

000 001 002 003 004 005 DYNAMIC PARAMETER OPTIMIZATION FOR HIGHLY 006 TRANSFERABLE TRANSFORMATION-BASED ATTACKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Despite their wide application, the vulnerabilities of deep neural networks raise
032 societal concerns. Among them, transformation-based attacks have demonstrated
033 notable success in transfer attacks. However, existing attacks suffer from blind
034 spots in parameter optimization, limiting their full potential. Specifically, (1) prior
035 work generally considers low-iteration settings, yet attacks perform quite differ-
036 ently at higher iterations, so characterizing overall performance based only on
037 low-iteration results is misleading. (2) Existing attacks use uniform parameters
038 for different surrogate models, iterations, and tasks, which greatly impairs trans-
039 ferability. (3) Traditional transformation parameter optimization relies on grid
040 search. For n parameters with m steps each, the complexity is $\mathcal{O}(mn)$. Large
041 computational overhead limits further optimization of parameters. To address
042 these limitations, we conduct an empirical study with various transformations as
043 baselines, revealing three dynamic patterns of transferability with respect to pa-
044 rameter strength. We further propose a novel Concentric Decay Model (CDM) to
045 effectively explain these patterns. Building on these insights, we propose an effi-
046 cient Dynamic Parameter Optimization (DPO) based on the rise-then-fall pattern,
047 reducing the complexity to $\mathcal{O}(n \log_2 m)$. Comprehensive experiments on exist-
048 ing transformation-based attacks across different surrogate models, iterations, and
049 tasks demonstrate that our DPO can significantly improve transferability. The
050 code will be released to the public.
051
052

1 INTRODUCTION

053 Deep neural networks (DNNs) He et al. (2016); Dosovitskiy et al. (2020) are being increasingly
054 applied Xia et al. (2025); Arhouni et al. (2025), yet adversarial examples Szegedy et al. (2013);
055 Goodfellow et al. (2014) formed by superimposing imperceptible perturbations to benign samples
056 can fool them with high confidence, posing great real-world threats Thummala et al. (2024); Li et al.
057 (2024). To support reliable deployment, proactively identifying potential attacks is necessary.

058 In practice, black-box attacks, where the adversary knows neither the target model’s structure nor
059 its parameters, represent substantial threats. Among these, transformation-based attacks Xie et al.
060 (2019); Wang et al. (2021) are a promising branch. They improve transferability Papernot et al.
061 (2016) by applying multiple input transformations, backpropagating to obtain several perturbation
062 copies, and averaging them to stabilize the perturbation. Prior studies Lin et al. (2024); Wang et al.
063 (2024a) have made considerable progress. Unfortunately, they focus on the effects of transformation
064 types on transferability while neglecting the dynamics on parameters, which creates blind spots in
065 parameter optimization and leads to its insufficiency, thereby undermining transferability. To bridge
066 this gap, we endeavor to explore the dynamics of transferability with respect to parameters.
067

068 To derive generalizable insights, we commence with a quantitative analysis of representative trans-
069 formations widely adopted in state-of-the-art attacks, including *Translation* Wang et al. (2023); Zhu
070 et al. (2024), *Block Shuffle* Wang et al. (2024a); Zhu et al. (2024), *Rotation* Wang et al. (2023;
071 2024a); Zhu et al. (2024); Guo et al. (2025), *Noise Addition* Wang et al. (2023); Zhu et al. (2024),
072 and *Resize* Zhu et al. (2024); Guo et al. (2025). Building on these transformations, we discretely vary
073 parameters to generate adversarial examples under different surrogates and iterations, subsequently
074 evaluating their transferability. Multiple runs with different seeds show us three patterns:
075

- 076 (i) Transformations leading at low iterations may not retain their advantage at higher iterations.
077

054 (ii) Transferability growth over iterations and surrogates differs markedly across parameters. Gen-
 055 erally, optimal transformation magnitudes grow with iterations and vary across surrogates.
 056 (iii) Transferability follows a rise-then-fall pattern with respect to transformation magnitude.
 057

058 These patterns provide empirical support for the Model Augmentation Theory Wang et al. (2021),
 059 a well-established explanation for transformation-based attacks. Simultaneously, these observations
 060 illuminate the landscape surrounding the surrogate model, inspiring us to propose *Concentric Decay*
 061 *Model* (CDM). Specifically, the Model Augmentation Theory posits that composing transformations
 062 with a surrogate model emulates diverse models, generating perturbations that are less prone to
 063 overfitting the surrogate and thus transfer better. Our Concentric Decay Model further proposes that
 064 plausible models (i.e., those more consistent with real models (see Section 3.3)) around the surrogate
 065 model are concentrically distributed with density decreasing outward in a space defined by KL
 066 divergence. Within this framework, the above three patterns are easily explained (see Section 3.3).
 067

068 Furthermore, our Concentric Decay Model and empirical observations suggest that transformation
 069 parameters should be dynamically evolved. That is, the optimal parameters of transformation-based
 070 attacks vary with the surrogate, iteration, and task. However, existing attacks generally config-
 071 ure identical parameters, a practice that violates this principle and impairs transferability. Besides,
 072 previous studies typically compare transferability under insufficient low-iteration settings, such as
 073 10 Dong et al. (2019); Wang et al. (2021); Long et al. (2022); Wang et al. (2023); Zhang et al. (2023);
 074 Wang et al. (2024a); Lin et al. (2024); Guo et al. (2025), 16 Lin et al. (2019), or 30 Xie et al. (2019)
 075 epochs. Low-iteration performance cannot reliably reflect the landscape at high iterations, which
 076 underestimates the overall effectiveness of the attack. Therefore, we propose an efficient *Dynamic*
 077 *Parameter Optimization* (DPO) and validate it across diverse existing transformation-based attacks,
 078 including *Admix* Wang et al. (2021), *SSIM* Long et al. (2022), *STM* Ge et al. (2023), and *BSR* Wang
 079 et al. (2024a). Comprehensive experiments show that the optimized parameters differ substantially
 080 from the official versions and significantly improve transferability. As a representative case with the
 081 state-of-the-art *BSR*, with R50 as the surrogate model, the average non-targeted attack success rate
 082 (ASR) improves by 3.2% to 90.7% at Epoch 100 across eight diverse test models, while the tar-
 083 geted ASR increases by 13.9% to 34.1% at Epoch 200, with remarkable gains of 34.1% on VGG-16
 084 and 27.1% on RegNet. Moreover, based on the rise-then-fall pattern, we propose a bisection-based
 085 DPO. For n parameters with m steps each, it reduces the optimization complexity from $\mathcal{O}(mn)$ to
 086 $\mathcal{O}(n \log_2 m)$. This can greatly accelerate parameter optimization for existing or future methods.
 087

088 The main contributions of this paper are summarized as follows:
 089

- 090 • To the best of our knowledge, this is the first work to study the dynamics of attack trans-
 091 ferability with respect to transformation parameters, and reveal three dynamic patterns that
 092 hold across different transformations.
- 093 • We propose a novel Concentric Decay Model (CDM), which describes the distribution of
 094 plausible models around the surrogate and effectively explains observations that optimal
 095 parameters vary dynamically.
- 096 • We propose an efficient Dynamic Parameter Optimization (DPO), which is based on the
 097 rise-then-fall pattern and a bisection approach. Our DPO reduces the computational com-
 098 plexity from $\mathcal{O}(mn)$ to $\mathcal{O}(m \log_2 m)$.
- 099 • Extensive experiments across various attacks demonstrate that the re-optimized parameters
 100 by our DPO yield significant transferability gains.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS

101 Adversarial attacks involve adding imperceptible perturbations to benign samples, subject to certain
 102 constraints (e.g., L_2 - Carlini & Wagner (2017) or L_∞ -norm Goodfellow et al. (2014) budgets, or
 103 limitations on the number of modified pixels Narodytska & Kasiviswanathan (2016)), such that the
 104 resulting adversarial examples can fool classifiers with high confidence. Depending on whether the
 105 adversary has complete access to the target model’s structure and parameters, adversarial attacks
 106 can be classified into white-box and black-box attacks (the intermediate case, often termed gray-
 107 box attacks). Iterative gradient-based attacks, such as I-FGSM Goodfellow et al. (2014) and MI-

108 FGSM Dong et al. (2018), are sufficient to achieve a successful white-box attack. However, the
 109 target model is typically black-box in practice. Prior research has investigated multiple strategies
 110 to carry out black-box attacks. Query-based strategies Chen et al. (2017); Wang et al. (2025); Reza
 111 et al. (2025) iteratively refine the perturbations by leveraging the outputs of the target model over
 112 multiple queries. Transfer-based methods Tang et al. (2024); Wang et al. (2024a;b); Guo et al.
 113 (2025); Ren et al. (2025) leverage the cross-model effectiveness of adversarial examples to perform
 114 attacks. Transformation-based attacks represent a promising branch of transfer-based strategies.
 115

116 2.2 TRANSFORMATION-BASED ATTACKS

118 Transformation-based attacks apply multiple input transformations per iteration to generate pertur-
 119 bation copies, which are averaged to stabilize the perturbation direction and prevent overfitting the
 120 surrogate model. Previous studies devote substantial effort to investigating the impact of transforma-
 121 tion types on transferability. DIM Xie et al. (2019), TIM Dong et al. (2019), SIM Lin et al. (2019),
 122 and Admix Wang et al. (2021) examine the effects of resizing, translation, scaling, and mixup on
 123 transferability, respectively. SSIM Long et al. (2022) investigates the impact of frequency-domain
 124 noise on transferability. STM Ge et al. (2023) enhances transferability by leveraging image styliza-
 125 tion. SIA Wang et al. (2023) enhances transferability by combining multiple transformations, includ-
 126 ing translation, flipping, rotation, scaling, noise addition, and blurring. DeCoWA Lin et al. (2024)
 127 improves transferability by distorting images. BSR Wang et al. (2024a) improves transferability by
 128 applying block shuffle and rotation. L2T Zhu et al. (2024) dynamically selects transformations and
 129 leverages a combination of rotation, scaling, resizing, block shuffling, mixup, masking, frequency-
 130 domain noise, cropping, and shearing to enhance transferability. However, beyond transformation
 131 types, transformation parameters also critically affect transferability. Prior work overlooks the dy-
 132 namics of transferability with respect to parameters, generally focusing on low-iteration compar-
 133 isons and configuring identical parameters across different scenarios. To fill this gap, we delve into
 134 this intriguing topic, delivering insights from both theoretical and methodological viewpoints.
 135

3 METHODOLOGY

3.1 PRELIMINARIES

139 Given an input-label pair $(\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y})$, a surrogate model $f_S \in \mathcal{F}$, and a target model $f_T \in \mathcal{F}$,
 140 let $B_p(\mathbf{x}, \epsilon) = \{\mathbf{x}' \in \mathcal{X} \mid \|\mathbf{x}' - \mathbf{x}\|_p \leq \epsilon\}$ denote the p -ball around \mathbf{x} with radius ϵ . The attack
 141 $A \in \mathcal{A}$ aims to find an adversarial example $\mathbf{x}_{adv} = A(\mathbf{x}; f_S) \in B_p(\mathbf{x}, \epsilon)$ such that
 142

$$143 \arg \max f_T(\mathbf{x}_{adv}) \neq y. \quad (1)$$

144 Here, \mathcal{X} , \mathcal{Y} , \mathcal{F} , and \mathcal{A} represent the sample, label, model, and algorithm spaces, respectively. Fol-
 145 lowing prior work, we focus on the case $p = \infty$.
 146

147 Transformation-based strategies augment the surrogate model f_S with a transformation module \mathcal{T}
 148 parameterized by a random variable $\theta \sim \Theta(z)$, where the transformation parameter z governs the
 149 distribution Θ . Thus, transformation-based strategies can be summarized as
 150

$$151 \mathbf{x}_{adv} = A(\mathbf{x}; \mathcal{T}(z) \circ f_S) \in B_p(\mathbf{x}, \epsilon), \quad (2)$$

152 where \circ denotes module cascading. Consistent with prior work, A adopts MI-FGSM, and the
 153 transformation-based attack can be detailed as:
 154

$$155 g^{(t)} = \lambda \cdot g^{(t-1)} + \frac{\bar{\mu}}{\|\bar{\mu}\|_1}, \quad \bar{\mu} = \frac{1}{N} \sum_{i=1}^N \nabla_{\mathbf{x}_{adv}^{(t-1)}} J(f_S(\mathcal{T}(\mathbf{x}_{adv}^{(t-1)}; z)), y), \quad (3)$$

$$158 \mathbf{x}_{adv}^{(t)} = \mathbf{x}_{adv}^{(t-1)} + \alpha \cdot \text{sign}(g^{(t)}). \quad (4)$$

159 Here, J is the loss function. N is the number of gradient copies. $\mathbf{x}_{adv}^{(t)}$ is the t -iteration ($0 \leq t \leq T$)
 160 example. λ is the momentum factor. $\alpha = \epsilon/T$ is the step size. $\text{sign}(\cdot)$ denotes the sign function.
 161

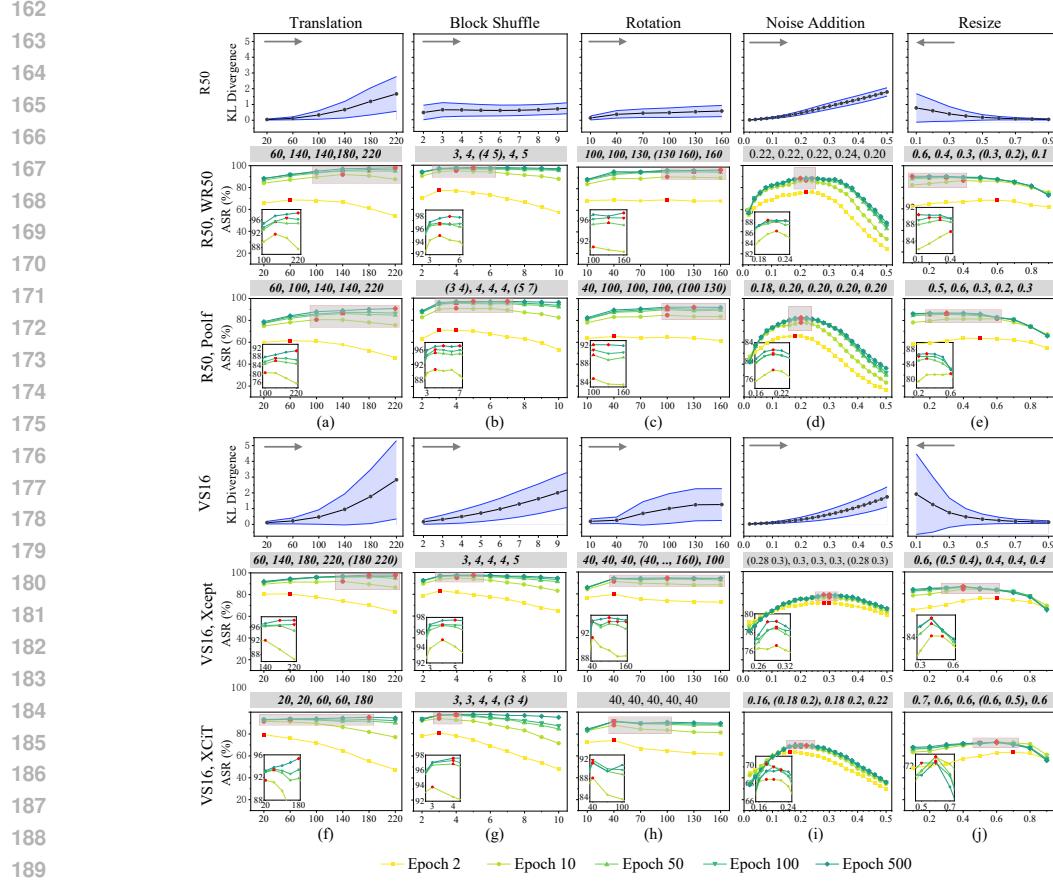


Figure 1: Rows 2, 3, 5, and 6 show the ASRs (%) of various transformation-based attacks integrated with MI-FGSM (left label: model before comma is surrogate, after comma is target). Rows 1 and 4 illustrate the predicted distribution KL divergence of different transformations on benign samples. Red dots indicate the optimal parameters at the corresponding epochs. Values in the gray box indicate the optimal parameters at epochs 2, 10, 50, 100, and 500. Those following the pattern of “optimal transformation parameters grow with iterations” are shown in ***bold italics***.

3.2 EMPIRICAL ANALYSIS

To analyze the dynamics of transferability with varying transformation parameters, we select *Translation*, *Block Shuffle*, *Rotation*, *Noise Addition*, and *Resize* as benchmarks. *Translation* shifts the image horizontally and vertically by $\theta \sim U(0, z)$ (uniform distribution) pixels, where z ranges from 20 to 220 in steps of 40. *Block Shuffle* slices the image with z cuts along each of the horizontal and vertical directions, where z ranges from 2 to 10 in steps of 1. *Rotation* rotates the image by $\theta \sim U(0^\circ, z)$, where z ranges from 10° to 160° in steps of 30° . *Noise Addition* adds noise $\theta \sim U(-z, z)$ independently to each element, where z ranges from 0.02 to 0.50 in steps of 0.02. *Resize* resizes the image by a factor $\theta \sim U(z, 1.0)$, where z ranges from 0.1 to 0.9 in steps of 0.1.

Following Equations 3 and 4, assigning the budget $\epsilon = 16/255$, we generate adversarial examples with R50 He et al. (2016) as the surrogate model on the NeurIPS’17 Competition dataset¹ to attack WR50 Zagoruyko & Komodakis (2016) and Poolformer-M36 Yu et al. (2022), and with ViT-S/16 Dosovitskiy et al. (2020) as the surrogate to attack Xception-71 Chollet (2017) and XCiT-S Ali et al. (2021). Experiments are repeated multiple times with random seeds 0 and 1, and the average ASRs are reported in Figure 1 (rows 2, 3, 5, and 6). The following dynamic patterns are observed:

- (i) **Transformations leading at low iterations may not retain their advantage at higher iterations.** For illustration, at Epoch 2, with R50 as the surrogate and WR50 as the target, *Noise Addition* (see Fig-

¹<https://github.com/anlthms/nips-2017.git>

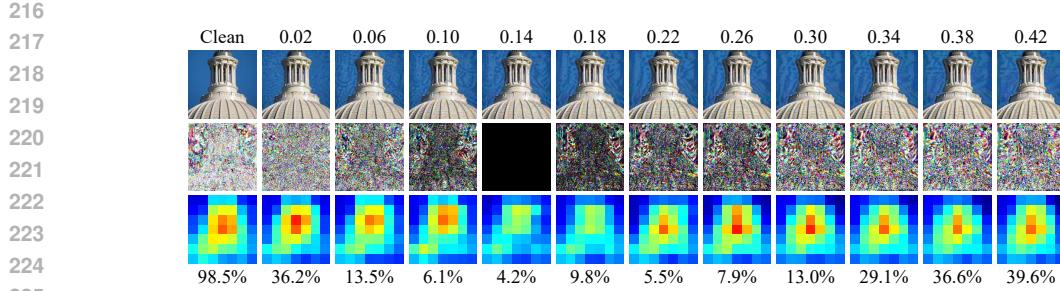


Figure 2: Visualization of the rise-then-fall pattern on individual sample. First row shows *Noise Addition* adversarial examples with R50 as the surrogate at Epoch 500 for different z values (top). Second row shows their absolute differences from the $z = 0.14$ example (normalized by 16/255). Third row displays deep features from DenseNet161’s *denseblock4.denselayer24* (min-max normalization with min = -0.0019 and max = 0.0152). True label probabilities are shown at the bottom.

ure 1(d)) achieves its optimal ASR of 76.0% at $z = 0.22$, while *Translation*, *Rotation*, and *Resize* (see Figure 1(f, h, j)) reach 68.7%, 69.7%, and 68.1%, respectively. However, by Epoch 500, the optimal ASR of *Noise Addition* reaches only 88.5%, whereas those of *Translation*, *Rotation*, and *Resize* are 98.0%, 97.4%, and 90.3%, respectively. Although the other three transformations lag behind *Noise Addition* at low iterations, their ASRs increase rapidly and lead by a large margin at high iterations.

- (ii) **Transferability growth over iterations and surrogates differs markedly across parameters. Generally, optimal transformation magnitudes grow with iterations and vary across surrogates.** Taking *Resize* as an example, with ViT-S/16 as the surrogate and XCiT-S as the target (see Figure 1(j)), at $z = 0.9$, the ASRs at Epochs 2 and 500 are 57.0% and 55.9%, respectively, whereas at $z = 0.5$ they are 59.9% and 71.2%. While transferability differences are small at low iterations, larger transformation magnitudes may improve more transferability at higher iterations, whereas inappropriate parameters may cause overfitting and reduce it. In Figure 1, parameters that follow the pattern of optimal transformation magnitudes growing with iterations are highlighted in ***bold italics***. This pattern holds in most cases.
- (iii) **Transferability follows a rise-then-fall pattern with respect to transformation magnitude.** This pattern is observed across nearly all transformations and epochs, and is especially clear in the *Noise Addition* (see Figure 1(d, i)). Moreover, this pattern holds not only at the aggregate level but also for individual samples. As shown in Figure 2, for adversarial examples generated by R50 for the same sample under *Noise Addition*-based attacks with varying parameter z , deep features of D161 Huang et al. (2017) exhibit a clear rise-then-fall trend, and the predicted probabilities show the same trend.

Although these three patterns appear to describe independent aspects, they are underpinned by a common principle, which motivates a further explanation of transformation-based attacks.

3.3 CONCENTRIC DECAY MODEL

A classical explanation for the effectiveness of transformation-based attacks is the Model Augmentation Theory Wang et al. (2021). This theory argues that transformation-based attacks enhance transferability as the combination of transformation and the surrogate forms a new model that emulates a real model. Multiple transformations with varied parameters generate perturbations that transfer across multiple emulated models instead of merely overfitting the surrogate model.

Some of the emulated models are reasonable, in that they are more consistent with the real models trained in practice. We refer to these as *plausible models*. Conversely, the remaining models are classified as *implausible models*. When the combination of transformations and the surrogate emulates plausible models, it facilitates transferability. In contrast, if it emulates implausible models, the resulting perturbations act as noise that does not aid transferability, thereby impairing it. Intuitively, the closer a model’s outputs are to those of the surrogate, the more its behavior aligns with reality, and thus it is more likely to be a plausible model. Conversely, a larger discrepancy from the surrogate indicates a higher likelihood of being an implausible model. We are interested in whether the combination of transformations and surrogates is more likely to emulate plausible or implausible models. To this end, we quantify the effect of transformations on the surrogate’s outputs with the

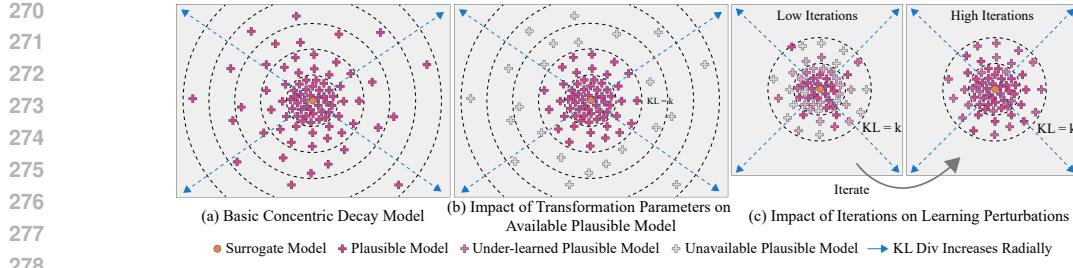


Figure 3: Our Concentric Decay Model explains the three revealed patterns. $KL = k$ denotes the high-dimensional surface where the KL divergence with the surrogate model equals k .

Kullback–Leibler (KL) divergence, defined as:

$$D_{KL}[f_S || \mathcal{T}(z) \circ f_S] = \mathbb{E}_{x \sim \mathcal{X}, z \sim \mathcal{Z}}[f_s(x) \log \frac{f_s(x)}{\mathcal{T}(z) \circ f_s(x)}]. \quad (5)$$

The estimation of KL divergences induced by various transformations are presented in Figure 1 (rows 1, 4), with the number of samples 50. In summary, the density of plausible models around the surrogate decreases concentrically in the KL-divergence space. Smaller transformation magnitudes correspond to smaller KL surfaces, encompassing fewer plausible models. Larger magnitudes yield larger KL surfaces, while covering more plausible models, which also introduce more noise from implausible models, thereby may impair transferability. This is the *Concentric Decay Model*.

As illustrated in Figure 3(a), where the space measured by KL divergence is referenced to the surrogate model, regions closer to the surrogate contain a denser distribution of plausible models, whereas regions farther away are more sparsely populated. Once the transformation parameter z controlling the distribution of the random variable θ is selected, the maximum KL divergence boundary k between the emulated model and the surrogate model is uniquely determined. As shown in Figure 3(b), the average vulnerability of models within this KL surface can be characterized by adversarial perturbations. With increasing iterations, the adversarial perturbations progressively better approximate the average vulnerability, as illustrated in Figure 3(c).

Therefore, under low iterations, adversarial perturbations insufficiently fit the average vulnerability within surface $KL = k$, preventing them from reflecting the transferability at sufficiently higher iterations, which manifests as Pattern (i). For Pattern (iii), when the transformation magnitude is small, a substantial number of plausible models are still excluded, leaving great room for further transferability improvement. Similarly, when the transformation magnitude is unduly large, an excessive number of implausible models are covered, introducing perturbation noise that attenuates transferability. Hence, an appropriate transformation parameter z is crucial for optimal transferability. Regarding Pattern (ii), for different surrogate models, the distribution of surrounding plausible models varies, so the optimal transformation parameters differ accordingly. Even for the same surrogate model, different numbers of iterations yield different fitting capacities for vulnerabilities. For instance, under low iterations, a large transformation magnitude covers an excessive number of plausible models. Fitting in a dispersed manner dilutes its effectiveness.

3.4 DYNAMIC PARAMETER OPTIMIZATION

The three revealed patterns, together with our Concentric Decay Model, suggest the dynamic nature of optimal parameters: optimal parameters vary across surrogate models, iterations, and tasks. So we propose an efficient *Dynamic Parameter Optimization* (DPO) to fully exploit the potential of attacks, which requires adaptive parameter optimization. By contrast, existing attacks configure the same parameters regardless of the surrogate model, iterations, or tasks, which underestimates their full potential. Accordingly, following DPO, we re-optimize existing methods to further validate it.

For baselines, we select attacks spanning different years and representing diverse types, including *Admix* (ICCV’21), *SSIM* (ECCV’22), *STM* (ACMMM’23), and *BSR* (CVPR’24). All other parameters follow the official implementations. The optimized parameters are: admix ratio η (0.10 to 0.50, interval 0.02) for Admix, tuning factor ρ (0.3 to 0.9, interval 0.1) for SSIM, noise upper bound β (1.2 to 4.0, interval 0.4) for STM, and split number b (1 to 9, interval 1) as well as rotation angle r

324

325

	Validation Models	Test Models
CNNs	(1) DenseNet161	(1) ConvNeXt-B
	(2) WR50-2	(2) VGG-19
	(3) EfficientNet-B0	(3) IncRes-V2
	(4) Xception-71	(4) RegNet-X
ViTs	(5) ViT-B/32	(5) ViT-B/8
	(6) XCiT-S	(6) SwinT-B/4
	(7) Visformer-S	(7) Convformer-B36
	(8) Poolformer-M36	(8) Caformer-M36

330

331

332

333

334

335

336

337

Table 1: Validation models used for optimizing the attacks and test models used to evaluate the optimized results.

338

Attack	Surrogate	Official	U ₂	U ₁₀	U ₅₀	U ₁₀₀	T ₂₀₀	Attack	Surrogate	Official	U ₂	U ₁₀	U ₅₀	U ₁₀₀	T ₂₀₀
Admix (η)	R50	0.20	0.42	0.40	0.50	0.48	0.36	SSIM (ρ)	R50	0.5	0.7	0.7	0.8	0.8	0.5
	ViT-S/16	0.20	0.30	0.38	0.42	0.40	0.42		ViT-S/16	0.5	0.5	0.5	0.7	0.7	0.3
	Ens _{CNNs}	0.20	-	-	-	0.38	-		Ens _{CNNs}	0.5	-	-	-	0.3	-
	Ens _{ViTs}	0.20	-	-	-	0.50	-		Ens _{ViTs}	0.5	-	-	-	0.5	-
STM (β)	R50	2.0	1.6	2.4	2.4	2.8	1.6	BSR (b, r)	R50	2, 24°	3, 20	3, 40	3, 60	4, 60	5, 40
	ViT-S/16	2.0	2.8	2.8	3.2	2.8	2.4		ViT-S/16	2, 24°	2, 20	2, 20	2, 40	2, 20	4, 20
	Ens _{CNNs}	2.0	-	-	-	1.6	-		Ens _{CNNs}	2, 24°	-	-	-	2, 20°	-
	Ens _{ViTs}	2.0	-	-	-	2.0	-		Ens _{ViTs}	2, 24°	-	-	-	2, 20°	-

347

348

349

350

Table 2: Optimized parameters. U_t denotes the optimal parameters of untargeted attacks with t iterations on the validation models. T_t denotes the optimal parameters of targeted attacks with t iterations. - indicates that parameters are not optimized under this condition.

351

352

(20° to 160°, interval 20°) for BSR. Parameters are optimized via a standard grid search: for each surrogate model and iteration number, optimized parameters are varied at fixed intervals, and adversarial examples are evaluated on a validation model set to select the best configuration. Specifically for BSR, we first fix $r = 24^\circ$ and vary b . Then, keeping the optimal b fixed, we vary r .

356

We optimize across various tasks. For untargeted single-surrogate attacks, iterations are set to 2, 10, 50, and 100, with surrogate models R50 and ViT-S/16. For untargeted ensemble attacks, optimization is performed at 100 iterations with ensemble surrogate models Ens_{CNNs} = {R18, R34, R50} and Ens_{ViTs} = {ViT-S/16, ViT-S/32, BeiT-B/16}. For targeted single-surrogate attacks, optimization is conducted at 200 iterations for the target label 100, with surrogate models R50 and ViT-S/16. The validation models employed for parameter optimization are shown in Table 1. The optimized parameters are presented in Table 2. Evaluation in Section 4 demonstrates the success of the optimization.

363

364

365

In practice, as the number of parameters grows, conventional grid search becomes prohibitively costly. For n parameters, each optimized over m steps in $[a, b]$, the precision is $\frac{b-a}{m}$, and the time complexity is $O(mn)$. The rise-then-fall pattern in Pattern (iii) suggests that a bisection-based strategy can accelerate this process, as described in Algorithm 1, reducing the time complexity to $O(n \log_2 m)$. To account for potential fluctuations, a few additional grid search steps can be applied afterward, achieving precision equal to or better than $\frac{b-a}{m}$. Comprehensive experiments in Section 4 will demonstrate that existing attacks can be optimized with the bisection-based approach.

370

371

4 EXPERIMENTS AND RESULTS

373

374

4.1 SETUP

375

376

377

Configurations In all experiments, we use a perturbation budget of $\epsilon = 16/255$ with a step size of $\alpha = \epsilon/T$. All experiments are conducted with a random seed of 0. Adversarial examples are generated in parallel on two NVIDIA A100 GPUs and evaluated on a single NVIDIA A100 GPU.

378	379	Attack	Surrogate	Epoch=2		Epoch=10		Epoch=50		Epoch=100		
				380	381	382	383	384	385	386	387	
388	389	390	391	392	393	394	395	396	397	398	399	400
Admix [†]	R50	56.8 ^{↑2.2}	49.2 ^{↑0.9}	69.8 ^{↑6.2}	61.1 ^{↑5.1}	69.8 ^{↑5.7}	60.5 ^{↑4.7}	68.8 ^{↑4.4}	59.1 ^{↑3.3}			
	ViT-S/16	59.9 ^{↑0.4}	54.7 ^{↓0.3}	66.3 ^{↑2.9}	61.0 ^{↑2.0}	65.3 ^{↑3.7}	59.2 ^{↑3.1}	64.7 ^{↑3.7}	58.6 ^{↑3.1}			
SSIM [†]	R50	66.3 ^{↑0.1}	59.4 ^{↓1.7}	78.6 ^{↑1.1}	72.9	84.1 ^{↑2.6}	78.8 ^{↑1.4}	85.8 ^{↑3.6}	80.2 ^{↑2.2}			
	ViT-S/16	65.7	61.6	71.1	66.9	72.2 ^{↑0.7}	65.8 ^{↓1.6}	72.5 ^{↑0.6}	65.9 ^{↓1.8}			
STM [†]	R50	70.3 ^{↑0.9}	63.6 ^{↑1.6}	82.3	75.0 ^{↓1.7}	87.4 ^{↑0.5}	81.1 ^{↓0.4}	88.0 ^{↑0.5}	80.8 ^{↓1.4}			
	ViT-S/16	68.7 ^{↑0.1}	62.5 ^{↓1.7}	79.7 ^{↑0.9}	73.2 ^{↑0.2}	83.0 ^{↑1.8}	76.1 ^{↑0.1}	83.5 ^{↑1.6}	77.4 ^{↑1.3}			
BSR [†]	R50	70.3 ^{↑1.6}	65.6 ^{↑1.1}	86.8 ^{↑0.9}	83.4 ^{↑1.6}	90.6 ^{↑1.2}	89.2 ^{↑2.4}	91.9 ^{↑1.8}	90.7 ^{↑3.2}			
	ViT-S/16	78.6 ^{↑0.8}	73.1 ^{↑1.2}	91.9 ^{↑0.2}	88.1 ^{↑0.3}	94.6 ^{↑0.1}	90.3 ^{↓1.0}	95.0	92.0 ^{↑0.2}			

Table 3: Average single-surrogate untargeted ASRs (%) of the optimized attacks on the validation and test models. [†] indicates results from the optimized methods, \uparrow and \downarrow denote increases and decreases in ASR compared to the unoptimized version, respectively. Improvements are emphasized in bold red. No arrow indicates no change. These notations are consistent across tables.

Surrogate	Attack	ConvNeXt	VGG19	IncRes-V2	RegNet-X	ViT-B/8	Swin-B	Convformer	Caformer	AVG
R50	Admix [†]	9.6 ^{↑2.1}	1.0 ^{↑0.4}	0.5	5.1 ^{↑1.9}	0.3 ^{↓0.2}	0.9 ^{↑0.6}	3.1 ^{↑1.0}	1.9 ^{↑0.5}	2.8 ^{↑0.8}
	SSIM [†]	12.6	3.9	3.1	16.5	1.7	1.5	5.8	5.9	6.4
	STM [†]	27.9 ^{↑2.8}	5.4	7.5 ^{↓1.0}	30.0 ^{↑0.4}	3.9 ^{↑0.4}	3.2 ^{↓0.2}	12.5 ^{↓0.3}	10.5 ^{↑0.5}	12.6 ^{↑0.3}
	BSR [†]	58.8 ^{↑10.7}	49.8 ^{↑34.1}	11.8 ^{↑6.8}	69.4 ^{↑27.1}	11.4 ^{↑5.7}	9.6 ^{↑4.7}	33.3 ^{↑11.9}	28.7 ^{↑10.2}	34.1 ^{↑13.9}
ViT-S/16	Admix [†]	2.4 ^{↑0.9}	0.2 ^{↓0.1}	0.9 ^{↑0.2}	1.9 ^{↑0.7}	3.3 ^{↑0.5}	4.3 ^{↑1.0}	1.5 ^{↑0.6}	3.3 ^{↑0.9}	2.2 ^{↑0.6}
	SSIM [†]	2.6 ^{↓0.1}	0.5 ^{↓0.3}	0.8 ^{↓0.6}	2.2 ^{↓0.2}	3.2 ^{↑0.9}	4.5 ^{↑0.5}	1.3 ^{↓0.1}	3.9 ^{↑0.9}	2.4 ^{↑0.1}
	STM [†]	5.6 ^{↑0.1}	0.6 ^{↑0.1}	3.6 ^{↑0.5}	4.6 ^{↑0.8}	6.0 ^{↑0.1}	9.3 ^{↓0.2}	4.1 ^{↑0.6}	9.1 ^{↑1.0}	5.4 ^{↑0.4}
	BSR [†]	25.3 ^{↑2.1}	10.9 ^{↑4.8}	11.8 ^{↑2.2}	26.4 ^{↑6.5}	22.7 ^{↓0.1}	20.4 ^{↑2.4}	16.3 ^{↑1.2}	25.7 ^{↑0.6}	19.9 ^{↑2.5}

Table 4: Single-surrogate targeted ASRs (%) of the optimized attacks on the test models.

Dataset and Models. Following previous work, we conduct experiments on the NeurIPS’17 Competition dataset. The standard test model set without defenses comprises four randomly selected CNN-based models and four attention-based models, as presented in Table 1. Furthermore, we also evaluate the optimized attacks against the defense of adversarial training, with eight state-of-the-art adversarially trained models as baselines: (1) ConvNeXt-L of *MeanS* Amini et al. (2024), (2) ConvNeXtV2-L + Swin-L of *MixedN* Bai et al. (2024), (3) WideResNet-50-2 of *DataF* Chen & Lee (2024), (4) Swin-L of *Charac* Rodríguez-Muñoz et al. (2024), (5) Swin-L of *MIMIR* Xu et al. (2023), (6) ConvNeXt-L of *Compreh* Liu et al. (2025), (7) ConvNeXt-S + ConvStem of *Revisit* Singh et al. (2023), and (8) RaWideResNet-101-2 of *Robust* Peng et al. (2023).

4.2 EVALUATION OF OPTIMIZED ATTACKS

4.2.1 UNTARGETED SINGLE-SURROGATE ATTACKS.

This experiment aims to investigate whether, when using a single surrogate model, the optimized attacks achieve improved transferability compared to unoptimized attacks in the untargeted setting. The average ASRs on the validation and test model sets are presented in Table 3. Our results indicate that separate optimization across iterations and surrogate models can further enhance transferability, even when the official parameters are near-optimal. Specifically, for BSR at Epoch 100 with R50 as the surrogate model, the unoptimized attack already attained a strong ASR of 87.5%, which increased to 90.7% (+3.2%) after optimization. This highlights the importance of dynamic parameter optimization for overcoming transferability limits. Furthermore, the optimal parameters of each attack in Table 2 follow the trend of Pattern (ii), which further validates our theory.

4.2.2 TARGETED SINGLE-SURROGATE ATTACKS.

This experiment investigates how dynamic parameter optimization affects the transferability of attacks in the targeted setting. The target label is set to 100. Table 2 indicates that the optimal parameters differ notably between untargeted and targeted attacks. For example, with R50 as the surrogate, targeted attacks require much smaller parameters than untargeted attacks for Admix, SSIM, and STM, while BSR exhibits the reverse. Table 4 reports the complete results on the test models. Re-

432	433	Attack	EnsCNNs		EnsViTs		Attack	EnsCNNs		EnsViTs	
			434	435	436	437		438	439	440	441
			AVG _{Validation}	AVG _{TEST}	AVG _{Validation}	AVG _{TEST}		AVG _{Validation}	AVG _{TEST}	AVG _{Validation}	AVG _{TEST}
Admix [†]	89.8 ^{↑1.3}	82.2 ^{↑1.8}	88.5 ^{↑3.4}	83.3 ^{↑3.0}	SSIM [†]	93.0 ^{↑0.2}	87.9 ^{↑0.2}	92.4	88.2		
STM [†]	94.3 ^{↑0.3}	88.4 ^{↑0.8}	94.5	91.0	BSR [†]	95.8	92.7 ^{↑0.2}	98.5 ^{↑0.1}	96.4 ^{↑0.3}		

Table 5: Average ASRs(%) on validation and test models of ensemble-surrogate untargeted attacks.

439	Epoch	Surrogate	Attack	MeanS	MixedN	DataF	Charac	MIMIR	Compreh	Revisite	Robust	AVG
440	R50	Admix [†]	12.5 ^{↑1.4}	12.0 ^{↑0.7}	24.4 ^{↑1.4}	10.8 ^{↑0.6}	10.2 ^{↑0.6}	12.3 ^{↑1.2}	17.4 ^{↑1.0}	18.5 ^{↑0.3}	14.8 ^{↑0.9}	
			15.9 ^{↓0.2}	15.5 ^{↑0.3}	27.5 ^{↑0.4}	16.0 ^{↑0.7}	14.0 ^{↑0.4}	15.5 ^{↑0.4}	22.8 ^{↑0.4}	21.2 ^{↑0.3}	18.6 ^{↑0.3}	
			18.8 ^{↑1.4}	17.4 ^{↑0.5}	31.3 ^{↑1.3}	17.8 ^{↑0.9}	15.5 ^{↑0.6}	18.4 ^{↑1.4}	24.2 ^{↑1.1}	24.1 ^{↑1.2}	20.9 ^{↑1.0}	
			14.7 ^{↑0.3}	14.3	26.8 ^{↑0.7}	13.9 ^{↓0.3}	12.1 ^{↑0.1}	14.0 ^{↓0.1}	20.6 ^{↑1.3}	20.9 ^{↑0.8}	17.2 ^{↑0.4}	
	ViT-S/16	SSIM [†]	13.3 ^{↑0.6}	13.7 ^{↑0.4}	25.7 ^{↑0.8}	13.8	12.4 ^{↓0.2}	13.1 ^{↑0.4}	21.1 ^{↓0.1}	20.2	16.7 ^{↑0.3}	
			14.9	15.5	26.8	15.9	14.0	13.9	21.9	20.9	18.0	
			17.4 ^{↑1.6}	18.6 ^{↑1.6}	29.7 ^{↑2.0}	20.3 ^{↑3.1}	17.6 ^{↑2.2}	17.1 ^{↑1.8}	25.4 ^{↑2.0}	23.8 ^{↑2.2}	21.2 ^{↑2.0}	
			16.1 ^{↓0.1}	18.2 ^{↑0.7}	29.3 ^{↓0.1}	19.2 ^{↑0.3}	14.9 ^{↑0.2}	16.0 ^{↓0.4}	23.3	21.6 ^{↓0.7}	19.8	
	R50	STM [†]	11.8 ^{↑1.1}	11.5 ^{↑0.5}	24.0 ^{↑1.0}	10.5 ^{↑0.8}	9.9 ^{↑0.9}	11.5 ^{↑1.5}	16.3 ^{↑0.5}	18.6 ^{↑1.4}	14.3 ^{↑1.0}	
			17.4 ^{↑0.7}	16.6 ^{↑0.4}	29.0 ^{↑1.3}	17.5 ^{↑0.2}	14.9 ^{↑0.8}	16.9 ^{↑0.5}	23.6 ^{↑1.1}	23.0 ^{↑1.2}	19.9 ^{↑0.8}	
			21.7 ^{↑2.4}	19.8 ^{↑1.0}	35.7 ^{↑3.2}	22.7 ^{↑2.2}	18.5 ^{↑1.7}	20.9 ^{↑1.9}	26.8 ^{↑2.3}	26.9 ^{↑2.5}	24.1 ^{↑2.1}	
			15.4 ^{↑0.2}	15.4 ^{↑0.9}	28.5 ^{↑2.0}	15.9 ^{↑0.5}	13.5 ^{↑0.9}	15.2	21.4 ^{↑1.9}	22.0 ^{↑0.6}	18.4 ^{↑0.9}	
	ViT-S/16	BSR [†]	12.6 ^{↑0.7}	13.1 ^{↑0.5}	26.0 ^{↑1.2}	12.6 ^{↓0.6}	11.9 ^{↓0.2}	12.2 ^{↑0.1}	20.8 ^{↑1.2}	19.5 ^{↑0.6}	16.1 ^{↑0.4}	
			14.7 ^{↑0.5}	15.7 ^{↑0.4}	27.3 ^{↑0.7}	15.6	13.8 ^{↑0.5}	14.2 ^{↑0.4}	22.7 ^{↑1.1}	21.3 ^{↑1.1}	18.2 ^{↑0.6}	
			17.8 ^{↑1.9}	19.1 ^{↑2.0}	30.2 ^{↑1.8}	20.8 ^{↑3.0}	17.7 ^{↑2.4}	17.4 ^{↑2.4}	25.8 ^{↑2.2}	24.1 ^{↑2.1}	21.6 ^{↑2.2}	
			16.9 ^{↓0.1}	17.9 ^{↓0.1}	29.7	20.5 ^{↑0.8}	15.7 ^{↓0.1}	16.7	25.2 ^{↑0.5}	22.7 ^{↓0.1}	20.7 ^{↑0.1}	

Table 6: Untargeted ASRs (%) on attacking advanced adversarial trained models.

markably, with R50 as the surrogate model, the optimized BSR attack achieves an average ASR gain of 13.9% on test models, including a dramatic 34.1% increase against VGG-19. This underscores the importance of dynamic parameter optimization for advancing transferability and points to the strong potential of transformation-based attacks in targeted scenarios.

4.2.3 UNTARGETED ENSEMBLE-SURROGATE ATTACKS.

This experiment investigates the difference when transformation-based attacks are combined with other strategies (e.g., ensemble-based strategies). We adopt Ens_{CNNs} and Ens_{ViTs} as ensemble surrogates. The optimized parameters, presented in Table 2, differ from the official ones in most cases. The average ASRs on validation and test models are reported in Table 5, showing that optimized attacks achieve either improvements or no loss compared to the official configurations.

4.2.4 ATTACKS AGAINST ADVERSARIAL TRAINING DEFENSES.

The above experiments are conducted on standard models. To further evaluate the performance of attacks against defended models, we consider eight advanced adversarially trained models as targets and re-run untargeted attacks using the parameters optimized at $T = 100$. Table 6 shows that optimization substantially increases the average ASR across the eight advanced adversarially trained models, demonstrating the value of dynamic parameter optimization against defended models.

5 CONCLUSIONS

This work presents the first study of the dynamics of transferability with respect to parameters, revealing three patterns. The Concentric Decay Model (CDM) is proposed to bridge the gap in existing research. The revealed patterns and our CDM indicate the dynamic nature of optimal parameters. Motivated by this, we propose an efficient Dynamic Parameter Optimization (DPO) to dynamically optimize existing attacks. Extensive experiments demonstrate that the re-optimization significantly improves transferability. By leveraging the rise-then-fall pattern and a bisection-based approach, our DPO reduces the complexity from $\mathcal{O}(mn)$ to $\mathcal{O}(n \log_2 m)$. However, our investigation is capped at 500 iterations. The dynamics at higher iterations remain an intriguing topic for future study.

486 REFERENCES
487

488 Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin,
489 Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-covariance
490 image transformers. *Advances in neural information processing systems*, 34:20014–20027, 2021.

491 Sajjad Amini, Mohammadreza Teymoorianfard, Shiqing Ma, and Amir Houmansadr. Meansparse:
492 Post-training robustness enhancement through mean-centered feature sparsification. *arXiv*
493 preprint *arXiv:2406.05927*, 2024.

494

495 Fatima Ezzahra Arhouni, Maged Ahmed Saleh Abdo, Saad Ouakkas, Mohamed Lhadi Bouhssa, and
496 Aziz Boukhair. Artificial intelligence-driven advances in nuclear technology: Exploring innova-
497 tions, applications, and future prospects. *Annals of Nuclear Energy*, 213:111151, 2025.

498 Yatong Bai, Mo Zhou, Vishal M Patel, and Somayeh Sojoudi. Mixednuts: Training-free accuracy-
499 robustness balance via nonlinearly mixed classifiers. *arXiv preprint arXiv:2402.02263*, 2024.

500

501 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
502 *ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

503

504 Erh-Chung Chen and Che-Rung Lee. Data filtering for efficient adversarial training. *Pattern Recog-
505 nition*, 151:110394, 2024.

506

507 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
508 mization based black-box attacks to deep neural networks without training substitute models. In
509 *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 15–26, 2017.

510

511 François Chollet. Xception: Deep learning with depthwise separable convolutions. In *Proceedings*
512 *of the IEEE conference on computer vision and pattern recognition*, pp. 1251–1258, 2017.

513

514 Yingpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
515 ing adversarial attacks with momentum. In *Proceedings of the IEEE conference on computer*
516 *vision and pattern recognition*, pp. 9185–9193, 2018.

517

518 Yingpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversar-
519 ial examples by translation-invariant attacks. In *Proceedings of the IEEE/CVF conference on*
520 *computer vision and pattern recognition*, pp. 4312–4321, 2019.

521

522 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
523 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
524 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
525 *arXiv:2010.11929*, 2020.

526

527 Zhijin Ge, Fanhua Shang, Hongying Liu, Yuanyuan Liu, Liang Wan, Wei Feng, and Xiaosen Wang.
528 Improving the transferability of adversarial examples with arbitrary style transfer. In *Proceedings*
529 *of the 31st ACM International Conference on Multimedia*, pp. 4440–4449, 2023.

530

531 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
532 examples. *arXiv preprint arXiv:1412.6572*, 2014.

533

534 Yu Guo, Weiquan Liu, Qingshan Xu, Shijun Zheng, Shujun Huang, Yu Zang, Siqi Shen, Chenglu
535 Wen, and Cheng Wang. Boosting adversarial transferability through augmentation in hypothesis
536 space. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 19175–
537 19185, 2025.

538

539 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
540 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
541 770–778, 2016.

542

543 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
544 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern*
545 *recognition*, pp. 4700–4708, 2017.

540 Changming Li, Mingjing Xu, Yicong Du, Limin Liu, Cong Shi, Yan Wang, Hongbo Liu, and Yingy-
 541 ing Chen. Practical adversarial attack on wifi sensing through unnoticeable communication packet
 542 perturbation. In *Proceedings of the 30th annual international conference on mobile computing
 543 and networking*, pp. 373–387, 2024.

544 Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. Nesterov accelerated
 545 gradient and scale invariance for adversarial attacks. *arXiv preprint arXiv:1908.06281*, 2019.

547 Qinliang Lin, Cheng Luo, Zenghao Niu, Xilin He, Weicheng Xie, Yuanbo Hou, Linlin Shen, and
 548 Siyang Song. Boosting adversarial transferability across model genus by deformation-constrained
 549 warping. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 3459–
 550 3467, 2024.

551 Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan
 552 He, Hui Xue, and Shibao Zheng. A comprehensive study on robustness of image classification
 553 models: Benchmarking and rethinking. *International Journal of Computer Vision*, 133(2):567–
 554 589, 2025.

556 Yuyang Long, Qilong Zhang, Boheng Zeng, Lianli Gao, Xianglong Liu, Jian Zhang, and Jingkuan
 557 Song. Frequency domain model augmentation for adversarial attack. In *European conference on
 558 computer vision*, pp. 549–566. Springer, 2022.

559 Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversarial perturbations
 560 for deep networks. *arXiv preprint arXiv:1612.06299*, 2016.

562 Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
 563 phenomena to black-box attacks using adversarial samples. *arXiv preprint arXiv:1605.07277*,
 564 2016.

565 ShengYun Peng, Weilin Xu, Cory Cornelius, Matthew Hull, Kevin Li, Rahul Duggal, Mansi Phute,
 566 Jason Martin, and Duen Horng Chau. Robust principles: Architectural design principles for
 567 adversarially robust cnns. *arXiv preprint arXiv:2308.16258*, 2023.

569 Yuchen Ren, Zhengyu Zhao, Chenhao Lin, Bo Yang, Lu Zhou, Zhe Liu, and Chao Shen. Improving
 570 adversarial transferability on vision transformers via forward propagation refinement. In *Proceed-
 571 ings of the Computer Vision and Pattern Recognition Conference*, pp. 25071–25080, 2025.

572 Md Farhamdur Reza, Richeng Jin, Tianfu Wu, and Huaiyu Dai. Gsba K : top- k geometric score-
 573 based black-box attack. In *The Thirteenth International Conference on Learning Representations*,
 574 2025.

576 Adrián Rodríguez-Muñoz, Tongzhou Wang, and Antonio Torralba. Characterizing model robustness
 577 via natural input gradients. In *European Conference on Computer Vision*, pp. 161–178. Springer,
 578 2024.

580 Naman Deep Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for ima-
 581 genet: Architectures, training and generalization across threat models. *Advances in Neural Infor-
 582 mation Processing Systems*, 36:13931–13955, 2023.

583 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 584 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

586 Bowen Tang, Zheng Wang, Yi Bin, Qi Dou, Yang Yang, and Heng Tao Shen. Ensemble diversity
 587 facilitates adversarial transferability. In *Proceedings of the IEEE/CVF Conference on Computer
 588 Vision and Pattern Recognition*, pp. 24377–24386, 2024.

589 Rajiv Thummala, Shristi Sharma, Matteo Calabrese, and Gregory Falco. Adversarial machine learn-
 590 ing threats to spacecraft. *arXiv preprint arXiv:2405.08834*, 2024.

592 Feiyang Wang, Xingquan Zuo, Hai Huang, and Gang Chen. Ttba: Two-third bridge approach for
 593 decision-based adversarial attack. In *Forty-second International Conference on Machine Learn-
 594 ing*, 2025.

594 Kunyu Wang, Xuanran He, Wenxuan Wang, and Xiaosen Wang. Boosting adversarial transferability
 595 by block shuffle and rotation. In *Proceedings of the IEEE/CVF conference on computer vision*
 596 and pattern recognition, pp. 24336–24346, 2024a.

597 Maoyuan Wang, Jinwei Wang, Bin Ma, and Xiangyang Luo. Improving the transferability of adver-
 598 sarial examples through black-box feature attacks. *Neurocomputing*, 595:127863, 2024b.

600 Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the transferability
 601 of adversarial attacks. In *Proceedings of the IEEE/CVF international conference on computer*
 602 *vision*, pp. 16158–16167, 2021.

603 Xiaosen Wang, Zeliang Zhang, and Jianping Zhang. Structure invariant transformation for better ad-
 604 versarial transferability. In *Proceedings of the IEEE/CVF International Conference on Computer*
 605 *Vision*, pp. 4607–4619, 2023.

606 Qingling Xia, Hong Zheng, Haonan Zou, Dinghao Luo, Hongan Tang, Lingxiao Li, and Bin Jiang.
 607 A comprehensive review of deep learning for medical image segmentation. *Neurocomputing*, 613:
 608 128740, 2025.

609 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
 610 Improving transferability of adversarial examples with input diversity. In *Proceedings of the*
 611 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 2730–2739, 2019.

612 Xiaoyun Xu, Shujian Yu, Zhuoran Liu, and Stjepan Picek. Mimir: Masked image modeling for
 613 mutual information-based adversarial robustness. *arXiv preprint arXiv:2312.04960*, 2023.

614 Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
 615 Shuicheng Yan. Metaformer is actually what you need for vision. In *Proceedings of the IEEE/CVF*
 616 *conference on computer vision and pattern recognition*, pp. 10819–10829, 2022.

617 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint*
 618 *arXiv:1605.07146*, 2016.

619 Jianping Zhang, Jen-tse Huang, Wenxuan Wang, Yichen Li, Weibin Wu, Xiaosen Wang, Yuxin
 620 Su, and Michael R Lyu. Improving the transferability of adversarial samples by path-augmented
 621 method. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 622 pp. 8173–8182, 2023.

623 Rongyi Zhu, Zeliang Zhang, Susan Liang, Zhuo Liu, and Chenliang Xu. Learning to transform
 624 dynamically for better adversarial transferability. In *Proceedings of the IEEE/CVF Conference*
 625 *on Computer Vision and Pattern Recognition*, pp. 24273–24283, 2024.

630 A THE USE OF LARGE LANGUAGE MODELS

631 In this work, we only employ large language models (ChatGPT-5) for basic polishing of human-
 632 written text (e.g., minor adjustments of wording or sentence order to improve readability) and for
 633 grammar checking. No ideas, analyses, or experiments are generated or conducted by LLMs. All
 634 contributions are proposed and validated by the authors.

637 B SUPPLEMENTARY MATERIALS

639 B.1 DETAILED RESULTS OF UNTARGETED ATTACKS WITH VARYING PARAMETERS

640 Section 4.2.1 reports the average untargeted single-surrogate ASR of re-optimized attacks. Here, we
 641 provide detailed results under varying parameters to show the landscape. Figure 4 shows the average
 642 non-targeted ASRs of adversarial examples generated by *Admix*, *SSIM*, *STM*, and *BSR* on a single
 643 surrogate model with varying parameters, evaluated across eight validation models in Table 1.

644 These results suggest that the dynamics of transferability in existing transformation-based attacks are
 645 highly consistent with the three patterns revealed in this work. Notably, despite minor fluctuations,
 646 different attacks generally follow the rise-then-fall pattern across iterations and surrogate models,
 647 validating the feasibility of DPO with a bisection-based strategy.

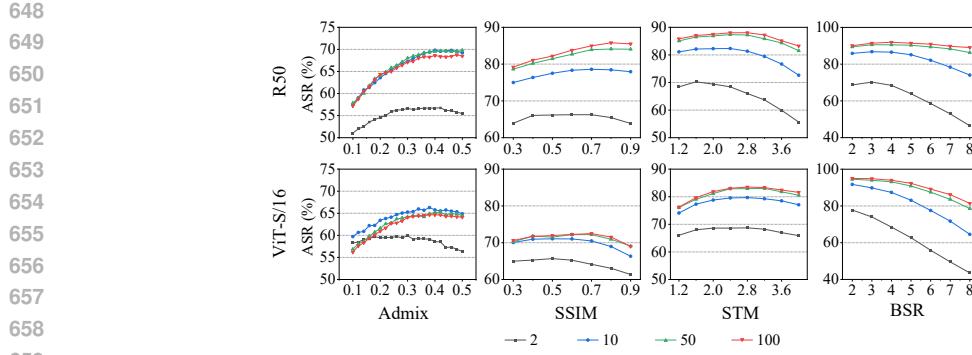


Figure 4: Average untargeted ASRs (%) of existing attacks with R50 or ViT-S/16 as the surrogate model under varying parameters against eight validation models.

B.2 VISUALIZATION OF ADVERSARIAL EXAMPLES GENERATED ON OPTIMIZED ATTACKS

In this part, we provide the illustration of adversarial examples of untargeted single-surrogate attacks generated with both the official and the re-optimized parameters, as shown in Figure 5 and Figure 6.

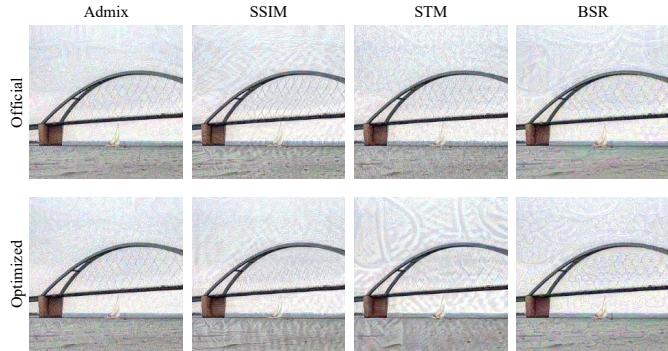


Figure 5: Visualization of adversarial examples generated on untargeted attacks with R50 as the surrogate model. Official indicates the examples generated on official parameters. Optimized indicates the examples generated on re-optimized parameters. The number of iterations is 100.

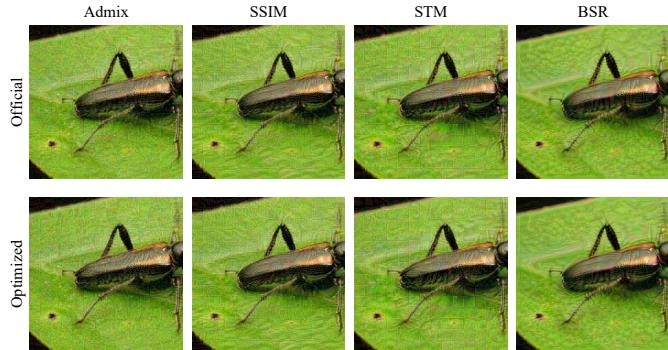


Figure 6: Visualization of adversarial examples generated on untargeted attacks with ViT-S/16 as the surrogate model. The number of iterations is 100.