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ABSTRACT

Recent advances in outlier detection have been primarily driven by deep learning
models, which, while powerful, have substantial drawbacks in terms of explain-
ability. This is particularly relevant in fields that demand detailed reasoning and
understanding of why observations are classified as outliers. To close the gap be-
tween state-of-the-art performance and enhanced explainability, we propose Vine
Copula-Based Outlier Detection (VC-BOD). We utilize Sklar’s theorem in con-
junction with vine copulas and univariate kernel density estimators to decouple
marginal distributions and their dependency structure for outlier detection. Our
model uses a closed-form equation for the outlier score, which allows for detailed
explainability and feature attribution. VC-BOD employs a traceable criterion to
determine whether a new observation is an outlier, while also identifying the spe-
cific features responsible for this classification. The proposed model further dis-
tinguishes whether these features deviate from their own distributions or from
interactions with other features. Our empirical evaluations demonstrate that VC-
BOD outperforms most benchmarked classical models and several deep learning
approaches in terms of average rank performance while proving competitive with
the best-performing models.

1 INTRODUCTION

Outlier detection (OD), or anomaly detection (AD), has experienced substantial advances, primar-
ily fueled by the emergence of modern deep learning architectures and the increased availability
of computational resources. These advancements have been particularly notable in the fields of
computer vision and natural language processing (Kim et al., 2020; Liznerski et al., 2021). More re-
cently, deep models for tabular data have also gained popularity (Thimonier et al., 2024; Shenkar &
Wolf, 2022). While these developments have significantly pushed the boundaries of OD research in
tabular data, they concurrently introduce challenges, concerning interpretability, explainability, and
reliability—attributes critical in many practical applications (Hilal et al., 2022; Malaiya et al., 2018).
In contrast, traditional OD methods, such as KNN (Ramaswamy et al., 2000), Isolation-Forest (IFor-
est) (Hariri et al., 2021) and COPOD (Li et al., 2020), which do not rely on Multi-Layer Perceptrons
(MLPs), can offer notable advantages regarding interpretability, computational efficiency, and ex-
plainability. However, this field has not been the main focus of recent research, with potential
benefits left unexplored.

The most straightforward approach to detect outliers is to estimate the complete distribution of the
data and then determine the density of a new observation. If, for a new observation, the density is
strikingly small, it is deemed anomalous. However, this becomes problematic with high-dimensional
data (Zimek et al., 2012). To circumvent this problem, Li et al. (2020; 2023) have demonstrated that
univariate empirical cumulative distribution functions can effectively model marginal distributions
for outlier detection. Yet, these models make several restrictive distributional assumptions and put
little emphasis on the interactions between features, which can be crucial for understanding more
complex anomaly patterns (Ahirwar et al., 2012). Horváth et al. (2020) aim to estimate the complete
distribution by explicitly modeling the dependency structure between certain features, utilizing a
composition of bivariate copulas. Yet, neither of these approaches utilize Sklar’s Theorem (Sklar,
1959) to its full potential, which states that any multivariate distribution can be decomposed into its
marginal distributions and a copula function that captures the dependency structure. Horváth et al.
(2020) approximate the dependency structure to a limited degree, they only considers two features
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at a time and do not separate the marginals from their dependency structure. The former limitation
hinders the detection of more complex dependencies, while the latter reduces explainability.

Building on this foundation, we introduce Vine Copula-Based Outlier Detection (VC-BOD), to
bridge the gap between recent state-of-the-art models’ high performance and a theoretically mo-
tivated understanding of outlier scores. To improve on the shortcomings detailed in the previous
paragraph, we fully utilize Sklar’s theorem in conjunction with vine copulas (Joe, 1997; Bedford &
Cooke, 2002; Aas et al., 2009) and univariate kernel methods (Marron & Wand, 1992; Sheather &
Jones, 1991). Vine copulas are multivariate distributions, constructed out of several bivariate cop-
ulas which are arranged across successive tree structures. A vine copula is a highly flexible model
capable of capturing diverse dependence patterns. We construct an outlier detector by aggregating
separately calculated scores for the marginal distributions and each feature interaction, as captured
by the vine copula, in a closed-form equation. The copulas appearing in the higher trees of the vine
copula enable us to consider multiple features together, thus capturing more complex dependencies.
We leverage the individual scores to determine those features which significantly contribute to an
observation being classified as an outlier. Furthermore, for each influential feature, we can determine
whether it was flagged due to a deviation from its marginal distribution or because of its interactions
with other features. This degree of feature attribution establishes a new benchmark in the field.

To clarify the process behind our approach, we provide a theoretical example based on a syn-
thetic dataset, that showcases the workings of VC-BOD. To evaluate the performance we follow
the well-established experimental design from works such as Thimonier et al. (2024); Shenkar &
Wolf (2022), and conduct a comprehensive analysis across a set of 31 tabular datasets to bench-
mark VC-BOD against existing OD methodologies. The empirical findings confirm that our model
consistently demonstrates state-of-the-art performance, achieving the highest average rank among
non-MLP-based models and the third-highest rank across all models. A statistical test further in-
dicates that there is no significant gap between VC-BOD and the best-performing baseline models.
VC-BOD is thus to be positioned at the forefront of OD methodologies in terms of performance,
while simultaneously offering one of the most advanced explainability frameworks for outlier de-
tection.

To summarize, our work offers the following contributions:

1. A new OD-method, theoretically motivated and defined via a closed-form equation.
2. A new framework for enhanced explainability and detailed feature attribution.
3. State-of-the-art outlier detection capabilities.

2 RELATED WORK

For the contexts of our work, we categorize OD methodologies into two main categories: classical,
which encompass models that do not utilize MLPs, and MLP-based. This distinction is important
because MLP-based approaches often suffer from a unique set of limitations that are not present
with classical approaches, as we discuss in the subsequent paragraphs. VC-BOD is to be classified
under the distribution-based models of the classical category.

Classical. OD approaches without MLPs can be broadly classified into four main categories:
distribution-based, proximity-based, reconstruction-based, and one-class classification methods.

Distribution-based methods aim to learn the underlying distribution of the data and infer the like-
lihood of a sample belonging to this distribution. The early works in this category, such as Parzen
(1962) and Roberts & Tarassenko (1994), laid the foundation by modeling data distributions directly.
However, challenges arise when dealing with high-dimensional or multimodal data, as real-world
data rarely conforms neatly to standard probability distributions. More recent methods, such as Li
et al. (2020; 2023) and Horváth et al. (2020), utilize copula analysis to capture the data distribution.

Proximity-based methods utilize distance information in the representation space to identify anoma-
lies. A straightforward yet effective approach was introduced by Ramaswamy et al. (2000), where
outliers are classified based on their distance to their nearest neighbors. More refined methods, such
as Local Outlier Factor (Breunig et al., 2000), incorporate local density information, identifying a
data point as an outlier if it has a substantially lower local density compared to its neighbors. While
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they have been applied with great success, Zimek et al. (2012) have shown that these methods also
suffer from the curse of dimensionality.

Reconstruction-based methods detect outliers by training models to reconstruct samples from the
normal distribution, with high reconstruction errors indicating potential anomalies. Techniques in
this category include Hawkins (1974); Hoffmann (2007), which utilize PCA to detect outliers. These
methods may fail in situations where the true dependence is more complex than a multivariate nor-
mal distribution.

One-Class-Classification techniques use discriminatory models to establish a decision boundary
that separates normal data from potential anomalies. Successful applications include kernel-based
methods, such as Schölkopf et al. (1999); Tax & Duin (2004); Ben-Hur et al. (2001) or tree-based
models, such as Liu et al. (2008); Hariri et al. (2021); Guha et al. (2016); Gopalan et al. (2019).
Yet these models rely on hyper-parameter tuning and are often constrained in their ability to capture
complex or non-linear data distributions effectively (Perera et al., 2021; Seliya et al., 2021).

MLP. More recently, MLPs, have gained popularity due to advancements in self-supervised learn-
ing and diverse neural architectures. These methods leverage strategies like masking (Thimonier
et al., 2024), transformation techniques (Bergman & Hoshen, 2020), and contrastive learning (Qiu
et al., 2021; Shenkar & Wolf, 2022), often incorporating attention mechanisms, CNNs, and GANs.
Reconstruction loss is another common approach, where autoencoders (Principi et al., 2017; Chen
& Konukoglu, 2018; Kim et al., 2020) and GANs (Schlegl et al., 2019) are employed to reconstruct
input data and detect anomalies. Additionally, MLPs have been used in one-class classification to
isolate inliers from outliers by minimizing the volume of a data-enclosing hypersphere (Ruff et al.,
2018), which has been extended in Ruff et al. (2021).

Despite their significant potential, these models face notable limitations. One primary concern is
their high-dimensional parameter space, which often exceeds the cardinality of the training set,
potentially impeding generalization. Another significant limitation, which can render these models
unsuitable for certain applications, is the inherent complexity in interpreting their results. Although
methods like those described in Thimonier et al. (2024) provide mechanisms for attribution, these
often rely on indirect methods, which may not provide clear insights into model decisions.

3 THEORETICAL BACKGROUND

In this section, we provide a concise introduction to copulas and vine copulas, focusing on the
aspects relevant to our methodology. For a deeper understanding, we refer the reader to Nelsen
(2006); Joe (2014); Czado (2019).

Copulas. A copula is defined as a multivariate distribution function C : [0, 1]d → [0, 1] with
uniform marginals on [0, 1]. An important finding in copula theory is due to Sklar (1959):

Theorem 1 (Sklar’s Theorem) Given a joint distribution function F with marginals
F1, F2, . . . , Fd, there exists a copula C such that for all x1, x2, . . . , xd ∈ R:

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (1)

If the marginals Fi are continuous, the copula C is unique.

If F is assumed to be absolutely continuous, equation 1 can be differentiated:

f(x1, . . . , xd) =

d∏
i=1

fi(xi) · c(F1(x1), . . . , Fd(xd)) (2)

where fi =
∂Fi

∂xi
, i = 1, . . . , d are the densities of the marginals and c = ∂C

∂F1(x1)...∂Fd(xd)
denoting

the density of the copula.

Sklar’s theorem allows an arbitrary distribution to be decomposed into the one-dimensional marginal
distributions Fi and the dependency structure as described by the copula C. To estimate a probability
distribution F based on a sample, the usual approach is to assume some functional form for the
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marginal distributions and the copula. Then the parameters can be determined in sequential fashion:
First the marginal distributions are estimated and then the sample is transformed and the parameters
of the copula are estimated. The validity of this approach was shown by Joe (2005).

To be flexible in estimating the marginals without making stringent assumptions about their true
distribution, we employ a Gaussian kernel density estimator, selecting the bandwidth using the plug-
in method described by Sheather & Jones (1991). We then use the kernel estimates to transform the
observations to the domain of the copula [0, 1]d: u(k) = (u1, . . . , ud) = (F1(x

(k)
1 ), . . . , Fd(x

(k)
d )).

Subsequently, we estimate the parameters for a parameterized multivariate copula class using this
transformed sample. This can be achieved in a highly flexible way, using vine copulas.

1

2 3 42,3 3,4

1,3

(a) 1st tree

1,3 2,3

3,4

1,2 | 3

2,4 | 3

(b) 2nd tree

1,2 | 3 2,4 | 31,4 | 2,3

(c) 3rd tree

Figure 1: Example of a vine copula in four dimensions, consisting of three trees.

Vine copulas. This subclass of multivariate copula functions is constructed out of several bivariate
copulas, which are arranged in successive levels, the so-called trees (Aas et al., 2009). They can be
defined via their density:

c(u1, . . . , ud) =

d−1∏
t=1

∏
{i,j}∈Et

ci,j;di,j
(F (ui | di,j), F (uj | di,j) ; udi,j

) (3)

where Et denotes the edge set of tree t, including tuples of two features which are connected in
tree t via bivariate copulas, with respective density ci,j;di,j

(·, · ; udi,j
). These copulas are called

pair-copulas and they may depend on the point udi,j
, where di,j ⊂ {1, . . . , d} \ {i, j} includes the

features on which the variables i and j are conditioned. For the first tree this subset is the empty set.

A vine copula can be understood in the following way: The outer product in equation 3 runs over
the trees of the vine copula. The trees at each level are spanning trees. For the first tree the nodes are
the features and the edges are the pair copulas, connecting two features at a time, see Figure 1(a).
The following trees connect adjacent edges of the previous tree, see Figures 1(b),1(c). From the
second tree on, the pair-copulas connect not the original features, but the features conditioned on
those features di,j , that were bridged with the upstream pair-copulas, see Figures 1(b),1(c). These
transformations can be constructed out of the pair-copulas which appear in the previous trees.

Using the greedy algorithm of Dissmann et al. (2013), the vine copula is fitted by determining the
structure and pair copulas of the first tree and then processing the remaining trees analogously. The
trees at each level are chosen such that they maximize the dependence along their edges, as measured
by Kendall’s tau. The algorithm captures step by step the most prominent dependencies amongst the
features. To accurately model the feature relations, the individual pair-copulas are chosen as kernel-
based copulas (Nagler & Czado, 2016; Geenens et al., 2017). To facilitate estimation, equation 3 is
simplified by assuming that the pair copulas do not depend on the specific points udi,j . Further the
vine is ’truncated’ after tree T ≤ d− 1, meaning that the outer product runs only to T . Plugging the
thusly modified version of equation 3 into equation 2 yields:

f(x1, . . . , xd) =

d∏
i=1

fi(xi) ·
T∏

t=1

∏
{i,j}∈Et

ci,j(Fi(xi | di,j), Fj(xj | di,j)) (4)

where F·(·|d·,·) concatenates the transformation of the feature to the domain of the copula with the
internal transformations of the vine-copula.
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4 METHOD

We introduce a scalable method that remains sensitive to local deviations from the assumed distri-
bution to detect outliers in high-dimensional data. In this chapter, we provide an intuitive exposition
of the outlier score of VC-BOD where, in the first paragraph, we derive the final computation of the
outlier score, which consists of the marginal and the dependence scores. We then provide further de-
tails on these components in the following paragraphs. In Section A.1 of the Appendix, we provide
a more theoretical derivation and further statistical analysis of VC-BOD.

Let {x1, . . . ,xn} with xi ∈ Rd be a sample of ’normal’ observations drawn from an unknown
d-dimensional random variable X with cumulative distribution function FX . Building on Sklar’s
Theorem, our approach considers a new observation anomalous if it violates any aspect of the distri-
bution FX . To confirm if this applies, we model the distribution FX based on the sample, following
the approach discussed in Section 3, with Gaussian kernels for the marginals and a truncated vine
copula to capture dependence.

Zimek et al. (2012) expose the problems of outlier detection at high dimensions that arise when all
features are considered together. We utilize the factorized form of the density in equation 4 and
calculate for a new observation an individual score for each constituent of equation 4. Thereby, we
transform the possibly high-dimensional problem into several one- and two-dimensional problems.
The individual scores are scaled logarithmically, with larger values indicating a higher probability
of the new observation being an outlier. For each feature, fi, the marginal score, denoted by mi,
takes values in the interval [0, 1]. For the pair-copulas Ci,j , each dependence score, denoted by dij ,
takes values in the possibly smaller interval [0,maxij ], with maxij ∈ [0, 1]. By grouping the scores
related to each feature, we obtain our final outlier score:

s :=
1

d

d∑
i=1

si :=
1

d

d∑
i=1

[(
mi +

∑
j∈CSi

di↔j

)
/
(
1 +

∑
j∈CSi

maxi↔j

)]
(5)

where CSi denotes the copula set of feature i, which includes all pair-copulas connecting feature i
with other features. The notation i ↔ j indicates that i is either the first or the second index.

The overall score, which is the average of the feature scores, takes values in [0, 1], with larger
values indicating a higher probability that the new observation is an outlier. VC-BOD’s algorithmic
implementations of training and inference are provided in Appendix A.2, see Algorithms 1 and 2.

Marginal scores. For a new observation we calculate for each feature i = 1, . . . , d a score that
quantifies the probability that the i-th feature of the observation does not fit with the learned distri-
bution. More specifically, we focus on the probability that a realisation had been observed, which is
less, or exactly as, likely as the actual realisation, under the learned distribution. Intuitively, this is
the same rationale as with p-values of statistical tests. More formally, this concept utilizes ’minimal
volume sets’, introduced initially in the works of Einmahl & Mason (1992) and Polonik (1995) and
specialized as ’mass-volume curves’ for outlier detection by Clémençon & Thomas (2018).

For the new observation y = (y1, . . . , yd)
′ we first consider the probability of the set Ai :=

{x | fXi
(x) ≤ fXi

(yi)} under the kernel estimator, where fXi
denotes its density:

PfXi
(Ai) =

∫
Ai

fXi(x) dx ≈ 1

k

k∑
j=1

1zj≤fXi
(yi) =: pi(y) (6)

where the grid-points of zi = {z1, . . . , zk} are constructed as: zj := fXi
(F−1

Xi
(j/(k + 1))) with

FXi
denoting the cdf of the kernel estimator and k = a2 for some a ∈ N.

Finally the approximated probability is scaled using a logarithm, such that unlikely observations
receive an over-proportional score:

mi := − logb(pi(y))

The base b of the logarithm is chosen such that 1/k is mapped to 0.99. In the case of pi(y) = 0, the
score is manually set to 1.
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Dependence scores. For the new observation y = (y1, . . . , yd)
′ we calculate for each pair-copula

in equation 4 one outlier score. As in the marginal case, the rationale for each score is drawn
from Clémençon & Thomas (2018). To calculate the score dij corresponding to the copula Ci,j , we
first transform the new point according to the fitted vine copula and calculate the corresponding fea-
tures: (uyi

, uyj
). Next, we approximate the probability of the set Aij := {(u1, u2) | ci,j((u1, u2)) ≤

ci,j((uyi
, uyj

)} under the copula Ci,j :

Pci,j (Aij) =

∫
Aij

ci,j(u1, u2) d(u1, u2) ≈
1

k

√
k∑

l,l′=1

1zl,l′≤ci,j(uyi
,uyj

) =: pij(y) (7)

where the elements of the vector zij = {z1,1, . . . , z√k,
√
k} are constructed as: zl,l′ :=

ci,j(l/(
√
k + 1), h−1

1 (l′/(
√
k + 1), l/(

√
k + 1))), with h−1

1 (·;u1) being the pseudo-inverse of:
h1(u2;u1) = P (Uj ≤ u2 | Ui = u1) =

∂Ci,j(u1,u2)
∂u1

, and the total number of grid-points k
being identical to the case of the marginal scores.

We activate the estimated probability with a logarithm, using the same base b as with the marginal
scores. For the dependence scores we require an additional multiplicative factor. It is comprised
of a component sodij ∈ [0, 1], which quantifies the strength of dependence of the corresponding
pair-copula Ci,j . We provide a detailed definition in Appendix A.3. This component is needed
because the surface of the density of a pair-copula with only moderate dependence may have no
low-density region and thus it would not be possible to confidently declare a single observation an
outlier, based on this pair-copula. The second component is the discount factor ηt−1, where t denotes
the tree number. This factor compensates for potential violations of the simplifying assumption and
accounts for the aggregating estimation errors of copulas in higher trees.

The individual outlier score dij corresponding to pair-copula Ci,j is calculated as:

dij := maxij · − logb(pij(y)) := sodij · ηt−1 · − logb(pij(y))

Influence of truncation. An important hyper-parameter of our model is the degree of precision to
which the dependency structure is to be approximated. This is controlled via the truncation level T
of the vine copula in equation 4. With each additional tree more feature interactions are captured. If
the vine copula fit is close to the ground truth, then adding more trees increases accuracy by reducing
the number of false negatives, as more aspects of the total dependence are considered, which could
potentially be violated. Yet in practice a low level of truncation is advisable: Often, the fit is not
perfect and accumulating errors in higher trees can result in the algorithm becoming less accurate.
We illustrate this aspect with a theoretical example in Section 6.1. We also provide a statistical
analysis concerning this trade-off in the last paragraph of Section A.1 in the Appendix.

Non-continuous features. Some datasets have features that are either discrete or have probability
mass significantly greater than zero for some realisations, while the values of a second set are re-
alised only once. The theory described in Section 3 is not directly applicable in those cases. To get
around this problem, we take advantage of the helpful property that the outlier score in equation 5
is calculated as the average of the feature outlier scores. We therefore calculate the score, as in
equation 5, solely for the continuous features. For the non-continuous features, we only calculate
a marginal outlier score in a manner analogous to that of continuous features, with further details
provided in Appendix A.4. The final outlier score is determined as the average of all feature scores.

Complexity Analysis. Let d be the number of features, n the sample size, k the grid size, and T the
truncation level. The complexity to calculate an outlier score for a new point is O(f1(k) ·d ·(T+1)),
where f1(k) = O(k). The training complexity comprises fitting the kernel estimator and the vine
copula as well as calculation of the scores of the training sample, leading to a training complexity
of: O((f2(n) + f3(n, k)) · d · (T + 1)) with f2(n) = O(n) and f3(n, k) = O((n + k) · log(k)).
For detailed information about training and inference times on different datasets, we refer to the
Appendix D.2.
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5 EXPLAINABILITY AND FEATURE ATTRIBUTION

One of the main advantages of our approach is its high level of explainability. VC-BOD offers the
following procedure to analyse a new observation:

1. Decision if a new observation is to be classified as an outlier, based on a comprehensible
criterion.

2. If an observation is classified as an outlier: Identification of those features that are decisive
for this classification.

3. For each decisive feature: Distinction whether it was flagged because it does not fit with the
learned marginal distribution or because of the way it interacts with other features. (Only
for truncation level T ≥ 1)

VC-BOD is trained based on a sample of ’normal’ observations and a confidence level τ ∈ (0; 1),
e.g. τ = 0.95, is set for the analysis.

For each new observation obs, the outlier score s(obs) is calculated according to equation 5. Next,
determine the quantile q(obs) of this score compared to those of the training sample, i.e. determine
the fraction of the training scores smaller than s(obs). If q(obs) exceeds τ , then obs is classified as
an outlier.

If the observation is identified as an outlier, it can be assessed for each feature i ∈ {1, . . . , d} whether
it plays a significant role in the classification. To do so, determine the quantile qi(obs) of the feature
score si(obs) from equation 5 amongst the i-th feature scores of the sample. If qi(obs) > τ , feature
i contributes significantly to the observation being classified as an outlier. If no feature crosses
the quantile threshold, then the observation is anomalous because of the aggregated influence of all
features.

For each of the significant features it can be decided why it was flagged. Determine the quantile
qmi

(obs) of the i-th marginal outlier score mi amongst the corresponding values of the training
sample. If qmi

(obs) > τ , then the i-th feature of obs does not fit with the learned marginal distri-
butions. Else, if qmi

(obs) ≤ τ , the feature is considered anomalous as it violates both the marginal
distribution and the established dependence with other features. However, since the marginal vio-
lation alone did not trigger the quantile threshold, the violation of the learned dependence structure
can be regarded as significant.

This level of feature attribution redefines the current standard in outlier detection, offering valuable
insights that can greatly benefit a wide range of practical applications. In Appendix B.1, we validate
our attribution framework through a theoretical experiment. We also present several plots in Ap-
pendix B.2 that provide a clear understanding of why observations are labeled as outliers. In Section
B.3, we demonstrate the attribution framework using the ’wine’ dataset, which is also part of the
empirical study presented in the second part of Section 6.

6 EXPERIMENTS

We first examine the impact of the truncation level on VC-BOD’s detection capabilities, followed
by an extensive empirical study to evaluate its performance.

6.1 INFLUENCE OF TRUNCATION

To illustrate how the truncation level can influence the resulting outlier detection model, consider
the distribution displayed in Figure 2. This distribution is detailed in Appendix C.1. If the truncation
level is chosen as T = 0, no vine copula is fitted and only the marginal distributions are regarded.
For T = 1 the first tree is fitted, which, in the case displayed in Figure 2, connects features one
and two (2(a)) and features two and three (2(b)), since the dependence between those pairs is more
pronounced than between features one and three (2(c)). For T = 2 the whole vine is fitted and, in
addition to the first tree, the second tree connects features one and three, given feature two. This
conditional distribution does not correspond exactly to the unconditional situation displayed in 2(c),
but is very similar. We train the outlier detector in each case based on the same sample. In the first
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(c) 1st and 3rd feature

Figure 2: Pair-density plots of a three-dimensional distribution where the first and the second feature
2(a), as well as the second and third feature 2(b), are positively correlated, but the first and the third
feature 2(c) are negatively correlated. All three marginal distributions follow the standard normal
distribution. The blue point (+) is in-distribution, the red point (◦) is out-of-distribution.

two cases it is not possible to separate the points, as for T = 0 and T = 1 the red point (◦) and the blue
point (+) receive almost identical scores. For T = 2 the score of the blue point (+) is s= 0.18, which
is in the 93rd percentile compared to the scores of the training data. The score for the red point (◦)
is s= 0.36, which exceeds all training scores, falling into the 100th percentile. Only by considering
the full dependency structure, the points can be effectively separated and correctly classified.

6.2 EMPIRICAL EVALUATION

(a) Rank (↓) (b) F1-score (↑)

Figure 3: Benchmarking VC-BOD. We evaluate three variants of VC-BOD at truncation levels 0,
1, and 3, referred to as T0, T1, and T3, respectively. Following Thimonier et al. (2024), average
performance over 40 seeds across 31 data-sets was computed. Figure 3(b) illustrates the average F1
score, where a higher average score is better. Figure 3(a) displays the average rank based on the mean
F1-score, where a lower average rank is better. Detailed metrics are provided in the Appendix D,
see Table 4 and Table 5.

We evaluate three variants of VC-BOD: VC-BOD T0, where we only consider the marginals. VC-
BOD T1, where the truncation level is set to one and VC-BOD T3, where the truncation level is set
to three. We conduct an empirical evaluation following the well-established experimental setup used
in Shenkar & Wolf (2022); Thimonier et al. (2024); Bergman & Hoshen (2020); Zong et al. (2018),
which can be stated as follows: Denote by N , A the sets of normal and anomalous observations.
Training and test set are chosen as: Ntrain ⊂ N , with |Ntrain| = |N |/2 and Vtest = (N\Ntrain ∪ A).
For each observation of the test set an outlier score is calculated using the VC-BOD variants T0,
T1 and T3, each trained on Ntrain. Observations are flagged as outliers if their score surpasses a
threshold, which is set such that the total number of flagged anomalies matches the cardinality of A.
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Following Shenkar & Wolf (2022); Thimonier et al. (2024), we benchmark our model against five
widely-used non-deep learning models. Specifically, we include KNN (Ramaswamy et al., 2000)
from the distance-based family, IForest (Liu et al., 2008) and PIDForest (Hariri et al., 2021; Guha
et al., 2016) from the family of discriminatory models, and COPOD (Li et al., 2020), from the
family of distribution based methods. Additionally, we compare our model against several deep
learning models, including GOAD (Bergman & Hoshen, 2020), NeuTraL-AD (Qiu et al., 2021), the
contrastive approach InterCont. proposed by Shenkar & Wolf (2022), and the transformer-based
models Transformer (Vaswani et al., 2017) and NPT-AD (Thimonier et al., 2024). We excluded
DROCC (Goyal et al., 2020) from the set of outlier detection methods because it achieves subpar
performance and fails to yield any results in approximately one-third of the considered datasets.

We evaluate performance using the F1 score and the average rank. Additional results, based on the
AUC, are provided in Table 6 in Appendix D. All referenced metrics were obtained from Thimonier
et al. (2024).

Datasets. We use a similar set of benchmark datasets as Shenkar & Wolf (2022); Thimonier et al.
(2024). In total 31 datasets are considered, including 28 multi-dimensional point datasets sourced
from the “Outlier Detection DataSets” (ODDS) repository1. Following Thimonier et al. (2024) the
datasets ’Heart’ and ’Yeast’ are excluded and the two commonly-used datasets ’Arrhythmia’ and
’Thyroid’, as well as the three real-world datasets: ’Fraud’, ’Campaign’, and ’Backdoor’, obtained
from Han et al. (2022) are included. We provide a detailed overview of the dataset characteristics in
Table 2, see Appendix C.2. Due to hardware constraints VC-BOD was trained using only 20% of
the available training data for the datasets ’Fraud’ and ’Mullcross’.

Results. We begin by presenting initial observations based on the average F1 score and the average
rank to provide an overview of the model performances. In the second step, we employ a statistical
significance test to assess whether the observed differences in the average rank between models are
statistically meaningful.

As shown in Figure 3(a), VC-BOD T3 achieves lowest average rank among all classical models
and third lowest average rank among all models, surpassed only by the latest transformer-based
models InterCont. and NPT-AD. This shows the notable generalization capabilities of VC-BOD
T3, demonstrating its effectiveness even relative to the best MLP-based models. This achievement
is significant, especially since our method provides a closed-form interpretation of results, unlike
MLPs, which suffer from issues concerning explainability and feature attribution.

Figure 3(b) also substantiates our theoretical insights from Section 6.1, that increasing tree depth
enhances performance and generalization across various datasets. This is evidenced by an improve-
ment of the F1 score from 57.6 to 58.2 and an improvement in overall mean rank from 5.2 to 4.7.
This is further highlighted in Table 3 in Appendix D. When evaluating the average F1 score, dis-
played in Figure 3(b), VC-BOD T3 and VC-BOD T1 rank as state of the art methods, trailing only
behind KNN, InterCont. and NPT-AD. A detailed overview of all metrics is provided in the Ap-
pendix D, see Table 4 and Table 5.

Notably, even the marginal-only variant VC-BOD T0 displays competitive performance with a mean
F1-score of 52.8 and a better average rank than the well-established classical method IForest and the
MLP models GOAD, NeuTraL-AD.

To validate the ranking of the evaluated methods, as illustrated in Figure 3(a), we conducted a
Friedman-Nemenyi test to determine statistically significant differences, as detailed in Campos et al.
(2016); Liu et al. (2019). Appendix D.1 presents the results, showing that VC-BOD outperforms sev-
eral baseline models, including COPOD, PIDForest, RRCF, and NeuTraL. Additionally, our analysis
indicates no statistically significant difference between VC-BOD and KNN, nor between VC-BOD
and leading deep learning approaches such as NPT-AD. These findings position VC-BOD at the
forefront of performance, complemented by its provision of one of the most advanced explainability
frameworks available.

1http://odds.cs.stonybrook.edu/
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7 DISCUSSION

The main limitations of VC-BOD are due to its usage of vine copulas to capture dependence. In
situations with high feature dimension and simultaneously high sample size, fitting the vine copula
leads to long run-times for model training. Inference remains fast, and the margin-only approach
does not suffer from these complexity issues. Notably, all vine copula computations currently use
multi-threaded C++ on CPU cores, and training time could likely be reduced with GPU utilization.

By laying the foundation for highly explainable outlier detection, our work invites future research
to adapt our methodology to unsupervised outlier detection. This requires adjustments since VC-
BOD relies on kernel methods which reflect the training data very accurately. While effective in
semi-supervised settings, where the model is trained on uncontaminated data, this can become more
problematic in unsupervised settings, as the proportion of outliers in the training data increases.

In this work, we introduced Vine Copula-Based Outlier Detection (VC-BOD), significantly advanc-
ing the field of outlier detection by providing enhanced explainability. Our empirical evaluations
demonstrate that VC-BOD achieves state-of-the-art detection capabilities. By incorporating both
marginal and dependence-related information into a closed-form equation, VC-BOD offers inter-
pretability in complex, potentially high-dimensional settings - a crucial advantage in domains re-
quiring transparent decision-making. In conclusion, VC-BOD demonstrates the continuing value of
probabilistic approaches in outlier detection, providing a powerful and highly interpretable alterna-
tive to deep-learning based models.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our work through the use of a deterministic algorithm, the code
for which will be made publicly available. This code is designed to run efficiently on standard
laptops without the need for GPUs. Additionally, our empirical evaluations are conducted using
exclusively datasets that are publicly accessible. This approach guarantees that our findings can be
independently verified and replicated.
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STRUCTURE OF THE APPENDIX

The structure of the appendix is based on the order of the chapters in the main text. In Section A we
give a statistical view on VC-BOD. We further provide an algorithmic implementation of VC-BOD.
In Section B we focus on the explainability of VC-BOD. We go through the procedure outlined in
the paper using a synthetic dataset as an example and also present diagnostic plots that allow for
a clear understanding of why observations are classified as outliers. In Section C, we first provide
more information about the synthetic and empirical datasets used in our experiments, followed by
Section D, where we supply additional material regarding the empirical evaluation of VC-BOD.

A METHOD

This section offers a comprehensive overview of VC-BOD. In the first Subsection, we provide a
theoretical justification for VC-BOD by framing it within the context of statistical hypothesis testing.
In Subsection A.2, we provide a detailed overview of the algorithmic implementation of VC-BOD.
In Subsection A.3, we define the strength-of-dependence parameter sodij , which was introduced in
the main text. Subsection A.4 details calculating the marginal scores mi for non-continuous features.

A.1 STATISTICAL VIEW OF VC-BOD

In this section, we analyze VC-BOD from a statistical standpoint. First, we explicitly outline the
assumptions underlying the method. Next, we conceptualize VC-BOD as a statistical test, establish-
ing its theoretical framework. Finally, we explore the trade-off between accuracy and the increasing
complexity introduced by a growing truncation level T .

Assumptions. In the context of VC-BOD, outlier detection is approached as an out-of-distribution
detection task, a common strategy in distribution-based outlier detection. This method aims to
estimate the true underlying distribution based on a given sample and then determine whether a new
data point is unlikely under the inferred distribution. The following assumptions are made:

(A1) The training sample consists of i.i.d. realizations from an unknown distribution.

(A2) The unknown distribution allows for a vine copula specification, which can be determined
using Dissmann’s algorithm with Gaussian kernels for the marginals and Gaussian kernel
copulas for the pair-copulas, where:

(A2-1) The marginal distributions are correctly specified.
(A2-2) The pair-copulas in the trees Ti with i = 2, . . . , T are independent of the conditioning

variables.
(A2-3) The pair-copulas in the trees Ti with i = 1, . . . , T are correctly specified.

Assumption (A1) ensures that the underlying distribution, representing the data-generating process,
can be effectively learned from the sample. The additional assumptions, grouped under (A2), per-
tain to the distributional properties of the underlying distribution. Since VC-BOD employs kernel
estimators for both the marginal distributions and the pair copulas of the vine copula, explicitly
detailing all assumptions becomes cumbersome. Specifically, (A2-1) assumes that each marginal
distribution can be expressed as a mixture of (truncated) Gaussian kernels. Meanwhile, (A2-2) rep-
resents the simplifying assumption that all pair copulas from tree T2 onward are independent of the
conditioning variable(s), meaning:

ci,j;di,j
(F (ui | di,j), F (uj | di,j) ; udi,j

) = ci,j(F (ui | di,j), F (uj | di,j) ) ∀(ui, uj) ∈ [0, 1]2

. (A2-3) assumes that all pair-copulas Ci,j are mixtures of a number of Gaussian kernels, i.e. their
density is of the following form:

ci,j(u, v) =
1

n

n∑
k=1

N
(
Φ−1(u),Φ−1(v) | Φ−1(uk),Φ

−1(vk),Σ
)

ϕ
(
Φ−1(u)

)
ϕ
(
Φ−1(v)

)
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where N(·, · | ν1, ν2,Σ) denotes a bivariate Gaussian density with mean vector (ν1, ν2) and co-
variance matrix Σ = n−1/3 Cor(Φ−1(U),Φ−1(V )). Further ϕ and Φ−1 respectively denote the
density and quantile function of the standard normal distribution, see Nagler & Czado (2016) for
more details.

VC-BOD interpreted as a statistical test. VC-BOD, as an outlier-detection method to evaluate
a single new observation in the context of a given sample, can be interpreted as a statistical test.
Since an outlier is defined as a point that lies outside the distribution, the null hypothesis asserts that
the new observation originates from the same data-generating process as the training data sample.
Conversely, the alternative hypothesis posits that the observation is out-of-distribution and thus an
outlier. Accordingly, the hypothesis pair underlying VC-BOD is defined as follows:

H0 : new observation stems from underlying distribution
H1 : ¬H0 : new observation is an outlier

Using a truncated vine copula (see equation 4 in the main text), we gain access to all univariate
marginal distributions as well as specific bivariate (conditional) components of the overall distribu-
tion, represented by the pair copulas of the vine copula. Let us assume there are N univariate and
two-dimensional distributions in total.

Under the above null hypothesis, it follows that the new observation matches with all lower-
dimensional aspects of the whole distribution:

H0 −→ {H(1)
0 , . . . ,H

(N)
0 }

where H
(k)
0 is the null hypothesis that the new observation matches the k-th. aspect of the whole

distribution, which is either a marginal or a (conditional) bivariate distribution, linking two variables
(conditional on other variables).

If there is sufficient evidence that the individual H(k)
0 ’s on the right-hand side of the implication

above are not simultaneously true, then the global H0 can be rejected, and the new observation is
declared an outlier. Thus, VC-BOD can be viewed as a multiple testing procedure, where the joint
validity of the individual null hypotheses H(k)

0 serves as a surrogate for the global H0 that the new
observation is not an outlier.

To test each individual null hypothesis H(k)
0 , we calculate the corresponding quantity pi(y) or pij(y)

as described in the main text. Given the assumptions and under H
(k)
0 , the quantity is uniformly

distributed on [0, 1] and represents a p-value pk for H(k)
0 .

To motivate the general functional form of the outlier score in VC-BOD, we begin by focusing on the
aggregation of individual p-values p1, . . . , pN into a single meta-statistic. We draw inspiration from
Fisher’s combined probability test, a well-established method for aggregating multiple p-values into
a unified measure of significance:

sF = 2 ·
N∑
i=1

−1 · log(pi)

If the individual p-values are independent, then, given that the individual null hypotheses are simul-
taneously true, sF follows a chi-square distribution with df = 2 ·N , see Littell & Folks (1971).

For our task of explainable outlier detection we scale the p-values corresponding to pair-copulas
and group p-values related to the same variable to obtain the form of the outlier score presented in
the main text in equation 5. This transformation complicates the distribution of the test statistic.
A more severe problem, however, is that assuming the individual p-values to be independent is not
reasonable. As a result, the distribution under H0 is not known. We, therefore, work with the
empirical distribution, which is obtained by calculating the values of the test statistic of the sample.
Given the assumptions (A1) and (A2), the empirical distribution can be used as a reliable estimate
for the unknown true distribution.

The criterion for identifying an outlier, presented in the first step of the procedure laid out in Section
5 of the main text, is, given the assumptions (A1) and (A2), an empirical approximation of the p-
value to test a surrogate version of the global H0. If the p-value is deemed too small, the global H0
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is rejected, and the observation is declared an outlier. However, if the p-value is above the critical
threshold, the observation might still be an outlier; see the discussion in the following paragraph.

Trade-off between accuracy and growing set of assumptions. If it is established that a new
observation violates an aspect of the overall distribution, then this is a sufficient condition that the
observation is out-of-distribution also in the context of the whole distribution. An observation may
violate an aspect captured in a later tree of the vine copula while matching every aspect captured in
the lower trees. An example of this is provided in Section 6.1 of the main text.

Therefore, adding more trees, i.e., working with a larger truncation level T , can improve accuracy
by reducing the number of false negatives, i.e., anomalous observations that are not identified as
outliers. This is because more sufficient conditions for the observation to be an outlier are checked.

However, by increasing the truncation level T , the assumptions made in (A2) become more restric-
tive. Especially the simplifying assumption (A2-2) is often inappropriate in practice (Acar et al.,
2012; Spanhel & Kurz, 2019). Note that the variants VC-BOD T0 and VC-BOD T1, where the
truncation level is set to T = 0 and T = 1 respectively, do not require (A2-2). Another problem that
comes into play when considering more aspects of the total distribution is that the combined test
statistic loses power; see Shaffer (1995).

To achieve a good balance, we recommend using a relatively low level of truncation. The vine
copula is fitted iteratively, identifying the (conditional) bivariate distributions with the strongest de-
pendencies at each step, indicating that they are well-suited for out-of-distribution detection. For
this reason, the truncated vine copula serves as a useful tool for identifying those feature mappings
that are most appropriate for outlier detection. In the context of VC-BOD, the truncated vine copula
should therefore be regarded primarily as a tool for feature extraction, rather than as an approxima-
tion to the entire distribution.

A.2 ALGORITHMIC IMPLEMENTATION OF VC-BOD

Here we provide an algorithmic description of the training, see Algorithm 1, and inference phase,
see Algorithm 2, of VC-BOD.

Algorithm 1: In the first stage, we address the feature distributions by distinguishing between contin-
uous and non-continuous features. In both cases, we store information about the feature distributions
to compute outlier scores later. In the second stage, we fit a vine copula to the transformed continu-
ous features. For each of its pair-copulas, we calculate the factor maxij and, if the pair-copula does
not exhibit significant dependence, we exclude it from further considerations. Finally, we calculate
the scores for the training sample.

References to detailed explanations in the main text correspond to the first three subsections of
Section 4. The calculations of the density grids (lines 6 and 25) and individual outlier scores (lines 7
and 26), as well as the final outlier scores (line 32), are thoroughly explained there. The handling of
non-continuous features (lines 10–14) is discussed in Appendix A.4. The definition of the strength-
of-dependence parameter sodij (line 22) is provided in Appendix A.3.

Algorithm 2: The outputs from the first algorithmic stage are used as input alongside the new ob-
servations. The algorithm iterates over the test data, computing the marginal scores and dependence
scores for each test instance. Based on these individual scores, the final outlier score for each in-
stance is calculated according to equation 5 in the main text. By comparing these scores against the
τ -quantile of the training scores, we assign a label to each test instance, where ’1’ indicates that the
observation is declared an outlier. The calculations of the individual outlier scores (lines 5 and 12)
and the final outlier score (line 14) are explained in detail in the main text.

We make the following choices for the involved hyper-parameters. The number of total grid-points,
both for the marginal scores and the dependence scores, is chosen as k = 10 000. The discount
factor, which appears in the calculation of the dependence scores, is chosen as η = 0.75.

A.3 STRENGTH-OF-DEPENDENCE PARAMETER

In this subsection we give more details on the ’strength-of-dependence’ parameter sodij which is
calculated for each pair-copula Ci,j to quantify the amount of dependence it captures. While there
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Algorithm 1 VC-BOD - Train

Require: Multivariate data-sample X ∈ Rn×d, truncation level T ≤ d− 1, discount factor η
1: Initialize empty list marg info ▷ Container for marginal information
2: for i = 1 to d do ▷ Loop over features
3: Let xi = {X1i, . . . , Xni} be the realisations of feature i
4: if feature i is continuous then ▷ Continuous feature
5: Fit kernel density estimator KDEi to Xi

6: Compute grid zi
7: Calculate marginal training scores: mi = {mi}n1
8: Store KDEi, zi and mi in marg info[i]
9: else ▷ Non-continuous feature

10: Identify points ei in xi that receive substantial empirical probability mass
11: Compute their respective probabilities pi

12: Fit kernel density estimator KDEi to the set non-discrete points (if non-empty)
13: Compute grid zi for non-discrete points (if non-empty)
14: Calculate marginal training scores: mi = {mi}n1
15: Store ei and pi, KDEi and zi (if defined), mi in marg info[i]
16: end if
17: end for
18: Transform continuous features to domain of copula: Uc = (FKDEc1

(xc1), . . . , FKDEcd
(xcd))

19: Fit vine copula vc with truncation level T to Uc

20: Initialize empty list dep info ▷ Container for dependence information
21: for Cij in {pair-copulas of vc} do ▷ Loop over pair-copulas
22: Calculate sodij-parameter for copula Cij

23: Calculate maxij = sodij · ηtree(Cij)−1

24: if maxij > 0.01 then ▷ Skip insignificant pair-copulas
25: Compute grid zij
26: Calculate dependence training scores: dij = {dij}n1
27: end if
28: Store maxij and zij ,dij (if defined) in dep info[i, j]
29: end for
30: Initialize empty vector train scores ▷ Container for scores of training sample
31: for i = 1 to n do
32: train scores[i] = s(i) ▷ Calculate outlier score of training observation i
33: end for

return [marg info, dep info, train scores] ▷ Return relevant info for VC-BOD - Test

18
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Algorithm 2 VC-BOD - Test

Require: Multivariate test data-sample X ∈ Rn′×d, threshold τ , output of VC-BOD - Train
1: Determine τ -quantile qτ of outlier scores of the training data
2: scores, labels = (0, . . . , 0) ∈ Rn′

▷ Initialize vectors containing scores and labels
3: for k = 1 to n′ do ▷ Loop over new observations
4: for i = 1 to d do ▷ Loop over features
5: Calculate marginal outlier score mk

i of observation k
6: end for
7: uk = (FKDEc1

(uk
c1), . . . , FKDEcd

(uk
cd
)) ▷ Transform continuous features of observation k

8: for Cij in {pair-copulas of vc} do ▷ Loop over pair-copulas
9: if maxij < 0.01 then

10: continue ▷ Skip insignificant pair-copulas
11: end if
12: Calculate dependence outlier score dkij of observation k
13: end for
14: scores[k] = s(k) ▷ Calculate outlier score of test observation k
15: if s(k) > qτ then ▷ Assign labels based on threshold
16: labels[k] = 1
17: end if
18: end for

return [scores, labels] ▷ Return final outlier scores and labels

already exist several concepts, like the Pearson correlation, Spearman’s rho, Kendall’s tau or Ho-
effding’s D, we found that none of them were ideal for the purpose of outlier detection. This is
because with outlier detection a single new observation has to be evaluated in the context of the cop-
ula. Most relevant for this task is the existence of low-density regions, as a new observation is likely
to be an outlier, if it falls into such a region. Therefore we derive a simple criterion, which aims to
evaluate the maximal height difference of the bivariate copula density. The rationale is as follows:
If the copula in question is the independence copula, where it is impossible to detect an anomaly,
than the density is constant and equal to one everywhere and the maximal height difference is zero.
If, on the other hand, there are low-density regions, then there must also exist a region at an average
height greater than one, as the density over the whole unit hyper-cube integrates to one. The height
difference is then greater than zero. For sufficiently smooth density surfaces, which are given with
appropriately specified kernel copulas, the following holds. The more wide-reaching and ’lower’ the
low-density region, the more wide-reaching and ’higher’ the density of another region and the larger
the height difference. We therefore use the maximal height difference as a proxy for the copula’s
suitability to detect outliers.

To calculate the maximal height difference of the kernel copula Ci,j , evaluate its density at the grid
points zkl = (zk, zl), where {z1, . . . , zn} is an equidistant grid on [0, 1]. The resulting density
values are sorted in ascending fashion: {dij1 , . . . , d

ij
n2}. Next, we calculate:

max-diffij := p ·
( n2∑
k=⌊(1−p)·n2⌋

dijk −
⌈p·n2⌉∑
k=1

dijk
)

The strength-of-dependence parameter sodij corresponding to copula Ci,j is defined as:

sodij := min
(
max

(
max-diffij − diffmin

diffmax − diffmin

, 0

)
, 1
)

The strength-of-dependence is therefore equal to zero for max-diffij ≤ diffmin, equal to one for
max-diffij ≥ diffmax and scales linearly in-between.

We made the following choices: n = 100, p = 0.05, diffmin = 1, diffmax = 4.

A.4 NON-CONTINUOUS FEATURES

Here, we discuss the calculation of the marginal outlier scores mi of the non-continuous features.
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To identify non-continuous features, we set a threshold for the probability mass of a single real-
isation. If it is exceeded by at least one realisation, we say that the corresponding feature is non-
continuous. We used a threshold of τ = 2/3. Using kernel copulas as pair copulas in the vine copula
construction allows us to select this comparatively large value.

For non-continuous features, we differentiate two cases: Features that are discrete and features that
have probability mass significantly greater than zero for some realisations, while the values of a
second set are realized only once.

For the first case, we calculate pi as:

pi := 1−
( ∑
xj :f(xj)>f(y)

f(xj)
)

where f denotes the empirical probability function of the training sample.

For the second case, we determine the vector zi for the continuous realisations and the empirical
distribution function fd for the discrete realisations and calculate:

pi(y) =

{
1−

(∑
xjdiscrete andfd(xj)>fd(y)

fd(xj)
)

if y in discrete set,
(1−

∑
xjdiscrete fd(xj)) · 1

k

∑k
j=1 1fXi

(zj)≤fXi
(yi) else.

In both cases, the marginal score of feature i is defined as:

mi := − logb(pi)

where the basis b is chosen such that a realisation that was observed only once in training receives a
score of 0.99. If pi = 0, then mi is manually set to one.
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B EXPLAINABILITY AND FEATURE ATTRIBUTION

B.1 VALIDATION OF THE FEATURE ATTRIBUTION FRAMEWORK
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(a) 1st and 2nd feature
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(b) 3rd and 4th feature

Figure 4: Pair-density plots of a four-dimensional distribution where the first and the second feature
4(a) are related such that simultaneous small realisations are likely and the third and fourth feature
4(b), are related such that simultaneous large realisations are likely. All four marginal distributions
follow the standard normal distribution. The indicated point constitutes an outlier. The features
responsible for this classification are features 1, 2 and 4. Features 1 and 2 break with the dependency
structure, while feature 4 breaks with its marginal distribution.

In this section, we expand on our explainability framework of Section 5 of the main text. We will
do so by reference to a specific four-dimensional distribution which is depicted in Figure 4. This
distribution is characterized by a block-dependence structure, where features 1 and 2 and features 3
and 4 depend on one another, but there is no dependence between the two blocks. The features of
the first block are defined via a Clayton copula with parameter θ = 1.5. The features of the second
block are defined via a 180-degree rotated Clayton copula with parameter θ = 0.75. All marginal
distributions follow the standard normal distribution. In Figure 4 there is one point indicated, which
is defined as (qn(0.1), qn(0.9), qn(0.95), qn(0.9975))′ = (−1.3, 1.3, 1.6, 2.8)′, where ’qn’ denotes
the quantile function of the standard normal distribution, which is the inverse of its cumulative
distribution function.

We will now go through the steps laid out in Section 5 to analyse the indicated point in the context
of the distribution displayed in Figure 4:

For the first step, we run Algorithm 1, to a sample of the distribution and choose T = 3 as the
truncation level. Next, we use Algorithm 2, to evaluate the indicated point. For our analysis, we set
the confidence level to τ = 0.95. The score of the indicated point is in the 99.9th percentile of the
training scores. Thus the point is identified as an outlier.

Since the indicated point constitutes an outlier, we continue with the second step, where we iden-
tify those features that strongly contribute to this classification. To achieve this, we determine the
quantile of each feature score, si from equation 5, relative to the corresponding feature scores in the
training set. VC-BOD reveals that the quantiles for features 1-4 are: 0.99, 0.99, 0.83, 0.99. There-
fore, features 1,2 and 4 are to be regarded as anomalies, while feature 3 is inconspicuous.

In the third step, we determine if each significant feature breaks with its own univariate marginal
distribution or if it is anomalous because of the way it interacts with other features. For this, we
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determine the quantile of each marginal feature score, mi’s from equation 5, relative to the corre-
sponding marginal feature scores in the training set. VC-BOD reveals that the quantiles for features
1, 2, and 4 of the indicated point are: 0.80, 0.80 and 0.99. We can conclude that the first two features
break with the dependency structure, as 0.8 < 0.95, and the fourth feature breaks with its marginal
distribution, as 0.99 > 0.95.

Note that the marginal quantiles of the scores are in line with the definition of the indicated point. For
example, the 1st and 2nd features of the point are respectively chosen to be in the 10th percentile and
90th percentile of the standard normal distribution. As this distribution is uni-modal and symmetric
around its mean, this means that 20% of all possible realisations are less likely than the observed
features. This circumstance is reflected in the quantiles of the marginal outlier scores being 0.8 in
both cases.

Further, we can infer from Figure 4 that the attribution of the significant features is correct: Fea-
tures 1 and 2 of the distribution are related such that simultaneous small realisations are likely, see
Figure 4(a), but the 1st feature of the indicated point is small, while its 2nd feature is big, thereby
breaking with the true dependence. The marginal distributions are not violated, as the points are
in the 10th and 90th percentile, respectively, which is not too extreme. With feature 4, on the other
hand, the situation is reversed, and it is anomalous because it does not fit with the true marginal
distribution. The dependence is not violated since it is only related to feature 3. This dependence is
such that it is likely that features 3 and 4 simultaneously have larger realisations, which is the case
with the indicated point. It can be seen in Figure 4(b) that the indicated point is out-of-distribution
simply because its 4th feature is too large.

B.2 DIAGNOSTIC PLOTS
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Figure 5: Diagnostic plots for explainability and feature attribution, applied to the situation of Fig-
ure 4, assess the indicated point in relation to the depicted distribution: 5(a) shows how much each
feature of the indicated point violates the learned distribution of the training sample. 5(b) illustrates
violations of the respective learned marginal distributions. Lastly, 5(c) depicts violations of the in-
dividual pair-copulas. The 95% quantile is indicated in each plot by the dashed red line.

For a more intuitive understanding of why an observation is labeled as an outlier, we provide several
diagnostic plots, depicted in Figure 5, by reference to the situation of Figure 4. The ’Feature attri-
bution plot’ 5(a) shows the quantiles of the feature scores relative to the training data. Observe that
features 1,2 and 4 exceed the threshold of the 95%-quantile, indicated by the red dashed line. The
’Marginal distribution plot’ 5(b) shows the quantiles of the marginal scores mi relative to the train-
ing data. As only the 4th feature exceeds the threshold, it can be inferred that the first two features
are anomalous because they do not fit with the learned true structure. The 4th feature is anomalous
because it does not fit with its marginal distribution.

Additionally, the ’Pair-dependence plot’ shows how much each individual aspect of the dependence,
as captured by each pair-copula, was violated. The maximal height of each bar is scaled by the
parameter maxij , which quantifies the suitability of the corresponding copula Ci,j to identify a new
observation as an outlier, measured on a scale from 0 to 1. Only two bars are shown in Figure 5(c),
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they correspond to the dependence between the 1st and 2nd feature and between the 3rd and 4th fea-
ture. VC-BOD correctly identifies those as the only relevant dependencies. It does so even though
the truncation level was set to T = 3. Furthermore, it is evident that the point deviates from the es-
tablished dependency structure between the 1st and 2nd features while aligning with the dependence
observed between the 3rd and 4th feature. Additionally, the maximum heights of the bars are logical,
as the dependence between the 1st and 2nd feature is more pronounced, making it more effective
for outlier detection. This plot is particularly useful in higher dimensions to quickly identify pairs
of features that behave in unusual ways, regardless of their marginal distributions.

B.3 EMPIRICAL EVALUATION OF THE EXPLAINABILITY FRAMEWORK

In this subsection, we shift focus from theoretical examples to assessing the empirical capabilities
of the explainability framework by applying it to a real-world dataset. Specifically, we use the wine
dataset, which is also included in the benchmark dataset collection which was used for the empirical
study in Section 6. The wine dataset comprises n = 129 observations, of which 119 are normal and
10 are labeled as outliers. It contains d = 13 variables, which are summarized in Table 1.

Table 1: Wine dataset variable descriptions.

#Variable Variable Name Short Description

1 Alcohol Alcohol content of the wine
2 Malicacid Malic acid concentration
3 Ash Ash content in the wine
4 Alcalinity of ash Alkalinity of ash in the wine
5 Magnesium Magnesium content
6 Total phenols Total phenol content
7 Flavanoids Flavonoid phenol content
8 Nonflavanoid phenols Non-flavonoid phenol content
9 Proanthocyanins Proanthocyanin content
10 Color intensity Intensity of the wine’s color
11 Hue Hue of the wine
12 OD280 OD315 of diluted wines Optical density ratio at 280/315 nm
13 Proline Proline amino acid concentration

For this experiment, we train VC-BOD with a truncation level of T = 3 (VC-BOD T3) using the full
set of normal observations as training data and then evaluate its performance on the outliers. The
results show that 7 out of 10 outliers exceed the quantile threshold of τ = 0.95, correctly identifying
them as anomalies. The remaining three outliers are ranked in the 85th, 91st, and 93rd percentiles
relative to the scores of the training data. Although these points fall below the suggested threshold
of τ = 0.95, their high percentile rankings further demonstrate the effectiveness of VC-BOD.

Figure 6 presents the diagnostic plots applied to one of the outliers correctly identified using τ =
0.95. Refer to Subsection B.2 for a detailed explanation of the diagnostic plots’ functionality. The
feature attribution plot 6(a) reveals that features 1, 10, and 13 are the most influential in classifying
this specific point. Combining this with insights from the marginal distribution plot 6(b) and the
pair-dependence plot 6(c), we observe that features 13 and 1 primarily deviate from their marginal
distributions, while feature 10 exhibits significant violations in its dependence relationships with
other features. This is particularly evident from bars 1, 4, and 6 in Figure 6(c).

This example demonstrates the effectiveness of VC-BOD in providing a fast and intuitive under-
standing of why points are classified as outliers, even in higher-dimensional feature spaces. Addi-
tionally, the results underscore the potential importance of incorporating dependencies captured in
higher-order trees of the vine copula, as evidenced by the presence of bar 6 in Figure 6(c).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1 10 13 12 5 11 3 7
0

0.25

0.5

0.75

1
0.95

(a) Feature attribution plot

13 1 7 5 6 9 3 10
0

0.25

0.5

0.75

1
0.95

(b) Marginal distribution plot

5,10 9,8 1,8 8,10 2,9 6,10|5 6,5 3,2
0

0.25

0.5

0.75

1

(c) Pair-dependence plot

Figure 6: Diagnostic plots, see Figure 5 for details, applied to a true outlier of the ’wine’ dataset.
Different to Figure 5, each plots shows in descending order the 8 most influential features (or inter-
actions) to keep the plots clear.
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C DATASETS

C.1 SYNTHETIC DATASET

The dataset used in Section 6.1 is constructed as an R-vine, see, e.g., Czado (2019). For this, one
needs to specify the tree structure and pair-copulas for each tree, as well as all marginal distributions.
In the present case, the first tree connects features 1 and 2 and features 2 and 3. In both cases, the
pair-copula is chosen as a Gaussian copula with parameter Θ = 0.4. The second tree connects
features 1 and 3, given feature 2. The connecting pair-copula is a Clayton copula with parameter
Θ = 1.3, rotated by 90 degrees. All three marginal distributions are chosen as the standard normal
distribution.

C.2 EMPIRICAL DATASETS

In Table 2 we provide an overview of the datasets used in our empirical evaluation. Column n
lists the total number of observations, and column d shows the number of features per observation.
Column Outliers provides the number of observations labeled as outliers, and column %Outliers
indicates their percentage relative to the total number of observations.

Table 2: Datasets overview. A ’*’ behind the dataset name indicates that only 20% of the training
data was used during training due to hardware constraints.

Dataset n d Outliers %Outliers

Wine 129 13 10 7.7%
Lympho 148 18 6 4.1%
Glass 214 9 9 4.2%
Vertebral 240 6 30 12.5%
WBC 278 30 21 5.6%
Ecoli 336 7 9 2.6%
Ionosphere 351 33 126 36%
Arrhythmia 452 274 66 15%
BreastW 683 9 239 35%
Pima 768 8 268 35%
Vowels 1456 12 50 3.4%
Letter Recognition 1600 32 100 6.25%
Cardio 1831 21 176 9.6%
Seismic 2584 24 170 6.5%
Musk 3062 166 97 3.2%
Speech 3686 400 61 1.65%
Thyroid 3772 6 93 2.5%
Abalone 4177 9 29 0.69%
Optdigits 5216 64 150 3%
Satimage-2 5803 36 71 1.2%
Satellite 6435 36 2036 32%
Pendigits 6870 16 156 2.27%
Annthyroid 7200 6 534 7.42%
Mnist 7603 100 700 9.2%
Mammography 11183 6 260 2.32%
Shuttle 49097 9 3511 7%
Mulcross* 262144 4 26214 10%
ForestCover 286048 10 2747 0.9%
Campaign 41188 62 4640 11.3%
Fraud* 284807 29 492 0.17%
Backdoor 95329 196 2329 2.44%
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D EMPIRICAL EVALUATION

In this section, we provide a detailed overview of all the results of all the experiments we conducted.
We further provide detailed performance metrics for all considered OD methods, which we obtained
from Thimonier et al. (2024). In Table 3, we display the F1 metrics for our model, in Table 4 for all
classical models and in Table 5 for all MLP-based models. For each method, we provide the total
average F1-score and the standard deviation.

Table 3: F1-score for three variants of VC-BOD at truncation levels 0, 1, and 3, referred to as T0,
T1, and T3, respectively. We highlight the best metric for each dataset in bold.

Dataset VC-BOD T0 VC-BOD T1 VC-BOD T3

Wine 65.75±9.19 68.25±12.02 64.50±12.24
Lympho 90.83±9.82 92.50±8.29 89.17±10.90
Glass 16.67±6.09 15.00±5.30 17.22±6.06
Vertebral 13.83±2.05 14.50±5.80 16.25±4.67
Wbc 70.24±3.32 66.31±3.26 67.98±3.37
Ecoli 45.28±10.36 67.78±11.33 68.33±10.11
Ionosphere 79.70±2.49 88.19±1.05 88.55±1.05
Arrhythmia 62.01±1.71 61.67±1.36 61.59±1.54
Breastw 97.08±0.64 97.10±0.63 97.08±0.62
Pima 66.64±1.21 68.95±1.44 68.56±1.45
Vowels 23.45±2.19 52.35±3.13 56.47±3.34
Letter 17.62±1.77 34.80±1.87 39.38±2.41
Cardio 64.28±3.16 59.77±2.20 60.06±2.63
Seismic 29.41±1.46 27.00±2.05 25.96±1.70
Musk 100.00±0.00 100.00±0.00 100.00±0.00
Speech 4.80±0.43 4.80±0.43 4.80±0.43
Thyroid 78.04±2.22 70.99±2.10 74.87±3.17
Abalone 56.67±0.00 68.58±2.88 66.50±2.88
Optdigit 5.32±0.84 16.98±3.76 16.29±3.68
Satimage 83.10±1.22 93.79±1.40 94.28±1.40
Satellite 75.64±0.56 75.27±0.55 74.11±0.54
Pendigit 41.41±1.15 32.04±1.90 31.39±2.69
Annthyroid 49.28±1.02 47.94±0.94 50.99±1.14
Mnist 17.99±0.80 29.27±1.00 29.05±1.08
Mammo 43.63±1.70 57.06±0.84 54.38±1.47
Shuttle 97.68±0.28 98.44±0.12 98.56±0.15
Mullcr 99.98±0.00 100.00±0.00 100.00±0.00
Forest 23.75±0.42 39.10±0.59 46.85±0.73
Campaign 49.55±0.25 45.76±0.34 47.30±1.02
Fraud 46.44±0.51 57.52±1.22 58.54±1.02
Backdoor 19.62±5.99 33.34±13.68 36.68±15.00

mean 52.76 57.58 58.24
mean std 2.3 3.0 3.2
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Table 4: F1-score (↑) for all classical models. We highlight the best metric for each dataset in bold.

Method COPOD IForest KNN PIDForest RRCF VC-BOD T3

Wine 60.00±4.50 64.00±12.80 94.00±4.90 50.00±6.40 69.00±11.40 64.50±12.24
Lympho 85.00±5.00 71.70±7.60 80.00±11.70 70.00±0.00 36.70±18.00 89.17±10.90
Glass 11.10±0.00 11.10±0.00 11.10±9.70 8.90±6.00 15.60±13.30 17.22±6.06
Vertebral 1.70±1.70 13.00±3.80 10.00±4.50 12.00±5.20 8.00±4.80 16.25±4.67
Wbc 71.40±0.00 70.00±3.70 63.80±2.30 65.70±3.70 54.80±6.10 67.98±3.37
Ecoli 25.60±11.20 58.90±22.20 77.80±3.30 25.60±11.20 28.90±11.30 68.33±10.11
Ionosphere 70.80±1.80 80.80±2.10 88.60±1.60 67.10±3.90 72.00±1.80 88.55±1.05
Arrhythmia 58.20±1.40 60.90±3.30 61.80±2.20 22.70±2.50 50.60±3.30 61.59±1.54
Breastw 96.40±0.60 97.20±0.50 96.00±0.70 70.60±7.60 63.00±1.80 97.08±0.62
Pima 62.30±1.10 69.60±1.20 65.30±1.00 65.90±2.90 55.40±1.70 68.56±1.45
Vowels 4.80±1.00 25.80±4.70 64.40±3.70 23.20±3.20 18.00±4.60 56.47±3.34
Letter 12.90±0.70 15.60±3.30 45.00±2.60 14.20±2.30 17.40±2.20 39.38±2.41
Cardio 65.00±1.40 73.50±4.10 67.60±0.90 43.00±2.50 43.90±2.70 60.06±2.63
Seismic 29.20±1.30 73.90±1.50 30.60±1.40 29.20±1.60 24.10±3.20 25.96±1.70
Musk 49.60±1.20 52.00±15.30 100.00±0.00 35.40±0.00 38.40±6.50 100.00±0.00
Speech 3.30±0.00 4.90±1.90 5.10±1.00 2.00±1.90 3.90±2.80 4.80±0.43
Thyroid 30.80±0.50 78.90±2.70 57.30±1.30 72.00±3.20 31.90±4.70 74.87±3.17
Abalone 50.30±6.40 53.40±1.70 43.40±4.80 58.60±1.60 36.90±6.40 66.50±2.88
Optdigit 3.00±0.30 15.80±4.30 90.00±1.20 22.50±16.80 1.30±0.70 16.29±3.68
Satimage 77.90±0.90 86.50±1.70 93.80±1.20 35.50±0.40 47.90±3.40 94.28±1.40
Satellite 56.70±0.20 69.60±0.50 76.30±0.40 46.90±3.70 55.40±1.30 74.11±0.54
Pendigit 34.90±0.60 52.10±6.40 91.00±1.40 44.60±5.30 16.30±2.60 31.39±2.69
Annthyroid 31.50±0.50 57.30±1.30 37.80±0.60 65.40±2.70 32.10±0.80 50.99±1.14
Mnist 38.50±0.40 51.20±2.50 69.40±0.90 32.60±5.70 33.50±1.70 29.05±1.08
Mammo 53.40±0.90 39.00±3.30 38.80±1.50 28.10±4.30 27.10±1.90 54.38±1.47
Shuttle 96.00±0.00 96.40±0.80 97.30±0.20 70.70±1.00 32.00±2.20 98.56±0.15
Mullcr 66.00±0.10 99.10±0.50 100.00±0.00 67.40±2.10 100.00±0.00 100.00±0.00
Forest 18.20±0.20 11.10±1.60 92.10±0.30 8.10±2.80 9.90±1.50 46.85±0.73
Campaign 49.50±0.10 42.40±1.00 41.60±0.40 42.40±0.20 36.60±0.10 47.30±1.02
Fraud 44.70±0.90 30.30±3.70 60.50±1.50 41.00±0.90 17.10±0.40 58.54±1.02
Backdoor 13.40±0.40 3.80±1.20 88.50±0.10 3.40±0.20 24.50±0.10 36.68±15.00

mean 44.3 52.6 65.8 40.2 35.6 58.2
mean std 1.5 3.9 2.2 3.6 4.0 3.2
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Table 5: F1-score (↑) for the MLP based models. We highlight the best metric for each dataset in
bold.

Method GOAD NeuTraL. Inter.Cont. NPT-AD Transformer VC-BOD T3

Wine 67.00±9.40 78.20±4.50 90.00±6.30 72.50±7.70 23.50±7.90 64.50±12.24
Lympho 68.30±13.00 20.00±18.70 86.70±6.00 94.20±7.90 88.30±7.60 89.17±10.90
Glass 12.70±3.90 9.00±4.40 27.20±10.60 26.20±10.90 14.40±6.10 17.22±6.06
Vertebral 16.30±9.60 3.80±1.20 26.00±7.70 20.30±4.80 12.30±5.20 16.25±4.67
Wbc 66.20±2.90 60.90±5.60 67.60±3.60 67.30±1.70 66.40±3.20 67.98±3.37
Ecoli 61.40±31.70 7.00±7.10 70.00±7.80 77.70±0.10 75.00±9.90 68.33±10.11
Ionosphere 83.40±2.60 90.60±2.40 93.20±1.30 92.70±0.60 88.10±2.80 88.55±1.05
Arrhythmia 52.00±2.30 59.50±2.60 61.80±1.80 60.40±1.40 59.80±2.20 61.59±1.54
Breastw 96.00±0.60 91.80±1.30 96.10±0.70 95.70±0.30 96.70±0.30 97.08±0.62
Pima 66.00±3.10 60.30±1.40 59.10±2.20 68.80±0.60 65.60±2.00 68.56±1.45
Vowels 31.10±4.20 10.00±6.20 90.80±1.60 88.70±1.60 28.70±8.00 56.47±3.34
Letter 20.70±1.70 5.70±0.80 62.80±2.40 71.40±1.90 41.50±6.20 39.38±2.41
Cardio 78.60±2.50 45.50±4.30 71.00±2.40 78.10±0.10 68.80±2.80 60.06±2.63
Seismic 24.10±1.00 11.80±4.30 20.70±1.90 26.20±0.70 19.10±5.70 25.96±1.70
Musk 100.00±0.00 99.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Speech 4.80±2.30 4.70±1.40 5.20±1.20 9.30±0.80 6.80±1.90 4.80±0.43
Thyroid 72.50±2.80 69.40±1.40 76.80±1.20 77.00±0.60 55.50±4.80 74.87±3.17
Abalone 57.60±2.20 53.20±4.00 68.70±2.30 59.70±0.10 42.50±7.80 66.50±2.88
Optdigit 0.30±0.30 16.20±7.30 66.30±10.10 62.00±2.70 61.10±4.70 16.29±3.68
Satimage 90.70±0.70 92.30±1.90 92.40±0.70 94.80±0.80 89.00±4.10 94.28±1.40
Satellite 64.20±0.80 71.60±0.60 73.20±1.60 74.60±0.70 65.60±3.30 74.11±0.54
Pendigit 40.10±5.00 69.80±8.70 82.30±4.50 92.50±1.30 35.40±10.90 31.39±2.69
Annthyroid 50.30±6.30 44.10±2.30 45.40±1.80 57.70±0.60 29.90±1.50 50.99±1.14
Mnist 66.90±1.30 84.80±0.50 85.90±0.00 71.80±0.30 56.70±5.70 29.05±1.08
Mammo 33.70±6.10 19.20±2.40 29.40±1.40 43.60±0.50 17.40±2.20 54.38±1.47
Shuttle 73.50±5.10 97.90±0.20 98.40±0.10 98.20±0.30 85.30±9.80 98.56±0.15
Mullcr 99.70±0.80 96.30±10.50 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Forest 0.10±0.20 51.60±8.20 44.00±4.10 58.00±10.00 21.30±3.10 46.85±0.73
Campaign 16.20±1.80 42.10±1.70 46.80±1.40 49.80±0.30 47.00±1.90 47.30±1.02
Fraud 53.10±10.20 24.30±7.80 57.90±2.80 58.10±3.20 54.30±5.20 58.54±1.02
Backdoor 12.70±2.90 84.40±1.80 86.60±0.10 84.10±0.10 85.80±0.60 36.68±15.00

mean 51.0 50.8 67.2 68.8 54.9 58.2
mean std 4.4 4.0 2.9 2.0 4.3 3.2
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Table 6: Outlier detection AUC-Scores (↑) for T0,T1,T3.

Method VC-BOD T0 VC-BOD T1 VC-BOD T3

Wine 80.02±5.36 81.48±7.01 79.29±7.14
Lympho 95.03±5.33 95.93±4.50 94.13±5.91
Glass 54.69±3.31 53.79±2.88 54.99±3.29
Vertebral 44.61±1.32 45.04±3.73 46.16±3.00
Wbc 83.37±1.86 81.18±1.82 82.11±1.88
Ecoli 71.14±5.46 83.00±5.98 83.30±5.33
Ionosphere 78.53±2.63 87.52±1.11 87.89±1.11
Arrhythmia 74.51±1.15 74.28±0.91 74.23±1.03
Breastw 96.97±0.66 96.99±0.65 96.96±0.65
Pima 65.44±1.25 67.83±1.49 67.43±1.50
Vowels 59.00±1.17 74.48±1.67 76.70±1.80
Letter 53.32±1.00 63.05±1.06 65.65±1.36
Cardio 78.34±1.91 75.61±1.33 75.78±1.59
Seismic 59.73±0.84 58.36±1.17 57.76±0.97
Musk 100.00±0.00 100.00±0.00 100.00±0.00
Speech 50.80±0.22 50.80±0.22 50.80±0.22
Thyroid 88.46±1.16 84.76±1.10 86.80±1.66
Abalone 77.65±0.00 83.79±1.48 82.72±1.49
Optdigit 49.85±0.44 56.03±1.99 55.67±1.95
Satimage 91.34±0.62 96.82±0.72 97.09±0.73
Satellite 76.55±0.54 76.19±0.53 75.07±0.52
Pendigit 69.34±0.60 64.44±1.00 64.10±1.41
Annthyroid 70.58±0.59 69.80±0.54 71.57±0.66
Mnist 50.68±0.48 57.47±0.60 57.33±0.65
Mammo 70.47±0.89 77.51±0.44 76.11±0.77
Shuttle 98.66±0.16 99.10±0.07 99.17±0.08
Mullcr 99.99±0.00 100.00±0.00 100.00±0.00
Forest 61.14±0.21 68.96±0.30 72.91±0.37
Campaign 68.37±0.15 66.00±0.21 66.96±0.64
Fraud 73.13±0.25 78.69±0.61 79.20±0.51
Backdoor 57.80±3.15 65.00±7.18 66.76±7.88

mean 72.56 75.28 75.63
mean std 1.3 1.7 1.8
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D.1 STATISTICAL EVALUATION OF PERFORMANCE

To evaluate if there is a significant difference in the performance of VC-BOD, as indicated by av-
erage rank across the datasets, against benchmark models, we conduct a statistical analysis using
the Friedman test followed by the Nemenyi post-hoc test, as described in Liu et al. (2019); Campos
et al. (2016). The null hypothesis of the Friedman test assumes no significant difference between
algorithms; it is rejected if the p-value is below the chosen significance level, indicating at least two
algorithms differ significantly. The Nemenyi test is used to identify specific pairs with significant
differences.

Our analysis yields several noteworthy observations. The Friedman-Nemenyi test does not confirm
that our method significantly outperforms the KNN algorithm. However, it also reveal that none
of the current state-of-the-art deep learning methods demonstrate statistically significant superiority
over our approach in terms of rank performance. This finding suggests that our method achieves
competitive performance compared to existing state-of-the-art techniques in outlier detection, in-
cluding those based on deep learning.

Table 7 presents the pairwise comparison results among the models based on the Nemenyi test. In
the table, an upward arrow (↑) indicates that the model in the row significantly outperforms the
model in the column at a confidence level of 0.1, while a downward arrow (↓) indicates the opposite.
Double arrows (↑↑ or ↓↓) denote statistical significance at a confidence level 0.05.

Table 7: Comparison of Models Based on Nemenyi Test

COPOD IForest KNN PIDForest RRCF GOAD NeuTraL Inter.Cont. NPT-AD Transformer VC-BOD T0 VC-BOD T1 VC-BOD T3

COPOD - ↓↓ ↓↓ ↓↓ ↓ ↓↓ ↓↓
IForest - ↑ ↑↑ ↓↓
KNN ↑↑ - ↑↑ ↑↑ ↑↑
PIDForest ↓ ↓↓ - ↓↓ ↓↓ ↓↓ ↓↓ ↓↓
RRCF ↓↓ ↓↓ - ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓
GOAD - ↓↓ ↓↓
NeuTraL ↓↓ - ↓↓ ↓↓ ↓↓ ↓↓
Inter.Cont. ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ - ↑
NPT-AD ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ - ↑↑
Transformer ↑↑ ↓ ↓↓ -
VC-BOD T0 ↑ ↑↑ ↑↑ -
VC-BOD T1 ↑↑ ↑↑ ↑↑ ↑↑ -
VC-BOD T3 ↑↑ ↑↑ ↑↑ ↑↑ -
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D.2 COMPUTATIONAL TIME

Table 8: Runtime in seconds for the training and inference time for each dataset. The training and
inference runtimes correspond to the average training and inference times of the model over 40 runs.
Due to hardware constraints, the runtimes for ’Fraud’ and ’Mullcorss’ were determined using only
20% of the total training data and 50% for inference. The results were achieved using 20 CPU cores.

VCBOD T0 VCBOD T1 VCBOD T3
Dataset train inference train inference train inference

Wine 1.55 1.60 3.81 3.20 4.02 3.19
Lympho 1.54 1.57 3.31 2.46 3.30 2.33
Glass 1.93 1.95 4.49 3.89 4.57 3.85
Vertebral 0.36 0.41 1.09 0.77 1.03 0.65
Wbc 1.71 1.72 4.31 3.37 5.07 3.39
Ecoli 1.83 1.87 4.03 3.75 4.20 3.72
Ionosph. 1.50 1.50 4.13 3.05 5.23 3.22
Arrhyth. 1.67 1.48 7.33 3.33 11.41 3.70
Breastw 0.53 0.65 1.07 0.62 1.05 0.61
Pima 1.42 1.52 3.22 3.01 3.26 3.01
Vowels 1.57 1.71 3.94 3.33 4.54 3.30
Letter 1.86 2.10 4.66 4.06 5.63 4.19
Cardio 1.02 1.22 2.57 2.38 3.21 2.37
Seismic 1.53 1.77 3.31 3.21 3.50 3.21
Musk 3.58 5.10 12.19 10.48 21.84 14.43
Speech 5.13 9.75 18.48 10.10 39.28 10.20
Thyroid 1.66 1.86 3.99 3.67 4.79 3.65
Abalone 1.40 1.53 3.42 3.10 3.71 3.29
Optdigits 1.88 2.51 13.27 4.59 89.91 4.81
Satimage2 1.01 1.44 4.73 2.77 10.05 2.85
Satellite 2.15 2.89 27.39 5.53 67.71 5.64
Pendigits 1.03 1.29 10.84 2.65 44.65 2.85
Annthyr. 1.93 2.31 5.30 4.49 9.91 4.45
Mnist 1.42 2.73 3.61 3.44 7.61 3.57
Mammo. 1.90 3.34 16.97 5.41 23.79 5.44
Shuttle 0.84 3.05 71.08 4.46 187.53 4.95
Mullcross 1.03 3.97 12242.49 7.44 19754.35 8.9
Forest 4.16 9.96 2244.81 20.04 7012.54 22.09
Campaign 2.84 4.76 6.28 6.82 11.22 7.80
Fraud 1.76 15.80 127.04 24.75 337.30 30.23
Backdoor 13.63 21.32 26.01 28.72 53.51 37.40
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