

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSTRAINT-AWARE DISCRETE BLACK-BOX OPTIMIZATION USING TENSOR DECOMPOSITION

Anonymous authors

Paper under double-blind review

ABSTRACT

Discrete black-box optimization has been addressed using approaches such as Sequential Model-Based Optimization (SMBO), which aim to improve sample efficiency by fitting surrogate models that approximate a costly objective function over a discrete search space. In many real-world problems, the set of feasible inputs, such as valid parameter configurations in engineering design, is often known in advance. However, existing surrogate modeling techniques generally fail to capture feasibility constraints associated with such inputs. In this paper, we propose a surrogate modeling approach based on tensor decomposition that captures the structure of discrete search spaces while directly integrating feasibility information. To implement this approach, we formulate surrogate model training as a constrained polynomial optimization problem and solve a relaxed version of it. Our experiments on both synthetic and real-world benchmarks, including a pressure vessel design task, demonstrate that the proposed method improves sample efficiency by effectively guiding the search away from infeasible regions.

1 INTRODUCTION

Black-box optimization (BBO) aims to find optimal inputs for an objective function that can only be accessed through input-output data (Rios & Sahinidis, 2013a) and has been widely used in fields like engineering design (Coello & Montes, 2002), material discovery (Frazier & Wang, 2016), and hyperparameter tuning for machine learning (He et al., 2021; Bergstra et al., 2011). Since evaluating such objective functions is often costly in terms of monetary cost, execution time, and computational resources, sample-efficient methods like Sequential Model-Based Optimization (SMBO) have been developed (Hutter et al., 2011; Shahriari et al., 2015). SMBO uses a surrogate model to approximate the objective function and an acquisition function to balance exploration and exploitation when choosing new samples.

This paper focuses on discrete search spaces that are commonly encountered in real-world applications, such as categorical parameters representing the choices of specific components in engineering design (Papalexopoulos et al., 2022; González-Duque et al., 2024; Zamuda et al., 2018). For such discrete BBO problems, methods based on tensor decomposition (TD) offer a sample-efficient approach that has recently demonstrated great potential (Sozykin et al., 2022; Chertkov et al., 2022; Batsheva et al., 2023). In this approach, a discrete search space is represented by a tensor, and a surrogate model is constructed by approximating this tensor, for example, with a low-rank tensor.

For many real-world problems addressed by BBO, consideration of input constraints arising from safety requirements, manufacturing capabilities, or design rules is crucial. A typical approach to introduce these input constraints into SMBO is to evaluate the feasibility at the stage of acquiring new samples, for example by rejecting infeasible inputs or modifying the acquisition function (Gardner et al., 2014; Gelbart et al., 2014). More advanced methods also follow this paradigm, employing sophisticated solvers to optimize the acquisition function over the known feasible domain (Papalexopoulos et al., 2022). In these approaches, however, the surrogate model itself is typically learned without considering feasibility, which can reduce sample efficiency, especially when the feasible domain is small. To address this limitation, introducing *constraint-awareness* into the surrogate model, i.e., considering feasibility during training the surrogate model, is expected to enhance the approximation of the objective function within the feasible region and increase the sample efficiency of SMBO.

Figure 1: Overview of CA-TD: CA-TD approximates the black-box objective over feasible inputs, effectively guiding the search in SMBO.

In this paper, we address a BBO problem in discrete space with input constraints, where the objective function is expensive to evaluate, and the input constraints are known as a prior, i.e., cheap to evaluate constraints. To address this problem, we propose a TD-based surrogate model using the Tensor-Train (TT) decomposition to deal with discrete space under input constraints, named Constraint-Aware Tensor Decomposition (CA-TD) (Figure 1). In our approach, we formulate the task of learning a surrogate model under input constraints (surrogate learning) as a constrained polynomial optimization problem (POP). To efficiently solve this POP, we introduce a scalable approximation by incorporating constraint violations into the loss function for surrogate learning as a differentiable penalty term, which enables efficient gradient-based training.

Our contribution is threefold:

- We formulate the training of a TD-based surrogate model with input constraints as a POP, which defines our method CA-TD
- We develop a gradient-based training method for CA-TD by introducing a penalty term for constraint violations for scalability
- We evaluate our approach on a diverse set of synthetic and real-world benchmarks, including a classic engineering design task. The results demonstrate improvements in sample efficiency compared to conventional methods.

Our source code and datasets are publicly available at <https://github.com/xxxxxx>.

2 PRELIMINARIES

This section introduces the fundamental concepts underlying our proposed method. Since our problem formulation is based on the discrete BBO approach within the SMBO framework, we begin by providing an overview of BBO and SMBO. Additionally, we describe TD-based surrogate models that our method employs, focusing in particular on tensor train (TT) decomposition.

2.1 DISCRETE BLACK-BOX OPTIMIZATION PROBLEM AND SEQUENTIAL MODEL-BASED OPTIMIZATION

First, we formulate the discrete BBO problem that is the basis of the problem addressed in this paper. Given a search space $\mathcal{X} = X_1 \times \dots \times X_d$, where X_k is a finite set for $k = 1, \dots, d$, and an objective function $g : \mathcal{X} \rightarrow \mathbb{R}$. The goal of this problem is to find

$$\mathbf{x}^* = \arg \min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}).$$

In this problem, no further information about g is available, such as its derivative, so it is called a black-box function. In practice, it is assumed that evaluating g is costly, and it is desirable to obtain a good solution with as few evaluations of g as possible.

108 **Algorithm 1** The Procedure of SMBO

109 **Require:** Objective function g , search space \mathcal{X} , surrogate model class f , acquisition function α ,

110 maximum iterations T .

111 1: Initialize history \mathcal{H}

112 2: **for** $t = 1$ to T **do**

113 3: Fit or update the surrogate model f_{t-1} using \mathcal{H} .

114 4: Select the next point to evaluate:

115 5: $\mathbf{x}_t \leftarrow \arg \max_{\mathbf{x} \in \mathcal{X}} \alpha(\mathbf{x}, f_{t-1})$.

116 6: Evaluate the objective function: $y_t \leftarrow g(\mathbf{x}_t)$.

117 7: Augment the history: $\mathcal{H} \leftarrow \mathcal{H} \cup \{(\mathbf{x}_t, y_t)\}$.

118 8: **end for**

119 9: **return** \mathcal{H}

120

121

122 The overall SMBO procedure is summarized in Algorithm 1. SMBO is a general framework of

123 BBO that includes Bayesian optimization as a special case, and we adopt a variant widely used in

124 Bayesian optimization (Frazier, 2018; Shahriari et al., 2015; Bergstra et al., 2011), which iteratively

125 performs the following three steps. 1) A probabilistic surrogate model f is fitted to all previous

126 observations. Instead of directly evaluating the costly function g , the surrogate model f is used to

127 approximate g . 2) The most promising point to evaluate next is selected by using an acquisition

128 function $\alpha(\cdot)$, defined based on the surrogate function f . In our implementation, we utilize the

129 Expected Improvement (EI) criterion (Mockus et al., 1978) as the acquisition function to decide the

130 next point. 3) The objective function g at the selected point is evaluated. This loop is repeated T

131 times.

2.2 TENSOR-TRAIN SURROGATE MODEL

132

133 This section briefly describes the method to use TT decomposition as a TD-based surrogate model f

134 for approximating black-box functions g . The TT decomposition provides a compact representation

135 of high-dimensional tensors by factorizing them into a sequence of smaller core tensors.

136 Before considering the surrogate model, we first consider the tensor for storing the evaluated points

137 $\mathcal{Y} \in (\mathbb{R} \cup \emptyset)^{|X_1| \times \dots \times |X_d|}$, where $|X_k|$ is a cardinality of a finite set X_k and \emptyset represents a point that

138 have not yet been evaluated. Note that this tensor has the same size as the discrete search space \mathcal{X} .

139 By denoting the element of \mathcal{Y} corresponding to point $\mathbf{x} = (x_1, \dots, x_d) \in \mathcal{X}$ as $\mathcal{Y}[\mathbf{x}]$, each entry

140 $\mathcal{Y}[\mathbf{x}]$ represents the value of the objective function $g(\mathbf{x})$. In the context of SMBO, the values of $g(\mathbf{x})$

141 that have already been evaluated are stored in $\mathcal{Y}[\mathbf{x}]$.

142 Here, a TD-based surrogate model is provided by using TT decomposition to approximate the above

143 ground-truth tensor \mathcal{Y} to a low-rank $\hat{\mathcal{Y}}$, which can be expressed as follows:

144

$$\hat{\mathcal{Y}}[\mathbf{x}] = \mathbf{G}^{(1)}[x_1] \mathbf{G}^{(2)}[x_2] \cdots \mathbf{G}^{(d)}[x_d], \quad (1)$$

145

146 where $\mathbf{G}^{(k)}[x_k] \in \mathbb{R}^{r_{k-1} \times r_k}$ denotes the x_k -th lateral slice of the k -th core tensor ($k = 1, 2, \dots, d$). Note that $r_k \in \mathbb{N}$ ($r_0 = r_d = 1$), referred to as the TT-ranks, controls the expressiveness of the decomposition. The number of parameters scales as $\mathcal{O}(dn r^2)$, where $n = \max_k |X_k|$ and $r = \max_k r_k$. Instead of evaluating the objective function g , a low-rank surrogate tensor $\hat{\mathcal{Y}}$ that imputes the unobserved elements of \mathcal{Y} can be used as a surrogate model $f(\mathbf{x}) = \hat{\mathcal{Y}}[\mathbf{x}]$ by controlling the TT-ranks r_k .

147 In TT decomposition, a surrogate model is trained to minimize the mean squared error $\mathcal{L}_{\text{recon}}$ be-

148 tween the surrogate model output $\hat{\mathcal{Y}}[\mathbf{x}]$ and the observations $\mathcal{Y}[\mathbf{x}]$ in the previously evaluated dataset

149 $H = \{\mathbf{x} : \mathcal{Y}[\mathbf{x}] \neq \emptyset\}$:

150

$$\mathcal{L}_{\text{recon}} = \frac{1}{|H|} \sum_{\mathbf{x} \in H} \left(\mathcal{Y}[\mathbf{x}] - \hat{\mathcal{Y}}[\mathbf{x}] \right)^2. \quad (2)$$

151

162 **3 PROPOSED METHOD: CONSTRAINT-AWARE TENSOR DECOMPOSITION**
 163 **SURROGATE**
 164

165 Our method integrates constraint-awareness directly into the learning process of the TD-based sur-
 166rogate model for SMBO.
 167

168 **3.1 PROBLEM FORMULATION**
 169

170 First, we describe our formulation of the discrete BBO under input constraints. Given a discrete
 171 search space $\mathcal{X} = X_1 \times \dots \times X_d$ and an objective function $g : \mathcal{X} \rightarrow \mathbb{R}$, the goal is to find
 172

$$173 \mathbf{x}^* = \arg \min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}) \quad \text{subject to} \quad c(\mathbf{x}) = 1, \quad (3)$$

175 where a constraint function $c : \mathcal{X} \rightarrow \{0, 1\}$ whose evaluation cost is negligible compared to g .
 176

177 For ease of handling, we introduce the notation $\mathcal{X}_{\text{feas}} := \{\mathbf{x} \in \mathcal{X} \mid c(\mathbf{x}) = 1\}$ and rewrite the above
 178 problem as:
 179

$$180 \mathbf{x}^* = \arg \min_{\mathbf{x} \in \mathcal{X}_{\text{feas}}} g(\mathbf{x}).$$

181 **3.2 A FORMULATION AS A POLYNOMIAL OPTIMIZATION PROBLEM**
 182

183 We incorporate input constraints into the surrogate model by assuming that evaluations at infeasible
 184 inputs yield objective values greater than or equal to a threshold τ , since we solve a minimization
 185 problem. Specifically, we define the infeasible subset of the search space as $\mathcal{X}_{\text{infeas}} := \mathcal{X} \setminus \mathcal{X}_{\text{feas}}$
 186 and impose the condition
 187

$$g(\mathbf{x}) \geq \tau \quad \text{for all } \mathbf{x} \in \mathcal{X}_{\text{infeas}},$$

188 where the threshold τ is set to the maximum objective value observed so far among feasible inputs.
 189 Thus, the surrogate model learning under the input constraints is formulated as follows:
 190

$$191 \min_{\hat{\mathcal{Y}}} \frac{1}{|H|} \sum_{\mathbf{x} \in H} (\mathcal{Y}[\mathbf{x}] - \hat{\mathcal{Y}}[\mathbf{x}])^2, \quad (4)$$

$$193 \text{subject to } \hat{\mathcal{Y}}[\mathbf{x}] \geq \tau \quad \text{for all } \mathbf{x} \in \mathcal{X}_{\text{infeas}}.$$

195 Since the surrogate tensor $\hat{\mathcal{Y}}[\mathbf{x}]$ is a polynomial function of the core tensor parameters according to
 196 Equation 1, the above problem constitutes a POP (Appendix G). An established approach to solving
 197 POPs involves constructing a hierarchy of semidefinite programming (SDP) relaxations (Lasserre,
 198 2001), which can provide arbitrarily tight lower bounds on the global optimum. We employ this
 199 approach to the problem Equation 4 and simply refer to it as HSDP hereafter.

201 **3.3 PENALIZED LOSS FUNCTION**
 202

203 Since POPs are NP-hard and HSDP remains computationally demanding, we relax the hard con-
 204 straints by incorporating a differentiable penalty term into the objective. Specifically, the constrained
 205 optimization problem in Equation 3 is relaxed to an unconstrained optimization:
 206

$$\arg \min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}) + \lambda h(c(\mathbf{x})),$$

208 where h is a penalty function that measures the violation of the constraint $c(\mathbf{x}) = 1$ and $\lambda > 0$
 209 controls the trade-off between data fitting and constraint enforcement.
 210

211 To solve this relaxed problem while promoting satisfaction of the constraint c , we train the TT-based
 212 surrogate model by minimizing the following total loss using gradient-based optimization:
 213

$$214 \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{recon}} + \lambda \mathcal{L}_{\text{pen}} \\ 215 = \frac{1}{|H|} \sum_{\mathbf{x} \in H} (\mathcal{Y}[\mathbf{x}] - \hat{\mathcal{Y}}[\mathbf{x}])^2 + \lambda \cdot \frac{1}{|\mathcal{X}_{\text{infeas}}|} \sum_{\mathbf{x} \in \mathcal{X}_{\text{infeas}}} \max(0, \tau - \hat{\mathcal{Y}}[\mathbf{x}]) \quad (5)$$

216 The penalty term \mathcal{L}_{pen} is designed to impose the constraint, aiming to push the outputs of the sur-
 217 rogate at least above the threshold τ at infeasible inputs, while maintaining approximation accuracy
 218 on the observed data. We denote this penalty-based strategy for the CA-TD surrogate learning as
 219 PGRAD (Penalty with Gradient-based optimization) throughout the rest of the paper.
 220

221 3.4 UNCERTAINTY QUANTIFICATION USING ENSEMBLES FOR ACQUISITION FUNCTION

223 In SMBO, acquisition functions determine which input to evaluate next by leveraging approxi-
 224 mations from surrogate models. Their strategies are typically based on the idea of the explo-
 225 ration-exploitation trade-off, requiring not only an accurate approximation of the objective’s value
 226 but also a reliable quantification of the uncertainty of the approximation.

227 To this end, we use an ensemble of M independently learned TT-based surrogate models
 228 $\{\hat{\mathcal{Y}}^{(m)}\}_{m=1}^M$, each initialized with different random TT core parameters. At any input \mathbf{x} , the en-
 229 semble predictions $\{\hat{\mathcal{Y}}^{(m)}[\mathbf{x}]\}_{m=1}^M$ induce an empirical distribution. We compute the sample mean
 230 $\mu(\mathbf{x})$ and standard deviation $\sigma(\mathbf{x})$ from this ensemble to evaluate the EI acquisition function, whose
 231 formula is given by $\alpha_{\text{EI}}(\mathbf{x}) = \mathbb{E}[\max(0, y^* - Y(\mathbf{x}))]$, where $y^* = \min_{\mathbf{x} \in \mathcal{H} \cap \mathcal{X}_{\text{feas}}} g(\mathbf{x})$ is the best
 232 (minimum) feasible objective value observed so far, and $Y(\mathbf{x})$ is the predictive distribution at \mathbf{x} .
 233 When a new point is sampled and evaluated, the threshold τ is updated with the maximum feasible
 234 value so far.

235 4 RELATED WORK

236 Our method builds on three areas of work: constrained BBO, tensor decomposition for black-box
 237 optimization (TD-BBO), and constrained tensor decomposition. We briefly review each area below
 238 and explain our unique contributions in relation to each field.

239 4.1 CONSTRAINED BLACK-BOX OPTIMIZATION

240 Constrained BBO deals with expensive objectives and expensive/inexpensive input constraints
 241 whose analytic forms are unknown (Rios & Sahinidis, 2013b). Most existing algorithms extend
 242 Bayesian Optimization (BO) (Frazier, 2018; Shahriari et al., 2015), which is a form of SMBO that
 243 typically uses Gaussian Processes (GPs) as surrogate models (Williams & Rasmussen, 2006). Early
 244 GP-based approaches fit separate GPs to model each constraint and incorporate the estimated fea-
 245 sibility into the acquisition function, typically by combining them with EI (Gardner et al., 2014;
 246 Gelbart et al., 2014). Subsequent work further extended this strategy using augmented Lagrangian
 247 methods (Picheny et al., 2016) and level-set estimation techniques (Zhang et al., 2023).

248 Unlike the methods mentioned above, in the case of explicit hard constraints, some approaches max-
 249 imize the acquisition function within the feasible region. For example, a method that combines GPs
 250 with mixed-integer programming to maximize the acquisition function under known constraints has
 251 been proposed (Thebelt et al., 2022). A more advanced method, NN+MILP, uses piecewise-linear
 252 neural networks with acquisition maximization via mixed-integer linear programming (Papalex-
 253 opoulos et al., 2022), allowing flexible integration of combinatorial constraints in discrete search
 254 spaces.

255 Most existing methods in the framework of constrained BBO handle constraints by modifying the
 256 acquisition function, as mentioned above. Our proposed approach is distinguished by the direct
 257 incorporation of known feasibility information into the surrogate model training process. This is
 258 expected to enforce the surrogate model itself to learn the feasibility information, aiming for a more
 259 accurate approximation of the objective function.

260 4.2 TENSOR DECOMPOSITION FOR BBO

261 TD compactly represents multi-dimensional arrays and is well-suited for capturing discrete struc-
 262 tures. OptimATT (Chertkov et al., 2022) adopts the TT format for discrete, unconstrained BBO,
 263 while PROTES (Batsheva et al., 2023) incorporates input constraints by encoding the input fea-
 264 sibility as a binary tensor and using its TT decomposition to guide surrogate initialization. Although

270 TTOpt (Sozykin et al., 2022) also uses the TT format, it is primarily designed for continuous opti-
 271 mization.

272 In the context of TD-BBO, methods such as OptimaTT and TTOpt are primarily designed for un-
 273 constrained optimization. A pioneering approach that incorporates input constraints is the PROTES
 274 method mentioned above, which uses these to guide the initial exploration in the proxy initialization
 275 step. In contrast, focusing on the entire search process rather than just the initialization step, CA-TD
 276 incorporates the constraints into the update of the surrogate model at each optimization step. This
 277 aims to improve sample efficiency by constantly recognizing feasible regions throughout the entire
 278 search process.

280 4.3 TENSOR DECOMPOSITION UNDER CONSTRAINTS

281 Constraint-aware tensor decomposition has primarily been studied in the context of data analysis,
 282 where domain-specific structure is imposed on factor matrices to improve interpretability or incor-
 283 porate prior knowledge. For example, constraints such as non-negativity (Alexandrov et al., 2022;
 284 Yu et al., 2022), orthogonality (Halaseh et al., 2022), and smoothness via basis function expansions
 285 (Imaizumi & Hayashi, 2017) have been explored.

287 While previous work on constrained tensor decomposition has primarily focused on such well-
 288 behaved linear algebraic constraints, our study departs from this trend by directly imposing con-
 289 straints on individual elements of the output tensor. These constraints are not based on assumptions
 290 about the latent factors of the tensor but directly reflect the feasibility conditions of the input required
 291 in the outer-loop optimization problem, representing a new application of constraints in tensor de-
 292 composition in BBO.

293 5 EXPERIMENTS

296 We conduct two experiments to evaluate the effectiveness of CA-TD in constrained black-box opti-
 297 mization on discrete domains. The objectives of these experiments are: (1) to compare the perfor-
 298 mance and scalability of our proposed constrained training strategies, HSDP and PGRAD; and (2)
 299 to evaluate the effectiveness of our constraint-aware approach using tensor decomposition (CA-TD)
 300 against conventional baseline methods, including naive extensions for handling constraints.

301 5.1 BENCHMARKS

303 This subsection briefly introduces the benchmark problems used to evaluate our method. Detailed
 304 mathematical formulations for all problems are provided in Appendix B.

306 **Ackley** We use the standard Ackley synthetic function (Adorio & Diliman, 2005), to which we
 307 apply a simple geometric constraint boundary. The search space is an integer grid of $\{-\ell, \dots, \ell\}^2$,
 308 and the feasible region is defined by the circular constraint $x_1^2 + x_2^2 \leq r^2$. We use this problem
 309 to evaluate performance across different scales, with the specific settings for Experiment 1 and 2
 310 detailed in Table 1.

311 **Pressure Vessel** This is a classic mixed-variable engineering design problem where the goal is to
 312 minimize manufacturing cost under physical constraints (Coello & Montes, 2002). We adapt this
 313 problem to our discrete setting by discretizing the two continuous variables into 10 uniform levels.

314 **Warcraft** This benchmark is a grid-based path optimization problem (Ahmed et al., 2022), where
 315 the goal is to find an optimal path on a map with combinatorial constraints defining path validity.
 316 We evaluate this problem on two different map sizes: 2×2 grid with 7^4 candidate paths, and 2×3
 317 grid 7^6 with candidate paths.

318 **Diabetes** This is a real-world inspired task where constraints are derived from domain knowledge
 319 to find actionable and medically plausible treatment plans from patient data (Smith et al., 1988).

321 5.2 EXPERIMENTAL SETUP

323 Each run uses a fixed evaluation (see Table 1), initialized from a random feasible input. The number
 324 of ensembles to compute the uncertainty for TD-based surrogate models is set as $M = 10$. In

324
325 Table 1: The settings of Ackley on the grid used in experiments. ℓ determines the grid range
326 $\{-\ell, \dots, \ell\}^2$, r is the radius for the circular constraint, and T is the number of evaluations in SMBO.

Experiment	Grid size	ℓ	r	T
Experiment 1	3×3	1	1	5
	5×5	2	2	15
	7×7	3	3	25
Experiment 2	65×65	32	10	500

341
342 Figure 2: Optimization performance of CA-TD surrogates trained with HSDP and PGRAD on
343 discrete Ackley benchmarks. Lower and earlier curves indicate better sample efficiency, and narrower
344 shaded areas reflect more stable performance across runs. Solid lines denote models trained with ex-
345 plicit feasibility integration, while dashed lines show unconstrained variants. PGRAD (blue) offers
346 better scalability and lower computational overhead, while HSDP (red) yields more stable conver-
347 gence on small grids.

349 Experiment 1, the surrogate mean is used for the acquisition function for simplicity, and EI is applied
350 in Experiment 2. The metrics include the best value obtained from the objective function and the
351 round in which this value first appeared. All results are averaged over 10 seeds.

352 HSDP is implemented using the Ncpol2sdpa (Wittek, 2015) package with relaxation order 2. The
353 generated SDP problems are solved using a sparse semidefinite programming solver.

355 PGRAD uses the Adam optimizer (Kingma & Ba, 2014) to minimize the total loss (Equation 5). The
356 surrogate tensor is normalized to the range $[0, 1]$, and the penalty coefficient is fixed at $\lambda = 1$. For
357 ablation studies with varying values of λ in Appendix D.1. Training continues across SMBO rounds
358 without reinitializing the tensor cores. This minimization at each round is terminated either when
359 the loss drops below 0.1 or after 1000 epochs, whichever occurs first. The detailed implementation,
360 including software and hardware, is provided in Appendix C.

361 For comparison, we consider four baseline methods, each with an unconstrained (-u) and a con-
362 strained (-c) variant. As typical BBO methods, we use Bayesian optimization based on Gaussian
363 process (GP-u) and the Tree-structured Parzen Estimator (TPE-u) (Watanabe, 2023). The naive con-
364 strained variants (GP-c, TPE-c) are informed of the feasible space by training them offline on 200
365 randomly sampled infeasible inputs with a penalty value assigned. In these naive methods, if an in-
366 feasible point is selected, it is assigned the worst possible evaluation value for each task. The abla-
367 tion study related to this sample size of offline-trained infeasible points is described in Appendix D.2.
368 Also, as a conventional method for constrained tensor-based BBO, PROTES-c is included in the
369 comparison (Batsheva et al., 2023). Furthermore, we include an advanced method (NN+MILP-
370 c) (Papalexopoulos et al., 2022), which uses a piecewise-linear neural network as a surrogate and
371 handles constraints via mixed-integer linear programming (MILP). For a comprehensive compari-
372 son, we also include the comparison methods run without task-specific constraints (NN+MILP-u /
373 PROTES-u).

374 5.3 EXPERIMENT 1: HSDP vs. PGRAD

376 We compare two training methods for CA-TD: HSDP and PGRAD. Both use TT format with rank
377 $R = 2$ and are tested on three Ackley grids. For each method, we also include unconstrained
378 counterparts trained without constraint-awareness.

378
 379 Table 2: Comparison of HSDP and PGRAD for constraint-aware surrogate training on discrete
 380 Ackley benchmarks. Each row reports the mean and standard deviation of the best objective value,
 381 the round at which it first appeared, and the average runtime per optimization round (in seconds).

382 Task	383 Model	Constrained (-c)			Unconstrained (-u)		
		384 Best Value	385 Best Round	386 Runtime (s)	387 Best Value	388 Best Round	389 Runtime (s)
384 Ackley 385 3×3	HSDP	0.00 \pm 0.00	3.40 \pm 0.92	11.26 \pm 0.44	1.32 \pm 1.32	3.00 \pm 1.79	11.49 \pm 0.32
	PGRAD	0.00 \pm 0.00	3.70 \pm 1.55	1.76 \pm 0.11	0.00 \pm 0.00	6.70 \pm 2.87	2.03 \pm 0.49
384 Ackley 385 5×5	HSDP	0.00 \pm 0.00	6.90 \pm 2.02	279.44 \pm 5.58	0.00 \pm 0.00	12.10 \pm 3.73	229.56 \pm 0.78
	PGRAD	0.00 \pm 0.00	5.60 \pm 2.97	0.56 \pm 0.05	0.00 \pm 0.00	9.50 \pm 5.94	1.44 \pm 0.85
384 Ackley 385 7×7	HSDP	5.60 \pm 1.75	1.30 \pm 0.46	2045.80 \pm 65.16	5.95 \pm 2.10	1.00 \pm 0.00	1932.85 \pm 33.06
	PGRAD	0.00 \pm 0.00	12.60 \pm 4.94	0.67 \pm 0.25	0.00 \pm 0.00	25.40 \pm 8.32	1.10 \pm 0.45

405 Figure 3: Optimization progress of our proposed tensor decomposition (TD) models and several
 406 baselines (GP, TPE, and NN+MILP), with and without constraint-awareness, across five benchmark
 407 tasks. For each TD model, the rank achieving the best performance is used (see Table 4 and Table 5
 408 in the Appendix C for detailed results). Lower and earlier curves indicate better sample efficiency.
 409 Solid lines denote constrained models (-c). The enlarged view showing the separated parts -c and -u
 410 is shown in the Appendix I.

411
 412 Figure 2 shows the optimization progress. On small grids, both constrained methods rapidly reach
 413 near-optimal values, with HSDP converging slightly earlier. On the 7×7 grid, HSDP becomes
 414 impractical due to computational cost, while PGRAD continues to improve efficiently. Table 2 sum-
 415marizes best values, convergence rounds, and runtimes. PGRAD achieves strong performance across
 416 all cases with runtimes under one second per round. In contrast, HSDP is timed out (4000 seconds
 417 per round) in the case 7×7 . Across all cases, constraint versions (“-c”) outperform unconstrained
 418 ones (“-u”) in both speed and final objective value.

420 5.4 EXPERIMENT 2: COMPARISON USING BENCHMARKS

421 In these experiments, we compare CA-TD with other methods using benchmarks. Also, to examine
 422 how different TD formats the performance of CA-TD, we evaluate it under three formats: Tensor
 423 Train (TT), Canonical Polyadic (CP) (Kolda & Bader, 2009), and Tensor Ring (TR) (Zhao et al.,
 424 2016), each tested at ranks $R = 2, \dots, 6$ (Appendix A). Throughout, constrained models are denoted
 425 with the suffix “-c”, and unconstrained ones with “-u” where necessary. For TT and TR, the same
 426 rank R is uniformly applied across all modes.

427 Figure 3 shows optimization curves for the best configuration of each method. Our proposed CA-TD
 428 models, e.g. TT-c, consistently achieve faster convergence and better final values compared to the
 429 naive baselines (GP-u, TPE-u, GP-c, and TPE-c). Crucially, CA-TD also demonstrates highly com-
 430 petitive or superior performance against the previous methods (PROTES and NN+MILP). This ad-
 431 vantage is particularly evident in the Pressure Vessel and Warcraft benchmarks. Note that NN+MILP

432 is significantly affected by hyperparameters such as the number of training epochs, and here we use
 433 the best hyperparameters (Appendix D.3).
 434

435 The CA-TD method also requires the appropriate selection of tensor format and rank. Our ablation
 436 study (Appendix D) reveals distinct characteristics for each tensor format. CP can achieve excellent
 437 final objective values, particularly on the Diabetes benchmark, but its performance is highly sensitive
 438 to rank, which varies widely across problems (from 2 to 6). TR exhibits exceptional convergence
 439 speed on the Pressure Vessel benchmark, yet its performance on other tasks is less competitive. In
 440 contrast, TT demonstrates the most consistent and robust performance across tasks, achieving the
 441 fastest convergence on the Ackley and Warcraft 2 \times 3 benchmarks. Most importantly, the optimal
 442 rank of TT is remarkably stable, typically within the 3–4 range and reasonably consistent even at
 443 higher ranks, making it a user-friendly default choice for constrained BBO problems where ease of
 444 use and reliable performance are desired.
 445

5.5 DISCUSSION

447 The experiments validate the effectiveness of CA-TD for constrained black-box optimization. From
 448 Experiment 1, we confirm that incorporating feasibility into the training step of the surrogate model
 449 improves sample efficiency. While HSDP performs well on small problems, PGRAD offers a scal-
 450 able alternative suitable for larger settings such as the 7 \times 7 Ackley grid.
 451

452 From Experiment 2, we observe that our constraint-aware surrogate modeling is a dominant factor
 453 in improving performance. Our CA-TD model consistently outperforms unconstrained optimiza-
 454 tion methods such as GP-u and TPE-u, and methods that simply include prior information, such
 455 as GP-c and TPE-c, and performs comparably to more advanced NN+MILP(-c) methods. Among
 456 these, NN+MILP (both -c and -u) and GP-u/TPE-u are methods in which the surrogate model is
 457 trained without considering constraints, and constraints are considered only in the acquisition func-
 458 tion stage. Our results suggest this leads to less efficient exploration. By training the surrogate
 459 model to learn the boundaries of the feasible space, CA-TD can more accurately predict promising
 460 regions and improve sample efficiency. This suggests that embedding feasibility directly into the
 461 surrogate model may be more effective than handling feasibility separately during acquisition.
 462

463 Notably, our results show that CA-TD with the TT format delivers strong performance regardless of
 464 the tasks and the random seed and requires minimal hyperparameter tuning. This property highlights
 465 a key trade-off for practitioners between peak performance and practical usability. We believe that
 466 for general-purpose applications, where extensive preliminary analysis is not feasible, the robustness
 467 of the TT format provides a compelling advantage.
 468

469 A key limitation of CA-TD lies in its further scalability to high-dimensional search spaces. While
 470 our experiments show speedups on PGRAD, further improvements in memory scalability are neces-
 471 sary to apply it to a wider range of problems. Tensor-based BBO, including CA-TD, is limited by the
 472 memory demands of dense tensor representations. Although a simple mini-batching strategy offers
 473 a preliminary workaround (Appendix H.1), fully scaling CA-TD to larger and higher-dimensional
 474 problems by using sparse tensor representation remains an important avenue for future research.
 475

6 CONCLUSION

476 We proposed CA-TD, a constraint-aware surrogate modeling approach for sequential black-box op-
 477 timization on discrete domains, integrating feasibility information directly into tensor decomposi-
 478 tion-based surrogate models. We formulated the learning problem as a POP and introduced a relaxed
 479 algorithm, PGRAD, which showed competitive performance and superior scalability to larger prob-
 480 lems compared with conventional HSDP. Experiments on synthetic and real-world inspired tasks,
 481 including an engineering design problem, indicated that CA-TD improves sample efficiency by in-
 482 corporating constraints into the surrogate rather than into acquisition optimization. Future work in-
 483 cludes scaling to higher-dimensional discrete spaces, e.g., via sparse tensor representations. While
 484 the TT format already mitigates scalability issues, automatic rank selection would further enhance
 485 the applicability of tensor formats. Extending the method to continuous domains and to BBO with
 486 constrained mixtures will also broaden its applications.
 487

486 REFERENCES
487

488 Ernesto P Adorio and U Diliman. Mvf-multivariate test functions library in c for unconstrained
489 global optimization. *Quezon City, Metro Manila, Philippines*, 44, 2005.

490 Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Semantic-
491 probabilistic layers for neuro-symbolic learning. *Advances in Neural Information Processing
492 Systems*, 35:29944–29959, 2022.

493 Boian Alexandrov, Derek F DeSantis, Gianmarco Manzini, and Erik W Skau. Nonnegative canonical
494 tensor decomposition with linear constraints: nncandlinc. *Numerical Linear Algebra with
495 Applications*, 29(6):e2443, 2022.

496 497 Anastasiia Batsheva, Andrei Chertkov, Gleb Ryzhakov, and Ivan Oseledets. Protes: probabilistic
498 optimization with tensor sampling. *Advances in Neural Information Processing Systems*, 36:
499 808–823, 2023.

500 501 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
502 optimization. *NeurIPS*, 24, 2011.

503 Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.

504 505 Andrei Chertkov, Gleb Ryzhakov, Georgii Novikov, and Ivan Oseledets. Optimization of functions
506 given in the tensor train format, 2022. URL <https://arxiv.org/abs/2209.14808>.

507 508 Carlos A Coello Coello and Efrén Mezura Montes. Constraint-handling in genetic algorithms
509 through the use of dominance-based tournament selection. *Advanced Engineering Informatics*,
510 16(3):193–203, 2002.

511 512 Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. NATS-Bench: Benchmarking nas
513 algorithms for architecture topology and size. *IEEE Transactions on Pattern Analysis and
514 Machine Intelligence (TPAMI)*, 2021. doi: 10.1109/TPAMI.2021.3054824. doi:10.1109/TPAMI
515 .2021.3054824.

516 Peter I Frazier. A tutorial on bayesian optimization. *arXiv preprint arXiv:1807.02811*, 2018.

517 Peter I Frazier and Jialei Wang. Bayesian optimization for materials design. *Information science for
518 materials discovery and design*, pp. 45–75, 2016.

519 520 Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham.
521 Bayesian optimization with inequality constraints. In *ICML*, volume 2014, pp. 937–945, 2014.

522 Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown con-
523 straints. *arXiv preprint arXiv:1403.5607*, 2014.

524 525 Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Søren Hauberg,
526 and Wouter Boomsma. A survey and benchmark of high-dimensional bayesian optimization of
527 discrete sequences. *Advances in Neural Information Processing Systems*, 37:140478–140508,
528 2024.

529 Karim Halaseh, Tommi Muller, and Elina Robeva. Orthogonal decomposition of tensor trains. *Lin-
530 ear and Multilinear Algebra*, 70(21):6609–6639, 2022.

531 532 Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. *Knowledge-
533 based systems*, 212:106622, 2021.

534 Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
535 for general algorithm configuration. In *Learning and Intelligent Optimization: 5th International
536 Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5*, pp. 507–523. Springer,
537 2011.

538 539 Masaaki Imaizumi and Kohei Hayashi. Tensor decomposition with smoothness. In *International
conference on machine learning*, pp. 1597–1606. PMLR, 2017.

540 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 541 *arXiv:1412.6980*, 2014.

542

543 Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. *SIAM review*, 51(3):
 544 455–500, 2009.

545 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 546 2009.

547

548 Jean B Lasserre. Global optimization with polynomials and the problem of moments. *SIAM Journal*
 549 *on optimization*, 11(3):796–817, 2001.

550 Jonas Mockus, Vytautas Tesis, and Antanas Zilinskas. The application of Bayesian methods for
 551 seeking the extremum. *Towards Global Optimization*, 2(117–129):2, 1978.

552

553 Theodore P Papalexopoulos, Christian Tjandraatmadja, Ross Anderson, Juan Pablo Vielma, and
 554 David Belanger. Constrained discrete black-box optimization using mixed-integer programming.
 555 In *International Conference on Machine Learning*, pp. 17295–17322. PMLR, 2022.

556

557 Victor Picheny, Robert B Gramacy, Stefan Wild, and Sébastien Le Digabel. Bayesian optimiza-
 558 tion under mixed constraints with a slack-variable augmented lagrangian. *Advances in neural*
information processing systems, 29, 2016.

559

560 Luis Miguel Rios and Nikolaos V. Sahinidis. Derivative-free optimization: a review of algorithms
 561 and comparison of software implementations. *J. Glob. Optim.*, 56(3):1247–1293, 2013a. URL
<https://doi.org/10.1007/s10898-012-9951-y>.

562

563 Luis Miguel Rios and Nikolaos V. Sahinidis. Derivative-free optimization: a review of algorithms
 564 and comparison of software implementations. *Journal of Global Optimization*, 56(3):1247–1293,
 2013b.

565

566 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 567 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
 568 148–175, 2015.

569

570 Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
 571 Using the adap learning algorithm to forecast the onset of diabetes mellitus. In *Proceedings of the*
572 annual symposium on computer application in medical care, pp. 261, 1988.

573

574 Konstantin Sozykin, Andrei Chertkov, Roman Schutski, Anh-Huy Phan, Andrzej S Cichocki, and
 575 Ivan Oseledets. Ttop: A maximum volume quantized tensor train-based optimization and its
 application to reinforcement learning. *NeurIPS*, 35:26052–26065, 2022.

576

577 Alexander Thebelt, Calvin Tsay, Robert Lee, Nathan Sudermann-Merx, David Walz, Behrang
 578 Shafei, and Ruth Misener. Tree ensemble kernels for bayesian optimization with known con-
 579 straints over mixed-feature spaces. *Advances in Neural Information Processing Systems*, 35:
 37401–37415, 2022.

580

581 Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
 582 their roles for better empirical performance. *arXiv preprint arXiv:2304.11127*, 2023.

583

584 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
 volume 2. MIT press Cambridge, MA, 2006.

585

586 Peter Wittek. Algorithm 950: Ncpol2sdpa—sparse semidefinite programming relaxations for poly-
 587 nomial optimization problems of noncommuting variables. *ACM Transactions on Mathematical*
Software (TOMS), 41(3):1–12, 2015.

588

589 Yuyuan Yu, Guoxu Zhou, Ning Zheng, Yuning Qiu, Shengli Xie, and Qibin Zhao. Graph-regularized
 590 non-negative tensor-ring decomposition for multiway representation learning. *IEEE Transactions*
591 on Cybernetics, 53(5):3114–3127, 2022.

592

593 Aleš Zamuda, Miguel Nicolau, and Christine Zarges. A black-box discrete optimization benchmark-
 594 ing (bb-dob) pipeline survey: taxonomy, evaluation, and ranking. In *Proceedings of the Genetic*
and Evolutionary Computation Conference Companion, pp. 1777–1782, 2018.

594 Fengxue Zhang, Jialin Song, James C Bowden, Alexander Ladd, Yisong Yue, Thomas Desautels,
 595 and Yuxin Chen. Learning regions of interest for bayesian optimization with adaptive level-set
 596 estimation. In *International Conference on Machine Learning*, pp. 41579–41595. PMLR, 2023.
 597

598 Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring decom-
 599 position. *arXiv preprint arXiv:1606.05535*, 2016.

600 601 A FORMULATIONS OF TENSOR DECOMPOSITIONS

604 In our experiments (Section 5.4), we evaluated three tensor decomposition formats (CP, TR, and
 605 TT) with a rank parameter ($R \in \{2, \dots, 6\}$) which controls model complexity. This appendix
 606 describes our formulation of each tensor decomposition form and how the parameter R appears for
 607 each decomposition form.

608 In this paper, multiplication is defined as the operation that contraction (sum over) performs across
 609 adjacent indices. Formally, given two tensors \mathbf{A} and \mathbf{B} , when contracting with respect to an index
 610 i , the tensor product is expressed as:

$$611 \mathbf{AB} := \sum_i \mathbf{A}[\dots, i]\mathbf{B}[i, \dots],$$

614 where $\mathbf{A} \in \mathbb{R}^{\dots \times |I|}$, $\mathbf{B} \in \mathbb{R}^{|I| \times \dots}$, and I denotes the range of the contraction index i (for example,
 615 $i = 1, \dots, |I|$).

617 **Canonical Polyadic (CP) Decomposition:** The CP decomposition models a tensor as a sum of
 618 rank-one tensors. Its formulation is:

$$620 \hat{\mathcal{Y}}[x_1, \dots, x_d] = \sum_{r=1}^R \mathbf{U}^{(1)}[x_1, r] \cdot \mathbf{U}^{(2)}[x_2, r] \cdots \mathbf{U}^{(d)}[x_d, r]$$

623 where $\mathbf{U}^{(k)} \in \mathbb{R}^{|X_k| \times R}$ is called the factor matrices and $\mathbf{U}^{(k)}[x_k, r]$ represents a scalar (x_k, r) -
 624 element in the k -th factor matrices. For the CP decomposition, the parameter R used in our ex-
 625 periments directly corresponds to the rank of the decomposition, which is the number of rank-one
 626 tensors in the summation.

627 **Tensor Ring (TR) Decomposition:** The TR decomposition represents a tensor as a circular prod-
 628 uct of third-order core tensors. Its formulation is:

$$630 \hat{\mathcal{Y}}[x_1, \dots, x_d] = \text{Tr}(\mathbf{G}^{(1)}[x_1]\mathbf{G}^{(2)}[x_2] \cdots \mathbf{G}^{(d)}[x_d])$$

632 where $\mathbf{G}^{(k)}[x_k]$ is the x_k -th slice of the core tensor $\mathcal{G}^{(k)} \in \mathbb{R}^{r_{k-1} \times |X_k| \times r_k}$. Note that the trace
 633 operator $\text{Tr}(\cdot)$ is defined as $\text{Tr}(\mathbf{A}) := \sum_i \mathbf{A}[i, \dots, i]$.

634 The complexity is characterized by a sequence of ranks $[r_1, r_2, \dots, r_d]$ that form a cycle (i.e., $r_0 =$
 635 r_d). For our experiments, we applied a uniform rank setting, setting all TR-ranks to the common
 636 value R ; i.e., $r_k = R$ for all $k \in \{1, \dots, d\}$.

638 **Tensor-Train (TT) Decomposition:** The TT decomposition, whose formulation is given in Eq. 1
 639 in the main text, can be viewed as a special case of the TR decomposition. It effectively breaks
 640 the circular connection of the TR format by setting the boundary ranks to one ($r_0 = r_d = 1$). As
 641 with our TR experiments, we used a uniform rank setting for the internal ranks: $r_k = R$ for all
 642 $k \in \{1, \dots, d-1\}$.

644 645 B SPECIFICATIONS OF BENCHMARK PROBLEMS

646 This section provides details of the benchmark tasks used in our experiments. The differences in
 647 each search space are shown in Table 3. Details of each task are described below.

Table 3: Search spaces for each task

task	search space size	#feasible points	ratio of feasible points
Ackley 3×3	3^2	5	0.56
Ackley 5×5	5^2	13	0.52
Ackley 7×7	7^2	29	0.59
Ackley 65×65	65^2	317	0.08
Pressure Vessel	10^4	3916	0.39
Warcraft 2×2	7^4	300	0.12
Warcraft 2×3	7^6	5400	0.05
Diabetes	5^8	10197	0.03

Ackley The 2D Ackley function (Adorio & Diliman, 2005) on grid is defined as:

$$g(x_1, x_2) = -20 \exp \left(-0.2 \sqrt{0.5(x_1^2 + x_2^2)} \right) \\ - \exp(0.5(\cos(2\pi x_1) + \cos(2\pi x_2))) \\ + 20 + \exp(1).$$

The input space is discretized into a uniform integer grid, and feasibility is defined by a circular constraint $x_1^2 + x_2^2 \leq r^2$.

Pressure Vessel The Pressure Vessel design problem is a classic engineering benchmark (Coello & Montes, 2002) with a mixed-variable search space. The goal is to minimize the total cost of a cylindrical pressure vessel. The problem has four variables, originally two continuous and two integer. For our experiments, we create a fully discrete search space by sampling 10 uniform levels from the domain of each variable. The objective function is given by:

$$g(x_1, x_2, x_3, x_4) = 0.6224x_1x_3x_4 + 1.7781x_2x_3^2 \\ + 3.1661x_1^2x_4 + 19.84x_1^2x_3,$$

subject to the following inequality constraints:

$$-x_1 + 0.0193x_3 \leq 0, \\ -x_2 + 0.00954x_3 \leq 0, \\ -\pi x_3^2 x_4 - \frac{4}{3} \pi x_3^3 + 1296000 \leq 0, \\ x_4 - 240 \leq 0.$$

Warcraft This benchmark, adapted from a path prediction problem solved via supervised learning with combinatorial constraints presented in Ahmed et al. (2022), is treated as a black-box optimization task. The environment is a 2D $m \times n$ grid map, where each cell has a predefined traversal cost. An input $\mathbf{x} \in \mathcal{X}$, representing a candidate path, is encoded as a sequence of $m + n$ movement primitives. Each primitive is selected from seven movement types: vertical (up or down), horizontal (left or right), four L-shaped turns (e.g., up+right, regardless of order), and a null move (no displacement).

The objective function $g(\mathbf{x})$ evaluates each path by summing the traversal costs along the path and rewarding proximity to the bottom-right corner, with shorter Euclidean distance yielding better scores. The input is subject to three constraints: the path must start from the top-left cell, it must consist of exactly $m + n$ steps, and it must end at the bottom-right cell.

We evaluate two map sizes: 2×2 (path length 4) and 2×3 (path length 6), resulting in 7^4 and 7^6 candidate paths, respectively.

702 Diabetes This task simulates the goal of identifying actionable treatment plans for patients diag-
 703 nosed with diabetes to demonstrate applicability on a real-world task where constraints are derived
 704 from domain knowledge. We use the Pima Indian Diabetes dataset (Smith et al., 1988), which con-
 705 tains 8 patient features and a binary diabetes label. Each continuous or integer-valued feature is
 706 discretized into 5 levels, resulting in a discrete search space $\mathcal{X} = \{0, 1, 2, 3, 4\}^8$.

707 A random forest classifier (Breiman, 2001) is trained on the entire dataset and used to predict the
 708 probability of diabetes for all candidates $\mathbf{x} \in \mathcal{X}$. Given a randomly chosen diabetic individual \mathbf{x}_{orig} ,
 709 the goal is to find an alternative feature configuration $\mathbf{x} \in \mathcal{X}$ such that the predicted probability
 710 of diabetes is reduced. To encourage realistic plans, we penalize large deviations from the original
 711 configuration. Specifically, the objective function is defined as:

$$712 \quad 713 \quad g(\mathbf{x}) = \text{RF}(\mathbf{x}) + \|\mathbf{x} - \mathbf{x}_{\text{orig}}\|_2,$$

714 where $\text{RF}(\mathbf{x}) \in [0, 1]$ is the predicted probability from the random forest classifier. Lower objective
 715 values correspond to medically plausible and effective treatment suggestions.

716 Feasibility constraints are imposed to exclude unrealistic feature combinations based on domain
 717 knowledge. For example, low insulin combined with high glucose is considered implausible for a
 718 non-diabetic patient and thus excluded from the feasible input.

720 C EXPERIMENTAL DETAILS

722 All experiments were conducted on nodes running Ubuntu 22.04.5 LTS. Each experimental run was
 723 allocated 4 cores of an Intel Xeon Gold 6230R CPU and 8 GB of memory. A timeout of 3600
 724 seconds (1 hour) was set for each run.

726 The software environment was built on Python 3.12.2. Key libraries include PyTorch 2.4.1 and
 727 NumPy 2.1.2. Our HSDP training strategy utilized ncpol2sdpa 1.12.2 and cvxpy 1.6.4, with SDPA
 728 7.3.16 as the backend semidefinite programming solver. Our implementation of the NN+MILP
 729 baseline (Papalexopoulos et al., 2022) follows the methodology described in the original paper. The
 730 mixed-integer linear programming subproblems are solved using OR-Tools 9.14.6206.

731 Details for the NN+MILP Baseline. Following the original paper, our implementation of the
 732 NN+MILP(Papalexopoulos et al., 2022) uses a ReLU-based neural network consisting of one fully
 733 connected layer with 16 hidden dimensions as the surrogate model.

735 The acquisition problem, which seeks to maximize the surrogate’s output, is formulated as an MILP.
 736 A key component of this formulation is the use of “no-good” cuts, which are constraints added to
 737 the MILP to exclude previously evaluated points from the search. This prevents the optimizer from
 738 repeatedly selecting the same points.

739 We tested two variants of this baseline:

- 741 Unconstrained (NN+MILP-u):** In this version, the MILP formulation only includes the
 742 search space boundaries and the “no-good” cuts as constraints. This variant does not use
 743 any specific knowledge about the problem’s feasible region.
- 744 Constrained (NN+MILP-c):** This version extends the unconstrained setup by incorpor-
 745 ating the explicit problem constraints directly into the MILP formulation. These are the same
 746 constraints used by our proposed CA-TD method, allowing for a direct and fair comparison
 747 of how constraint information is utilized. This includes, for example, the circular constraint
 748 for the Ackley problem and the physical constraints for the Pressure Vessel design.

750 D ABLATION STUDY FOR EXPERIMENT 2

756
 757 Table 4: Comprehensive comparison of CA-TD performance across tensor decomposition formats
 758 (CP, TR, TT) and tensor ranks on five benchmark tasks. For each configuration, we report the
 759 mean and standard deviation over ten runs for both the best feasible objective value found and the
 760 optimization round in which it first appeared. The best-performing rank for each model and task is
 761 identified based on the lowest average best value; in case of a tie, the configuration with the earlier
 762 average best round is selected. Selected best configurations are highlighted in **bold**.
 763

Objective	Constraint	Method	Rank	Best Value	Best Round
Ackley	Constrained	CP	2	0.00 ± 0.00	69.40 ± 14.00
			3	0.00 ± 0.00	37.70 ± 26.38
			4	0.00 ± 0.00	50.20 ± 33.32
			5	0.00 ± 0.00	56.60 ± 31.84
			6	0.00 ± 0.00	63.50 ± 24.45
		TR	2	0.00 ± 0.00	55.80 ± 19.99
			3	0.00 ± 0.00	61.60 ± 36.76
			4	0.00 ± 0.00	48.60 ± 29.46
			5	0.00 ± 0.00	57.70 ± 34.97
			6	0.00 ± 0.00	71.90 ± 33.81
		TT	2	0.00 ± 0.00	58.00 ± 20.76
			3	0.00 ± 0.00	36.30 ± 19.66
			4	0.00 ± 0.00	47.50 ± 24.36
			5	0.00 ± 0.00	57.40 ± 34.22
			6	0.00 ± 0.00	63.70 ± 41.13
	Unconstrained	CP	2	5.00 ± 2.59	74.00 ± 49.30
			3	4.37 ± 1.81	179.50 ± 158.71
			4	5.11 ± 1.51	61.30 ± 84.45
			5	4.29 ± 1.74	76.80 ± 76.16
			6	2.24 ± 1.97	105.10 ± 102.10
		TR	2	4.07 ± 1.28	68.50 ± 76.76
			3	5.72 ± 1.54	104.90 ± 140.38
			4	5.31 ± 1.87	47.80 ± 49.07
			5	5.01 ± 2.05	79.00 ± 111.06
			6	6.05 ± 2.85	27.30 ± 22.45
		TT	2	4.74 ± 1.96	151.60 ± 150.91
			3	3.88 ± 1.83	135.70 ± 139.12
			4	3.70 ± 1.77	113.20 ± 109.55
			5	4.38 ± 1.30	111.30 ± 89.04
			6	3.05 ± 1.30	138.40 ± 131.81
Diabetes	Constrained	CP	2	0.26 ± 0.08	190.30 ± 144.14
			3	0.20 ± 0.06	245.40 ± 105.69
			4	0.22 ± 0.05	215.10 ± 120.72
			5	0.19 ± 0.08	229.20 ± 121.43
			6	0.18 ± 0.08	183.40 ± 92.49
		TR	2	0.26 ± 0.06	193.50 ± 134.80
			3	0.25 ± 0.04	205.30 ± 142.27
			4	0.22 ± 0.08	276.70 ± 134.96
			5	0.20 ± 0.06	263.60 ± 84.38
			6	0.20 ± 0.06	210.00 ± 113.67
			2	0.27 ± 0.05	164.60 ± 136.64

(Table continues on next page)

TT

810
811

Table 4: (Continued) Summary of Main Experiment Results

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Objective	Constraint	Method	Rank	Best Value	Best Round
Pressure Vessel	Unconstrained	CP	3	0.25 ± 0.06	215.40 ± 129.64
			4	0.19 ± 0.07	289.50 ± 77.59
			5	0.21 ± 0.06	242.30 ± 85.96
			6	0.19 ± 0.04	258.00 ± 131.51
			2	0.56 ± 0.19	237.60 ± 139.88
			3	0.44 ± 0.09	105.70 ± 120.23
		TR	4	0.49 ± 0.15	26.60 ± 27.76
			5	0.43 ± 0.07	139.20 ± 105.89
			6	0.44 ± 0.11	163.30 ± 101.39
			2	0.45 ± 0.13	82.60 ± 106.76
			3	0.49 ± 0.20	142.30 ± 109.86
			4	0.49 ± 0.22	21.80 ± 30.35
		TT	5	0.59 ± 0.20	33.60 ± 63.21
			6	0.50 ± 0.15	62.80 ± 75.78
			2	0.59 ± 0.17	240.50 ± 157.55
			3	0.42 ± 0.15	36.70 ± 52.33
			4	0.43 ± 0.13	79.30 ± 112.83
			5	0.51 ± 0.11	24.30 ± 46.99
			6	0.43 ± 0.15	76.40 ± 131.94
	Constrained	CP	2	12408.34 ± 0.00	97.60 ± 22.90
			3	12408.34 ± 0.00	101.60 ± 51.76
			4	12408.34 ± 0.00	114.10 ± 54.86
			5	12408.34 ± 0.00	125.10 ± 62.85
			6	12408.34 ± 0.00	133.60 ± 45.18
		TR	2	12408.34 ± 0.00	65.60 ± 39.50
			3	12408.34 ± 0.00	107.90 ± 41.05
			4	12408.34 ± 0.00	153.90 ± 49.47
			5	12408.34 ± 0.00	171.60 ± 52.31
			6	12408.34 ± 0.00	158.60 ± 56.03
		TT	2	12408.34 ± 0.00	98.20 ± 52.98
			3	12408.34 ± 0.00	91.80 ± 41.26
			4	12408.34 ± 0.00	120.90 ± 59.48
			5	12408.34 ± 0.00	186.70 ± 84.06
			6	12408.34 ± 0.00	162.70 ± 71.59
			2	28747.63 ± 6576.40	135.10 ± 144.70
	Unconstrained	CP	3	26880.85 ± 6015.81	227.20 ± 187.25
			4	27551.16 ± 9856.99	166.20 ± 183.89
			5	24153.88 ± 4083.86	63.90 ± 90.89
			6	21718.03 ± 6122.11	83.80 ± 60.81
		TR	2	28563.29 ± 6355.42	42.20 ± 30.29
			3	24871.78 ± 7397.81	65.80 ± 68.65
			4	32783.74 ± 8703.58	36.00 ± 35.68
			5	34158.80 ± 6932.70	19.20 ± 12.46
			6	23866.31 ± 7088.02	28.70 ± 32.95
			2	26976.59 ± 4829.46	36.70 ± 53.05
			3	26170.20 ± 7600.21	65.20 ± 129.01

TT

(Table continues on next page)

864
865

Table 4: (Continued) Summary of Main Experiment Results

866
867
868
869
870

Objective	Constraint	Method	Rank	Best Value	Best Round
Warcraft 2 × 2	Constrained	CP	4	22564.40 ± 5990.01	67.70 ± 90.85
			5	22935.84 ± 4399.48	28.40 ± 33.67
			6	21395.48 ± 4376.77	34.60 ± 26.78
			2	0.50 ± 0.00	40.80 ± 40.34
			3	0.50 ± 0.00	31.00 ± 22.28
			4	0.50 ± 0.00	31.30 ± 14.60
		TR	5	0.50 ± 0.00	37.90 ± 15.57
			6	0.50 ± 0.00	25.60 ± 15.50
			2	0.50 ± 0.00	29.60 ± 18.17
			3	0.50 ± 0.00	29.70 ± 16.46
	Unconstrained	TT	4	0.50 ± 0.00	33.00 ± 12.57
			5	0.50 ± 0.00	26.10 ± 18.61
			6	0.50 ± 0.00	41.80 ± 16.80
			2	0.50 ± 0.00	34.90 ± 21.39
			3	0.50 ± 0.00	34.10 ± 14.74
			4	0.50 ± 0.00	39.80 ± 22.00
		CP	5	0.50 ± 0.00	41.60 ± 16.08
			6	0.50 ± 0.00	47.20 ± 21.19
			2	0.67 ± 0.12	192.30 ± 157.25
			3	0.74 ± 0.08	108.90 ± 99.23
Warcraft 2 × 3	Constrained	TR	4	0.68 ± 0.18	212.00 ± 189.91
			5	0.65 ± 0.14	96.30 ± 132.72
			6	0.68 ± 0.12	181.20 ± 197.93
			2	0.73 ± 0.12	171.40 ± 138.09
			3	0.74 ± 0.11	188.20 ± 181.50
			4	0.74 ± 0.10	163.90 ± 133.61
		TT	5	0.76 ± 0.12	123.70 ± 146.50
			6	0.76 ± 0.07	195.30 ± 152.81
			2	0.65 ± 0.11	192.30 ± 147.74
			3	0.75 ± 0.13	213.00 ± 172.45
	Unconstrained	TR	4	0.71 ± 0.09	181.40 ± 181.45
			5	0.67 ± 0.13	195.80 ± 170.67
			6	0.63 ± 0.12	115.60 ± 147.26
		CP	2	0.56 ± 0.09	108.10 ± 53.07
			3	0.50 ± 0.00	145.20 ± 70.85
			4	0.50 ± 0.00	123.00 ± 68.13
		TT	5	0.50 ± 0.00	125.70 ± 67.57
			6	0.50 ± 0.00	126.90 ± 66.16
			2	0.56 ± 0.09	335.20 ± 118.54
			3	0.50 ± 0.00	139.10 ± 60.37
	Constrained	TR	4	0.51 ± 0.03	255.50 ± 147.65
			5	0.50 ± 0.00	144.50 ± 90.58
			6	0.50 ± 0.00	175.20 ± 95.16
		TT	2	0.58 ± 0.10	257.90 ± 117.20
			3	0.50 ± 0.00	116.90 ± 30.93
			4	0.50 ± 0.00	115.70 ± 34.39

(Table continues on next page)

918
919

Table 4: (Continued) Summary of Main Experiment Results

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

Objective	Constraint	Method	Rank	Best Value	Best Round
Unconstrained	CP		5	0.50 \pm 0.00	144.70 \pm 40.49
			6	0.50 \pm 0.00	152.80 \pm 42.79
		TR	2	0.97 \pm 0.08	221.70 \pm 175.95
			3	0.87 \pm 0.10	234.50 \pm 192.92
			4	0.90 \pm 0.13	96.90 \pm 80.52
			5	0.88 \pm 0.14	148.50 \pm 132.13
		TT	6	0.88 \pm 0.12	156.10 \pm 116.36
			2	0.93 \pm 0.15	130.20 \pm 159.53
			3	1.01 \pm 0.06	92.40 \pm 118.96
			4	1.04 \pm 0.06	150.30 \pm 161.71
			5	0.94 \pm 0.11	120.90 \pm 127.46
			6	0.93 \pm 0.11	91.50 \pm 142.73

942
943
944
945
946

Table 5: Performance summary of the baseline methods (GP, TPE, NN+MILP, and PROTES) corresponding to the optimization progress in Experiment 2. For each configuration, we report the mean and standard deviation over ten runs for both the best feasible objective value found and the optimization round in which it first appeared. The best-performing method for each task and constraint is identified based on the lowest average best value.

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Objective	Constraint	Method	Best Value	Best Round
Ackley	Constrained	GP	3.72 \pm 1.52	249.90 \pm 105.64
		TPE	1.25 \pm 1.57	295.50 \pm 109.26
		NN+MILP	0.00 \pm 0.00	41.30 \pm 24.93
		PROTES	1.42 \pm 1.44	140.00 \pm 80.00
	Unconstrained	GP	4.00 \pm 1.55	209.40 \pm 90.30
		TPE	0.26 \pm 0.79	254.10 \pm 162.61
		NN+MILP	0.88 \pm 2.65	222.30 \pm 167.06
		PROTES	3.03 \pm 1.70	280.00 \pm 124.90
Diabetes	Constrained	GP	0.37 \pm 0.07	262.20 \pm 149.81
		TPE	0.43 \pm 0.53	312.30 \pm 126.52
		NN+MILP	0.22 \pm 0.05	176.60 \pm 134.49
		PROTES	0.47 \pm 0.52	410.00 \pm 122.07
	Unconstrained	GP	0.39 \pm 0.13	208.80 \pm 158.22
		TPE	0.33 \pm 0.20	388.80 \pm 92.61
		NN+MILP	0.25 \pm 0.07	334.30 \pm 122.75
		PROTES	0.31 \pm 0.08	380.00 \pm 124.90
Pressure Vessel	Constrained	GP	19982.64 \pm 3972.10	250.30 \pm 155.75
		TPE	15375.32 \pm 2757.68	294.10 \pm 66.56
		NN+MILP	14394.76 \pm 3905.88	239.20 \pm 137.69
		PROTES	16006.94 \pm 3748.15	350.00 \pm 111.80

(Table continues on next page)

Table 5: (Continued) Summary of Baseline Method Results

Objective	Constraint	Method	Best Value	Best Round
Warcraft 2 \times 2	Unconstrained	GP	43256.59 ± 67170.11	169.70 ± 147.72
		TPE	13550.90 ± 1521.29	238.20 ± 104.85
		NN+MILP	18632.64 ± 2319.82	161.10 ± 88.91
		PROTES	15704.22 ± 3402.14	340.00 ± 101.98
Warcraft 2 \times 3	Constrained	GP	0.59 ± 0.10	307.00 ± 153.05
		TPE	0.75 ± 0.13	288.30 ± 129.27
		NN+MILP	0.50 ± 0.00	66.10 ± 59.91
		PROTES	0.57 ± 0.08	190.00 ± 53.85
	Unconstrained	GP	0.64 ± 0.10	271.50 ± 136.55
		TPE	0.56 ± 0.11	194.10 ± 105.68
		NN+MILP	0.55 ± 0.10	150.60 ± 119.96
		PROTES	0.57 ± 0.08	190.00 ± 53.85

D.1 EFFECT OF THE PENALTY COEFFICIENT λ

We conduct an ablation study to assess the sensitivity of our PGRAD strategy to the penalty coefficient λ , which was fixed at 1.0 in our main experiments. We test the CP-c, TR-c, and TT-c surrogates on all five benchmarks, varying λ across the range $\{10, 5, 1, 0.5, 0.1, 0.01, 0.001, 0.0001\}$ for each benchmark.

The results, presented in Figures 4–6, demonstrate that the performance of these surrogates is remarkably robust to this hyperparameter across all benchmarks and tensor ranks. Within each sub-figure, the plots compare the optimization progress over rounds for different values of λ , where lower values indicate better performance. For all tested values of λ , the optimization progress curves are nearly identical, showing similar convergence behavior. Furthermore, most runs completed their full evaluation budget. A minor exception was observed on the Warcraft 2 \times 3 map benchmark, where the highest penalty coefficients ($\lambda = 10$ and $\lambda = 5$) resulted in slightly worse performance for all three methods (CP-c, TR-c, TT-c). In our main experiments, the constrained GP and TPE baselines (GP-c and TPE-c) were trained with 200 offline-sampled infeasible inputs. Here, we conduct an ablation study to analyze how the number of these infeasible points affects their performance. We test on all five benchmarks, varying the number of infeasible points in $\{0, 50, 100, 200, 300, 500, 1000, 2000\}$.

The results are presented in Figure 7. We observe a consistent and counter-intuitive trend across all benchmarks: for both GP-c and TPE-c, increasing the number of pre-trained infeasible points generally leads to a degradation in optimization performance. This effect is particularly severe for the GP baseline. As the number of informed points increases, the GP model’s performance consistently worsens, and the computational overhead leads to premature termination of the optimization process, evidenced by truncated convergence curves. This is likely because the GP model, which scales cubically with the number of data points, becomes prohibitively expensive to train and use for acquisition function optimization.

The TPE baseline, while also showing some performance degradation with more infeasible points, proves to be more computationally robust and completes its evaluation budget in most cases. These

1026 findings suggest that naively informing baseline models about the infeasible space by simply ex-
 1027 panding the training dataset is not an effective strategy and can be detrimental, especially for com-
 1028 putationally intensive models. This highlights the need for more sophisticated constraint-handling
 1029 methods.

1030

(a) Ackley on 65×65 grid

1044

1045

1046

1047

1048

(b) Pressure Vessel

1062

1063

1064

1065

1066

(c) Warcraft on 2×2 map

(d) Warcraft on 2×3 map

(e) Diabetes Treatment Planning

1131
1132
1133

Figure 4: Ablation study for CP-c across all five benchmarks. Each panel shows the optimization progress for a different tensor rank, comparing various settings of the penalty coefficient λ .

(a) Ackley on 65×65 grid

(b) Pressure Vessel

(c) Warcraft on 2×2 map

(d) Warcraft on 2×3 map

(e) Diabetes Treatment Planning

Figure 5: Ablation study for the TR-c method across all five benchmarks. Each panel shows the optimization progress for a different tensor rank, comparing various settings of the penalty coefficient λ .

(d) Warcraft on 2×3 map

(e) Diabetes Treatment Planning

Figure 6: Ablation study for TT-c across all five benchmarks. Each panel shows the optimization progress for a different tensor rank, comparing various settings of the penalty coefficient λ .

1350

D.2 EFFECT OF OFFLINE TRAINING ON GP AND TPE BASELINES

1351

1352

1353 In our main experiments, the constrained GP and TPE baselines (GP-c and TPE-c) were trained
 1354 with 200 offline-sampled infeasible inputs. Here, we conduct an ablation study to analyze how the
 1355 number of these infeasible points affects their performance. We test on all five benchmarks, varying
 1356 the number of infeasible points in $\{0, 50, 100, 200, 300, 500, 1000, 2000\}$.

1357

1358 The results are presented in Figure 7. We observe a consistent and counter-intuitive trend across
 1359 all benchmarks: for both GP-c and TPE-c, increasing the number of pre-trained infeasible points
 1360 generally leads to a degradation in optimization performance. This effect is particularly severe for
 1361 the GP baseline. As the number of informed points increases, the GP model’s performance consis-
 1362 tently worsens, and the computational overhead leads to premature termination of the optimization
 1363 process, evidenced by truncated convergence curves. This is likely because the GP model, which
 1364 scales cubically with the number of data points, becomes prohibitively expensive to train and use
 1365 for acquisition function optimization.

1366

1367 The TPE baseline, while also showing some performance degradation with more infeasible points,
 1368 proves to be more computationally robust and completes its evaluation budget in most cases. These
 1369 findings suggest that naively informing baseline models about the infeasible space by simply ex-
 1370 panding the training dataset is not an effective strategy and can be detrimental, especially for com-
 1371 putationally intensive models. This highlights the need for more sophisticated constraint-handling
 1372 methods.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure 7: Ablation study on the number of pre-trained infeasible points for GP-c and TPE-c baselines across all five benchmarks. Each row corresponds to a benchmark, with the left and right panels showing the performance of GP-c and TPE-c, respectively. The results demonstrate that increasing the number of informed points generally degrades performance for both methods.

D.3 EFFECT OF NUMBER OF EPOCHS AND INITIAL POINTS FOR NN+MILP

To determine a hyperparameter configuration for the NN+MILP baseline, we conduct an ablation study on its two key parameters: the number of training epochs for the neural network surrogate and the number of initial random points. We tested the number of epochs over the set $\{100, 300, 1000, 5000, 10000, 25000\}$ and evaluated using either 1 or 50 initial points.

1458 The results for all five benchmarks are presented in Figure 8. From these figures, we can draw
 1459 several conclusions to guide our selection.
 1460

1461 First, regarding the number of initial points, a clear distinction emerges depending on the presence
 1462 of constraints. For the constrained setting (-c, solid lines), using a single initial point (blue solid
 1463 lines) demonstrates superior or competitive performance compared to 50 initial points (orange solid
 1464 lines) across most tasks. This trend is especially noticeable in the (a) Ackley and (c) Warcraft 2 \times 3
 1465 benchmarks. Conversely, in the unconstrained setting (-u, dashed lines), using 50 initial points
 1466 (orange dashed lines) leads to significantly faster convergence and better final performance than
 1467 a single point. This suggests that the optimal number of initial points is contingent on whether
 1468 constraints are applied.

1469 Second, concerning the number of training epochs, performance consistently improves up to 1000
 1470 epochs. Beyond this point, for instance, at 5000 or 10000 epochs, we observe diminishing returns;
 1471 the significant increase in computational cost does not yield a correspondingly large improvement
 1472 in optimization performance. This suggests that, for the scale of problems considered in our study,
 1473 approximately 1000 epochs provide a sufficient training budget for the surrogate model.

1474 Based on this analysis, we conclude that the optimal configuration depends on the constraint setting:
 1475 1 initial point with 1000 training epochs for constrained problems (-c), and 50 initial points
 1476 with 1000 training epochs for unconstrained problems (-u). Each of these configurations offers the
 1477 best trade-off between sample efficiency, final performance, and computational cost for its respec-
 1478 tive context. Therefore, we adopt these respective settings for the NN+MILP baseline in all main
 1479 experiments presented in Section 5.

(a) Ackley on 65 \times 65 grid

(b) Pressure Vessel

(c) Warcraft on 2 x 2 map

Figure 8: Ablation study for the NN+MILP baseline across all five benchmarks: (a) Ackley, (b) Pressure Vessel, (c) Warcraft 2 \times 2, (d) Warcraft 2 \times 3, and (e) Diabetes. Each panel within a benchmark’s plot shows the optimization progress for a different number of training epochs. Blue and orange lines correspond to using 1 and 50 initial random points, respectively.

D.4 EFFECT OF HYPERPARAMETERS FOR PROTES

In each optimization round, PROTES evaluates a batch of B points on the objective function. From this batch, the top K samples are selected to train the TT surrogate model. For this training, the number of iterations for the gradient-based method is fixed at 100 for all configurations. We evaluated several hyperparameter configurations, testing a sequential setting ($B = 1, K = 1$) and batch

1620 settings with $B = 100$ combined with top sample values of $K \in \{10, 100\}$. For all tested configurations,
 1621 we varied the rank from 3 to 5.

1622 The results for all five benchmarks are presented in Figure 9 and Table 6. From these results, we can
 1623 draw several conclusions to guide our selection.

1625 First, regarding the batch size B , a larger value of $B = 100$ consistently resulted in superior performance
 1626 across all tasks. A larger batch size allows the optimizer to gather more information about the
 1627 objective function landscape in a single round, leading to a more effective and stable search process
 1628 compared to the sequential evaluation approach of $B = 1$.

1629 Second, concerning the number of top samples K , the choice of $K = 10$ was most frequently
 1630 associated with the best-performing configurations. This suggests that $K = 10$ strikes an effective
 1631 balance. It focuses the surrogate model's training on a sufficiently elite subset of high-performing
 1632 samples from the batch, while still retaining enough diversity to avoid premature convergence, which
 1633 can be a risk with a very small K or inefficient with a very large K for PROTES.

1634 Third, for the TT rank, we observed that performance was often very similar across ranks 3, 4, and
 1635 5, especially once the optimal B and K were chosen. In several tasks, the best results were identical
 1636 for all three ranks. However, considering all benchmarks, ranks 4 and 5 appeared most frequently
 1637 in the top configurations. We select Rank 4 as a representative choice, as it provides a robust level
 1638 of model expressiveness suitable for the complexity of these problems without being unnecessarily
 1639 high, thus offering a good trade-off against the potential for overfitting.

1640 Based on this analysis, we conclude that a configuration of batch size $B = 100$, top samples $K = 10$,
 1641 and rank 4 offers the best trade-off between sample efficiency and final performance for the PROTES
 1642 baseline. Therefore, we adopt this setting for all main experiments presented in Section 5.

1700 Figure 9: Ablation study for the PROTES baseline across all five benchmarks: (a) Ackley, (b)
1701 Pressure Vessel, (c) Warcraft 2×2 , (d) Warcraft 2×3 , and (e) Diabetes.

1702 Table 6: Comprehensive comparison of PROTES performance across different hyperparameter
1703 configurations (Batch size B, Top samples K, and TT-Rank) on five benchmark tasks. For each
1704 configuration, we report the mean and standard deviation over ten runs for both the best feasible
1705 objective value found and the optimization round in which it first appeared.

1706 Objective	1707 B	1708 K	1709 Rank	1710 Best Value	1711 Best Round
1712 Ackley	1713 1	1714 1	1715 3	1716 7.28 ± 2.85	1717 115.10 ± 119.14
			1718 4	1719 7.28 ± 2.85	1720 115.10 ± 119.14
			1721 5	1722 7.28 ± 2.85	1723 115.10 ± 119.14
		1724 10	1725 3	1726 1.42 ± 1.44	1727 140.00 ± 80.00
			1728 4	1729 1.42 ± 1.44	1730 140.00 ± 80.00
			1731 5	1732 1.42 ± 1.44	1733 140.00 ± 80.00
	1734 100	1735 4	1736 3	1737 1.15 ± 1.44	1738 170.00 ± 118.74
			1739 4	1740 1.15 ± 1.44	1741 170.00 ± 118.74

1742 (Table continues on next page)

Table 6: (Continued) Summary of PROTES Ablation Study Results

Objective	B	K	Rank	Best Value	Best Round	
Diabetes	1	1	5	1.15 ± 1.44	170.00 ± 118.74	
			3	1.37 ± 0.66	61.10 ± 130.77	
			4	1.37 ± 0.66	61.10 ± 130.77	
			5	1.37 ± 0.66	61.10 ± 130.77	
		100	3	0.47 ± 0.52	410.00 ± 122.07	
			10	0.47 ± 0.52	410.00 ± 122.07	
			4	0.47 ± 0.52	410.00 ± 122.07	
			5	0.47 ± 0.52	410.00 ± 122.07	
			3	0.35 ± 0.07	320.00 ± 107.70	
		100	4	0.35 ± 0.07	320.00 ± 107.70	
			5	0.35 ± 0.07	320.00 ± 107.70	
			3	52982.89 ± 27897.70	211.90 ± 170.92	
Pressure	1	1	4	52982.89 ± 27897.70	211.90 ± 170.92	
			5	52982.89 ± 27897.70	211.90 ± 170.92	
			3	16006.94 ± 3748.15	350.00 ± 111.80	
	100	10	4	16006.94 ± 3748.15	350.00 ± 111.80	
			5	16006.94 ± 3748.15	350.00 ± 111.80	
			3	21185.15 ± 6004.47	290.00 ± 144.57	
	100	100	4	21185.15 ± 6004.47	290.00 ± 144.57	
			5	21185.15 ± 6004.47	290.00 ± 144.57	
			3	1.16 ± 0.38	128.50 ± 124.38	
Warcraft 1	1	1	4	1.14 ± 0.40	117.60 ± 146.68	
			5	1.15 ± 0.29	180.90 ± 198.86	
		10	3	0.56 ± 0.08	210.00 ± 53.85	
	100		4	0.57 ± 0.08	190.00 ± 53.85	
			5	0.52 ± 0.05	270.00 ± 118.74	
	100	100	3	0.56 ± 0.11	250.00 ± 136.01	
			4	0.55 ± 0.07	300.00 ± 109.54	
			5	0.63 ± 0.12	220.00 ± 132.66	
Warcraft 2	1	1	3	1.24 ± 0.33	207.30 ± 153.87	
			4	1.39 ± 0.23	213.20 ± 151.68	
			5	1.06 ± 0.25	164.30 ± 140.55	
	100	10	3	0.68 ± 0.09	310.00 ± 113.58	
			4	0.67 ± 0.08	360.00 ± 128.06	
			5	0.69 ± 0.12	290.00 ± 94.34	
	100	100	3	0.81 ± 0.07	250.00 ± 128.45	
			4	0.81 ± 0.12	280.00 ± 116.62	
			5	0.83 ± 0.06	210.00 ± 151.33	

E ADDITIONAL COMPARATIVE STUDY WITH NN+MILP

In this section, we present additional comparative experiments to further verify the effectiveness of our proposed method, CA-TD. The primary objective is to evaluate CA-TD’s performance against the strong NN+MILP baseline on task domains where it has demonstrated significant success. To this end, our benchmark tasks are inspired by or directly derived from those presented in the original NN+MILP paper (Papalexopoulos et al., 2022).

A direct comparison of the original, large-scale benchmarks is challenging due to limitations in our current implementation of CA-TD. Our approach, which relies on tensor representations of the

1782 search space, becomes memory-intensive as the problem dimensionality increases. Therefore, to
 1783 ensure a computationally feasible comparison, we utilize scaled-down versions of the original tasks,
 1784 with the exception of the DNA binding task where we employ the original problem specification.
 1785

1786 E.1 TASK DESCRIPTIONS

1788 Within this setting, we deliberately selected a diverse set of tasks to comprehensively evaluate the
 1789 robustness of our approach across varied functional landscapes. The selection spans seven new
 1790 benchmark tasks across four distinct domains. These tasks are categorized into the following four
 1791 classes based on the complexity of their objective functions:

- 1792 • **Linear Objective Function:** We use two variants of the Generalized Assignment Problem
 1793 (GAP), which represents a fundamental class of combinatorial optimization problems.
- 1794 • **Quadratic Objective Function:** We use two variants of the Constrained Ising Model,
 1795 which involves minimizing a quadratic function with pairwise interaction terms.
- 1796 • **Complex Non-Linear Objective Function:** We use two search spaces from the Neural
 1797 Architecture Search (NAS) benchmark, which features a highly complex black-box objective.
- 1798 • **Biological Sequence Optimization:** We use a DNA binding affinity optimization task,
 1799 representing a real-world challenge in genomics with sparse feasible regions.

1800 A detailed description of each task domain follows.

1802 **Generalized Assignment Problem (GAP)** GAP is a fundamental problem in combinatorial
 1803 optimization, often used to model resource allocation scenarios. In this problem, we are given a set of
 1804 n items and a set of m bins. Each item i (for $i = 1, \dots, n$) has a specific value $p_{i,j}$ and consumes
 1805 a certain amount of resources (its weight w_i) if it is assigned to bin j (for $j = 1, \dots, m$). Each bin
 1806 j has a limited capacity c_j . The goal is to assign each item to exactly one bin in order to maximize
 1807 the total value of the assignment, without violating the capacity constraints of any bin.

1808 To formulate this mathematically, we represent an assignment as a vector $\mathbf{x} = (x_1, \dots, x_n)$, where
 1809 the element $x_i \in \{1, \dots, m\}$ denotes the bin to which item i is assigned. The total value for a given
 1810 assignment \mathbf{x} is the sum of the values from each assignment:

$$1814 \text{Value}(\mathbf{x}) = \sum_{i=1}^n p_{i,x_i}.$$

1815 The overall optimization problem is to find the optimal assignment \mathbf{x}^* within the set of all feasible
 1816 assignments \mathcal{X} :

$$1820 \mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{X}} \text{Value}(\mathbf{x}).$$

1822 The set of feasible assignments \mathcal{X} is determined by the specific constraints of each task. It is worth
 1823 noting that while the GAP instances in the original NN+MILP paper (Papalexopoulos et al., 2022)
 1824 feature a more complex quadratic objective function, we specifically designed our tasks with a linear
 1825 objective to ensure diversity in our task set. The details of our two linear GAP variants are as follows.

- 1826 • **GAP-A (Capacity-Constrained):** This task requires assigning $n = 9$ items to $m = 3$
 1827 bins. The search space size is 3^9 . A strict equality constraint is imposed, requiring the total
 1828 weight of items in each bin to exactly match its predefined capacity. Let w_i be the weight
 1829 of item i and c_j be the capacity of bin j . The constraint is formulated as:

$$1831 \sum_{i=1}^n w_i \cdot \mathbb{I}(x_i = j) = c_j \quad (\text{for each bin } j = 1, \dots, m),$$

1834 where $\mathbb{I}(\cdot)$ is the indicator function. For this specific task instance, the weight of each item
 1835 is set to 1, i.e., $w_i = 1$ for all i . This setting models resource allocation problems in which
 1836 resources must be fully utilized.

1836 • **GAP-B (Logically-Constrained):** This task involves assigning $n = 7$ items to $m = 4$ bins
 1837 (search space size 4^7). Instead of physical capacity, it features logical constraints on the
 1838 number of items assigned to specific bins, formulated as:
 1839

$$1840 \quad \sum_{i=1}^n \mathbb{I}(x_i = 1) \leq 1 \quad \text{and} \quad \sum_{i=1}^n \mathbb{I}(x_i = 2) \leq 1.$$

1841 This simulates operational policies or design rules where certain assignments are restricted.
 1842

1843 **Constrained Ising Model** This task is a quadratic optimization problem over binary variables,
 1844 inspired by the Ising model in physics and the ConstrainedIsing benchmark in Papalexopoulos et al.
 1845 (2022). The problem involves a set of n binary items, where each item can be either selected (1) or
 1846 not selected (0). An interaction potential P_{ij} is defined for each pair of items (i, j) . The objective is
 1847 to choose a subset of items that minimizes the sum of potentials from all pairs of selected items.
 1848

1849 To formulate this, we represent a selection as a binary vector $\mathbf{y} = (y_1, \dots, y_n) \in \{0, 1\}^n$, where
 1850 $y_i = 1$ if item i is selected, and $y_i = 0$ otherwise. The objective function to be minimized is a
 1851 quadratic form:
 1852

$$1853 \quad f(\mathbf{y}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n P_{ij} y_i y_j.$$

1854 The overall optimization problem is to find the optimal selection \mathbf{y}^* within the set of all feasible
 1855 selections \mathcal{Y} :
 1856

$$1857 \quad \mathbf{y}^* = \arg \min_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{y}).$$

1858 The feasible set \mathcal{Y} is determined by task-specific constraints on the selections. While the original
 1859 benchmark in Papalexopoulos et al. (2022) utilizes a balancing constraint between pairs of item
 1860 groups, our tasks build upon this by incorporating additional cardinality constraints to create more
 1861 challenging scenarios, as detailed below.
 1862

1863 • **Ising-A (Group-Balanced):** The task involves $n = 14$ items, partitioned into two groups
 1864 of 7. The feasible set $\mathcal{Y} \subseteq \{0, 1\}^{14}$ is defined by constraints requiring that (1) the number
 1865 of selected items in each group must be equal, and (2) the total number of selected items
 1866 must be exactly 4. This emulates the need for balanced feature selection in matched-pair
 1867 observational studies.
 1868 • **Ising-B (Complex Group-Constrained):** This task involves $n = 15$ items, partitioned
 1869 into three groups of 5 (Groups A, B, and C). The feasible set $\mathcal{Y} \subseteq \{0, 1\}^{15}$ is defined by
 1870 two simultaneous constraints: (1) the number of selected items in Group A must be equal
 1871 to that in Group B, and (2) the number of selected items in Group C must be exactly 1.
 1872 This models more complex design rules where different component groups are subject to
 1873 different types of constraints.
 1874

1875 **Neural Architecture Search (NAS)** NAS is the process of automating the design of neural
 1876 networks. While the original NN+MILP paper (Papalexopoulos et al., 2022) used the NAS-Bench-101
 1877 benchmark for its case study, we employ the more recent NATS-Bench benchmark (Dong et al.,
 1878 2021) for our comparative experiments to construct tasks of a more manageable scale.
 1879

1880 Both benchmarks model a neural architecture as a directed acyclic graph (DAG) representing a
 1881 computational cell, but they differ fundamentally in how the search space is defined. NAS-Bench-
 1882 101 defines its vast space of 423,000 architectures by exploring the connectivity of the DAG itself,
 1883 along with assigning an operation to each of its vertices. In contrast, NATS-Bench offers two distinct
 1884 and more compact search spaces. Its Topological Search Space (TSS) fixes the DAG’s structure and
 1885 simplifies the search to selecting an operation for each edge. Its Size Search Space (SSS) keeps the
 1886 topology fixed and instead searches for the optimal number of channels at different network stages.
 1887

1888 Our tasks utilize these two search spaces from NATS-Bench. An architecture is represented by a con-
 1889 figuration vector \mathbf{z} , and the objective is to find the configuration \mathbf{z}^* that maximizes its pre-computed

1890 test accuracy on the CIFAR-10 dataset (Krizhevsky et al., 2009). Test accuracy is the proportion of
 1891 correct predictions over all predictions on a held-out test set. Formally, the optimization problem is:
 1892

$$1893 \quad \mathbf{z}^* = \arg \max_{\mathbf{z} \in \mathcal{Z}} \text{Accuracy}(\mathbf{z}),$$

1895 where \mathcal{Z} is the set of feasible architectures defined by our task-specific constraints and $\text{Accuracy}(\mathbf{z})$
 1896 represents test accuracy computed from \mathbf{z} .
 1897

- 1898 • **TSS:** In this task, we use the TSS, where the architecture is a vector $\mathbf{z} = (z_1, \dots, z_6)$,
 1899 with each element z_i being an operation on one of 6 edges. Each z_i can be chosen
 1900 from a set of five operations: ‘none’, ‘skip_connect’, ‘avg_pool_3x3’, ‘nor_conv_1x1’, and
 1901 ‘nor_conv_3x3’. The feasible set \mathcal{Z} is defined by the following two constraints:

$$1902 \quad \sum_{i=1}^6 \mathbb{I}(z_i = \text{`skip_connect'}) \geq 3,$$

$$1903 \quad \sum_{i=1}^6 \mathbb{I}(z_i = \text{`nor_conv_3x3'}) \leq 2.$$

- 1904 • **SSS:** In this task, we use the SSS, where the architecture is a vector $\mathbf{z} = (z_1, \dots, z_5)$, with
 1905 each element z_i being the channel count at a specific stage. Each z_i can be chosen from the
 1906 set of channel options $\{8, 16, \dots, 64\}$. The feasible set \mathcal{Z} is defined by the constraints:

$$1907 \quad \sum_{i=1}^5 z_i \leq 160, \tag{6}$$

$$1908 \quad z_4 \geq z_2. \tag{7}$$

1909 Equation 6 imposes a budget on model size, while Equation 7 represents a common design
 1910 heuristic.
 1911

1912 **DNA Binding (TfBind)** This task involves optimizing the binding affinity of a DNA sequence of
 1913 length $n = 8$ to a specific transcription factor, derived from the dataset used in Papalexopoulos et al.
 1914 (2022). The search space consists of 4^8 possible sequences, where each position takes a value from
 1915 the alphabet $\mathcal{A} = \{A, C, G, T\}$. We introduce a cardinality constraint on the GC-content, which is
 1916 a significant structural property in genomics. Specifically, the feasible set is restricted to sequences
 1917 containing at most 3 bases of type G or C. Formally, this constraint is expressed as:
 1918

$$1919 \quad \sum_{i=1}^8 \mathbb{I}(x_i \in \{G, C\}) \leq 3,$$

1920 where $\mathbb{I}(\cdot)$ is the indicator function. This constraint significantly reduces the feasible region, requiring
 1921 the optimizer to navigate a sparse landscape.
 1922

1923 E.2 EXPERIMENTAL SETUP

1924 For consistency in evaluation, all benchmark tasks described in Section E.1 are formulated as mini-
 1925 mization problems. Specifically, for tasks where the original goal is to maximize a metric (e.g., total
 1926 value in GAP or test accuracy in NAS), we minimize its negative value.
 1927

1928 The overall experimental setup, including the computational environment and the number of seeds
 1929 (10), follows that of the main experiments as described in Section 5.2 and Appendix C. Each optimi-
 1930 zation run is performed up to a fixed evaluation budget, which is set to 500 for all tasks in this
 1931 section.
 1932

1933 To ensure a fair comparison, we used configurations for both methods that were found to be effective
 1934 in our main analysis. For our CA-TD, we used the TT format and tested with tensor ranks $r \in$
 1935 $\{3, 4, 5\}$, based on the findings in Section 5.4. For the NN+MILP baseline, we adopted the best-
 1936 performing configuration identified in the ablation study in Appendix D.3 for constrained problems
 1937

(1 initial point and 1000 training epochs). It is important to note that for this comparative study, we evaluate only the constrained variants of both methods (CA-TD and NN+MILP-c), as the focus is on performance under explicit problem constraints. Other parameters were kept identical to those in the main experiments.

E.3 RESULTS AND DISCUSSION

The results of the comparative study are presented in Table 7, which summarizes the final performance of CA-TD (with various ranks) and NN+MILP after a fixed number of evaluations.

The results indicate that our proposed CA-TD demonstrates highly competitive performance against the NN+MILP baseline across a variety of complex combinatorial domains. Neither method consistently outperforms the other.

On the GAP-A and Ising-A tasks, both CA-TD (with optimal rank) and NN+MILP successfully identify the best objective value. However, NN+MILP achieves this in significantly fewer evaluations, thus demonstrating better sample efficiency on these specific problems. For the SSS task, NN+MILP finds a better final objective value.

Conversely, CA-TD outperforms NN+MILP on the GAP-B, Ising-B, TSS, and TfBind tasks by discovering better final solutions. This highlights the effectiveness of our approach on these particular search spaces, especially where the feasible region is sparse or the objective landscape is complex.

In conclusion, this additional study provides further evidence that CA-TD is an effective method for constrained black-box optimization. While it does not universally dominate NN+MILP, its competitive performance on these challenging tasks reinforces our central claim. The results emphasize that making the surrogate model itself aware of the feasible space is a critical and powerful strategy for developing sample-efficient constrained black-box optimizers.

Table 7: Performance comparison of CA-TD and NN+MILP on additional benchmark tasks. For each configuration, we report the mean and standard deviation over ten runs for both the best feasible objective value found and the optimization round in which it first appeared. The best-performing configuration for each task is identified based on the lowest average best value; in case of a tie, the configuration with the earlier average best round is selected. Selected best configurations are highlighted in **bold**.

Objective	Method	Rank	Best Value	Best Round
GAP A	CA-TD	3	-5.97 ± 0.16	150.50 ± 154.14
		4	-6.16 ± 0.05	292.30 ± 140.23
		5	-6.21 ± 0.00	192.50 ± 75.17
	NN+MILP	–	-6.21 ± 0.00	86.40 ± 140.05
GAP B	CA-TD	3	-4.19 ± 0.00	134.50 ± 74.22
		4	-4.19 ± 0.00	101.80 ± 23.72
		5	-4.19 ± 0.00	123.40 ± 38.28
	NN+MILP	–	-4.16 ± 0.05	87.00 ± 109.16
Ising A	CA-TD	3	-7.32 ± 0.00	171.20 ± 35.16
		4	-7.32 ± 0.00	111.60 ± 30.20
		5	-7.32 ± 0.00	110.80 ± 33.80
	NN+MILP	–	-7.32 ± 0.00	78.00 ± 70.86
Ising B	CA-TD	3	-9.06 ± 0.66	357.60 ± 141.67
		4	-9.43 ± 0.00	232.90 ± 118.71
		5	-9.43 ± 0.00	206.80 ± 82.04
	NN+MILP	–	-9.38 ± 0.15	30.00 ± 29.03
TSS	CA-TD	3	-93.84 ± 0.04	247.10 ± 122.54
		4	-93.83 ± 0.02	253.80 ± 92.68
		5	-93.84 ± 0.03	332.00 ± 98.28

1998
1999

Table 7: (Continued) Summary of Additional Comparative Study Results

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013

Objective	Method	Rank	Best Value	Best Round
	NN+MILP	–	-93.82 ± 0.08	200.50 ± 146.20
SSS	CA-TD	3	-91.55 ± 0.10	67.10 ± 37.37
		4	-91.72 ± 0.30	104.90 ± 96.53
		5	-91.61 ± 0.24	191.70 ± 137.60
	NN+MILP	–	-91.91 ± 0.19	215.80 ± 124.49
TfBind	CA-TD	3	-0.9825 ± 0.0097	270.40 ± 121.26
		4	-0.9868 ± 0.0090	341.80 ± 153.87
		5	-0.9940 ± 0.0045	362.50 ± 77.71
	NN+MILP	–	-0.9935 ± 0.0055	297.50 ± 175.74

2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

F CONSTRAINT VIOLATION DURING TRAINING

This section reports how frequently constraint violations occur during optimization for both CA-TD and PGRAD. The Figure 10 shows the cumulative averaged number of points proposed by CA-TD during SMBO optimization that were rejected due to constraint violations. We observe that the number of rejected points does not increase throughout the optimization process, indicating that although CA-TD does not theoretically guarantee feasibility, it practically tends to propose feasible points almost exclusively. The Figure 11 presents the fraction of constraint-violating samples observed during training of the surrogate model when applying PGRAD. The vertical axis represents the ratio of violated samples to the total number of sampled points. These results are obtained under the setting where no unobserved points remain. The plot demonstrates that PGRAD maintains feasibility for nearly all sampled points during training, with only a very small fraction violating the constraints. Overall, the empirical evidence shows that CA-TD rarely produces infeasible proposals in practice, and PGRAD is able to prevent constraint violations in almost all cases throughout the training process.

Figure 10: Averaged cumulative number of rejected points proposed by CA-TD during SMBO optimization.

2049

2050

2051

Figure 11: Fraction of constraint violations observed during training of the surrogate model in PGRAD. The vertical axis shows the ratio of violated samples to all sampled points in the gradient step.

G CONNECTION TO POLYNOMIAL OPTIMIZATION PROBLEMS (POPs)

We clarify why the constrained surrogate learning problem becomes a Polynomial Optimization Problem (POP) by using the TT-based surrogate representation.

The surrogate tensor is represented in Tensor Train (TT) format (Equation 1). Expanding the matrix products yields

$$\hat{\mathcal{Y}}[\mathbf{x}] = \sum_{a_0, \dots, a_d} G_{a_0, a_1}^{(1)}[x_1] G_{a_1, a_2}^{(2)}[x_2] \cdots G_{a_{d-1}, a_d}^{(d)}[x_d],$$

where a_0, \dots, a_d are the indices for summing in the range 1 to r_0, \dots, r_d , respectively ($r_0 = r_d = 1$). Thus, $\hat{\mathcal{Y}}[\mathbf{x}]$ is a d -degree multivariate polynomial related to the TT core tensor parameters.

The squared error term of the learning objective in Equation 4 is also a polynomial since $\hat{\mathcal{Y}}[\mathbf{x}]$ is a polynomial in the TT parameters. Therefore, the entire objective function is a polynomial in the decision variables.

Input constraints impose $\hat{\mathcal{Y}}[\mathbf{x}] \geq \tau$ for all $\mathbf{x} \in \mathcal{X}_{\text{infeas}}$. Because $\hat{\mathcal{Y}}[\mathbf{x}]$ is a polynomial, each constraint can be written as

$$\hat{\mathcal{Y}}[\mathbf{x}] - \tau \geq 0,$$

which is a polynomial inequality in the TT parameters.

A POP is generally written as

$$\begin{aligned} & \text{minimize} && f(\theta) \\ & \text{subject to} && g_i(\theta) \geq 0, \quad i = 1, \dots, m, \end{aligned}$$

where both the objective f and constraints g_i are polynomials in the decision variables θ .

The TT-based constrained surrogate learning problem matches this form:

- Decision variables θ : all TT core tensor elements $G^{(k)}[x_k]$,
- Objective $f(\theta)$: polynomial least-squares error,
- Constraints $g_i(\theta) \geq 0$: polynomial lower-bound constraints $\hat{\mathcal{Y}}[\mathbf{x}] - \tau \geq 0$ ($m = |\mathcal{X}_{\text{infeas}}|$).

Because both the objective function and all constraints are multivariate polynomials in the TT parameters, the constrained surrogate model learning problem constitutes a POP.

H SCALABILITY ON HIGH-DIMENSIONAL DISCRETE SPACES

Figure 12: Ablation study on batch size for a search space of size 10^4 . (Left) **Tensor Batch Size**: Varying the training batch size for PGRAD. (Right) **Acq. Batch Size**: Varying the inference batch size for acquisition while fixing the training batch size to 128.

Figure 13: Ablation study on batch size for a search space of size 10^5 . (Left) **Tensor Batch Size**: Varying the training batch size for PGRAD. (Right) **Acq. Batch Size**: Varying the inference batch size for acquisition while fixing the training batch size to 128.

In this section, we present data on the memory usage bottleneck of tensor decomposition-based methods, which are the bottleneck of our proposed method. We then demonstrate the impact of batching tensor decomposition, the most naive solution to this bottleneck.

Standard gradient-based optimization methods in deep learning frameworks (e.g., PyTorch) generally require single-precision floating-point (Float32) formats to ensure numerical stability.

Storing dense tensors using single-precision floating-point numbers requires 0.4 GB of memory for a search space size of 10^8 , 4.0 GB for 10^9 , and 40.0 GB for 10^{10} .

Next, we introduce a mini-batch approach to CA-TD by switching to stochastic optimization. The mini-batch method used here approximates both the loss function in Eq. 5 and the acquisition function described in Section 3.4 through sampling. For the loss computation in tensor decomposition, all previously observed points that satisfy the constraints are always included in each batch, while the remaining batch elements are randomly sampled from the constraint-violating points. For the acquisition function, mini-batches are constructed by uniformly sampling indices from the entire search space. Furthermore, the gradient descent algorithm is fixed to 200 steps, and at each step only the constraint-violating points are resampled.

2160 This mini-batch method is expected to significantly reduce computational and memory loads by not
 2161 loading the entire search space into memory.
 2162

2163 H.1 ABLATION STUDY ON BATCH SIZE

2165 First, we investigate the impact of mini-batch size selection on optimization.
 2166

2167 **Experimental Setup** We utilize the 4-dimensional Ackley function discretized with 10 levels per
 2168 dimension, resulting in a search space of size 10^4 . The feasible region is defined by the constraint

$$\sum_{i=1}^d x_i^2 \leq 3^2$$
. The computational environment follows the specifications described in Appendix C.
 2169 The “Full” baseline (black dashed line) represents the ideal setting where both training and acqui-
 2170 sition are performed using the full dataset (full-batch). Larger batches improve convergence toward
 2171 the full-batch baseline.
 2172

2173 **Methodology and Results** We conduct two separate analyses by varying the batch size in
 2174 128, 256, 512, 1024, focusing on its effect on (1) tensor training and (2) acquisition inference.
 2175

- 2176 1. **Effect of Tensor Batch Size (Surrogate Training):** We vary the batch size used for the
 2177 PGRAD updates while keeping the acquisition evaluation in full-batch mode. As shown in
 2178 the left panels of Figure 12 and 13, reducing the training batch size substantially degrades
 2179 performance: smaller batches (e.g., 128) lead to noticeably slower convergence and poorer
 2180 final objective values. In contrast, larger batches behave similarly to the full-batch baseline,
 2181 indicating that sufficient tensor batch size is critical for stable surrogate training.
 2182
- 2183 2. **Effect of Acquisition Batch Size (Inference):** We vary the batch size used during the
 2184 acquisition evaluation while fixing the tensor training batch size to 128. The right panels of
 2185 Figure 12 and 13 show that changes in acquisition batch size have almost no effect on the
 2186 optimization trajectory. All curves corresponding to different batch sizes closely overlap,
 2187 indicating that acquisition inference is robust to batch size variation.
 2188

Figure 14: PGRAD learns dense 10^{10} Ackley function with minibatch learning with batch size 256

2202 H.2 APPLYING MINI-BATCHED CA-TD TO HIGH-DIMENSIONAL DISCRETE SPACE TASK

2204 Next, we conduct experiments in a search space of size 10^{10} to demonstrate that the proposed mini-
 2205 batch method enables optimization even when direct full-batch tensor decomposition is computa-
 2206 tionally infeasible.
 2207

2208 With a mini-batch size of 1024, the execution time per iteration was approximately 4.43 ms, and the
 2209 convergence behavior is shown in Figure 14. Figure 15 further compares CA-TD with NN+MILP on
 2210 the same task. The results show that CA-TD, which leverages constraint information, achieves supe-
 2211 rior performance in the early optimization phase. In contrast, NN+MILP attains better performance
 2212 in the later stages.
 2213

This performance shift is consistent with the analysis in the previous section: mini-batched CA-TD
 is sensitive to the batch size used for surrogate training, and in large-scale problems that require

2214
 2215 highly accurate tensor decompositions, approximation errors accumulate during the later optimiza-
 2216 tion phase. As a result, CA-TD’s effectiveness diminishes over time, whereas NN+MILP maintains
 2217 stable performance throughout.

2235
 2236 Figure 15: Optimization progress on the constrained 10-dimensional Ackley problem (10^{10} search
 2237 space). CA-TD (TT-c) with the mini-batch strategy demonstrates scalability and effective optimiza-
 2238 tion performance compared to the NN+MILP-c baseline.

I ADDITIONAL FIGURE

2262 Figure 16: For ease of viewing, the same figure as Figure 3 is shown separated into -c and -u.