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Abstract

Item Response Theory (IRT) has been exten-
sively used to characterize question difficulty
for human subjects in domains including cog-
nitive psychology and education (Primi et al.,
2014; Downing, 2003). In this work, we ex-
plore IRT to characterize the difficulty and dis-
crimination of natural language questions in
Question-Answering datasets. We use Hot-
PotQA for illustration. Our analysis reveals
significant variations along these traits, as well
as interdependence between them. Addition-
ally, we explore predictive models for directly
estimating these traits from the text of the ques-
tions and answers. Our experiments show that
it is possible to predict both difficulty and dis-
crimination parameters for new questions, and
these traits are correlated with features of ques-
tions, answers, and associated contexts. Our
findings can have significant implications for
the creation of new datasets and tests on the
one hand and strategies such as active learning
and curriculum learning on the other.

1 Introduction

The use of question answering for testing learning
often relies on characterizing questions on aspects
such as difficulty and discrimination'. For exam-
ple, ordering questions by difficulty can enable
curriculum learning (Bengio et al., 2009). Simi-
larly, discrimination is used in standardized exams
such as the SAT to ensure that questions are varied
enough to discriminate between high-ability and
low-ability respondents. Item Response Theory
(IRT) (Wright and Stone, 1979; Lord, 1980) has
been a widely applied framework to jointly esti-
mate such parameters for questions (or items) and

"By difficulty, we refer to how likely a respondent is to an-
swer a question correctly, whereas by discrimination we refer
to the value of a question in identifying a given level of ability
in respondents. A question like “2+2=?" has low difficulty
but potentially high discrimination, since a respondent who
answers incorrectly is likely to have no arithmetic ability.

the abilities of respondents. While IRT has its in-
ception in psychometrics and has traditionally been
used with human respondents, recently, it has been
explored for analyzing predictions from an ‘artifi-
cial crowd’ of ML models (Prudéncio et al., 2015;
Plumed et al., 2016; Martinez-Plumed et al., 2019).

However, despite recent work such as Lalor et al.
(2019), the use of IRT in NLP, especially Ques-
tion Answering(QA), remains under-explored. For
example, the questions in QA datasets often vary
in terms of the skills required to answer them, but
accuracy-based evaluation metrics are insensitive to
which questions a model gets right and susceptible
to dataset biases. IRT provides a natural framework
to analyze such complexity. In this work, we use
IRT to explore questions in QA datasets. We use
HotPotQA (Yang et al., 2018) as our testbed, but
our analysis can be applied to other datasets. We
diverge from previous work (Prudéncio et al., 2015;
Plumed et al., 2016; Martinez-Plumed et al., 2019;
Lalor et al., 2019) that has used IRT to analyze Al
datasets in two ways: firstly, we explore both diffi-
culty and discrimination, whereas earlier work has
focused on the 1PL IRT model that only estimates
difficulty. Secondly, IRT analysis for large datasets
suffers from the issue of computational scaling. Es-
timating the parameters for a single new question
requires re-fitting the IRT model on a large num-
ber of question-model pairs. To address this, we
explore directly predicting IRT parameters from
the text of a question and its related contexts. In
doing this, we experiment with multiple categories
of NLP-centric and cognitive features.

Our analysis shows significant variations among
questions and reveals some surprising patterns. We
show that it is possible to predict both difficulty
and discrimination of natural language questions,
which can have multiple applications in education
and pedagogy. Additionally, we see that different
surface-level features are associated with high dis-
crimination and high difficulty, which can inform



new evaluation methods and the creation of new
datasets. Further, we identify attributes for predict-
ing difficulty and discrimination that are general
enough to be adapted to various QA datasets.

2 IRT Analysis of HotPotQA

IRT background: We begin by summarizing the
1PL and 2PL models from IRT, which form the
basis of our later analysis. The 1PL (1 Parameter
Logistic) model describes the probability of respon-
dent ¢ correctly answering the j’th item (question)
in terms of scalar-valued parameters for question
difficulty (d;) and respondent ability (6;). These
parameters are estimated from data y;; € {0,1}
for a set of 4, j pairs. Here, y;; = 1 indicates a
correct answer. The 1PL model is described by:
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The 2PL model extends this through a scalar-valued
parameter «;, which represents the discrimination
of the j’th item. Intuitively, this parameter denotes
how sharply the probability of answering a question
correctly changes as the ability of the respondent
increases. The 2PL model is described by:
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Dataset description: We chose HotPotQA for our
analysis since it is significantly more complex than
other datasets such as SQuAD (Rajpurkar et al.,
2016), due to the questions requiring multi-hop
reasoning and having more complex language. In
HotPotQA, each question is paired with two para-
graphs considered ‘gold’ contexts and several other
paragraphs considered ‘distractor’ contexts. The
answer to each question is a span in one of the
gold contexts, but correctly answering the question
requires combining information from both ‘gold’
paragraphs.

2.1 Estimating IRT Parameters

Due to the size of HotPotQA’s dev set (7,405 ques-
tions), collecting human responses for each ques-
tion, as needed by IRT, is infeasible. Motivated by
Lalor et al. (2019), we create an artificial crowd
of QA models. For this, we train 148 instances of
DFGN (Qiu et al., 2019) models on HotPotQA’s
train set.We choose DFGN due to its competitive
performance on the HotPotQA leaderboard, and the
number of models we train is primarily driven by

computational limits. To ensure diversity, we uni-
formly sample the number of training epochs from
1 to 15 and sample the fraction of the training data
used for model training from 2/ (0, 1). Each model
was otherwise trained with the hyperparameters
described in Qiu et al. (2019). Next, we generate
a binary matrix indicating which questions from
the HotPotQA dev set each model answered cor-
rectly (based on exact matches with the respective
answers). We remove any questions that received
no correct answers or no incorrect answers. This is
done as during the estimation process, these ques-
tions tend towards (+/-) infinity in their difficulty
parameters and have zero discriminatory ability.
Our final dataset is a subset of 4,000 questions.
Finally, we fit the 1PL and 2PL models on the fore-
said item-response matrix using the variational IRT
training procedure from Natesan et al. (2016).

2.2 Analysis of Estimated Parameters

Discrimination Values

-8 -6 -4 -2 0 2 4
Difficulty Values

Figure 1: 2PL discrimination vs 1PL difficulty for questions.

Figure 1 shows a scatter-plot of estimated dif-
ficulty and discrimination values for individual
questions. We note that some discrimination val-
ues asymptotically approach 0. This occurs when
some questions receive very few or many correct
answers; these questions cannot discriminate high-
performing from low-performing models. We also
note that some questions have negative discrim-
ination, i.e., as a model’s ability increases, its
probability of answering the question correctly de-
creases. This is primarily a result of some higher-
performing models giving an answer which is ei-
ther a subspan of or contains the ground-truth an-
swer. Overall, there is a weak positive correlation
between discrimination and difficulty (p = 0.04).

To visualize any correlation between question
type and difficulty levels, we clustered questions
based on their BERT embeddings using KMeans
(K = 20) clustering (2D UMAP shown in 2
Through manually examining and labeling the clus-
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Figure 2: All 3000 questions from our train/dev set as UMAP-
reduced BERT embeddings, color-coded by difficulty (darker
is more difficult). We find that clusters produced by KMeans
(K = 20) naturally cluster together questions that are similar
in how they are asked/topics that are covered. We label some
clusters according to these types. We specially mark C.1, C.2,
and C.3. C.1 and C.2 have uniformity in the type of question
being asked, as well as lower variance than other clusters. C.3
is uniform in topic but can vary in the type of question.

ters, we found that questions got clustered accord-
ing to their style (e.g. yes/no questions) and topic.
Some clusters, such as C.3, have a large variety in
the types of questions being asked, in particular,
a large variety in the type of answer to the ques-
tions. Both Q: Khushi Ek Roag is broadcast by
a company based out of where? A: Dubai and Q:
To Catch a Predator was devoted to impersonating
people below the age of consent for which in North
America varies by what? A: jurisdiction are in C.3.

Other clusters, such as C.1 and C.2, (yes/no clus-
ters), only vary in topic rather than the type of ques-
tion. In particular, for these clusters, the estimated
difficulty has significantly lower variance than the
other clusters (p = 0.02, p = 0.04 respectively),
indicating that these yes/no questions tend to be
consistent in their difficulty. On the other hand,
the difficulty of questions in other clusters cannot
be described entirely by their type or topic. We
further explore how these factors affect predicting
the difficulty values in Appendix B.

3 Predicting IRT Parameters

We next discuss predictive models for discrimina-
tion and difficulty using features from the question,
answer, and associated context.

3.1 Feature Design

We experiment with two categories of fea-
tures: Human-centric and Machine-centric fea-
tures. For Human-centric features, we considered
(1) counting-based Lexical & Syntactic features

extracted for both questions and answers like Con-
tentWords, Type-token ratio, Avg. Word Length,
Complex Words (> 3 syllables)); (2) Semantic-
Ambiguity features measuring a question’s or an-
swer’s ambiguity (Ha et al., 2019); and (3) Read-
ability features based on measures like Fleisch
Kincaid index. More feature details can be found
in Appendix D. For Machine-Centric Features we
considered (1) Contextual Embeddings for ques-
tions and answers from BERT (Devlin et al., 2019);
(2) n-gram Overlap Counts between the question
and answer, and between question/answer and the
gold/ distractor paragraphs; and (3) POS Counts
from the Stanford Tagset (Toutanova et al., 2003)
for the question and answer.

3.2 Quantitative Analysis and Ablation

Features Dev Dev Test Test

MSE R? MSE R?
All 5.14 0.11 4.72 0.17
All (A) 5.41 0.08 5.05 0.11
All (Q) 5.43 0.07 5.10 0.10
BERT (Q) 5.41 0.07 4.99 0.12
BERT (A) 5.25 0.10 5.05 0.11
H.C.(Q) 5.62 0.01 5.38 0.05
Lex. & Syn. (Q) 5.62 0.01 5.37 0.05
Read. (Q) 5.80 0.00 5.71 0.00
Sem. Ambiguity (Q) 5.76 0.01 5.55 0.02
H.C. (A) 5.45 0.06 5.20 0.08
Lex. & Syn. (A) 5.47 0.03 5.36 0.06
Read. (A) 5.63 0.02 5.48 0.03
Sem. Ambiguity (A) 5.81 0.01 5.68 0.00
A/Q/C Overlap 5.39 0.05 4.92 0.13
P.O.S.(Q) 5.37 0.05 5.23 0.08
P.O.S. (A) 5.60 0.01 5.28 0.07
Mean 5.82 0.00 5.69 0.00

Table 1: Results for predicting the 1PL difficulty parameters.
BERT (Q) and BERT (A) use the BERT embeddings for the
ques./ans. respectively. H.C. (Q)/(A) are the human-centric
features for the ques./ans. respectively. A/Q Con. is using only
the overlap counts between question, answer, and contexts.

Table 1 and Table 2 show the regression per-
formance of our predictive models for predicting
IRT difficulty/discrimination parameters using the
feature-sets described before. The reported results
are averaged over a 10-fold cross-validation. We
note that the best models for both difficulty and dis-
crimination show significant (p < 0.1) predictive
performance (R? of 0.169 and 0.126).

The best performance is achieved in both tasks
by considering all features. In both cases, there is
a significant difference (p < 0.1) in performance
between using any single set and using all features,
except the best performing BERT feature set. We
also note that features derived from the answer



Features Dev Dev Test Test Feature Change Interval Corr.
MSE R?> MSE R? in MSE

All 9.08 0.13 9.14 0.13 #CD A. 245 +.034 .166

All (A) 9.59 0.08 9.98 0.04 # Commas Q. .078 + .017 -.113

All (Q) 9.32 0.10 9.50 0.09 Avg. Sense/Adverb A. .008 +.017 -.026

BERT (Q) 9.02 0.11 9.27 0.11

BERT (A) 9.52 0.08 9.64 0.08 Table 4: Feature Importances for Discrimination Parameters

HC Q) 976 004 986 006 (All Features Considered)

Lex. & Syn. (Q 975 004 986 0.6

Read. (Q) 10.1 0.01 10.2 0.03

Sem. Ambiguity (Q) 101~ 0.02 102 0.03 a change in MSE of least .01 in tables 4 and 3. The

H.C (A) 10.1 0.03 10.3 0.02 . : T

Lox & Syn (&) 101 001 103 003 f.eature 1mp9rtances for dl.fﬁculty and discrimina

Read. (A) 101 0.02 103 0.01 tion predictions are listed in tables 3 and 4.

Sem. Ambiguity (A)  10.2 0.00 10.5 0.00 We point out that for predicting the discrimina-

ﬁlc% C(%‘)’eﬂap g'gg g'gg ?'06? 8'8§ tion, the number of cardinal digits in the answer

POS. (A) 978 003 982 006 was the most important indicator of high discrimi-

Mean 102 0.00 105  0.00 nation. The positive correlation between the num-

Table 2: Results for predicting the 2PL discrimination param-
eters. The setup is the same as in table 1. BERT (Q) has
the highest performance. However, the difference between in
performance when using BERT (Q) and All is not statistically
significant. See Appendix for significance tests

are typically better at capturing difficulty, while
features derived from the question better predict
the discrimination parameters. However, the per-
formance of All (Q) and All (A) for both the dis-
crimination and difficulty is weaker than using All
features. Since the difference is not statistically sig-
nificant, it is unclear how much predictive power is
added when considering both answer and question
features in these predictions.

The features that focus on human difficulty are
among the less effective feature sets, indicating that
the human difficulty features of a question do not
fully capture difficulty for QA models. We provide
details of models and their training, the experiment
setup, and significance tests in the Appendix.

3.3 Feature Importance Study

Feature Change  Interval Corr.
in MSE

# Commas A. .056 + .015 .096

# Complex Words A. .051 + .011 -.042

#NNP A. .048 + .016 -.157

# SNP A/G.C. .016 +.006 .037

# Commas Q. .013 + .006 -.114

Table 3: Feature Importances for Difficulty Parameters (All
Features Considered). A. refers to a feature capturing in-
formation from the answer, Q. refers to a feature capturing
information from the question. A/G.C. refers to a feature
measuring overlap between the answer and gold contexts.

We estimated feature importance by permuting
each feature individually and measuring the change
in MSE on the dev set. We list features that caused

ber of digits in the answer and the discrimination
of a question is expected. Qiu et al. (2019) show
that the DFGN model has a significant weakness
in numeric operations. This gives questions with
numeric answers a high discrimination value as
DFGN models are naturally inhibited in this regard,
and thus only a few models with the most training
data will be capable of answering these questions.
We find a similar positive Pearson score (p = 0.14)
between the difficulty and the number of cardinal
digits in the answer. However, we do not see this
feature in the importances for the difficulty. While
this weakness of the DFGN model cannot be ap-
plied to an arbitrary QA model, the methodology
used to determine this weakness can be applied ar-
bitrarily, which can give solid grounding to claims
about model weaknesses.

4 Conclusion

In this paper, we explored QA datasets through the
lens of Item Response Theory. We have demon-
strated a way to build regression models that can
describe the difficulty and discrimination of a ques-
tion. It is important to point out that our models’
predictive abilities depend to some degree on the
type of question. More expressive models may
be able to improve the performance over our in-
terpretable linear models. We also note that our
analysis here focused on QA, there are many NLP
tasks in which the difficulty or discrimination of an
item may be important. Our work here could natu-
rally extend to these domains. Finally, being able
to automatically predict these traits without relying
on user responses can engender a host of creative
educational applications. Future work can also
leverage such predictive models to explore more
efficient strategies for learning and evaluation.
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A Models & Training

For the 1PL and 2PL prediction, we considered
linear models with L1 & L2 regularization, random
forests, gradient boosted regressors, and bayesian
ridge models. All hyperparameters were kept con-
stant as the default in the sklearn package (Pe-
dregosa et al., 2011) We performed 10-fold cross-
validation using PyCaret (Ali, 2020). All models
were trained on a consumer grade processor.

B Qualitative Analysis

We qualitatively analyze the difficulty predictions
to understand the performance of our model?. Fig-
ure 3 shows a UMAP scatterplot for questions on a
test split for our difficulty prediction analysis, color-
coded by the absolute error in our predictions. In
the spirit of figure 2, we apply KMeans (k = 10), to
our data. We highlight C.1, in a similar vein to C.1
and C.2 of Figure 2, this cluster consists of yes/no
question. Highlighting this similarity, the predic-
tion error in this cluster has significantly smaller
variance than the rest of the clusters (p = .02). We
find that model appears to have tuned into the con-
sistent difficulty of yes/no questions, and as such
has consistently lower error in predicting difficulty
for questions of this type, while the more granular
details required to aptly describe the difficulty in
other question types isn’t always captured by the
model.
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Figure 3: UMAP scatterplot of questions color coded by pre-
diction error for difficulty. (Test set)

C Feature Definitions

Human-Centric Features

Lexical & Syntactic features: These consist pri-
marily of counting features: ContentWords, Type-
token ratio, Avg. Word Length, Complex Words

2Similar analysis for the discrimination parameters is in-
cluded in the Appendix (H).

— Semantic-Ambiguity features:

(> 3 syllables). These are calculated for both an-
swer and question. A complete list can be found in
the Appendix (G).

We use Word-
Net (Miller, 1995) to calculate the ambiguity of
sentences similar to Ha et al. (2019). These are
calculated for both answer and question.
Readability features: We use previous work (Kin-
caid et al., 1975; Gunning, 1952; Laughlin, 1969)
to model the readability of a question/answer (e.g.
Fleisch Kincaid index). These are further expanded
on in section D.

Machine-Centric Features

Contextual Embeddings: We use the BERT-base
model (Devlin et al., 2019) to obtain sentence em-
beddings for questions and answers.

Overlap Counts: We count overlaps between the
question and answer of n-grams up to n = 3. We
also compute overlap counts between the ques-
tion/answer and the gold and distractor paragraphs.
Part of Speech Counts: We count POS tags for
tags from the Stanford NLP tagset (Toutanova et al.,
2003) for both the question and answer.

D Reading Difficulty Features

We list the reading difficulty features we used in
our experiments as well as an overview of their cal-
culations. Each calculation has it’s own coefficents
that can be found in their respective citations.

* Flesch Reading Ease - linear combination of
words/sentence and syllables/word (Flesch)

* Flesch Kincaid Grade Level - linear combi-
nation of word/sentence and syllables/word
(Kincaid et al., 1975)

* Automated Readability Index (ARI) - lin-
ear combination of characters/word and
words/sentence (Smith and Senter, 1967)

* Gunning Fog index - linear combination of
words/sentence and complex words/words.
Complex words are words with 3 syllabus
(Gunning, 1952)

e Coleman-Liau - linear combination of
letters/100  words and sentences/100
words.(Entin and Klare, 1978)

* SMOG index - calculates the grade level
by considering the number of complex
words/sentence (Laughlin, 1969)



E Significance Tests

We provide significance tests for difficulty and dis-
crimination predictions in tables 6 and 5. We see
that the BERT features and using all features are
able to beat the baseline with statistical significance
(p <= .1). Note that we compare using MSE rather
than R? as the baseline always has an R? score of
0. We also provide in table 7 the significance tests
for using all features against BERT features. We
find that the best performing BERT feature set does
not have a statistically significant improvement in
performance when compared to the all feature set.
In this case we use R? as the performance metric.

Features P

All 0.007
BERT (Q) 0.013
BERT (A) 0.098
HC.(Q  0.165
H.C. (A) 0.726
A/QCon.  0.831
PO.S.(Q) 0.656
POS.(A) 0.174

Table 5: 2PL discrimination predictions. P-values for feature
set performance (MSE) tested against the baseline.

Features p

All 0.034
BERT (Q) 0.211
BERT (A) 0.078
H.C. (Q) 0.551
H.C. (A) 0.261
A/QCon. 0.674
PO.S.(Q) 0.501
PO.S.(A) 0.523

Table 6: 1PL difficulty predictions. P-values for feature set
performance (MSE) tested against the baseline.

Features p

BERT (Q) (Diff.) 0.042
BERT (Q) (Discrim.)  0.769
BERT (A) (Diff.) 0.278
BERT (A) (Discrim.)  0.089

Table 7: 1PL and 2PL Difficulty and Discrimination predic-
tions. P-values for BERT performance (R?) tested against all
features performance.

F Counterfactual Analysis

We explore our model through a counterfactual
analysis. Motivated from our qualitative analysis,
we look at a question in the form of clusters (2)
and (3) from the figure provided in the text. In
particular, we are interested in taking an item with
high prediction error and slightly tweaking it to un-
derstand how the model’s predictions can change

James Porter Moreland
(born March 9, 1948),
berrter known as J. P.

Moreland, is an American

Philospher, theologian,

and Christian apologist.

Which university is
this American
philosopher,
theologian, and
Christian apologist,

who supports theistic
science, professor at?

He currently serves as ...
at Biola University...

Contexts Question

Blola University

Answer

Figure 4: Our question used for our counter-factual analy-
sis. This question had an estimated difficulty of 4.10 and a
predicted difficulty of -.507.

with changes in the question and answer. We ran-
domly selected an item from clusters 1 and 2 with
>2 absolute error to perform this experiment. The
question we use in this study is in figure 4. We
found that most simple changes to the question (us-
ing synonyms, removing unnecessary information,
etc.) are unable to significantly change the diffi-
culty predictions. We modify the answer in two
ways to achieve a higher difficulty prediction. First,
we modify the answer to be a date. Second we
modify the answer to be “yes." We see larger gains
in difficulty when using yes as an answer. However,
both increase the difficulty far more than changes
to the question did.

We note some of the hardest questions in the test
set were those that had yes/no answers or numeric
answers. If the model was only considering the
question type via the BERT embedding, we would
expect the model to predict difficulties between 1
and 4. The prediction for the yes/no modification
was 1.02, while the prediction for the date modifi-
cation was 0.53. This indicates that the model is
capable of taking into account individual charac-
teristics of a question besides its surface level type
and topic, however, it can be severely limited in
this task depending on the question type. Some of
our changes and their corresponding predictions
are listed below:

* - Question (original): Which university is
this American philosopher, theologian,
and Christian apologist, who supports
theistic science, professor at?’

— Answer: "Biola University"
— Pred. Diff: -.507

* - Question : Which school is this philoso-



pher and theologian who supports sci-
ence, professor at?

— Answer: "Biola University"
— Pred. Diff: -.210

e — Question : What was the birth date of a
professor at Biola University who is an
American philosopher, theologian, and
Christian apologist, who supports theis-
tic science?

— Answer: March 9, 1948
— Pred. Diff: 0.534

* - Question : Does Biola University have
a professor who is an American philoso-
pher, theologian, and Christian apologist,
who supports theistic science?

— Answer: yes
— Pred. Diff: 1.02

G Lexical Features

‘We list our full list of lexical features, these features
are a subset of the lexical features used in Ha et al.
(2019).

* Word Count

* Content Word Count

* Content Word Incidence

* Content Word Count No Stopwords
* Noun Count

* Noun Incidence

* Verb Count

* Verb Incidence

* Adjective Count

* Adjective Incidence

¢ Adverb Count

Adverb Incidence
* Number Count

* Number Incidence
* Type Count

» Type Token Ratio

Comma Count

Comma Incidence

Average Word Length In Syllables
Complex Word Count
Complex Word Incidence,
Average Sentence Length
Negation Count

Negation Incidence
Negation In Stem

NP Count

NP Incidence

Average NP Length

NP Count With Embedding
NP Incidence With Embedding
Average All NP Length,

PP Count

PP Incidence

PPs Per Sentence Ratio

VP Count

VP Incidence

Passive Active Ratio
Proportion Active VPs
Proportion Passive VPs
Agentless Passive Count
Relative Clauses Count
Relative Clauses Incidence
Proportion Relative Clauses
Polysemic Word Count
Polysemic Word Incidence
Average Sense No Content Words
Average Sense No Nouns

Average Sense No Verbs



» Average Sense No Non Auxiliary Verbs
* Average Sense No Adjectives

* Average Sense No Adverbs

* Average Noun Distance To WNRoot

* Average Verb Distance To WNRoot,

* Average Noun And Verb Distance To WN-
Root

* Answer Words In Word Net Ratio
» Average Word Frequency Abs

* Average Word Frequency Rel

* Average Word Frequency Rank
* Average Content Frequency Abs
» Average Content Frequency Rel
* Average Content Frequency Rank
* Not In First 2000 Count

* Not In First 2000 Incidence

* Not In First 3000 Count

* Not In First 3000 Incidence

* Not In First 4000 Count

* Not In First 4000 Incidence

* Not In First 5000 Count

* Not In First 5000 Incidence

* Imagability

* Imagability Found Only

* Imagability Ratio

e Familiarity

* Familiarity Found Only
 Familiarity Ratio

* Concreteness

* Concreteness Found Only

* Concreteness Ratio

* Age Of Acquisition

H

Age Of Acquisition Found Only
Age Of Acquisition Ratio
Meaningfulness Colorado Found Only
Meaningfulness Pavio Found Only
No Imagability Rating

No Familiarity Rating

No Concreteness Rating

No Age of Acquisition Rating
Connectives Count

Connectives Incidence

Additive Connectives Count
Additive Connectives Incidence
Temporal Connectives Count
Temporal Connectives Incidence
Causal Connectives Count

Causal Connectives Incidence
Referential Pronoun Count,
Referential Pronoun Incidence

Discrimination UMAP plots

We provide the same UMAP plots as we did for
difficulty in the paper. We see that clusters of simi-
lar questions have similar discrimination values as
was the case for difficulty.
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Figure 5: Answer BERT UMAP Reduction VS Discrimination
values, train/dev set
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Figure 6: Answer BERT UMAP Reduction VS Discrimination

values, test set

Figure 7: Question BERT UMAP Reduction VS Discrimina-

tion values, train/dev set

Figure 8: Question BERT UMAP Reduction VS Discrimina-

tion values, test set
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Figure 9: Question BERT UMAP Reduction VS Predicted
Discrimination values, test set
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Figure 10: Question BERT UMAP Reduction VS Discrimina-
tion prediction error, test set



