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Abstract

Item Response Theory (IRT) has been exten-001
sively used to characterize question difficulty002
for human subjects in domains including cog-003
nitive psychology and education (Primi et al.,004
2014; Downing, 2003). In this work, we ex-005
plore IRT to characterize the difficulty and dis-006
crimination of natural language questions in007
Question-Answering datasets. We use Hot-008
PotQA for illustration. Our analysis reveals009
significant variations along these traits, as well010
as interdependence between them. Addition-011
ally, we explore predictive models for directly012
estimating these traits from the text of the ques-013
tions and answers. Our experiments show that014
it is possible to predict both difficulty and dis-015
crimination parameters for new questions, and016
these traits are correlated with features of ques-017
tions, answers, and associated contexts. Our018
findings can have significant implications for019
the creation of new datasets and tests on the020
one hand and strategies such as active learning021
and curriculum learning on the other.022

1 Introduction023

The use of question answering for testing learning024

often relies on characterizing questions on aspects025

such as difficulty and discrimination1. For exam-026

ple, ordering questions by difficulty can enable027

curriculum learning (Bengio et al., 2009). Simi-028

larly, discrimination is used in standardized exams029

such as the SAT to ensure that questions are varied030

enough to discriminate between high-ability and031

low-ability respondents. Item Response Theory032

(IRT) (Wright and Stone, 1979; Lord, 1980) has033

been a widely applied framework to jointly esti-034

mate such parameters for questions (or items) and035

1By difficulty, we refer to how likely a respondent is to an-
swer a question correctly, whereas by discrimination we refer
to the value of a question in identifying a given level of ability
in respondents. A question like ‘2+2=?’ has low difficulty
but potentially high discrimination, since a respondent who
answers incorrectly is likely to have no arithmetic ability.

the abilities of respondents. While IRT has its in- 036

ception in psychometrics and has traditionally been 037

used with human respondents, recently, it has been 038

explored for analyzing predictions from an ‘artifi- 039

cial crowd’ of ML models (Prudêncio et al., 2015; 040

Plumed et al., 2016; Martínez-Plumed et al., 2019). 041

However, despite recent work such as Lalor et al. 042

(2019), the use of IRT in NLP, especially Ques- 043

tion Answering(QA), remains under-explored. For 044

example, the questions in QA datasets often vary 045

in terms of the skills required to answer them, but 046

accuracy-based evaluation metrics are insensitive to 047

which questions a model gets right and susceptible 048

to dataset biases. IRT provides a natural framework 049

to analyze such complexity. In this work, we use 050

IRT to explore questions in QA datasets. We use 051

HotPotQA (Yang et al., 2018) as our testbed, but 052

our analysis can be applied to other datasets. We 053

diverge from previous work (Prudêncio et al., 2015; 054

Plumed et al., 2016; Martínez-Plumed et al., 2019; 055

Lalor et al., 2019) that has used IRT to analyze AI 056

datasets in two ways: firstly, we explore both diffi- 057

culty and discrimination, whereas earlier work has 058

focused on the 1PL IRT model that only estimates 059

difficulty. Secondly, IRT analysis for large datasets 060

suffers from the issue of computational scaling. Es- 061

timating the parameters for a single new question 062

requires re-fitting the IRT model on a large num- 063

ber of question-model pairs. To address this, we 064

explore directly predicting IRT parameters from 065

the text of a question and its related contexts. In 066

doing this, we experiment with multiple categories 067

of NLP-centric and cognitive features. 068

Our analysis shows significant variations among 069

questions and reveals some surprising patterns. We 070

show that it is possible to predict both difficulty 071

and discrimination of natural language questions, 072

which can have multiple applications in education 073

and pedagogy. Additionally, we see that different 074

surface-level features are associated with high dis- 075

crimination and high difficulty, which can inform 076
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new evaluation methods and the creation of new077

datasets. Further, we identify attributes for predict-078

ing difficulty and discrimination that are general079

enough to be adapted to various QA datasets.080

2 IRT Analysis of HotPotQA081

IRT background: We begin by summarizing the
1PL and 2PL models from IRT, which form the
basis of our later analysis. The 1PL (1 Parameter
Logistic) model describes the probability of respon-
dent i correctly answering the j’th item (question)
in terms of scalar-valued parameters for question
difficulty (dj) and respondent ability (θi). These
parameters are estimated from data yij ∈ {0, 1}
for a set of i, j pairs. Here, yij = 1 indicates a
correct answer. The 1PL model is described by:

p(yij = 1|θi, dj) =
1

1 + e−(θi−dj)

The 2PL model extends this through a scalar-valued
parameter αj , which represents the discrimination
of the j’th item. Intuitively, this parameter denotes
how sharply the probability of answering a question
correctly changes as the ability of the respondent
increases. The 2PL model is described by:

p(yij = 1|θi, dj , αj) =
1

1 + e−αj(θi−dj)

Dataset description: We chose HotPotQA for our082

analysis since it is significantly more complex than083

other datasets such as SQuAD (Rajpurkar et al.,084

2016), due to the questions requiring multi-hop085

reasoning and having more complex language. In086

HotPotQA, each question is paired with two para-087

graphs considered ‘gold’ contexts and several other088

paragraphs considered ‘distractor’ contexts. The089

answer to each question is a span in one of the090

gold contexts, but correctly answering the question091

requires combining information from both ‘gold’092

paragraphs.093

2.1 Estimating IRT Parameters094

Due to the size of HotPotQA’s dev set (7,405 ques-095

tions), collecting human responses for each ques-096

tion, as needed by IRT, is infeasible. Motivated by097

Lalor et al. (2019), we create an artificial crowd098

of QA models. For this, we train 148 instances of099

DFGN (Qiu et al., 2019) models on HotPotQA’s100

train set.We choose DFGN due to its competitive101

performance on the HotPotQA leaderboard, and the102

number of models we train is primarily driven by103

computational limits. To ensure diversity, we uni- 104

formly sample the number of training epochs from 105

1 to 15 and sample the fraction of the training data 106

used for model training from U(0, 1). Each model 107

was otherwise trained with the hyperparameters 108

described in Qiu et al. (2019). Next, we generate 109

a binary matrix indicating which questions from 110

the HotPotQA dev set each model answered cor- 111

rectly (based on exact matches with the respective 112

answers). We remove any questions that received 113

no correct answers or no incorrect answers. This is 114

done as during the estimation process, these ques- 115

tions tend towards (+/-) infinity in their difficulty 116

parameters and have zero discriminatory ability. 117

Our final dataset is a subset of 4,000 questions. 118

Finally, we fit the 1PL and 2PL models on the fore- 119

said item-response matrix using the variational IRT 120

training procedure from Natesan et al. (2016). 121

2.2 Analysis of Estimated Parameters 122

Figure 1: 2PL discrimination vs 1PL difficulty for questions.

Figure 1 shows a scatter-plot of estimated dif- 123

ficulty and discrimination values for individual 124

questions. We note that some discrimination val- 125

ues asymptotically approach 0. This occurs when 126

some questions receive very few or many correct 127

answers; these questions cannot discriminate high- 128

performing from low-performing models. We also 129

note that some questions have negative discrim- 130

ination, i.e., as a model’s ability increases, its 131

probability of answering the question correctly de- 132

creases. This is primarily a result of some higher- 133

performing models giving an answer which is ei- 134

ther a subspan of or contains the ground-truth an- 135

swer. Overall, there is a weak positive correlation 136

between discrimination and difficulty (ρ = 0.04). 137

To visualize any correlation between question 138

type and difficulty levels, we clustered questions 139

based on their BERT embeddings using KMeans 140

(K = 20) clustering (2D UMAP shown in 2 141

Through manually examining and labeling the clus- 142
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Figure 2: All 3000 questions from our train/dev set as UMAP-
reduced BERT embeddings, color-coded by difficulty (darker
is more difficult). We find that clusters produced by KMeans
(K = 20) naturally cluster together questions that are similar
in how they are asked/topics that are covered. We label some
clusters according to these types. We specially mark C.1, C.2,
and C.3. C.1 and C.2 have uniformity in the type of question
being asked, as well as lower variance than other clusters. C.3
is uniform in topic but can vary in the type of question.

ters, we found that questions got clustered accord-143

ing to their style (e.g. yes/no questions) and topic.144

Some clusters, such as C.3, have a large variety in145

the types of questions being asked, in particular,146

a large variety in the type of answer to the ques-147

tions. Both Q: Khushi Ek Roag is broadcast by148

a company based out of where? A: Dubai and Q:149

To Catch a Predator was devoted to impersonating150

people below the age of consent for which in North151

America varies by what? A: jurisdiction are in C.3.152

Other clusters, such as C.1 and C.2, (yes/no clus-153

ters), only vary in topic rather than the type of ques-154

tion. In particular, for these clusters, the estimated155

difficulty has significantly lower variance than the156

other clusters (ρ = 0.02, ρ = 0.04 respectively),157

indicating that these yes/no questions tend to be158

consistent in their difficulty. On the other hand,159

the difficulty of questions in other clusters cannot160

be described entirely by their type or topic. We161

further explore how these factors affect predicting162

the difficulty values in Appendix B.163

3 Predicting IRT Parameters164

We next discuss predictive models for discrimina-165

tion and difficulty using features from the question,166

answer, and associated context.167

3.1 Feature Design168

We experiment with two categories of fea-169

tures: Human-centric and Machine-centric fea-170

tures. For Human-centric features, we considered171

(1) counting-based Lexical & Syntactic features172

extracted for both questions and answers like Con- 173

tentWords, Type-token ratio, Avg. Word Length, 174

Complex Words (> 3 syllables)); (2) Semantic- 175

Ambiguity features measuring a question’s or an- 176

swer’s ambiguity (Ha et al., 2019); and (3) Read- 177

ability features based on measures like Fleisch 178

Kincaid index. More feature details can be found 179

in Appendix D. For Machine-Centric Features we 180

considered (1) Contextual Embeddings for ques- 181

tions and answers from BERT (Devlin et al., 2019); 182

(2) n-gram Overlap Counts between the question 183

and answer, and between question/answer and the 184

gold/ distractor paragraphs; and (3) POS Counts 185

from the Stanford Tagset (Toutanova et al., 2003) 186

for the question and answer. 187

3.2 Quantitative Analysis and Ablation 188

Features Dev
MSE

Dev
R2

Test
MSE

Test
R2

All 5.14 0.11 4.72 0.17
All (A) 5.41 0.08 5.05 0.11
All (Q) 5.43 0.07 5.10 0.10
BERT (Q) 5.41 0.07 4.99 0.12
BERT (A) 5.25 0.10 5.05 0.11
H.C. (Q) 5.62 0.01 5.38 0.05
Lex. & Syn. (Q) 5.62 0.01 5.37 0.05
Read. (Q) 5.80 0.00 5.71 0.00
Sem. Ambiguity (Q) 5.76 0.01 5.55 0.02
H.C. (A) 5.45 0.06 5.20 0.08
Lex. & Syn. (A) 5.47 0.03 5.36 0.06
Read. (A) 5.63 0.02 5.48 0.03
Sem. Ambiguity (A) 5.81 0.01 5.68 0.00
A/Q/C Overlap 5.39 0.05 4.92 0.13
P.O.S. (Q) 5.37 0.05 5.23 0.08
P.O.S. (A) 5.60 0.01 5.28 0.07
Mean 5.82 0.00 5.69 0.00

Table 1: Results for predicting the 1PL difficulty parameters.
BERT (Q) and BERT (A) use the BERT embeddings for the
ques./ans. respectively. H.C. (Q)/(A) are the human-centric
features for the ques./ans. respectively. A/Q Con. is using only
the overlap counts between question, answer, and contexts.

Table 1 and Table 2 show the regression per- 189

formance of our predictive models for predicting 190

IRT difficulty/discrimination parameters using the 191

feature-sets described before. The reported results 192

are averaged over a 10-fold cross-validation. We 193

note that the best models for both difficulty and dis- 194

crimination show significant (ρ < 0.1) predictive 195

performance (R2 of 0.169 and 0.126). 196

The best performance is achieved in both tasks 197

by considering all features. In both cases, there is 198

a significant difference (ρ < 0.1) in performance 199

between using any single set and using all features, 200

except the best performing BERT feature set. We 201

also note that features derived from the answer 202
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Features Dev
MSE

Dev
R2

Test
MSE

Test
R2

All 9.08 0.13 9.14 0.13
All (A) 9.59 0.08 9.98 0.04
All (Q) 9.32 0.10 9.50 0.09
BERT (Q) 9.02 0.11 9.27 0.11
BERT (A) 9.52 0.08 9.64 0.08
H.C (Q) 9.76 0.04 9.86 0.06
Lex. & Syn. (Q) 9.75 0.04 9.86 0.06
Read. (Q) 10.1 0.01 10.2 0.03
Sem. Ambiguity (Q) 10.1 0.02 10.2 0.03
H.C (A) 10.1 0.03 10.3 0.02
Lex. & Syn. (A) 10.1 0.01 10.2 0.03
Read. (A) 10.1 0.02 10.3 0.01
Sem. Ambiguity (A) 10.2 0.00 10.5 0.00
A/Q/C Overlap 9.56 0.06 9.63 0.08
P.O.S. (Q) 9.96 0.04 10.1 0.03
P.O.S. (A) 9.78 0.03 9.82 0.06
Mean 10.2 0.00 10.5 0.00

Table 2: Results for predicting the 2PL discrimination param-
eters. The setup is the same as in table 1. BERT (Q) has
the highest performance. However, the difference between in
performance when using BERT (Q) and All is not statistically
significant. See Appendix for significance tests

are typically better at capturing difficulty, while203

features derived from the question better predict204

the discrimination parameters. However, the per-205

formance of All (Q) and All (A) for both the dis-206

crimination and difficulty is weaker than using All207

features. Since the difference is not statistically sig-208

nificant, it is unclear how much predictive power is209

added when considering both answer and question210

features in these predictions.211

The features that focus on human difficulty are212

among the less effective feature sets, indicating that213

the human difficulty features of a question do not214

fully capture difficulty for QA models. We provide215

details of models and their training, the experiment216

setup, and significance tests in the Appendix.217

3.3 Feature Importance Study218

Feature Change
in MSE

Interval Corr.

# Commas A. .056 ± .015 .096
# Complex Words A. .051 ± .011 -.042
# NNP A. .048 ± .016 -.157
# SNP A/G.C. .016 ± .006 .037
# Commas Q. .013 ± .006 -.114

Table 3: Feature Importances for Difficulty Parameters (All
Features Considered). A. refers to a feature capturing in-
formation from the answer, Q. refers to a feature capturing
information from the question. A/G.C. refers to a feature
measuring overlap between the answer and gold contexts.

We estimated feature importance by permuting219

each feature individually and measuring the change220

in MSE on the dev set. We list features that caused221

Feature Change
in MSE

Interval Corr.

# CD A. .245 ± .034 .166
# Commas Q. .078 ± .017 -.113
Avg. Sense/Adverb A. .008 ± .017 -.026

Table 4: Feature Importances for Discrimination Parameters
(All Features Considered)

a change in MSE of least .01 in tables 4 and 3. The 222

feature importances for difficulty and discrimina- 223

tion predictions are listed in tables 3 and 4. 224

We point out that for predicting the discrimina- 225

tion, the number of cardinal digits in the answer 226

was the most important indicator of high discrimi- 227

nation. The positive correlation between the num- 228

ber of digits in the answer and the discrimination 229

of a question is expected. Qiu et al. (2019) show 230

that the DFGN model has a significant weakness 231

in numeric operations. This gives questions with 232

numeric answers a high discrimination value as 233

DFGN models are naturally inhibited in this regard, 234

and thus only a few models with the most training 235

data will be capable of answering these questions. 236

We find a similar positive Pearson score (ρ = 0.14) 237

between the difficulty and the number of cardinal 238

digits in the answer. However, we do not see this 239

feature in the importances for the difficulty. While 240

this weakness of the DFGN model cannot be ap- 241

plied to an arbitrary QA model, the methodology 242

used to determine this weakness can be applied ar- 243

bitrarily, which can give solid grounding to claims 244

about model weaknesses. 245

4 Conclusion 246

In this paper, we explored QA datasets through the 247

lens of Item Response Theory. We have demon- 248

strated a way to build regression models that can 249

describe the difficulty and discrimination of a ques- 250

tion. It is important to point out that our models’ 251

predictive abilities depend to some degree on the 252

type of question. More expressive models may 253

be able to improve the performance over our in- 254

terpretable linear models. We also note that our 255

analysis here focused on QA, there are many NLP 256

tasks in which the difficulty or discrimination of an 257

item may be important. Our work here could natu- 258

rally extend to these domains. Finally, being able 259

to automatically predict these traits without relying 260

on user responses can engender a host of creative 261

educational applications. Future work can also 262

leverage such predictive models to explore more 263

efficient strategies for learning and evaluation. 264
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A Models & Training376

For the 1PL and 2PL prediction, we considered377

linear models with L1 & L2 regularization, random378

forests, gradient boosted regressors, and bayesian379

ridge models. All hyperparameters were kept con-380

stant as the default in the sklearn package (Pe-381

dregosa et al., 2011) We performed 10-fold cross-382

validation using PyCaret (Ali, 2020). All models383

were trained on a consumer grade processor.384

B Qualitative Analysis385

We qualitatively analyze the difficulty predictions386

to understand the performance of our model2. Fig-387

ure 3 shows a UMAP scatterplot for questions on a388

test split for our difficulty prediction analysis, color-389

coded by the absolute error in our predictions. In390

the spirit of figure 2, we apply KMeans (k = 10), to391

our data. We highlight C.1, in a similar vein to C.1392

and C.2 of Figure 2, this cluster consists of yes/no393

question. Highlighting this similarity, the predic-394

tion error in this cluster has significantly smaller395

variance than the rest of the clusters (ρ = .02). We396

find that model appears to have tuned into the con-397

sistent difficulty of yes/no questions, and as such398

has consistently lower error in predicting difficulty399

for questions of this type, while the more granular400

details required to aptly describe the difficulty in401

other question types isn’t always captured by the402

model.403

Figure 3: UMAP scatterplot of questions color coded by pre-
diction error for difficulty. (Test set)

C Feature Definitions404

• Human-Centric Features405

– Lexical & Syntactic features: These consist pri-406

marily of counting features: ContentWords, Type-407

token ratio, Avg. Word Length, Complex Words408

2Similar analysis for the discrimination parameters is in-
cluded in the Appendix (H).

(> 3 syllables). These are calculated for both an- 409

swer and question. A complete list can be found in 410

the Appendix (G). 411

– Semantic-Ambiguity features: We use Word- 412

Net (Miller, 1995) to calculate the ambiguity of 413

sentences similar to Ha et al. (2019). These are 414

calculated for both answer and question. 415

– Readability features: We use previous work (Kin- 416

caid et al., 1975; Gunning, 1952; Laughlin, 1969) 417

to model the readability of a question/answer (e.g. 418

Fleisch Kincaid index). These are further expanded 419

on in section D. 420

• Machine-Centric Features 421

– Contextual Embeddings: We use the BERT-base 422

model (Devlin et al., 2019) to obtain sentence em- 423

beddings for questions and answers. 424

– Overlap Counts: We count overlaps between the 425

question and answer of n-grams up to n = 3. We 426

also compute overlap counts between the ques- 427

tion/answer and the gold and distractor paragraphs. 428

– Part of Speech Counts: We count POS tags for 429

tags from the Stanford NLP tagset (Toutanova et al., 430

2003) for both the question and answer. 431

D Reading Difficulty Features 432

We list the reading difficulty features we used in 433

our experiments as well as an overview of their cal- 434

culations. Each calculation has it’s own coefficents 435

that can be found in their respective citations. 436

• Flesch Reading Ease - linear combination of 437

words/sentence and syllables/word (Flesch) 438

• Flesch Kincaid Grade Level - linear combi- 439

nation of word/sentence and syllables/word 440

(Kincaid et al., 1975) 441

• Automated Readability Index (ARI) - lin- 442

ear combination of characters/word and 443

words/sentence (Smith and Senter, 1967) 444

• Gunning Fog index - linear combination of 445

words/sentence and complex words/words. 446

Complex words are words with 3 syllabus 447

(Gunning, 1952) 448

• Coleman-Liau - linear combination of 449

letters/100 words and sentences/100 450

words.(Entin and Klare, 1978) 451

• SMOG index - calculates the grade level 452

by considering the number of complex 453

words/sentence (Laughlin, 1969) 454
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E Significance Tests455

We provide significance tests for difficulty and dis-456

crimination predictions in tables 6 and 5. We see457

that the BERT features and using all features are458

able to beat the baseline with statistical significance459

(ρ <= .1). Note that we compare using MSE rather460

than R2 as the baseline always has an R2 score of461

0. We also provide in table 7 the significance tests462

for using all features against BERT features. We463

find that the best performing BERT feature set does464

not have a statistically significant improvement in465

performance when compared to the all feature set.466

In this case we use R2 as the performance metric.467

Features p
All 0.007
BERT (Q) 0.013
BERT (A) 0.098
H.C. (Q) 0.165
H.C. (A) 0.726
A/Q Con. 0.831
P.O.S. (Q) 0.656
P.O.S. (A) 0.174

Table 5: 2PL discrimination predictions. P-values for feature
set performance (MSE) tested against the baseline.

Features p
All 0.034
BERT (Q) 0.211
BERT (A) 0.078
H.C. (Q) 0.551
H.C. (A) 0.261
A/Q Con. 0.674
P.O.S. (Q) 0.501
P.O.S. (A) 0.523

Table 6: 1PL difficulty predictions. P-values for feature set
performance (MSE) tested against the baseline.

Features p
BERT (Q) (Diff.) 0.042
BERT (Q) (Discrim.) 0.769
BERT (A) (Diff.) 0.278
BERT (A) (Discrim.) 0.089

Table 7: 1PL and 2PL Difficulty and Discrimination predic-
tions. P-values for BERT performance (R2) tested against all
features performance.

F Counterfactual Analysis468

We explore our model through a counterfactual469

analysis. Motivated from our qualitative analysis,470

we look at a question in the form of clusters (2)471

and (3) from the figure provided in the text. In472

particular, we are interested in taking an item with473

high prediction error and slightly tweaking it to un-474

derstand how the model’s predictions can change475

Figure 4: Our question used for our counter-factual analy-
sis. This question had an estimated difficulty of 4.10 and a
predicted difficulty of -.507.

with changes in the question and answer. We ran- 476

domly selected an item from clusters 1 and 2 with 477

>2 absolute error to perform this experiment. The 478

question we use in this study is in figure 4. We 479

found that most simple changes to the question (us- 480

ing synonyms, removing unnecessary information, 481

etc.) are unable to significantly change the diffi- 482

culty predictions. We modify the answer in two 483

ways to achieve a higher difficulty prediction. First, 484

we modify the answer to be a date. Second we 485

modify the answer to be “yes." We see larger gains 486

in difficulty when using yes as an answer. However, 487

both increase the difficulty far more than changes 488

to the question did. 489

We note some of the hardest questions in the test 490

set were those that had yes/no answers or numeric 491

answers. If the model was only considering the 492

question type via the BERT embedding, we would 493

expect the model to predict difficulties between 1 494

and 4. The prediction for the yes/no modification 495

was 1.02, while the prediction for the date modifi- 496

cation was 0.53. This indicates that the model is 497

capable of taking into account individual charac- 498

teristics of a question besides its surface level type 499

and topic, however, it can be severely limited in 500

this task depending on the question type. Some of 501

our changes and their corresponding predictions 502

are listed below: 503

• – Question (original): Which university is 504

this American philosopher, theologian, 505

and Christian apologist, who supports 506

theistic science, professor at?’ 507

– Answer: "Biola University" 508

– Pred. Diff: -.507 509

• – Question : Which school is this philoso- 510
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pher and theologian who supports sci-511

ence, professor at?512

– Answer: "Biola University"513

– Pred. Diff: -.210514

• – Question : What was the birth date of a515

professor at Biola University who is an516

American philosopher, theologian, and517

Christian apologist, who supports theis-518

tic science?519

– Answer: March 9, 1948520

– Pred. Diff: 0.534521

• – Question : Does Biola University have522

a professor who is an American philoso-523

pher, theologian, and Christian apologist,524

who supports theistic science?525

– Answer: yes526

– Pred. Diff: 1.02527

G Lexical Features528

We list our full list of lexical features, these features529

are a subset of the lexical features used in Ha et al.530

(2019).531

• Word Count532

• Content Word Count533

• Content Word Incidence534

• Content Word Count No Stopwords535

• Noun Count536

• Noun Incidence537

• Verb Count538

• Verb Incidence539

• Adjective Count540

• Adjective Incidence541

• Adverb Count542

• Adverb Incidence543

• Number Count544

• Number Incidence545

• Type Count546

• Type Token Ratio547

• Comma Count 548

• Comma Incidence 549

• Average Word Length In Syllables 550

• Complex Word Count 551

• Complex Word Incidence, 552

• Average Sentence Length 553

• Negation Count 554

• Negation Incidence 555

• Negation In Stem 556

• NP Count 557

• NP Incidence 558

• Average NP Length 559

• NP Count With Embedding 560

• NP Incidence With Embedding 561

• Average All NP Length, 562

• PP Count 563

• PP Incidence 564

• PPs Per Sentence Ratio 565

• VP Count 566

• VP Incidence 567

• Passive Active Ratio 568

• Proportion Active VPs 569

• Proportion Passive VPs 570

• Agentless Passive Count 571

• Relative Clauses Count 572

• Relative Clauses Incidence 573

• Proportion Relative Clauses 574

• Polysemic Word Count 575

• Polysemic Word Incidence 576

• Average Sense No Content Words 577

• Average Sense No Nouns 578

• Average Sense No Verbs 579
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• Average Sense No Non Auxiliary Verbs580

• Average Sense No Adjectives581

• Average Sense No Adverbs582

• Average Noun Distance To WNRoot583

• Average Verb Distance To WNRoot,584

• Average Noun And Verb Distance To WN-585

Root586

• Answer Words In Word Net Ratio587

• Average Word Frequency Abs588

• Average Word Frequency Rel589

• Average Word Frequency Rank590

• Average Content Frequency Abs591

• Average Content Frequency Rel592

• Average Content Frequency Rank593

• Not In First 2000 Count594

• Not In First 2000 Incidence595

• Not In First 3000 Count596

• Not In First 3000 Incidence597

• Not In First 4000 Count598

• Not In First 4000 Incidence599

• Not In First 5000 Count600

• Not In First 5000 Incidence601

• Imagability602

• Imagability Found Only603

• Imagability Ratio604

• Familiarity605

• Familiarity Found Only606

• Familiarity Ratio607

• Concreteness608

• Concreteness Found Only609

• Concreteness Ratio610

• Age Of Acquisition611

• Age Of Acquisition Found Only 612

• Age Of Acquisition Ratio 613

• Meaningfulness Colorado Found Only 614

• Meaningfulness Pavio Found Only 615

• No Imagability Rating 616

• No Familiarity Rating 617

• No Concreteness Rating 618

• No Age of Acquisition Rating 619

• Connectives Count 620

• Connectives Incidence 621

• Additive Connectives Count 622

• Additive Connectives Incidence 623

• Temporal Connectives Count 624

• Temporal Connectives Incidence 625

• Causal Connectives Count 626

• Causal Connectives Incidence 627

• Referential Pronoun Count, 628

• Referential Pronoun Incidence 629

H Discrimination UMAP plots 630

We provide the same UMAP plots as we did for 631

difficulty in the paper. We see that clusters of simi- 632

lar questions have similar discrimination values as 633

was the case for difficulty. 634

Figure 5: Answer BERT UMAP Reduction VS Discrimination
values, train/dev set
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Figure 6: Answer BERT UMAP Reduction VS Discrimination
values, test set

Figure 7: Question BERT UMAP Reduction VS Discrimina-
tion values, train/dev set

Figure 8: Question BERT UMAP Reduction VS Discrimina-
tion values, test set

Figure 9: Question BERT UMAP Reduction VS Predicted
Discrimination values, test set

Figure 10: Question BERT UMAP Reduction VS Discrimina-
tion prediction error, test set
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