
specific LoRA and Text-agnostic Attention. Specifically, domain knowledge is decoupled via a
domain switcher and dual-LoRA structure: a Reference-LoRA learns general appearance features
across all tokens, while a Domain-LoRA is activated only for point map tokens to capture geometric
information. In parallel, a text-agnostic attention mask suppresses the influence of background
information from text tokens on the point map branch, ensuring that point maps serve as purely
geometric proxies, while RGB tokens can fully exploit both semantic and geometric cues. Our
framework thus comprises two coordinated branches, one generating geometry-oriented point maps
and the other producing photorealistic RGB images, achieving consistent and high-fidelity results
across both domains.

A.3 THE USE OF LARGE LANGUAGE MODELS

In the process of preparing this paper, we employed large language models (LLMs) to polish the
writing. Specifically, LLMs were used to improve the clarity, fluency, and coherence of our expres-
sions without altering the substantive content or arguments. All core ideas, analyses, and conclusions
were developed independently by the authors, while the LLM served solely as a language refinement
tool to ensure readability and academic style.
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Figure 11: Qualitative results with different 3D assets as references.

A.4 SUPPLEMENTARY QUALITATIVE RESULTS

We present additional experimental results using 3D assets as references, as shown in Figures 11
and 12. These examples further demonstrate the consistency with the 3D references and the high
quality of our results.
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Figure 12: Qualitative results with different 3D assets as references.
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