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ABSTRACT

Current fake audio detection algorithms achieve promising performances on most
datasets. However, their performance may be significantly degraded when dealing
with audio of a different dataset. The orthogonal weight modification to over-
come catastrophic forgetting does not consider the similarity of some audio, in-
cluding fake audio obtained by the same algorithm and genuine audio, on different
datasets. To overcome this limitation, we propose a continual learning algorithm
for fake audio detection to overcome catastrophic forgetting, called Regularized
Adaptive Weight Modification (RAWM). Specifically, when fine-tuning a detec-
tion network, our approach adaptively computes the direction of weight modifica-
tion according to the ratio of genuine utterances and fake utterances. The adap-
tive modification direction ensures the network can detect fake audio on the new
dataset while preserving its knowledge of previous model, thus mitigating catas-
trophic forgetting. In addition, orthogonal weight modification of fake audios in
the new dataset will skew the distribution of inferences on audio in the previ-
ous dataset with similar acoustic characteristics, so we introduce a regularization
constraint to force the network to remember this distribution. We evaluate our ap-
proach across multiple datasets and obtain a significant performance improvement
on cross-dataset experiments.

1 INTRODUCTION

Currently, fake audio detection has attracted increasing attention since the organization of a series of
challenges, such as the ASVspoof challenge (Wu et al., 2015; Kinnunen et al., 2017; Todisco et al.,
2019; Yamagishi et al., 2021) and the Audio Deep Synthesis Detection challenge (ADD) (Yi et al.,
2022). In these competitions, deep neural networks have achieved great success. Currently, large-
scale pre-trained models have gradually been applied to fake audio detection and achieved state-
of-the-art results on several public fake audio detection datasets (Tak et al., 2022; Martı́n-Doñas &
Álvarez, 2022; Lv et al., 2022; Wang & Yamagishi, 2021). Although fake audio detection achieves
promising performance, it may be significantly degraded when dealing with audio of another dataset.
The diversity of audio proposes a significant challenge to fake audio detection across datasets (Zhang
et al., 2021b;a).

Some approaches have been proposed to improve detection performance across datasets. Monteiro
et al. (2020) proposed an ensemble learning method to improve the detection ability of the model
for unseen audio. Wang et al. (2020) designed a dual-adversarial domain adaptive network to learn
more generalized features for different datasets. Both methods require some audio from the old
dataset, but in some practical situations, it is almost impossible to obtain them. For instance, a pre-
trained model proposed by a company has been released to the public. It is unfeasible for the public
to fine-tune it using the data belonging to the original company. Zhang et al. (2021b) proposed
a data augmentation method to extract more robust features for detection across datasets, which
is only suitable for the datasets with similar feature distribution. Ma et al. (2021) proposed the
first continual learning method for fake audio detection, called Detecting Fake Without Forgetting
(DFWF) inspired by Learning without Forgetting (LwF) (Li & Hoiem, 2017). The DFWF improves
the detection performance by fine-tuning on the new dataset and overcomes catastrophic forgetting
by introducing regularization. Although the above methods are evaluated as viable options, there are
still some insufficient places, like the acquisition of previous data in the first two and deteriorating
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Figure 1: Schematic of SGD, OWM, and RAWM. (a), With RAWM, the optimization process
searches for configurations that lead to great performance on both old (blue area) and new (green
area) datasets. A successful optimized configuration θ̂rawm stops inside the overlapping subspace.
However, the configuration θ̂sgd obtained by SGD is optimized without considering forgetting, and
the configuration θ̂owm obtained by orthogonal weight modification can not reach the overlapping
region. (b), the RAWM adaptively modifies weight direction by introducing a projector that is or-
thogonal to the projector P proposed by OWM.

learning performance in the DFWF. This paper, however, aims to overcome catastrophic forgetting
while exerting a positive influence on acquiring new knowledge without any previous samples.

As for fake audio detection, we have observed that most datasets are under clean conditions. Re-
garding these datasets, the genuine audio has a more similar feature distribution than the fake audio.
Specifically, the variance of the feature distribution of genuine audio is smaller than that of fake
audio (Ma et al., 2021). A few datasets, however, are collected under noisy conditions (Müller
et al., 2022), which makes a great difference in their feature distributions of genuine audio (Ma
et al., 2022). In this regard, if we modify the model weights as the orthogonal weight modifica-
tion (OWM) method (Zeng et al., 2019) which introduces a new weight direction orthogonal to all
previous data, most genuine audio can not be trained efficiently. The reason is that new data is
supposed by the OWM to damage learned knowledge for its different feature distribution but it is
unreasonable for fake audio detection. It is more efficient for most genuine audio to be trained with
the same direction modification because of their similar feature distributions. To address these is-
sues, we propose a continual learning approach, named Regularized Adaptive Weight Modification
(RAWM). Because genuine audio has more similar feature distribution, it is reasonable to modify
model weights in the same direction as the old one. Specifically, if the proportion of fake audio is
larger, the modified direction is closer to the orthogonal projector of the subspace spanned by all
previous input; if the proportion of genuine audio is larger, the modification is closer to the pre-
vious input subspace. However, when the feature distributions of old and new genuine audio are
quite different, the effect of the above method is not obvious. We address this issue by introducing
a regularization constraint. This constraint forces the model to remember the feature distribution
without requiring prior knowledge. In addition, compared with the experience-replay-based method
in continuous learning, RAWM does not require previous data, which makes this method suitable in
most situations. Finally, the optimization process of RAWM is compared with that of the Stochastic
Gradient Descent search (SGD) and OWM in Figure 1a.

Contributions: We propose a regularized adaptive weight modification algorithm to overcome
catastrophic forgetting for fake audio detection. There are two essential modules in our method:
adaptive weight modification (AWM) and regularization. The former AWM is proposed for contin-
ual learning in most situations where genuine audio has similar feature distribution and the latter
regularization is introduced to ease the problem that genuine audio may have different feature distri-
bution in a few cases. The experimental results show that our proposed method outperforms several
continual learning methods in acquiring new knowledge and overcoming forgetting, including Elas-
tic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), LwF, OWM, and DFWF. The code will
be publicly available in the foreseeable future.
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2 RELATED WORK

In continual learning, overcoming catastrophic forgetting methods can be divided into the following
categories. The regularization methods perform a regularization on the objection function or regulate
important weights that are essential for previous tasks (Kinnunen et al., 2017; Zenke et al., 2017b;
Aljundi et al., 2018; 2019; Mallya & Lazebnik, 2018; Serra et al., 2018). The dynamic architecture
methods reserve their previous knowledge by introducing additional layers or nodes and grow model
architecture (Rusu et al., 2016; Schwarz et al., 2018); (Yoon et al., 2017). The memory-based
methods remember their previous data to prevent gradient updates from damage on their learned
knowledge. (Lopez-Paz & Ranzato, 2017; Castro et al., 2018; Wu et al., 2019; Lee et al., 2019).
The natural gradient descent methods approximate the Fisher information matrix in EWC using the
generalized Gauss-Newton method to fast gradient descent (Tseran et al., 2018; Chen et al., 2019).

Although the mainstream continual learning methods, such as the EWC, LwF and OWM, have
achieved great success in many fields including image classification (Zeng et al., 2019; Kirkpatrick
et al., 2017), object detection (Perez-Rua et al., 2020), semantic segmentation (Cermelli et al., 2020),
lifelong language learning (de Masson D’Autume et al., 2019) and sentence representation (Liu
et al., 2019). However, the approximation of regularization methods will produce error accumulation
in continual learning (Zenke et al., 2017a; Huszár, 2017; Ma et al., 2021). In contrast, our proposed
method only needs the current inputs and some hyperparameters of the last task, which leads to
a better performance our method achieves than others in error accumulation. Compared with the
DFWF, we relax its regularized constraint and introduce a direction modification.

3 BACKGROUND

3.1 ORTHOGONAL WEIGHT MODIFICATION

The OWM algorithm overcomes catastrophic forgetting by modifying the direction of weights on the
new task. The modified direction P , which is a square matrix, is orthogonal to the subspace spanned
by all inputs of the previous task. The orthogonal projector is constructed by an iterative method
similar to the RLS algorithm (Shah et al., 1992), which hardly requires any previous samples.

We consider a feed-forward network consisting of L+1 layers, indexed by l = 0, 1, · · · , L with the
same activation function g(·). The xl(i, j) ∈ Rs represents the output of the lth layer in response
to the mean of the ith batch inputs on jth dataset, and the xl(i, j)

T is the transpose matrix of the
xl(i, j). The modified direction P can be calculated as:

P(i, j) = Pl(i−1, j)− kl(i, j)xl−1(i, j)
TPl(i−1, j)

kl(i, j) =
Pl(i−1, j)xl−1(i, j)

α+ xl−1(i, j)TPl(i−1, j)xl−1(i, j)

(1)

where α is a hyperparameter decaying with the number of tasks. This iterative algorithm only needs
the current inputs and orthogonal projector for the last task, thus avoiding loading data from the
previous task.

3.2 LEARNING WITHOUT FORGETTING

The LwF algorithm is inspired by the idea of model distillation, where old knowledge is viewed as
a penalty term to regulate the new model representation similar to the old. Specifically, the model
trained on old datasets is replicated into two models with the same parameters. The two models are
named teacher and student models in the LwF. In process of training on new datasets, the parameters
of the teacher model are frozen to produce its features as ”soft labels”. The student model is trained
by the loss function as:

Llwf = λ0Lold(yo, ŷo) +Lnew(yn, ŷn) (2)

where λ0 is a ratio coefficient representing the importance of learned knowledge; yo is the ”soft
label” produced by the teacher model and yn is the ground truth of new data; Both ŷo and ŷn are
the softmax output of the student model. Both Lold and Lnew are cross-entropy loss. The first
encourages predictions ŷn to be consistent with the ground truth yn and the last regulates the output
probabilities ŷo to be close to the recorded output yo from the teacher model.
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4 PROPOSED METHOD

As for fake audio detection, we have observed some distinctive features in this regard. On most fake
audio detection datasets, under the same acoustic conditions, feature distributions of genuine audio
are relatively more concentrated and unified than the fake, which means the feature distribution of
genuine audio has a smaller variance than that of fake audio (Ma et al., 2021; Yan et al., 2022). Apart
from that, there are also a few datasets whose genuine audio has quite different feature distributions
from others (Ma et al., 2022; Müller et al., 2022). For instance, genuine audio collected from noisy
conditions may extremely skew their acoustic feature distribution. Although it seems not a norm in
this field, we still are supposed to pay attention to these datasets since it was common in reality.

Based on this inference, we propose a continual learning method, named Regularized Adaptive
Weight Modification (RAWM), to overcome catastrophic forgetting for fake audio detection. There
are two essential parts in our method: adaptive direction modification (AWM) and regularization.
The AWM, which is described in Sec. 4.1, is proposed for most situations where the feature distribu-
tions of genuine audio are very similar. By introducing an extra projector, which is a square matrix
orthogonal to the projector proposed by the OWM, our method could adaptively modify weight di-
rection forcing it closer to the previous inputs subspace. As for those genuine audio collected from
noisy conditions, it is detrimental for learned knowledge to modify weight according to the rule we
mentioned above, because their feature distribution is distinct from others. To address this issue,
we introduce a regularization term to force the new distribution of inference to be similar to the old
one, which is described in Sec. 4.2. Apart from that, we also present how our method regulates
models by modifying weight direction under the restriction of regularization in Sec. 4.3 and show
the process of our algorithm in Algorithm 1. On top of that, our method does not require any prior
knowledge of both old and new datasets and replay of previous samples.

4.1 ADAPTIVE WEIGHT MODIFICATION

We start by introducing an adaptive modification of weight direction according to the ratio of genuine
and fake audio in batch data, which is essential for sequence training on multi-datasets. We first
consider a feed-forward network like that described in Sec. 3.1. Then, we introduce a square matrix
Q as a projector that is orthogonal to the P proposed by the OWM algorithm. This orthogonal
projector can be written as Eq 3:

Q = β[I−P (P TP )−1P ] (3)
where the projector P , which is orthogonal to the subspace spanned by all previous inputs, can

be calculated as Eq 1 and I is an identity matrix. The construction of the orthogonal projector Q
is mathematically sound (Haykin, 2002; Ben-Israel & Greville, 2003; Bengio & LeCun, 2007). To
verify the modification direction according to the ratio of genuine audio and fake audio, we introduce
the β defined as:

β =
Ng+1

Nf+1
(4)

in which Ng and Nf represent the number of genuine and fake audios in a batch, respectively. By
adding one to both the numerator and denominator, β can be calculated when all the batch audios are
genuine. As illustrated in Eq 3, the norm of projector Q is proportional to the ratio β. Our approach
defines the modified direction R of weights as:

R=PN+mQN (5)

PN =
P

||P || , QN =
Q

||I−P (P TP )−1P || (6)

where m is a constant to constrain the norm of projector Q to prevent gradient explosion or gradient
vanishing in the backward process; PN and QN are identity matrices normalized by P and Q,
respectively. Normalization is to prevent the case that the change of β has little effect on the modified
direction because of the large norm gap between P and Q. In the back-propagate (BP) process, the
direction of network weights is modified as:

Wl(i, j)=Wl(i−1, j)+γ(i, j)∆WBP
l (i, j) when j = 1

Wl(i, j)=Wl(i−1, j)+γ(i, j)Rl(j−1)∆WBP
l (i, j) when j > 1

(7)

where Wl(i, j) ∈ Rs×v represents the connection weights between the lth layer and the (l+1)th
layer; γ represents the learning rate of this network; ∆WBP

l (i, j) represents the standard BP gradi-
ent; R represents the modification projector in our method. In Eq 7, we can easily observe that we
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Algorithm 1 Regularized Adaptive Weight Modification
Require: Training data from different datasets, γ (learning rate), m (constant hyperparameter), Treg (constant

hyperparameter).
1: for every dataset j do
2: repeat
3: for every batch i do
4: repeat
5: if j = 1 then
6: Wl(i, j) = Wl(i−1, j) + γ(i, j)∆WBP

l (i, j) ▷∆WBP
l gradient by standard BP method

7: else
8: k(i, j) = Pl(i−1)xl−1(i, j)/[α+ xl−1(i, j)

TPl(i−1, j)xl−1(i, j)]
9: Pl(i, j) = Pl(i−1, j)− k(i, j)xl−1(i, j)

TPl(i−1, j) ▷ xl output of the mean of inputs

10: β =
Ng + 1

Nf + 1
▷ Ng, Nf : genuine, fake audio number

11: Q = β[I − P (P TP )−1P ]

12: PN =
P

||P ||
13: QN =

Q

||I−P (P TP )−1P ||
14: R = PN +mQN

15: ŷo(i) =
yo(i)

1/Treg∑
yo(i)

1/Treg

16: ŷn(i) =
yn(i)1/Treg∑
yn(i)1/Treg

17: ∆WBP
lreg = −∇(ŷo(i) · log ŷn(i))

18: Wl(i, j) = Wl(i−1, j) + γ(i, j)((1−η)Rl(j−1)∆WBP
l (i, j) + η∆WBP

lreg (i, j))
19: end if
20: until loss plateaus
21: end for
22: end for

modify weight direction adaptively by multiplying the BP gradient ∆WBP
l (i, j) with our projector

R whose direction is varied according to the ratio of genuine and fake audio.

4.2 REGULARIZATION

There are a few datasets where genuine audio is collected from noisy conditions. In this case, it
is unreasonable to use the above method directly. As for these utterances, we introduce an extra
regularization forcing the model to remember the previous inference distribution.

We first replicate the pre-trained model into two models with the same parameters, one is the teacher
model and the other one is the student model. The parameter of the teacher model is frozen in the
process of training on the new dataset and the parameter of the student model is fine-tuned. Like the
operation in the LwF, we view the softmax output yo from the teacher model as ”soft labels” and
use the loss function to slash the distinction between the ”soft labels” yo and the softmax output yn

of the student model, thus forcing the student model to remember the learned knowledge. The loss
function, which is a modified cross-entropy loss, can be written as:

Lreg(ŷo, ŷn)=−ŷo · log ŷn (8)

ŷo=
y
1/Treg
o∑
y
1/Treg
o

, ŷn=
y
1/Treg
n∑
y
1/Treg
n

(9)

where Treg is a constant hyperparameter. The yo, yn are softmax outputs of teacher and student
models, respectively; The ŷ is a normalized form of the y; The ŷ and y are one item of ŷ and y,
respectively. The weight modification of this regularization ∆WBP

lreg
can be written as Eq 10.

∆WBP
lreg = ∇Lreg (10)

4.3 REGULARIZED ADAPTIVE WEIGHT MODIFICATION
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In brief, our continual learning method RAWM is proposed for fake audio detection by modifying
weight direction according to the ratio of genuine and fake audio in a batch and eases the problem
that a few utterances corrupted by noise may interfere with the direction modification by introducing
a regularized restriction. Considering a continual learning situation, the BP process of regularized
adaptive weight modification can be written as Eq 11.

Wl(i, j)=Wl(i−1, j)+γ(i, j)∆WBP
l (i, j) when j = 1

Wl(i, j)=Wl(i−1, j)+γ(i, j)((1−η)Rl(j−1)∆WBP
l (i, j)+η∆WBP

lreg (i, j)) when j > 1
(11)

Compared with the Eq 7, our method introduces a regularization constraint to the adaptive weight
modification. The importance of the regularization depends on the hyperparameter η which is a
coefficient measuring the attention degree of the old task.

5 EXPERIMENTS

5.1 DATASETS

We conduct our experiments on four fake audio datasets, including the ASVspoof2019LA (S),
ASVspoof2015 (T1), VCC2020 (T2), and In-the-Wild (T3). The models are firstly trained us-
ing the training set of the ASVspoof2019 and are fine-tuned on the training sets of the other three
datasets. All of the experiments are evaluated using two or four evaluation sets in these datasets.

ASVspoof 2019 LA Dataset (Todisco et al., 2019) is the sub-challenge dataset (30 males and 37
females) containing three subsets: training, development, and evaluation. The training set and de-
velopment share the same attack including four TTS and two VC algorithms. The bonafide audio is
collected from the VCTK corpus (Veaux et al., 2017). The evaluation set contains totally different
attacks.

ASVspoof2015 dataset (Wu et al., 2015) is an open-source standard dataset of genuine and synthetic
speech in the ASVspoof2015 challenge. The genuine speech was recorded from 106 speakers (45
males and 61 females) with no significant channel or background noise effects. The spoofing speech
is generated using a variety of speech synthesis and voice conversion algorithms.

VCC2020 dataset (Zhao et al., 2020) is collected from Voice Conversion Challenge 2020. This
dataset contains two subsets: a set of genuine audio provided by organizers and a set of fake audio
provided by participating teams. Different from the previous three datasets, VCC2020 is a multilin-
gual fake audio dataset, including English, Finnish, German and Mandarin.

In-the-Wild dataset (Müller et al., 2022) contains a set of deep fake audio (and corresponding real
audio) of 58 politicians and other public figures collected from publicly available sources, such as
social networks and video streaming platforms. In total, 20.8 hours of genuine audio and 17.2 hours
of fake audio were collected. On average, each speaker had 23 minutes of genuine audio and 18
minutes of fake audio.

We divide the genuine and fake audios of the VCC2020 dataset into four subsets. A quarter is used to
build the evaluation set, a quarter to build the development set, and the rest to be used as the training
set. The In-the-Wild dataset is divided in the same way as the VCC2020. The ASVspoof2015 is
the most similar to the ASVspoof2019LA for their audios are collected from the same datasets or
conversion algorithms. The audio of the In-the-Wild dataset is collected from the real world and the
audio of the VCC2020 dataset is multilingual. The detailed statistics of the datasets are presented
in Table 1. The Equal Error Rate (EER), which is widely used for fake audio detection and speaker
verification, is applied to evaluate the experimental performance.

5.2 EXPERIMENTAL SETUP

Fake audio detection Model: We use the pre-trained model Wav2vec 2.0 (Baevski et al., 2020) as
the feature extractor and the self-attention convolutional neural network (S-CNN) as the classifier.
The parameters of Wav2vec 2.0 is loaded from the pre-train model XLSR-53 (Conneau et al., 2020).
The classifier S-CNN contains three 1D-Convolution layers, one self-attention layer, and two full
connection layers, according to the forward process. The input dimension of the first convolution
layer is 256 and the hidden dimension of all convolution layers is 80. The kernel size and stride are
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Table 1: Statistics of experimental datasets.

Dataset
ASVSpoof2019 ASVSpoof2015 VCC2020 In-the-Wild

#Real #Fake #Real #Fake #Real #Fake #Real #Fake

Train 2,580 22,800 3,750 12,625 1,330 3,060 9,431 5,908
Dev 2,548 22,296 3,497 49,875 665 1,530 4,715 2,954
Eval 7,355 63,882 9,404 184,000 665 1,530 4,717 2,954

Table 2: The EER(%) of our baseline on multiple evaluation sets.

Model S T1 T2 T3

Baseline 0.258 24.532 46.503 91.473

set to 5 and 1, respectively. The hidden dimension of all full connection layers is 80 and the output
dimension of the last is 2.

Training Details: We fine-tune the model weights including the pre-trained model XLSR-53 and
the classifier S-CNN. All of the parameters are trained by the Adam optimizer with a batch size of 2
and a learning rate γ of 0.0001. The constant m and Treg in RAWM are set to 0.1 and 2, respectively.
The α is initialized to 0.00001 for convolution layers, 0.0001 for the self-attention layer, and 0.1 for
full connection layers. The norm in normalization of projector P and Q is the L2 norm. In addition,
we present the results of training all datasets (Tain-on-All) that is considered to be the lower bound
to all continual learning methods we mentioned (Parisi et al., 2019). All results are (re)produced by
us and averaged over 7 runs with standard deviations.

5.3 BASELINE

We first train our model on the training set of the ASVspoof2019LA dataset. Table 2 shows the
detection performance of our baseline on multiple evaluation sets which is very close to the state-
of-the-art result in the same dataset (Nautsch et al., 2021). Although the model achieves promis-
ing performance on the ASVspoof2019LA, its detection accuracy degrades significantly on other
datasets. In addition, our baseline achieves the lowest cross-datasets EER on the ASVspoof2015
dataset among three unseen datasets, which verifies that the fake audio generated by the same al-
gorithms has similar feature distribution, while the feature distribution of fake audio generated by
different algorithms is quite different. Apart from that, the results with different training steps are
presented in Table 7 in the appendix.

5.4 THE EFFECTIVENESS OF THE η FOR OUR METHOD

Sequence training between two datasets: We start by performing some experiments to evaluate the
effectiveness of η in RAWM, which represents the attention degree to learned knowledge. In Table
3, we can easily observe that the RAWM achieves great performance on both old and new datasets,
especially in the experiment on S → T1. By comparing the results of three cross-datasets, we
observe that when the new and old datasets have similar feature distribution (Table 3a), there is an
improvement in the performance of both acquiring new knowledge and overcoming forgetting with
the increasing of η (η < 1); When the feature distribution of the new and previous datasets is differ-
ent (Table 3b, Table 3c), it is the model when η = 0.50 that achieves the best result, which shows
that regularization is also of benefit to performance on both learning and overcoming forgetting.

Sequence training on four datasets: We also present the results on multiple evaluation sets about
different η in Table 4a. It can be observed that our method slashes performance degradation when
training across datasets. The RAWM achieves the lowest EER among the results when η = 0.50,
which demonstrates that the same attention degree to both old and new datasets is the best choice
for learning and overcoming forgetting. In addition, the results of dataset T3 show that smaller η
is more beneficial for models to acquire knowledge. Apart from that, the results of S, T1 and T2

show that the model with larger η is more effective in overcoming forgetting.
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Table 3: The EER(%) on evaluation sets of our method with different η. All experiments are trained
using the training set in order to S → Tk and are evaluated using the evaluation set on S and Tk

(a)

η S T1

Baseline 0.258 24.532

0.00 1.643 0.256
0.20 1.424 0.431
0.25 1.175 0.311
0.50 0.878 0.257
0.75 0.666 0.247
1.00 3.123 0.343

(b)

η S T2

Baseline 0.258 46.503

0.00 1.413 3.845
0.20 1.334 4.288
0.25 1.275 3.994
0.50 1.237 3.721
0.75 1.262 4.571
1.00 4.234 4.566

(c)

η S T3

Baseline 0.258 91.473

0.00 4.126 1.457
0.20 3.490 1.848
0.25 2.975 1.593
0.50 2.038 1.425
0.75 2.482 2.271
1.00 2.453 2.598

Table 4: The EER(%) on four evaluation sets. All experiments are trained using training set in order
to S → T1 → T2 → T3 and are evaluated using evaluation sets.

(a) The EER(%) of the RAWM with different η.

η S T1 T2 T3

Baseline 0.258 24.532 46.503 91.473

0.00 1.845 1.127 3.916 1.410
0.20 1.724 1.003 4.120 1.367
0.25 1.699 0.945 4.017 1.529
0.50 1.508 0.641 3.850 1.163
0.75 1.636 0.873 3.975 2.454
1.00 2.714 1.621 3.875 2.325

(b) The EER(%) of our method compared with others.

Method S T1 T2 T3

Baseline 0.258 24.532 46.503 91.473
Train-on-All 1.324 0.561 3.579 1.008

Fine-tune 7.068 2.841 5.674 2.543
EWC 5.569 3.444 4.510 2.129
OWM 4.083 2.167 4.480 2.472
LwF 2.714 1.621 3.875 2.325

DFWF 3.476 3.735 7.345 3.114
RAWM(Ours) 1.508 0.641 3.850 1.163

5.5 ABLATION STUDIES FOR OUR METHOD

Sequence training between two datasets: In this section, we compare our proposed method with
adaptive weight modification without regularization (−REG) and orthogonal weight modification
without regularization (−AWM). Table 5 presents their EER on three evaluation sets. We observe
that RAWM achieves similar EER to −REG on the new dataset, both of them are superior sig-
nificantly to −AWM, which shows that the adaptive weight modification has a significant positive
impact on acquiring knowledge, while regularization impacts little. As for overcoming forgetting,
when the feature distribution of the new and old datasets is similar (Table 5a), the EER of the −REG
on the old datasets is much lower than that of the −AWM and higher than that of the RAWM, which
shows that the adaptive weight modification and regularization can significantly reduce the forget-
ting in this case. When the languages of the new and old datasets are different (Table 5b), the EER of
RAWM in the old datasets is similar to that of the −REG and much lower than that of the −AWM,
which also proves that the adaptive weight modification has a significant positive impact on over-
coming forgetting. When the feature distribution of the new and old datasets is quite different (Table
5c), the EER of the −REG is similar to that of the −AWM and much higher than that of the RAWM,
which shows that in this case, regularization is of great benefit to overcoming forgetting, while the
effect of adaptive weight modification is not obvious.

Sequence training on four datasets: In this section, we present the results of the ablation study
on four evaluation sets in Table 5d. We observe that the EER of −REG to −AWM degrades more
obviously than that of RAWM to −REG on all evaluation sets, which indicates that adaptive weight
modification has a more obvious benefit in learning and overcoming forgetting than regularization
for sequence training on multiple datasets.

5.6 COMPARISON OF OUR METHOD WITH OTHER METHODS

Sequence training between two datasets: We compare our method with several methods in Table
6. The EWC, LwF, and OWM as three mainstream continual learning methods achieve great success
in many fields. The DFWF is the first continual learning method to overcome forgetting for fake
audio detection. The results demonstrate that fine-tuning without modification (Fine-tune) forgets
previous knowledge obviously. The forgetting of RAWM is one-tenth that of Fine-tune on Table 6a
and the EER on the new dataset of RAWM is also half that of Fine-tune. We also observe that the
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Table 5: The EER(%) on evaluation sets of the ablation studies. (a), (b) and (c) are trained using
the training set in order to S → Tk and are evaluated using the evaluation set on S and Tk; (d) is
trained in order to S → T1 → T2 → T3 and are evaluated using evaluation sets.

(a)

Method S T1

RAWM 0.666 0.247
−REG 1.643 0.256
−AWM 2.448 0.500

(b)

Method S T2

RAWM 1.237 3.721
−REG 1.413 3.845
−AWM 3.086 5.432

(c)

Method S T3

RAWM 2.038 1.425
−REG 4.126 1.457
−AWM 4.857 2.663

(d)

Method S T1 T2 T3

RAWM 1.508 0.641 3.850 1.163
−REG 1.845 1.127 3.916 1.410
−AWM 4.083 2.167 4.480 2.472

Table 6: The EER(%) of our method compared with various methods. All experiments are trained
using the training set in order to S → Tk and are evaluated using the evaluation set on S and Tk

(a)

Method S T1

Baseline 0.258 24.532
Train-on-All 0.406 0.201

Fine-tune 7.324 0.510
EWC 2.832 0.500
OWM 2.448 0.500
LwF 3.123 0.343

DFWF 1.849 0.689
RAWM(Ours) 0.666 0.247

(b)

Method S T2

Baseline 0.258 46.503
Train-on-All 0.965 2.498

Fine-tune 8.755 5.647
EWC 3.494 5.289
OWM 3.086 5.432
LwF 4.234 4.566

DFWF 1.874 7.355
RAWM(Ours) 1.237 3.721

(c)

Method S T3

Baseline 0.258 91.473
Train-on-All 1.740 0.860

Fine-tune 20.976 2.679
EWC 5.039 2.615
OWM 4.857 2.663
LwF 2.453 2.598

DFWF 5.324 3.275
RAWM(Ours) 2.038 1.425

Fine-tune, EWC and OWM achieve similar performance in three experiments and the performance
of LwF outperforms theirs on the new dataset. In addition, the overcoming forgetting of LwF is also
superior to that of the three methods when the feature distributions of new and old datasets are quite
different (Table 6c). The DFWF is more effective in overcoming forgetting than the above methods,
but its performance on the new dataset is inferior to others. Compared with others, our method
achieves lower EER on both old and new datasets of all experiments, which demonstrates that both
overcoming forgetting and learning could definitely benefit from our method when training across
datasets, regardless of whether the datasets have similar feature distributions (Table 6a, Table 6b) or
same languages (Table 6c).

Sequence training on four datasets: Finally, We compare our method with several methods for
sequence training on four datasets in Table 4b. The results show that the accuracy of DFWF is
inferior to others on the last three datasets. which proves that the DFWF is not effective as others in
acquiring knowledge. Apart from that, most methods achieve lower EERs than fine-tuning, and the
best result for overcoming forgetting and learning is our proposed method, which indicates that the
RAWM is superior to others for sequence training on both two and multiple datasets.

6 CONCLUSION

In this work, we propose a continual learning algorithm for fake audio detection, called RAWM, that
could adaptively modify the weight direction in process of training on new datasets. Our method
overcomes catastrophic forgetting by updating weights according to the adaptive modified direc-
tion under the restriction of regularization. The experimental results demonstrate that our method
performs better than four continual learning methods in learning and overcoming forgetting. The
results also prove that our method is effective in overcoming catastrophic forgetting in scenarios of
sequence training on both two and multiple datasets. In addition, our method does not require pre-
vious data; thus it can be applied to most classification networks. Despite our results, we have yet to
study the impact of different acoustic conditions and noise interference on forgetting, and exploring
these questions will form the focus of our future studies.
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A APPENDIX

A.1 RESULTS OF OUR BASELINE

Table 7: The EER(%) on multiple evaluation sets. Model-1 to Model-6 are the models trained using
the ASVspoof2019LA training set with increasing training steps.

Model
Evaluation Sets

S T1 T2 T3

Model-1 3.751 6.316 7.670 75.198
Model-2 2.975 8.517 10.000 78.477
Model-3 1.794 9.988 26.165 85.436

Model-4 0.258 24.532 46.503 91.473
Model-5 0.259 25.698 44.741 91.824
Model-6 0.262 27.872 49.726 92.113

A.2 RESULTS OF CONTINUAL LEARNING ON FEW-SHOT

We also present some results of our pre-trained model continually learned on a few samples.
In our experiments, only 100 samples randomly selected from new datasets were used for fine-
tuning or continual learning. Table 8 shows the results of few-shot continual learning from the
ASVspoof2019 dataset to the ASVspoof2015 dataset. Most models are trained on the new
dataset within five steps. From the results, we can observe that our method RAWM also achieves
the best performance on both old and new datasets. By comparing the results in Table 6a and Table
8, we can easily find that reducing the number of samples has only a little damage to our method.

A.3 CONTINUAL LEARNING FOR SPEECH EMOTION RECOGNITION

Our method can be easily used in other continual learning fields such as image recognition, object
detection, and emotion recognition. In the body of the paper, we only demonstrate the application
of fake audio detection, which is our current research field.

The key of the RAWM method for other applications is the designation of β. The most intuitive
designation is

β =
N1 +N2 +N3 + ...+Nk + 1

N(k + 1) +N(k + 2) + ...+N(k +m) + 1
(12)

Where the Ni represents the number of samples in class i. Samples of class 1 - class k are those that
have similar feature distributions on old and new datasets (That means, the variance of their feature
distributions is small on different datasets). For fake audio detection, the class in the numerator
represents genuine audio where k is 1. Apart from that, samples of class k + 1 – class k + m are
those that have a great difference in feature distributions. For fake audio detection, the class in the
denominator represents fake audio.

For speech emotion recognition, the previous result shows that neutral emotion achieved the highest
recognition accuracy across thirteen emotion datasets (Sharma, 2022). So we infer that neutral
speech has a more similar feature distribution than that of happy, sad, and angry, thus the ratio
hyperparameter β of our method can be written as follows.

β =
Nneutral + 1

Nhappy +Nangry +Nsad + 1
(13)

Based on this inference, we also conduct some experiments for speech emotion recognition. We
choose four emotional classes, including neutral, happy, angry, and sad. The results have been
added to Table 9 It could be easily observed that our method still achieves the highest accuracy on
both datasets compared with other continual learning methods.
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Table 8: The EER(%) of few-shot experiments. All experiments are first trained using the training
set of ASVspoof2019 and then trained on the subset of the training set of ASVspoof2015. The
subset only includes 100 samples randomly chosen from the training set of ASVspoof2015. All
experiments are evaluated using the evaluation set on ASVspoof2019 and ASVspoof2015.

Method ASVspoof2019 ASVspoof2015

Baseline 0.258 24.532

Fine-tune 7.951 0.617
EWC 2.972 0.619
OWM 2.683 0.617
LwF 3.198 0.542

DFWF 1.975 0.733
RAWM(Ours) 0.923 0.312

Table 9: The Acc(%) of various continual learning methods for 4-classes speech emotion recog-
nition. All experiments are trained using the training set in order to MSP−Podcast →
IEMOCAP and are evaluated using the evaluation set on MSP−Podcast and IEMOCAP

Method MSP−Podcast IEMOCAP

Baseline 54.446 30.043

Fine-tune 24.094 50.379
OWM 32.267 50.162
LwF 38.800 44.034

RAWM(Ours) 41.995 54.229
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