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ABSTRACT

Discrete black-box optimization has been addressed using approaches such as Se-
quential Model-Based Optimization (SMBO), which aim to improve sample ef-
ficiency by fitting surrogate models that approximate a costly objective function
over a discrete search space. In many real-world problems, the set of feasible in-
puts, such as valid parameter configurations in engineering design, is often known
in advance. However, existing surrogate modeling techniques generally fail to
capture feasibility constraints associated with such inputs. In this paper, we pro-
pose a surrogate modeling approach based on tensor decomposition that captures
the structure of discrete search spaces while directly integrating feasibility infor-
mation. To implement this approach, we formulate surrogate model training as
a constrained polynomial optimization problem and solve a relaxed version of it.
Our experiments on both synthetic and real-world benchmarks, including a pres-
sure vessel design task, demonstrate that the proposed method improves sample
efficiency by effectively guiding the search away from infeasible regions.

1 INTRODUCTION

Black-box optimization (BBO) aims to find optimal inputs for an objective function that can only
be accessed through input-output data (Rios & Sahinidis, 2013a) and has been widely used in fields
like engineering design (Coello & Montes, 2002), material discovery (Frazier & Wang, 2016), and
hyperparameter tuning for machine learning (He et al., 2021; Bergstra et al., 2011). Since evaluating
such objective functions is often costly in terms of monetary cost, execution time, and computational
resources, sample-efficient methods like Sequential Model-Based Optimization (SMBO) have been
developed (Hutter et al., 2011; Shahriari et al., 2015). SMBO uses a surrogate model to approximate
the objective function and an acquisition function to balance exploration and exploitation when
choosing new samples.

This paper focuses on discrete search spaces that are commonly encountered in real-world applica-
tions, such as categorical parameters representing the choices of specific components in engineering
design (Papalexopoulos et al., 2022; González-Duque et al., 2024; Zamuda et al., 2018). For such
discrete BBO problems, methods based on tensor decomposition (TD) offer a sample-efficient ap-
proach that has recently demonstrated great potential (Sozykin et al., 2022; Chertkov et al., 2022;
Batsheva et al., 2023). In this approach, a discrete search space is represented by a tensor, and a
surrogate model is constructed by approximating this tensor, for example, with a low-rank tensor.

For many real-world problems addressed by BBO, consideration of input constraints arising from
safety requirements, manufacturing capabilities, or design rules is crucial. A typical approach to in-
troduce these input constraints into SMBO is to evaluate the feasibility at the stage of acquiring new
samples, for example by rejecting infeasible inputs or modifying the acquisition function (Gardner
et al., 2014; Gelbart et al., 2014). More advanced methods also follow this paradigm, employing
sophisticated solvers to optimize the acquisition function over the known feasible domain (Papalex-
opoulos et al., 2022). In these approaches, however, the surrogate model itself is typically learned
without considering feasibility, which can reduce sample efficiency, especially when the feasible
domain is small. To address this limitation, introducing constraint-awareness into the surrogate
model, i.e., considering feasibility during training the surrogate model, is expected to enhance the
approximation of the objective function within the feasible region and increase the sample efficiency
of SMBO.
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Figure 1: Overview of CA-TD: CA-TD approximates the black-box objective over feasible inputs,
effectively guiding the search in SMBO.

In this paper, we address a BBO problem in discrete space with input constraints, where the ob-
jective function is expensive to evaluate, and the input constraints are known as a prior, i.e., cheap
to evaluate constraints. To address this problem, we propose a TD-based surrogate model using
the Tensor-Train (TT) decomposition to deal with discrete space under input constraints, named
Constraint-Aware Tensor Decomposition (CA-TD) (Figure 1). In our approach, we formulate the
task of learning a surrogate model under input constraints (surrogate learning) as a constrained
polynomial optimization problem (POP). To efficiently solve this POP, we introduce a scalable ap-
proximation by incorporating constraint violations into the loss function for surrogate learning as a
differentiable penalty term, which enables efficient gradient-based training.

Our contribution is threefold:

• We formulate the training of a TD-based surrogate model with input constraints as a POP,
which defines our method CA-TD

• We develop a gradient-based training method for CA-TD by introducing a penalty term for
constraint violations for scalability

• We evaluate our approach on a diverse set of synthetic and real-world benchmarks, includ-
ing a classic engineering design task. The results demonstrate improvements in sample
efficiency compared to conventional methods.

Our source code and datasets are publicly available at https://github.com/xxxxx.

2 PRELIMINARIES

This section introduces the fundamental concepts underlying our proposed method. Since our prob-
lem formulation is based on the discrete BBO approach within the SMBO framework, we begin by
providing an overview of BBO and SMBO. Additionally, we describe TD-based surrogate models
that our method employs, focusing in particular on tensor train (TT) decomposition.

2.1 DISCRETE BLACK-BOX OPTIMIZATION PROBLEM AND SEQUENTIAL MODEL-BASED
OPTIMIZATION

First, we formulate the discrete BBO problem that is the basis of the problem addressed in this paper.
Given a search space X = X1×· · ·×Xd, where Xk is a finite set for k = 1, . . . , d, and an objective
function g : X → R. The goal of this problem is to find

x⋆ = argmin
x∈X

g(x).

In this problem, no further information about g is available, such as its derivative, so it is called a
black-box function. In practice, it is assumed that evaluating g is costly, and it is desirable to obtain
a good solution with as few evaluations of g as possible.

2
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Algorithm 1 The Procedure of SMBO

Require: Objective function g, search space X , surrogate model class f , acquisition function α,
maximum iterations T .

1: Initialize historyH
2: for t = 1 to T do
3: Fit or update the surrogate model ft−1 usingH.
4: Select the next point to evaluate:
5: xt ← argmaxx∈X α(x, ft−1).
6: Evaluate the objective function: yt ← g(xt).
7: Augment the history: H ← H∪ {(xt, yt)}.
8: end for
9: returnH

The overall SMBO procedure is summarized in Algorithm 1. SMBO is a general framework of
BBO that includes Bayesian optimization as a special case, and we adopt a variant widely used in
Bayesian optimization (Frazier, 2018; Shahriari et al., 2015; Bergstra et al., 2011), which iteratively
performs the following three steps. 1) A probabilistic surrogate model f is fitted to all previous
observations. Instead of directly evaluating the costly function g, the surrogate model f is used to
approximate g. 2) The most promising point to evaluate next is selected by using an acquisition
function α(·), defined based on the surrogate function f . In our implementation, we utilize the
Expected Improvement (EI) criterion (Mockus et al., 1978) as the acquisition function to decide the
next point. 3) The objective function g at the selected point is evaluated. This loop is repeated T
times.

2.2 TENSOR-TRAIN SURROGATE MODEL

This section briefly describes the method to use TT decomposition as a TD-based surrogate model f
for approximating black-box functions g. The TT decomposition provides a compact representation
of high-dimensional tensors by factorizing them into a sequence of smaller core tensors.

Before considering the surrogate model, we first consider the tensor for storing the evaluated points
Y ∈ (R∪ ∅)|X1|×···×|Xd|, where |Xk| is a cardinality of a finite set Xk and ∅ represents a point that
have not yet been evaluated. Note that this tensor has the same size as the discrete search space X .
By denoting the element of Y corresponding to point x = (x1, . . . , xd) ∈ X as Y[x], each entry
Y[x] represents the value of the objective function g(x). In the context of SMBO, the values of g(x)
that have already been evaluated are stored in Y[x].
Here, a TD-based surrogate model is provided by using TT decomposition to approximate the above
ground-truth tensor Y to a low-rank Ŷ , which can be expressed as follows:

Ŷ[x] = G(1)[x1]G
(2)[x2] · · · G(d)[xd], (1)

where G(k)[xk] ∈ Rrk−1×rk denotes the xk-th lateral slice of the k-th core tensor (k = 1, 2, . . . , d).
Note that rk ∈ N (r0 = rd = 1), referred to as the TT-ranks, controls the expressiveness of
the decomposition. The number of parameters scales as O(dn r2), where n = maxk |Xk| and
r = maxk rk. Instead of evaluating the objective function g, a low-rank surrogate tensor Ŷ that
imputes the unobserved elements of Y can be used as a surrogate model f(x) = Ŷ[x] by controlling
the TT-ranks rk.

In TT decomposition, a surrogate model is trained to minimize the mean squared error Lrecon be-
tween the surrogate model output Ŷ[x] and the observations Y[x] in the previously evaluated dataset
H = {x : Y[x] ̸= ∅}:

Lrecon =
1

|H|
∑
x∈H

(
Y[x]− Ŷ[x]

)2

. (2)

3
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3 PROPOSED METHOD: CONSTRAINT-AWARE TENSOR DECOMPOSITION
SURROGATE

Our method integrates constraint-awareness directly into the learning process of the TD-based sur-
rogate model for SMBO.

3.1 PROBLEM FORMULATION

First, we describe our formulation of the discrete BBO under input constraints. Given a discrete
search space X = X1 × · · · ×Xd and an objective function g : X → R, the goal is to find

x⋆ = argmin
x∈X

g(x) subject to c(x) = 1, (3)

where a constraint function c : X → {0, 1} whose evaluation cost is negligible compared to g.

For ease of handling, we introduce the notation Xfeas := {x ∈ X | c(x) = 1} and rewrite the above
problem as:

x⋆ = argmin
x∈Xfeas

g(x).

3.2 A FORMULATION AS A POLYNOMIAL OPTIMIZATION PROBLEM

We incorporate input constraints into the surrogate model by assuming that evaluations at infeasible
inputs yield objective values greater than or equal to a threshold τ , since we solve a minimization
problem. Specifically, we define the infeasible subset of the search space as Xinfeas := X \ Xfeas

and impose the condition
g(x) ≥ τ for all x ∈ Xinfeas,

where the threshold τ is set to the maximum objective value observed so far among feasible inputs.
Thus, the surrogate model learning under the input constraints is formulated as follows:

min
Ŷ

1

|H|
∑
x∈H

(
Y[x]− Ŷ[x]

)2

,

subject to Ŷ[x] ≥ τ for all x ∈ Xinfeas.

(4)

Since the surrogate tensor Ŷ[x] is a polynomial function of the core tensor parameters according to
Equation 1, the above problem constitutes a POP (Appendix G). An established approach to solving
POPs involves constructing a hierarchy of semidefinite programming (SDP) relaxations (Lasserre,
2001), which can provide arbitrarily tight lower bounds on the global optimum. We employ this
approach to the problem Equation 4 and simply refer to it as HSDP hereafter.

3.3 PENALIZED LOSS FUNCTION

Since POPs are NP-hard and HSDP remains computationally demanding, we relax the hard con-
straints by incorporating a differentiable penalty term into the objective. Specifically, the constrained
optimization problem in Equation 3 is relaxed to an unconstrained optimization:

argmin
x∈X

g(x) + λh(c(x)),

where h is a penalty function that measures the violation of the constraint c(x) = 1 and λ > 0
controls the trade-off between data fitting and constraint enforcement.

To solve this relaxed problem while promoting satisfaction of the constraint c, we train the TT-based
surrogate model by minimizing the following total loss using gradient-based optimization:

Ltotal = Lrecon + λLpen

=
1

|H|
∑
x∈H

(
Y[x]− Ŷ[x]

)2

+ λ · 1

|Xinfeas|
∑

x∈Xinfeas

max
(
0, τ − Ŷ[x]

)
(5)
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The penalty term Lpen is designed to impose the constraint, aiming to push the outputs of the sur-
rogate at least above the threshold τ at infeasible inputs, while maintaining approximation accuracy
on the observed data. We denote this penalty-based strategy for the CA-TD surrogate learning as
PGRAD (Penalty with Gradient-based optimization) throughout the rest of the paper.

3.4 UNCERTAINTY QUANTIFICATION USING ENSEMBLES FOR ACQUISITION FUNCTION

In SMBO, acquisition functions determine which input to evaluate next by leveraging approxi-
mations from surrogate models. Their strategies are typically based on the idea of the explo-
ration–exploitation trade-off, requiring not only an accurate approximation of the objective’s value
but also a reliable quantification of the uncertainty of the approximation.

To this end, we use an ensemble of M independently learned TT-based surrogate models
{Ŷ(m)}Mm=1, each initialized with different random TT core parameters. At any input x, the en-
semble predictions {Ŷ(m)[x]}Mm=1 induce an empirical distribution. We compute the sample mean
µ(x) and standard deviation σ(x) from this ensemble to evaluate the EI acquisition function, whose
formula is given by αEI(x) = E [max(0, y⋆ − Y (x))] , where y⋆ = minx∈H∩Xfeas

g(x) is the best
(minimum) feasible objective value observed so far, and Y (x) is the predictive distribution at x.
When a new point is sampled and evaluated, the threshold τ is updated with the maximum feasible
value so far.

4 RELATED WORK

Our method builds on three areas of work: constrained BBO, tensor decomposition for black-box
optimization (TD-BBO), and constrained tensor decomposition. We briefly review each area below
and explain our unique contributions in relation to each field.

4.1 CONSTRAINED BLACK-BOX OPTIMIZATION

Constrained BBO deals with expensive objectives and expensive/inexpensive input constraints
whose analytic forms are unknown (Rios & Sahinidis, 2013b). Most existing algorithms extend
Bayesian Optimization (BO) (Frazier, 2018; Shahriari et al., 2015), which is a form of SMBO that
typically uses Gaussian Processes (GPs) as surrogate models (Williams & Rasmussen, 2006). Early
GP-based approaches fit separate GPs to model each constraint and incorporate the estimated fea-
sibility into the acquisition function, typically by combining them with EI (Gardner et al., 2014;
Gelbart et al., 2014). Subsequent work further extended this strategy using augmented Lagrangian
methods (Picheny et al., 2016) and level-set estimation techniques (Zhang et al., 2023).

Unlike the methods mentioned above, in the case of explicit hard constraints, some approaches max-
imize the acquisition function within the feasible region. For example, a method that combines GPs
with mixed-integer programming to maximize the acquisition function under known constraints has
been proposed (Thebelt et al., 2022). A more advanced method, NN+MILP, uses piecewise-linear
neural networks with acquisition maximization via mixed-integer linear programming (Papalex-
opoulos et al., 2022), allowing flexible integration of combinatorial constraints in discrete search
spaces.

Most existing methods in the framework of constrained BBO handle constraints by modifying the
acquisition function, as mentioned above. Our proposed approach is distinguished by the direct
incorporation of known feasibility information into the surrogate model training process. This is
expected to enforce the surrogate model itself to learn the feasibility information, aiming for a more
accurate approximation of the objective function.

4.2 TENSOR DECOMPOSITION FOR BBO

TD compactly represents multi-dimensional arrays and is well-suited for capturing discrete struc-
tures. OptimaTT (Chertkov et al., 2022) adopts the TT format for discrete, unconstrained BBO,
while PROTES (Batsheva et al., 2023) incorporates input constraints by encoding the input feasi-
bility as a binary tensor and using its TT decomposition to guide surrogate initialization. Although
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TTOpt (Sozykin et al., 2022) also uses the TT format, it is primarily designed for continuous opti-
mization.

In the context of TD-BBO, methods such as OptimaTT and TTOpt are primarily designed for un-
constrained optimization. A pioneering approach that incorporates input constraints is the PROTES
method mentioned above, which uses these to guide the initial exploration in the proxy initialization
step. In contrast, focusing on the entire search process rather than just the initialization step, CA-TD
incorporates the constraints into the update of the surrogate model at each optimization step. This
aims to improve sample efficiency by constantly recognizing feasible regions throughout the entire
search process.

4.3 TENSOR DECOMPOSITION UNDER CONSTRAINTS

Constraint-aware tensor decomposition has primarily been studied in the context of data analysis,
where domain-specific structure is imposed on factor matrices to improve interpretability or incor-
porate prior knowledge. For example, constraints such as non-negativity (Alexandrov et al., 2022;
Yu et al., 2022), orthogonality (Halaseh et al., 2022), and smoothness via basis function expansions
(Imaizumi & Hayashi, 2017) have been explored.

While previous work on constrained tensor decomposition has primarily focused on such well-
behaved linear algebraic constraints, our study departs from this trend by directly imposing con-
straints on individual elements of the output tensor. These constraints are not based on assumptions
about the latent factors of the tensor but directly reflect the feasibility conditions of the input required
in the outer-loop optimization problem, representing a new application of constraints in tensor de-
composition in BBO.

5 EXPERIMENTS

We conduct two experiments to evaluate the effectiveness of CA-TD in constrained black-box opti-
mization on discrete domains. The objectives of these experiments are: (1) to compare the perfor-
mance and scalability of our proposed constrained training strategies, HSDP and PGRAD; and (2)
to evaluate the effectiveness of our constraint-aware approach using tensor decomposition (CA-TD)
against conventional baseline methods, including naive extensions for handling constraints.

5.1 BENCHMARKS

This subsection briefly introduces the benchmark problems used to evaluate our method. Detailed
mathematical formulations for all problems are provided in Appendix B.

Ackley We use the standard Ackley synthetic function (Adorio & Diliman, 2005), to which we
apply a simple geometric constraint boundary. The search space is an integer grid of {−ℓ, . . . , ℓ}2,
and the feasible region is defined by the circular constraint x2

1 + x2
2 ≤ r2. We use this problem

to evaluate performance across different scales, with the specific settings for Experiment 1 and 2
detailed in Table 1.

Pressure Vessel This is a classic mixed-variable engineering design problem where the goal is to
minimize manufacturing cost under physical constraints (Coello & Montes, 2002). We adapt this
problem to our discrete setting by discretizing the two continuous variables into 10 uniform levels.

Warcraft This benchmark is a grid-based path optimization problem (Ahmed et al., 2022), where
the goal is to find an optimal path on a map with combinatorial constraints defining path validity.
We evaluate this problem on two different map sizes: 2× 2 grid with 74 candidate paths, and 2× 3
grid 76 with candidate paths.

Diabetes This is a real-world inspired task where constraints are derived from domain knowledge
to find actionable and medically plausible treatment plans from patient data (Smith et al., 1988).

5.2 EXPERIMENTAL SETUP

Each run uses a fixed evaluation (see Table 1), initialized from a random feasible input. The number
of ensembles to compute the uncertainty for TD-based surrogate models is set as M = 10. In
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Table 1: The settings of Ackley on the grid used in experiments. ℓ determines the grid range
{−ℓ, . . . , ℓ}2, r is the radius for the circular constraint, and T is the number of evaluations in SMBO.

Experiment Grid size ℓ r T

Experiment 1
3× 3 1 1 5
5× 5 2 2 15
7× 7 3 3 25

Experiment 2 65× 65 32 10 500
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Round
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d (a) Ackley on 3 x 3 grid
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(b) Ackley on 5 x 5 grid
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(c) Ackley on 7 x 7 grid

HSDP-c
HSDP-u
PGRAD-c
PGRAD-u

Figure 2: Optimization performance of CA-TD surrogates trained with HSDP and PGRAD on dis-
crete Ackley benchmarks. Lower and earlier curves indicate better sample efficiency, and narrower
shaded areas reflect more stable performance across runs. Solid lines denote models trained with ex-
plicit feasibility integration, while dashed lines show unconstrained variants. PGRAD (blue) offers
better scalability and lower computational overhead, while HSDP (red) yields more stable conver-
gence on small grids.

Experiment 1, the surrogate mean is used for the acquisition function for simplicity, and EI is applied
in Experiment 2. The metrics include the best value obtained from the objective function and the
round in which this value first appeared. All results are averaged over 10 seeds.

HSDP is implemented using the Ncpol2sdpa (Wittek, 2015) package with relaxation order 2. The
generated SDP problems are solved using a sparse semidefinite programming solver.

PGRAD uses the Adam optimizer (Kingma & Ba, 2014) to minimize the total loss (Equation 5). The
surrogate tensor is normalized to the range [0, 1], and the penalty coefficient is fixed at λ = 1. For
ablation studies with varying values of λ in Appendix D.1. Training continues across SMBO rounds
without reinitializing the tensor cores. This minimization at each round is terminated either when
the loss drops below 0.1 or after 1000 epochs, whichever occurs first. The detailed implementation,
including software and hardware, is provided in Appendix C.

For comparison, we consider four baseline methods, each with an unconstrained (-u) and a con-
strained (-c) variant. As typical BBO methods, we use Bayesian optimization based on Gaussian
process (GP-u) and the Tree-structured Parzen Estimator (TPE-u) (Watanabe, 2023). The naive con-
strained variants (GP-c, TPE-c) are informed of the feasible space by training them offline on 200
randomly sampled infeasible inputs with a penalty value assigned. In these naive methods, if an in-
feasible point is selected, it is assigned the worst possible evaluation value for each task. The ablation
study related to this sample size of offline-trained infeasible points is described in Appendix D.2.
Also, as a conventional method for constrained tensor-based BBO, PROTES-c is included in the
comparison (Batsheva et al., 2023). Furthermore, we include an advanced method (NN+MILP-
c) (Papalexopoulos et al., 2022), which uses a piecewise-linear neural network as a surrogate and
handles constraints via mixed-integer linear programming (MILP). For a comprehensive compari-
son, we also include the comparison methods run without task-specific constraints (NN+MILP-u /
PROTES-u).

5.3 EXPERIMENT 1: HSDP VS. PGRAD

We compare two training methods for CA-TD: HSDP and PGRAD. Both use TT format with rank
R = 2 and are tested on three Ackley grids. For each method, we also include unconstrained
counterparts trained without constraint-awareness.

7
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Table 2: Comparison of HSDP and PGRAD for constraint-aware surrogate training on discrete
Ackley benchmarks. Each row reports the mean and standard deviation of the best objective value,
the round at which it first appeared, and the average runtime per optimization round (in seconds).

Task Model
Constrained (-c) Unconstrained (-u)

Best Value Best Round Runtime (s) Best Value Best Round Runtime (s)

Ackley HSDP 0.00± 0.00 3.40± 0.92 11.26± 0.44 1.32± 1.32 3.00± 1.79 11.49± 0.32
3 × 3 PGRAD 0.00± 0.00 3.70± 1.55 1.76± 0.11 0.00± 0.00 6.70± 2.87 2.03± 0.49
Ackley HSDP 0.00± 0.00 6.90± 2.02 279.44± 5.58 0.00± 0.00 12.10± 3.73 229.56± 0.78
5 × 5 PGRAD 0.00± 0.00 5.60± 2.97 0.56± 0.05 0.00± 0.00 9.50± 5.94 1.44± 0.85
Ackley HSDP 5.60± 1.75 1.30± 0.46 2045.80± 65.16 5.95± 2.10 1.00± 0.00 1932.85± 33.06
7 × 7 PGRAD 0.00± 0.00 12.60± 4.94 0.67± 0.25 0.00± 0.00 25.40± 8.32 1.10± 0.45
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Figure 3: Optimization progress of our proposed tensor decomposition (TD) models and several
baselines (GP, TPE, and NN+MILP), with and without constraint-awareness, across five benchmark
tasks. For each TD model, the rank achieving the best performance is used (see Table 4 and Table 5
in the Appendix C for detailed results). Lower and earlier curves indicate better sample efficiency.
Solid lines denote constrained models (-c). The enlarged view showing the separated parts -c and -u
is shown in the Appendix I.

Figure 2 shows the optimization progress. On small grids, both constrained methods rapidly reach
near-optimal values, with HSDP converging slightly earlier. On the 7 × 7 grid, HSDP becomes
impractical due to computational cost, while PGRAD continues to improve efficiently. Table 2 sum-
marizes best values, convergence rounds, and runtimes. PGRAD achieves strong performance across
all cases with runtimes under one second per round. In contrast, HSDP is timed out (4000 seconds
per round) in the case 7 × 7. Across all cases, constraint versions (“-c”) outperform unconstrained
ones (“-u”) in both speed and final objective value.

5.4 EXPERIMENT 2: COMPARISON USING BENCHMARKS

In these experiments, we compare CA-TD with other methods using benchmarks. Also, to examine
how different TD formats the performance of CA-TD, we evaluate it under three formats: Tensor
Train (TT), Canonical Polyadic (CP) (Kolda & Bader, 2009), and Tensor Ring (TR) (Zhao et al.,
2016), each tested at ranks R = 2, . . . , 6 (Appendix A). Throughout, constrained models are denoted
with the suffix “-c”, and unconstrained ones with “-u” where necessary. For TT and TR, the same
rank R is uniformly applied across all modes.

Figure 3 shows optimization curves for the best configuration of each method. Our proposed CA-TD
models, e.g. TT-c, consistently achieve faster convergence and better final values compared to the
naive baselines (GP-u, TPE-u, GP-c, and TPE-c). Crucially, CA-TD also demonstrates highly com-
petitive or superior performance against the previous methods (PROTES and NN+MILP). This ad-
vantage is particularly evident in the Pressure Vessel and Warcraft benchmarks. Note that NN+MILP
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is significantly affected by hyperparameters such as the number of training epochs, and here we use
the best hyperparameters (Appendix D.3).

The CA-TD method also requires the appropriate selection of tensor format and rank. Our ablation
study (Appendix D) reveals distinct characteristics for each tensor format. CP can achieve excellent
final objective values, particularly on the Diabetes benchmark, but its performance is highly sensitive
to rank, which varies widely across problems (from 2 to 6). TR exhibits exceptional convergence
speed on the Pressure Vessel benchmark, yet its performance on other tasks is less competitive. In
contrast, TT demonstrates the most consistent and robust performance across tasks, achieving the
fastest convergence on the Ackley and Warcraft 2 × 3 benchmarks. Most importantly, the optimal
rank of TT is remarkably stable, typically within the 3–4 range and reasonably consistent even at
higher ranks, making it a user-friendly default choice for constrained BBO problems where ease of
use and reliable performance are desired.

5.5 DISCUSSION

The experiments validate the effectiveness of CA-TD for constrained black-box optimization. From
Experiment 1, we confirm that incorporating feasibility into the training step of the surrogate model
improves sample efficiency. While HSDP performs well on small problems, PGRAD offers a scal-
able alternative suitable for larger settings such as the 7× 7 Ackley grid.

From Experiment 2, we observe that our constraint-aware surrogate modeling is a dominant factor
in improving performance. Our CA-TD model consistently outperforms unconstrained optimiza-
tion methods such as GP-u and TPE-u, and methods that simply include prior information, such
as GP-c and TPE-c, and performs comparably to more advanced NN+MILP(-c) methods. Among
these, NN+MILP (both -c and -u) and GP-u/TPE-u are methods in which the surrogate model is
trained without considering constraints, and constraints are considered only in the acquisition func-
tion stage. Our results suggest this leads to less efficient exploration. By training the surrogate
model to learn the boundaries of the feasible space, CA-TD can more accurately predict promising
regions and improve sample efficiency. This suggests that embedding feasibility directly into the
surrogate model may be more effective than handling feasibility separately during acquisition.

Notably, our results show that CA-TD with the TT format delivers strong performance regardless of
the tasks and the random seed and requires minimal hyperparameter tuning. This property highlights
a key trade-off for practitioners between peak performance and practical usability. We believe that
for general-purpose applications, where extensive preliminary analysis is not feasible, the robustness
of the TT format provides a compelling advantage.

A key limitation of CA-TD lies in its further scalability to high-dimensional search spaces. While
our experiments show speedups on PGRAD, further improvements in memory scalability are neces-
sary to apply it to a wider range of problems. Tensor-based BBO, including CA-TD, is limited by the
memory demands of dense tensor representations. Although a simple mini-batching strategy offers
a preliminary workaround (Appendix H.1), fully scaling CA-TD to larger and higher-dimensional
problems by using sparse tensor representation remains an important avenue for future research.

6 CONCLUSION

We proposed CA-TD, a constraint-aware surrogate modeling approach for sequential black-box op-
timization on discrete domains, integrating feasibility information directly into tensor decomposi-
tion–based surrogate models. We formulated the learning problem as a POP and introduced a relaxed
algorithm, PGRAD, which showed competitive performance and superior scalability to larger prob-
lems compared with conventional HSDP. Experiments on synthetic and real-world inspired tasks,
including an engineering design problem, indicated that CA-TD improves sample efficiency by in-
corporating constraints into the surrogate rather than into acquisition optimization. Future work in-
cludes scaling to higher-dimensional discrete spaces, e.g., via sparse tensor representations. While
the TT format already mitigates scalability issues, automatic rank selection would further enhance
the applicability of tensor formats. Extending the method to continuous domains and to BBO with
constrained mixtures will also broaden its applications.
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A FORMULATIONS OF TENSOR DECOMPOSITIONS

In our experiments (Section 5.4), we evaluated three tensor decomposition formats (CP, TR, and
TT) with a rank parameter (R ∈ {2, . . . , 6}) which controls model complexity. This appendix
describes our formulation of each tensor decomposition form and how the parameter R appears for
each decomposition form.

In this paper, multiplication is defined as the operation that contraction (sum over) performs across
adjacent indices. Formally, given two tensors A and B, when contracting with respect to an index
i, the tensor product is expressed as:

AB :=
∑
i

A[. . . , i]B[i, . . .],

where A ∈ R···×|I|, B ∈ R|I|×···, and I denotes the range of the contraction index i (for example,
i = 1, . . . , |I|).

Canonical Polyadic (CP) Decomposition: The CP decomposition models a tensor as a sum of
rank-one tensors. Its formulation is:

Ŷ[x1, . . . , xd] =

R∑
r=1

U(1)[x1, r] ·U(2)[x2, r] · · ·U(d)[xd, r]

where U(k) ∈ R|Xk|×R is called the factor matrices and U(k)[xk, r] represents a scalar (xk, r)-
element in the k-th factor matrices. For the CP decomposition, the parameter R used in our ex-
periments directly corresponds to the rank of the decomposition, which is the number of rank-one
tensors in the summation.

Tensor Ring (TR) Decomposition: The TR decomposition represents a tensor as a circular prod-
uct of third-order core tensors. Its formulation is:

Ŷ[x1, . . . , xd] = Tr(G(1)[x1]G
(2)[x2] · · ·G(d)[xd])

where G(k)[xk] is the xk-th slice of the core tensor G(k) ∈ Rrk−1×|Xk|×rk . Note that the trace
operator Tr(·) is defined as Tr(A) :=

∑
i A[i, . . . , i].

The complexity is characterized by a sequence of ranks [r1, r2, . . . , rd] that form a cycle (i.e., r0 =
rd). For our experiments, we applied a uniform rank setting, setting all TR-ranks to the common
value R; i.e., rk = R for all k ∈ {1, . . . , d}.

Tensor-Train (TT) Decomposition: The TT decomposition, whose formulation is given in Eq. 1
in the main text, can be viewed as a special case of the TR decomposition. It effectively breaks
the circular connection of the TR format by setting the boundary ranks to one (r0 = rd = 1). As
with our TR experiments, we used a uniform rank setting for the internal ranks: rk = R for all
k ∈ {1, . . . , d− 1}.

B SPECIFICATIONS OF BENCHMARK PROBLEMS

This section provides details of the benchmark tasks used in our experiments. The differences in
each search space are shown in Table 3. Details of each task are described below.
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Table 3: Search spaces for each task

task search space size #feasible points ratio of feasible points
Ackley 3×3 32 5 0.56
Ackley 5×5 52 13 0.52
Ackley 7×7 72 29 0.59
Ackley 65×65 652 317 0.08
Pressure Vessel 104 3916 0.39
Warcraft 2×2 74 300 0.12
Warcraft 2×3 76 5400 0.05
Diabetes 58 10197 0.03

Ackley The 2D Ackley function (Adorio & Diliman, 2005) on grid is defined as:

g(x1, x2) = −20 exp
(
−0.2

√
0.5(x2

1 + x2
2)

)
− exp (0.5(cos(2πx1) + cos(2πx2)))

+ 20 + exp(1).

The input space is discretized into a uniform integer grid, and feasibility is defined by a circular
constraint x2

1 + x2
2 ≤ r2.

Pressure Vessel The Pressure Vessel design problem is a classic engineering benchmark (Coello
& Montes, 2002) with a mixed-variable search space. The goal is to minimize the total cost of
a cylindrical pressure vessel. The problem has four variables, originally two continuous and two
integer. For our experiments, we create a fully discrete search space by sampling 10 uniform levels
from the domain of each variable. The objective function is given by:

g(x1, x2, x3, x4) = 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x2
1x4 + 19.84x2

1x3,

subject to the following inequality constraints:

−x1 + 0.0193x3 ≤ 0,

−x2 + 0.00954x3 ≤ 0,

−πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0,

x4 − 240 ≤ 0.

Warcraft This benchmark, adapted from a path prediction problem solved via supervised learning
with combinatorial constraints presented in Ahmed et al. (2022), is treated as a black-box optimiza-
tion task. The environment is a 2D m × n grid map, where each cell has a predefined traversal
cost. An input x ∈ X , representing a candidate path, is encoded as a sequence of m+ n movement
primitives. Each primitive is selected from seven movement types: vertical (up or down), hori-
zontal (left or right), four L-shaped turns (e.g., up+right, regardless of order), and a null move (no
displacement).

The objective function g(x) evaluates each path by summing the traversal costs along the path
and rewarding proximity to the bottom-right corner, with shorter Euclidean distance yielding better
scores. The input is subject to three constraints: the path must start from the top-left cell, it must
consist of exactly m+ n steps, and it must end at the bottom-right cell.

We evaluate two map sizes: 2 × 2 (path length 4) and 2 × 3 (path length 6), resulting in 74 and 76

candidate paths, respectively.
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Diabetes This task simulates the goal of identifying actionable treatment plans for patients diag-
nosed with diabetes to demonstrate applicability on a real-world task where constraints are derived
from domain knowledge. We use the Pima Indian Diabetes dataset (Smith et al., 1988), which con-
tains 8 patient features and a binary diabetes label. Each continuous or integer-valued feature is
discretized into 5 levels, resulting in a discrete search space X = {0, 1, 2, 3, 4}8.

A random forest classifier (Breiman, 2001) is trained on the entire dataset and used to predict the
probability of diabetes for all candidates x ∈ X . Given a randomly chosen diabetic individual xorig,
the goal is to find an alternative feature configuration x ∈ X such that the predicted probability
of diabetes is reduced. To encourage realistic plans, we penalize large deviations from the original
configuration. Specifically, the objective function is defined as:

g(x) = RF(x) + ∥x− xorig∥2,

where RF(x) ∈ [0, 1] is the predicted probability from the random forest classifier. Lower objective
values correspond to medically plausible and effective treatment suggestions.

Feasibility constraints are imposed to exclude unrealistic feature combinations based on domain
knowledge. For example, low insulin combined with high glucose is considered implausible for a
non-diabetic patient and thus excluded from the feasible input.

C EXPERIMENTAL DETAILS

All experiments were conducted on nodes running Ubuntu 22.04.5 LTS. Each experimental run was
allocated 4 cores of an Intel Xeon Gold 6230R CPU and 8 GB of memory. A timeout of 3600
seconds (1 hour) was set for each run.

The software environment was built on Python 3.12.2. Key libraries include PyTorch 2.4.1 and
NumPy 2.1.2. Our HSDP training strategy utilized ncpol2sdpa 1.12.2 and cvxpy 1.6.4, with SDPA
7.3.16 as the backend semidefinite programming solver. Our implementation of the NN+MILP
baseline (Papalexopoulos et al., 2022) follows the methodology described in the original paper. The
mixed-integer linear programming subproblems are solved using OR-Tools 9.14.6206.

Details for the NN+MILP Baseline. Following the original paper, our implementation of the
NN+MILP(Papalexopoulos et al., 2022) uses a ReLU-based neural network consisting of one fully
connected layer with 16 hidden dimensions as the surrogate model.

The acquisition problem, which seeks to maximize the surrogate’s output, is formulated as an MILP.
A key component of this formulation is the use of ”no-good” cuts, which are constraints added to
the MILP to exclude previously evaluated points from the search. This prevents the optimizer from
repeatedly selecting the same points.

We tested two variants of this baseline:

• Unconstrained (NN+MILP-u): In this version, the MILP formulation only includes the
search space boundaries and the ”no-good” cuts as constraints. This variant does not use
any specific knowledge about the problem’s feasible region.

• Constrained (NN+MILP-c): This version extends the unconstrained setup by incorporat-
ing the explicit problem constraints directly into the MILP formulation. These are the same
constraints used by our proposed CA-TD method, allowing for a direct and fair comparison
of how constraint information is utilized. This includes, for example, the circular constraint
for the Ackley problem and the physical constraints for the Pressure Vessel design.

D ABLATION STUDY FOR EXPERIMENT 2
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Table 4: Comprehensive comparison of CA-TD performance across tensor decomposition formats
(CP, TR, TT) and tensor ranks on five benchmark tasks. For each configuration, we report the
mean and standard deviation over ten runs for both the best feasible objective value found and the
optimization round in which it first appeared. The best-performing rank for each model and task is
identified based on the lowest average best value; in case of a tie, the configuration with the earlier
average best round is selected. Selected best configurations are highlighted in bold.

Objective Constraint Method Rank Best Value Best Round

Ackley

Constrained

CP

2 0.00± 0.00 69.40± 14.00
3 0.00± 0.00 37.70± 26.38
4 0.00± 0.00 50.20± 33.32
5 0.00± 0.00 56.60± 31.84
6 0.00± 0.00 63.50± 24.45

TR

2 0.00± 0.00 55.80± 19.99
3 0.00± 0.00 61.60± 36.76
4 0.00± 0.00 48.60± 29.46
5 0.00± 0.00 57.70± 34.97
6 0.00± 0.00 71.90± 33.81

TT

2 0.00± 0.00 58.00± 20.76
3 0.00± 0.00 36.30± 19.66
4 0.00± 0.00 47.50± 24.36
5 0.00± 0.00 57.40± 34.22
6 0.00± 0.00 63.70± 41.13

Unconstrained

CP

2 5.00± 2.59 74.00± 49.30
3 4.37± 1.81 179.50± 158.71
4 5.11± 1.51 61.30± 84.45
5 4.29± 1.74 76.80± 76.16
6 2.24± 1.97 105.10± 102.10

TR

2 4.07± 1.28 68.50± 76.76
3 5.72± 1.54 104.90± 140.38
4 5.31± 1.87 47.80± 49.07
5 5.01± 2.05 79.00± 111.06
6 6.05± 2.85 27.30± 22.45

TT

2 4.74± 1.96 151.60± 150.91
3 3.88± 1.83 135.70± 139.12
4 3.70± 1.77 113.20± 109.55
5 4.38± 1.30 111.30± 89.04
6 3.05± 1.30 138.40± 131.81

Diabetes

Constrained

CP

2 0.26± 0.08 190.30± 144.14
3 0.20± 0.06 245.40± 105.69
4 0.22± 0.05 215.10± 120.72
5 0.19± 0.08 229.20± 121.43
6 0.18± 0.08 183.40± 92.49

TR

2 0.26± 0.06 193.50± 134.80
3 0.25± 0.04 205.30± 142.27
4 0.22± 0.08 276.70± 134.96
5 0.20± 0.06 263.60± 84.38
6 0.20± 0.06 210.00± 113.67

TT

2 0.27± 0.05 164.60± 136.64
(Table continues on next page)
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Table 4: (Continued) Summary of Main Experiment Results

Objective Constraint Method Rank Best Value Best Round
3 0.25± 0.06 215.40± 129.64
4 0.19± 0.07 289.50± 77.59
5 0.21± 0.06 242.30± 85.96
6 0.19± 0.04 258.00± 131.51

Unconstrained

CP

2 0.56± 0.19 237.60± 139.88
3 0.44± 0.09 105.70± 120.23
4 0.49± 0.15 26.60± 27.76
5 0.43± 0.07 139.20± 105.89
6 0.44± 0.11 163.30± 101.39

TR

2 0.45± 0.13 82.60± 106.76
3 0.49± 0.20 142.30± 109.86
4 0.49± 0.22 21.80± 30.35
5 0.59± 0.20 33.60± 63.21
6 0.50± 0.15 62.80± 75.78

TT

2 0.59± 0.17 240.50± 157.55
3 0.42± 0.15 36.70± 52.33
4 0.43± 0.13 79.30± 112.83
5 0.51± 0.11 24.30± 46.99
6 0.43± 0.15 76.40± 131.94

Pressure Vessel

Constrained

CP

2 12408.34± 0.00 97.60± 22.90
3 12408.34± 0.00 101.60± 51.76
4 12408.34± 0.00 114.10± 54.86
5 12408.34± 0.00 125.10± 62.85
6 12408.34± 0.00 133.60± 45.18

TR

2 12408.34± 0.00 65.60± 39.50
3 12408.34± 0.00 107.90± 41.05
4 12408.34± 0.00 153.90± 49.47
5 12408.34± 0.00 171.60± 52.31
6 12408.34± 0.00 158.60± 56.03

TT

2 12408.34± 0.00 98.20± 52.98
3 12408.34± 0.00 91.80± 41.26
4 12408.34± 0.00 120.90± 59.48
5 12408.34± 0.00 186.70± 84.06
6 12408.34± 0.00 162.70± 71.59

Unconstrained

CP

2 28747.63± 6576.40 135.10± 144.70
3 26880.85± 6015.81 227.20± 187.25
4 27551.16± 9856.99 166.20± 183.89
5 24153.88± 4083.86 63.90± 90.89
6 21718.03± 6122.11 83.80± 60.81

TR

2 28563.29± 6355.42 42.20± 30.29
3 24871.78± 7397.81 65.80± 68.65
4 32783.74± 8703.58 36.00± 35.68
5 34158.80± 6932.70 19.20± 12.46
6 23866.31± 7088.02 28.70± 32.95

TT

2 26976.59± 4829.46 36.70± 53.05
3 26170.20± 7600.21 65.20± 129.01

(Table continues on next page)
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Table 4: (Continued) Summary of Main Experiment Results

Objective Constraint Method Rank Best Value Best Round
4 22564.40± 5990.01 67.70± 90.85
5 22935.84± 4399.48 28.40± 33.67
6 21395.48± 4376.77 34.60± 26.78

Warcraft 2× 2

Constrained

CP

2 0.50± 0.00 40.80± 40.34
3 0.50± 0.00 31.00± 22.28
4 0.50± 0.00 31.30± 14.60
5 0.50± 0.00 37.90± 15.57
6 0.50± 0.00 25.60± 15.50

TR

2 0.50± 0.00 29.60± 18.17
3 0.50± 0.00 29.70± 16.46
4 0.50± 0.00 33.00± 12.57
5 0.50± 0.00 26.10± 18.61
6 0.50± 0.00 41.80± 16.80

TT

2 0.50± 0.00 34.90± 21.39
3 0.50± 0.00 34.10± 14.74
4 0.50± 0.00 39.80± 22.00
5 0.50± 0.00 41.60± 16.08
6 0.50± 0.00 47.20± 21.19

Unconstrained

CP

2 0.67± 0.12 192.30± 157.25
3 0.74± 0.08 108.90± 99.23
4 0.68± 0.18 212.00± 189.91
5 0.65± 0.14 96.30± 132.72
6 0.68± 0.12 181.20± 197.93

TR

2 0.73± 0.12 171.40± 138.09
3 0.74± 0.11 188.20± 181.50
4 0.74± 0.10 163.90± 133.61
5 0.76± 0.12 123.70± 146.50
6 0.76± 0.07 195.30± 152.81

TT

2 0.65± 0.11 192.30± 147.74
3 0.75± 0.13 213.00± 172.45
4 0.71± 0.09 181.40± 181.45
5 0.67± 0.13 195.80± 170.67
6 0.63± 0.12 115.60± 147.26

Warcraft 2× 3

Constrained

CP

2 0.56± 0.09 108.10± 53.07
3 0.50± 0.00 145.20± 70.85
4 0.50± 0.00 123.00± 68.13
5 0.50± 0.00 125.70± 67.57
6 0.50± 0.00 126.90± 66.16

TR

2 0.56± 0.09 335.20± 118.54
3 0.50± 0.00 139.10± 60.37
4 0.51± 0.03 255.50± 147.65
5 0.50± 0.00 144.50± 90.58
6 0.50± 0.00 175.20± 95.16

TT

2 0.58± 0.10 257.90± 117.20
3 0.50± 0.00 116.90± 30.93
4 0.50± 0.00 115.70± 34.39

(Table continues on next page)
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Table 4: (Continued) Summary of Main Experiment Results

Objective Constraint Method Rank Best Value Best Round
5 0.50± 0.00 144.70± 40.49
6 0.50± 0.00 152.80± 42.79

Unconstrained

CP

2 0.97± 0.08 221.70± 175.95
3 0.87± 0.10 234.50± 192.92
4 0.90± 0.13 96.90± 80.52
5 0.88± 0.14 148.50± 132.13
6 0.88± 0.12 156.10± 116.36

TR

2 0.93± 0.15 130.20± 159.53
3 1.01± 0.06 92.40± 118.96
4 1.04± 0.06 150.30± 161.71
5 0.94± 0.11 120.90± 127.46
6 0.93± 0.11 91.50± 142.73

TT

2 0.90± 0.13 184.60± 128.92
3 0.95± 0.10 204.20± 172.71
4 0.98± 0.07 167.80± 148.80
5 1.01± 0.06 148.90± 154.59
6 0.96± 0.12 56.90± 76.03

Table 5: Performance summary of the baseline methods (GP, TPE, NN+MILP, and PROTES) corre-
sponding to the optimization progress in Experiment 2. For each configuration, we report the mean
and standard deviation over ten runs for both the best feasible objective value found and the opti-
mization round in which it first appeared. The best-performing method for each task and constraint
is identified based on the lowest average best value.

Objective Constraint Method Best Value Best Round

Ackley

Constrained

GP 3.72± 1.52 249.90± 105.64
TPE 1.25± 1.57 295.50± 109.26

NN+MILP 0.00± 0.00 41.30± 24.93
PROTES 1.42± 1.44 140.00± 80.00

Unconstrained

GP 4.00± 1.55 209.40± 90.30
TPE 0.26± 0.79 254.10± 162.61

NN+MILP 0.88± 2.65 222.30± 167.06
PROTES 3.03± 1.70 280.00± 124.90

Diabetes

Constrained

GP 0.37± 0.07 262.20± 149.81
TPE 0.43± 0.53 312.30± 126.52

NN+MILP 0.22± 0.05 176.60± 134.49
PROTES 0.47± 0.52 410.00± 122.07

Unconstrained

GP 0.39± 0.13 208.80± 158.22
TPE 0.33± 0.20 388.80± 92.61

NN+MILP 0.25± 0.07 334.30± 122.75
PROTES 0.31± 0.08 380.00± 124.90

Pressure Vessel

Constrained

GP 19982.64± 3972.10 250.30± 155.75
TPE 15375.32± 2757.68 294.10± 66.56

NN+MILP 14394.76± 3905.88 239.20± 137.69
PROTES 16006.94± 3748.15 350.00± 111.80

(Table continues on next page)
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Table 5: (Continued) Summary of Baseline Method Results

Objective Constraint Method Best Value Best Round

Unconstrained

GP 43256.59± 67170.11 169.70± 147.72
TPE 13550.90± 1521.29 238.20± 104.85

NN+MILP 18632.64± 2319.82 161.10± 88.91
PROTES 15704.22± 3402.14 340.00± 101.98

Warcraft 2× 2

Constrained

GP 0.59± 0.10 307.00± 153.05
TPE 0.75± 0.13 288.30± 129.27

NN+MILP 0.50± 0.00 66.10± 59.91
PROTES 0.57± 0.08 190.00± 53.85

Unconstrained

GP 0.64± 0.10 271.50± 136.55
TPE 0.56± 0.11 194.10± 105.68

NN+MILP 0.55± 0.10 150.60± 119.96
PROTES 0.57± 0.08 190.00± 53.85

Warcraft 2× 3

Constrained

GP 0.95± 0.13 225.60± 154.90
TPE 0.92± 0.19 280.10± 159.76

NN+MILP 0.79± 0.26 85.00± 98.29
PROTES 0.67± 0.08 360.00± 128.06

Unconstrained

GP 0.91± 0.13 231.30± 98.45
TPE 0.93± 0.16 169.50± 130.75

NN+MILP 0.73± 0.12 151.40± 101.18
PROTES 0.67± 0.08 360.00± 128.06

D.1 EFFECT OF THE PENALTY COEFFICIENT λ

We conduct an ablation study to assess the sensitivity of our PGRAD strategy to the penalty coeffi-
cient λ, which was fixed at 1.0 in our main experiments. We test the CP-c, TR-c, and TT-c surrogates
on all five benchmarks, varying λ across the range {10, 5, 1, 0.5, 0.1, 0.01, 0.001, 0.0001} for each
benchmark.

The results, presented in Figures 4–6, demonstrate that the performance of these surrogates is re-
markably robust to this hyperparameter across all benchmarks and tensor ranks. Within each sub-
figure, the plots compare the optimization progress over rounds for different values of λ, where lower
values indicate better performance. For all tested values of λ, the optimization progress curves are
nearly identical, showing similar convergence behavior. Furthermore, most runs completed their full
evaluation budget. A minor exception was observed on the Warcraft 2×3 map benchmark, where
the highest penalty coefficients (λ = 10 and λ = 5) resulted in slightly worse performance for all
three methods (CP-c, TR-c, TT-c) In our main experiments, the constrained GP and TPE baselines
(GP-c and TPE-c) were trained with 200 offline-sampled infeasible inputs. Here, we conduct an
ablation study to analyze how the number of these infeasible points affects their performance. We
test on all five benchmarks, varying the number of infeasible points in {0, 50, 100, 200, 300, 500,
1000, 2000}.
The results are presented in Figure 7. We observe a consistent and counter-intuitive trend across
all benchmarks: for both GP-c and TPE-c, increasing the number of pre-trained infeasible points
generally leads to a degradation in optimization performance. This effect is particularly severe for
the GP baseline. As the number of informed points increases, the GP model’s performance consis-
tently worsens, and the computational overhead leads to premature termination of the optimization
process, evidenced by truncated convergence curves. This is likely because the GP model, which
scales cubically with the number of data points, becomes prohibitively expensive to train and use
for acquisition function optimization.

The TPE baseline, while also showing some performance degradation with more infeasible points,
proves to be more computationally robust and completes its evaluation budget in most cases. These
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findings suggest that naively informing baseline models about the infeasible space by simply ex-
panding the training dataset is not an effective strategy and can be detrimental, especially for com-
putationally intensive models. This highlights the need for more sophisticated constraint-handling
methods.
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(a) Ackley on 65× 65 grid
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(b) Pressure Vessel
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(c) Warcraft on 2× 2 map
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(d) Warcraft on 2× 3 map
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(e) Diabetes Treatment Planning

Figure 4: Ablation study for CP-c across all five benchmarks. Each panel shows the optimization
progress for a different tensor rank, comparing various settings of the penalty coefficient λ.
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(c) Warcraft on 2× 2 map
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(d) Warcraft on 2× 3 map
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(e) Diabetes Treatment Planning

Figure 5: Ablation study for the TR-c method across all five benchmarks. Each panel shows the op-
timization progress for a different tensor rank, comparing various settings of the penalty coefficient
λ.
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(a) Ackley on 65× 65 grid
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(c) Warcraft on 2× 2 map
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(d) Warcraft on 2× 3 map
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(e) Diabetes Treatment Planning

Figure 6: Ablation study for TT-c across all five benchmarks. Each panel shows the optimization
progress for a different tensor rank, comparing various settings of the penalty coefficient λ.
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D.2 EFFECT OF OFFLINE TRAINING ON GP AND TPE BASELINES

In our main experiments, the constrained GP and TPE baselines (GP-c and TPE-c) were trained
with 200 offline-sampled infeasible inputs. Here, we conduct an ablation study to analyze how the
number of these infeasible points affects their performance. We test on all five benchmarks, varying
the number of infeasible points in {0, 50, 100, 200, 300, 500, 1000, 2000}.
The results are presented in Figure 7. We observe a consistent and counter-intuitive trend across
all benchmarks: for both GP-c and TPE-c, increasing the number of pre-trained infeasible points
generally leads to a degradation in optimization performance. This effect is particularly severe for
the GP baseline. As the number of informed points increases, the GP model’s performance consis-
tently worsens, and the computational overhead leads to premature termination of the optimization
process, evidenced by truncated convergence curves. This is likely because the GP model, which
scales cubically with the number of data points, becomes prohibitively expensive to train and use
for acquisition function optimization.

The TPE baseline, while also showing some performance degradation with more infeasible points,
proves to be more computationally robust and completes its evaluation budget in most cases. These
findings suggest that naively informing baseline models about the infeasible space by simply ex-
panding the training dataset is not an effective strategy and can be detrimental, especially for com-
putationally intensive models. This highlights the need for more sophisticated constraint-handling
methods.
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Figure 7: Ablation study on the number of pre-trained infeasible points for GP-c and TPE-c base-
lines across all five benchmarks. Each row corresponds to a benchmark, with the left and right panels
showing the performance of GP-c and TPE-c, respectively. The results demonstrate that increasing
the number of informed points generally degrades performance for both methods.

D.3 EFFECT OF NUMBER OF EPOCHS AND INITIAL POINTS FOR NN+MILP

To determine a hyperparameter configuration for the NN+MILP baseline, we conduct an ablation
study on its two key parameters: the number of training epochs for the neural network surrogate and
the number of initial random points. We tested the number of epochs over the set {100, 300, 1000,
5000, 10000, 25000} and evaluated using either 1 or 50 initial points.
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The results for all five benchmarks are presented in Figure 8. From these figures, we can draw
several conclusions to guide our selection.

First, regarding the number of initial points, a clear distinction emerges depending on the presence
of constraints. For the constrained setting (-c, solid lines), using a single initial point (blue solid
lines) demonstrates superior or competitive performance compared to 50 initial points (orange solid
lines) across most tasks. This trend is especially noticeable in the (a) Ackley and (c) Warcraft 2× 3
benchmarks. Conversely, in the unconstrained setting (-u, dashed lines), using 50 initial points
(orange dashed lines) leads to significantly faster convergence and better final performance than
a single point. This suggests that the optimal number of initial points is contingent on whether
constraints are applied.

Second, concerning the number of training epochs, performance consistently improves up to 1000
epochs. Beyond this point, for instance, at 5000 or 10000 epochs, we observe diminishing returns;
the significant increase in computational cost does not yield a correspondingly large improvement
in optimization performance. This suggests that, for the scale of problems considered in our study,
approximately 1000 epochs provide a sufficient training budget for the surrogate model.

Based on this analysis, we conclude that the optimal configuration depends on the constraint set-
ting: 1 initial point with 1000 training epochs for constrained problems (-c), and 50 initial points
with 1000 training epochs for unconstrained problems (-u). Each of these configurations offers the
best trade-off between sample efficiency, final performance, and computational cost for its respec-
tive context. Therefore, we adopt these respective settings for the NN+MILP baseline in all main
experiments presented in Section 5.
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Figure 8: Ablation study for the NN+MILP baseline across all five benchmarks: (a) Ackley, (b)
Pressure Vessel, (c) Warcraft 2 × 2, (d) Warcraft 2 × 3, and (e) Diabetes. Each panel within a
benchmark’s plot shows the optimization progress for a different number of training epochs. Blue
and orange lines correspond to using 1 and 50 initial random points, respectively.

D.4 EFFECT OF HYPERPARAMETERS FOR PROTES

In each optimization round, PROTES evaluates a batch of B points on the objective function. From
this batch, the top K samples are selected to train the TT surrogate model. For this training, the
number of iterations for the gradient-based method is fixed at 100 for all configurations. We evalu-
ated several hyperparameter configurations, testing a sequential setting (B = 1,K = 1) and batch
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settings with B = 100 combined with top sample values of K ∈ {10, 100}. For all tested configu-
rations, we varied the rank from 3 to 5.

The results for all five benchmarks are presented in Figure 9 and Table 6. From these results, we can
draw several conclusions to guide our selection.

First, regarding the batch size B, a larger value of B = 100 consistently resulted in superior perfor-
mance across all tasks. A larger batch size allows the optimizer to gather more information about the
objective function landscape in a single round, leading to a more effective and stable search process
compared to the sequential evaluation approach of B = 1.

Second, concerning the number of top samples K, the choice of K = 10 was most frequently
associated with the best-performing configurations. This suggests that K = 10 strikes an effective
balance. It focuses the surrogate model’s training on a sufficiently elite subset of high-performing
samples from the batch, while still retaining enough diversity to avoid premature convergence, which
can be a risk with a very small K or inefficient with a very large K for PROTES.

Third, for the TT rank, we observed that performance was often very similar across ranks 3, 4, and
5, especially once the optimal B and K were chosen. In several tasks, the best results were identical
for all three ranks. However, considering all benchmarks, ranks 4 and 5 appeared most frequently
in the top configurations. We select Rank 4 as a representative choice, as it provides a robust level
of model expressiveness suitable for the complexity of these problems without being unnecessarily
high, thus offering a good trade-off against the potential for overfitting.

Based on this analysis, we conclude that a configuration of batch size B = 100, top samples K = 10,
and rank 4 offers the best trade-off between sample efficiency and final performance for the PROTES
baseline. Therefore, we adopt this setting for all main experiments presented in Section 5.
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Figure 9: Ablation study for the PROTES baseline across all five benchmarks: (a) Ackley, (b)
Pressure Vessel, (c) Warcraft 2× 2, (d) Warcraft 2× 3, and (e) Diabetes.

Table 6: Comprehensive comparison of PROTES performance across different hyperparameter
configurations (Batch size B, Top samples K, and TT-Rank) on five benchmark tasks. For each
configuration, we report the mean and standard deviation over ten runs for both the best feasible
objective value found and the optimization round in which it first appeared.

Objective B K Rank Best Value Best Round

Ackley

1 1
3 7.28± 2.85 115.10± 119.14
4 7.28± 2.85 115.10± 119.14
5 7.28± 2.85 115.10± 119.14

100

10
3 1.42± 1.44 140.00± 80.00
4 1.42± 1.44 140.00± 80.00
5 1.42± 1.44 140.00± 80.00

100
3 1.15± 1.44 170.00± 118.74
4 1.15± 1.44 170.00± 118.74

(Table continues on next page)
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Table 6: (Continued) Summary of PROTES Ablation Study Results

Objective B K Rank Best Value Best Round
5 1.15± 1.44 170.00± 118.74

Diabetes

1 1
3 1.37± 0.66 61.10± 130.77
4 1.37± 0.66 61.10± 130.77
5 1.37± 0.66 61.10± 130.77

100

10
3 0.47± 0.52 410.00± 122.07
4 0.47± 0.52 410.00± 122.07
5 0.47± 0.52 410.00± 122.07

100
3 0.35± 0.07 320.00± 107.70
4 0.35± 0.07 320.00± 107.70
5 0.35± 0.07 320.00± 107.70

Pressure

1 1
3 52982.89± 27897.70 211.90± 170.92
4 52982.89± 27897.70 211.90± 170.92
5 52982.89± 27897.70 211.90± 170.92

100

10
3 16006.94± 3748.15 350.00± 111.80
4 16006.94± 3748.15 350.00± 111.80
5 16006.94± 3748.15 350.00± 111.80

100
3 21185.15± 6004.47 290.00± 144.57
4 21185.15± 6004.47 290.00± 144.57
5 21185.15± 6004.47 290.00± 144.57

Warcraft 1

1 1
3 1.16± 0.38 128.50± 124.38
4 1.14± 0.40 117.60± 146.68
5 1.15± 0.29 180.90± 198.86

100

10
3 0.56± 0.08 210.00± 53.85
4 0.57± 0.08 190.00± 53.85
5 0.52± 0.05 270.00± 118.74

100
3 0.56± 0.11 250.00± 136.01
4 0.55± 0.07 300.00± 109.54
5 0.63± 0.12 220.00± 132.66

Warcraft 2

1 1
3 1.24± 0.33 207.30± 153.87
4 1.39± 0.23 213.20± 151.68
5 1.06± 0.25 164.30± 140.55

100

10
3 0.68± 0.09 310.00± 113.58
4 0.67± 0.08 360.00± 128.06
5 0.69± 0.12 290.00± 94.34

100
3 0.81± 0.07 250.00± 128.45
4 0.81± 0.12 280.00± 116.62
5 0.83± 0.06 210.00± 151.33

E ADDITIONAL COMPARATIVE STUDY WITH NN+MILP

In this section, we present additional comparative experiments to further verify the effectiveness of
our proposed method, CA-TD. The primary objective is to evaluate CA-TD’s performance against
the strong NN+MILP baseline on task domains where it has demonstrated significant success. To
this end, our benchmark tasks are inspired by or directly derived from those presented in the original
NN+MILP paper (Papalexopoulos et al., 2022).

A direct comparison of the original, large-scale benchmarks is challenging due to limitations in
our current implementation of CA-TD. Our approach, which relies on tensor representations of the
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search space, becomes memory-intensive as the problem dimensionality increases. Therefore, to
ensure a computationally feasible comparison, we utilize scaled-down versions of the original tasks,
with the exception of the DNA binding task where we employ the original problem specification.

E.1 TASK DESCRIPTIONS

Within this setting, we deliberately selected a diverse set of tasks to comprehensively evaluate the
robustness of our approach across varied functional landscapes. The selection spans seven new
benchmark tasks across four distinct domains. These tasks are categorized into the following four
classes based on the complexity of their objective functions:

• Linear Objective Function: We use two variants of the Generalized Assignment Problem
(GAP), which represents a fundamental class of combinatorial optimization problems.

• Quadratic Objective Function: We use two variants of the Constrained Ising Model,
which involves minimizing a quadratic function with pairwise interaction terms.

• Complex Non-Linear Objective Function: We use two search spaces from the Neural
Architecture Search (NAS) benchmark, which features a highly complex black-box objec-
tive.

• Biological Sequence Optimization: We use a DNA binding affinity optimization task,
representing a real-world challenge in genomics with sparse feasible regions.

A detailed description of each task domain follows.

Generalized Assignment Problem (GAP) GAP is a fundamental problem in combinatorial opti-
mization, often used to model resource allocation scenarios. In this problem, we are given a set of
n items and a set of m bins. Each item i (for i = 1, . . . , n) has a specific value pi,j and consumes
a certain amount of resources (its weight wi) if it is assigned to bin j (for j = 1, . . . ,m). Each bin
j has a limited capacity cj . The goal is to assign each item to exactly one bin in order to maximize
the total value of the assignment, without violating the capacity constraints of any bin.

To formulate this mathematically, we represent an assignment as a vector x = (x1, . . . , xn), where
the element xi ∈ {1, . . . ,m} denotes the bin to which item i is assigned. The total value for a given
assignment x is the sum of the values from each assignment:

Value(x) =
n∑

i=1

pi,xi
.

The overall optimization problem is to find the optimal assignment x∗ within the set of all feasible
assignments X :

x∗ = argmax
x∈X

Value(x).

The set of feasible assignments X is determined by the specific constraints of each task. It is worth
noting that while the GAP instances in the original NN+MILP paper (Papalexopoulos et al., 2022)
feature a more complex quadratic objective function, we specifically designed our tasks with a linear
objective to ensure diversity in our task set. The details of our two linear GAP variants are as follows.

• GAP-A (Capacity-Constrained): This task requires assigning n = 9 items to m = 3
bins. The search space size is 39. A strict equality constraint is imposed, requiring the total
weight of items in each bin to exactly match its predefined capacity. Let wi be the weight
of item i and cj be the capacity of bin j. The constraint is formulated as:

n∑
i=1

wi · I(xi = j) = cj (for each bin j = 1, . . . ,m),

where I(·) is the indicator function. For this specific task instance, the weight of each item
is set to 1, i.e., wi = 1 for all i. This setting models resource allocation problems in which
resources must be fully utilized.
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• GAP-B (Logically-Constrained): This task involves assigning n = 7 items to m = 4 bins
(search space size 47). Instead of physical capacity, it features logical constraints on the
number of items assigned to specific bins, formulated as:

n∑
i=1

I(xi = 1) ≤ 1 and
n∑

i=1

I(xi = 2) ≤ 1.

This simulates operational policies or design rules where certain assignments are restricted.

Constrained Ising Model This task is a quadratic optimization problem over binary variables,
inspired by the Ising model in physics and the ConstrainedIsing benchmark in Papalexopoulos et al.
(2022). The problem involves a set of n binary items, where each item can be either selected (1) or
not selected (0). An interaction potential Pij is defined for each pair of items (i, j). The objective is
to choose a subset of items that minimizes the sum of potentials from all pairs of selected items.

To formulate this, we represent a selection as a binary vector y = (y1, . . . , yn) ∈ {0, 1}n, where
yi = 1 if item i is selected, and yi = 0 otherwise. The objective function to be minimized is a
quadratic form:

f(y) =

n−1∑
i=1

n∑
j=i+1

Pijyiyj .

The overall optimization problem is to find the optimal selection y∗ within the set of all feasible
selections Y:

y∗ = argmin
y∈Y

f(y).

The feasible set Y is determined by task-specific constraints on the selections. While the original
benchmark in Papalexopoulos et al. (2022) utilizes a balancing constraint between pairs of item
groups, our tasks build upon this by incorporating additional cardinality constraints to create more
challenging scenarios, as detailed below.

• Ising-A (Group-Balanced): The task involves n = 14 items, partitioned into two groups
of 7. The feasible set Y ⊆ {0, 1}14 is defined by constraints requiring that (1) the number
of selected items in each group must be equal, and (2) the total number of selected items
must be exactly 4. This emulates the need for balanced feature selection in matched-pair
observational studies.

• Ising-B (Complex Group-Constrained): This task involves n = 15 items, partitioned
into three groups of 5 (Groups A, B, and C). The feasible set Y ⊆ {0, 1}15 is defined by
two simultaneous constraints: (1) the number of selected items in Group A must be equal
to that in Group B, and (2) the number of selected items in Group C must be exactly 1.
This models more complex design rules where different component groups are subject to
different types of constraints.

Neural Architecture Search (NAS) NAS is the process of automating the design of neural net-
works. While the original NN+MILP paper (Papalexopoulos et al., 2022) used the NAS-Bench-101
benchmark for its case study, we employ the more recent NATS-Bench benchmark (Dong et al.,
2021) for our comparative experiments to construct tasks of a more manageable scale.

Both benchmarks model a neural architecture as a directed acyclic graph (DAG) representing a
computational cell, but they differ fundamentally in how the search space is defined. NAS-Bench-
101 defines its vast space of 423,000 architectures by exploring the connectivity of the DAG itself,
along with assigning an operation to each of its vertices. In contrast, NATS-Bench offers two distinct
and more compact search spaces. Its Topological Search Space (TSS) fixes the DAG’s structure and
simplifies the search to selecting an operation for each edge. Its Size Search Space (SSS) keeps the
topology fixed and instead searches for the optimal number of channels at different network stages.

Our tasks utilize these two search spaces from NATS-Bench. An architecture is represented by a con-
figuration vector z, and the objective is to find the configuration z∗ that maximizes its pre-computed
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test accuracy on the CIFAR-10 dataset (Krizhevsky et al., 2009). Test accuracy is the proportion of
correct predictions over all predictions on a held-out test set. Formally, the optimization problem is:

z∗ = argmax
z∈Z

Accuracy(z),

where Z is the set of feasible architectures defined by our task-specific constraints and Accuracy(z)
represents test accuracy computed from z.

• TSS: In this task, we use the TSS, where the architecture is a vector z = (z1, . . . , z6),
with each element zi being an operation on one of 6 edges. Each zi can be chosen
from a set of five operations: ‘none‘, ‘skip connect‘, ‘avg pool 3x3‘, ‘nor conv 1x1‘, and
‘nor conv 3x3‘. The feasible set Z is defined by the following two constraints:

6∑
i=1

I(zi = ‘skip connect‘) ≥ 3,

6∑
i=1

I(zi = ‘nor conv 3x3‘) ≤ 2.

• SSS: In this task, we use the SSS, where the architecture is a vector z = (z1, . . . , z5), with
each element zi being the channel count at a specific stage. Each zi can be chosen from the
set of channel options {8, 16, . . . , 64}. The feasible set Z is defined by the constraints:

5∑
i=1

zi ≤ 160, (6)

z4 ≥ z2. (7)

Equation 6 imposes a budget on model size, while Equation 7 represents a common design
heuristic.

DNA Binding (TfBind) This task involves optimizing the binding affinity of a DNA sequence of
length n = 8 to a specific transcription factor, derived from the dataset used in Papalexopoulos et al.
(2022). The search space consists of 48 possible sequences, where each position takes a value from
the alphabet A = {A,C,G,T}. We introduce a cardinality constraint on the GC-content, which is
a significant structural property in genomics. Specifically, the feasible set is restricted to sequences
containing at most 3 bases of type G or C. Formally, this constraint is expressed as:

8∑
i=1

I(xi ∈ {G,C}) ≤ 3,

where I(·) is the indicator function. This constraint significantly reduces the feasible region, requir-
ing the optimizer to navigate a sparse landscape.

E.2 EXPERIMENTAL SETUP

For consistency in evaluation, all benchmark tasks described in Section E.1 are formulated as mini-
mization problems. Specifically, for tasks where the original goal is to maximize a metric (e.g., total
value in GAP or test accuracy in NAS), we minimize its negative value.

The overall experimental setup, including the computational environment and the number of seeds
(10), follows that of the main experiments as described in Section 5.2 and Appendix C. Each opti-
mization run is performed up to a fixed evaluation budget, which is set to 500 for all tasks in this
section.

To ensure a fair comparison, we used configurations for both methods that were found to be effective
in our main analysis. For our CA-TD, we used the TT format and tested with tensor ranks r ∈
{3, 4, 5}, based on the findings in Section 5.4. For the NN+MILP baseline, we adopted the best-
performing configuration identified in the ablation study in Appendix D.3 for constrained problems
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(1 initial point and 1000 training epochs). It is important to note that for this comparative study, we
evaluate only the constrained variants of both methods (CA-TD and NN+MILP-c), as the focus is
on performance under explicit problem constraints. Other parameters were kept identical to those in
the main experiments.

E.3 RESULTS AND DISCUSSION

The results of the comparative study are presented in Table 7, which summarizes the final perfor-
mance of CA-TD (with various ranks) and NN+MILP after a fixed number of evaluations.

The results indicate that our proposed CA-TD demonstrates highly competitive performance against
the NN+MILP baseline across a variety of complex combinatorial domains. Neither method consis-
tently outperforms the other.

On the GAP-A and Ising-A tasks, both CA-TD (with optimal rank) and NN+MILP successfully
identify the best objective value. However, NN+MILP achieves this in significantly fewer evalu-
ations, thus demonstrating better sample efficiency on these specific problems. For the SSS task,
NN+MILP finds a better final objective value.

Conversely, CA-TD outperforms NN+MILP on the GAP-B, Ising-B, TSS, and TfBind tasks by dis-
covering better final solutions. This highlights the effectiveness of our approach on these particular
search spaces, especially where the feasible region is sparse or the objective landscape is complex.

In conclusion, this additional study provides further evidence that CA-TD is an effective method for
constrained black-box optimization. While it does not universally dominate NN+MILP, its competi-
tive performance on these challenging tasks reinforces our central claim. The results emphasize that
making the surrogate model itself aware of the feasible space is a critical and powerful strategy for
developing sample-efficient constrained black-box optimizers.

Table 7: Performance comparison of CA-TD and NN+MILP on additional benchmark tasks. For
each configuration, we report the mean and standard deviation over ten runs for both the best feasible
objective value found and the optimization round in which it first appeared. The best-performing
configuration for each task is identified based on the lowest average best value; in case of a tie,
the configuration with the earlier average best round is selected. Selected best configurations are
highlighted in bold.

Objective Method Rank Best Value Best Round

GAP A
CA-TD

3 -5.97± 0.16 150.50± 154.14
4 -6.16± 0.05 292.30± 140.23
5 -6.21± 0.00 192.50± 75.17

NN+MILP – -6.21± 0.00 86.40± 140.05

GAP B
CA-TD

3 -4.19± 0.00 134.50± 74.22
4 -4.19± 0.00 101.80± 23.72
5 -4.19± 0.00 123.40± 38.28

NN+MILP – -4.16± 0.05 87.00± 109.16

Ising A
CA-TD

3 -7.32± 0.00 171.20± 35.16
4 -7.32± 0.00 111.60± 30.20
5 -7.32± 0.00 110.80± 33.80

NN+MILP – -7.32± 0.00 78.00± 70.86

Ising B
CA-TD

3 -9.06± 0.66 357.60± 141.67
4 -9.43± 0.00 232.90± 118.71
5 -9.43± 0.00 206.80± 82.04

NN+MILP – -9.38± 0.15 30.00± 29.03

TSS
CA-TD

3 -93.84± 0.04 247.10± 122.54
4 -93.83± 0.02 253.80± 92.68
5 -93.84± 0.03 332.00± 98.28
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Table 7: (Continued) Summary of Additional Comparative Study Results

Objective Method Rank Best Value Best Round
NN+MILP – -93.82± 0.08 200.50± 146.20

SSS
CA-TD

3 -91.55± 0.10 67.10± 37.37
4 -91.72± 0.30 104.90± 96.53
5 -91.61± 0.24 191.70± 137.60

NN+MILP – -91.91± 0.19 215.80± 124.49

TfBind
CA-TD

3 -0.9825± 0.0097 270.40± 121.26
4 -0.9868± 0.0090 341.80± 153.87
5 -0.9940± 0.0045 362.50± 77.71

NN+MILP – -0.9935± 0.0055 297.50± 175.74

F CONSTRAINT VIOLATION DURING TRAINING

This section reports how frequently constraint violations occur during optimization for both CA-TD
and PGRAD. The Figure 10 shows the cumulative averaged number of points proposed by CA-TD
during SMBO optimization that were rejected due to constraint violations. We observe that the
number of rejected points does not increase throughout the optimization process, indicating that al-
though CA-TD does not theoretically guarantee feasibility, it practically tends to propose feasible
points almost exclusively. The Figure 11 presents the fraction of constraint-violating samples ob-
served during training of the surrogate model when applying PGRAD. The vertical axis represents
the ratio of violated samples to the total number of sampled points. These results are obtained un-
der the setting where no unobserved points remain. The plot demonstrates that PGRAD maintains
feasibility for nearly all sampled points during training, with only a very small fraction violating the
constraints. Overall, the empirical evidence shows that CA-TD rarely produces infeasible proposals
in practice, and PGRAD is able to prevent constraint violations in almost all cases throughout the
training process.
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Figure 10: Averaged cumulative number of rejected points proposed by CA-TD during SMBO
optimization.
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Figure 11: Fraction of constraint violations observed during training of the surrogate model in
PGRAD. The vertical axis shows the ratio of violated samples to all sampled points in the gradi-
ent step.

G CONNECTION TO POLYNOMIAL OPTIMIZATION PROBLEMS (POPS)

We clarify why the constrained surrogate learning problem becomes a Polynomial Optimization
Problem (POP) by using the TT-based surrogate representation.

The surrogate tensor is represented in Tensor Train (TT) format (Equation 1). Expanding the matrix
products yields

Ŷ[x] =
∑

a0,...,ad

G(1)
a0,a1

[x1]G
(2)
a1,a2

[x2] · · · G(d)
ad−1,ad

[xd],

where a0, . . . , ad are the indices for summing in the range 1 to r0, . . . , rd, respectively (r0 = rd =

1). Thus, Ŷ[x] is a d-degree multivariate polynomial related to the TT core tensor parameters.

The squared error term of the learning objective in Equation 4 is also a polynomial since Ŷ[x] is
a polynomial in the TT parameters. Therefore, the entire objective function is a polynomial in the
decision variables.

Input constraints impose Ŷ[x] ≥ τ for all x ∈ Xinfeas. Because Ŷ[x] is a polynomial, each constraint
can be written as

Ŷ[x]− τ ≥ 0,

which is a polynomial inequality in the TT parameters.

A POP is generally written as

minimize f(θ)

subject to gi(θ) ≥ 0, i = 1, . . . ,m,

where both the objective f and constraints gi are polynomials in the decision variables θ.

The TT-based constrained surrogate learning problem matches this form:

• Decision variables θ: all TT core tensor elements G(k)[xk],
• Objective f(θ): polynomial least-squares error,

• Constraints gi(θ) ≥ 0: polynomial lower-bound constraints Ŷ[x]− τ ≥ 0 (m = |Xinfeas|).
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Because both the objective function and all constraints are multivariate polynomials in the TT pa-
rameters, the constrained surrogate model learning problem constitutes a POP.

H SCALABILITY ON HIGH-DIMENSIONAL DISCRETE SPACES
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Figure 12: Ablation study on batch size for a search space of size 104. (Left) Tensor Batch Size:
Varying the training batch size for PGRAD. (Right) Acq. Batch Size: Varying the inference batch
size for acquisition while fixing the training batch size to 128.
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Figure 13: Ablation study on batch size for a search space of size 105. (Left) Tensor Batch Size:
Varying the training batch size for PGRAD. (Right) Acq. Batch Size: Varying the inference batch
size for acquisition while fixing the training batch size to 128.

In this section, we present data on the memory usage bottleneck of tensor decomposition-based
methods, which are the bottleneck of our proposed method. We then demonstrate the impact of
batching tensor decomposition, the most naive solution to this bottleneck.

Standard gradient-based optimization methods in deep learning frameworks (e.g., PyTorch) gener-
ally require single-precision floating-point (Float32) formats to ensure numerical stability.

Storing dense tensors using single-precision floating-point numbers requires 0.4 GB of memory for
a search space size of 108, 4.0 GB for 109, and 40.0 GB for 1010.

Next, we introduce a mini-batch approach to CA-TD by switching to stochastic optimization. The
mini-batch method used here approximates both the loss function in Eq. 5 and the acquisition func-
tion described in Section 3.4 through sampling. For the loss computation in tensor decomposition,
all previously observed points that satisfy the constraints are always included in each batch, while
the remaining batch elements are randomly sampled from the constraint-violating points. For the
acquisition function, mini-batches are constructed by uniformly sampling indices from the entire
search space. Furthermore, the gradient descent algorithm is fixed to 200 steps, and at each step
only the constraint-violating points are resampled.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

This mini-batch method is expected to significantly reduce computational and memory loads by not
loading the entire search space into memory.

H.1 ABLATION STUDY ON BATCH SIZE

First, we investigate the impact of mini-batch size selection on optimization.

Experimental Setup We utilize the 4-dimensional Ackley function discretized with 10 levels per
dimension, resulting in a search space of size 104. The feasible region is defined by the constraint∑d

i=1 x
2
i ≤ 32. The computational environment follows the specifications described in Appendix C.

The “Full” baseline (black dashed line) represents the ideal setting where both training and acqui-
sition are performed using the full dataset (full-batch). Larger batches improve convergence toward
the full-batch baseline.

Methodology and Results We conduct two separate analyses by varying the batch size in
128, 256, 512, 1024, focusing on its effect on (1) tensor training and (2) acquisition inference.

1. Effect of Tensor Batch Size (Surrogate Training): We vary the batch size used for the
PGRAD updates while keeping the acquisition evaluation in full-batch mode. As shown in
the left panels of Figure 12 and 13, reducing the training batch size substantially degrades
performance: smaller batches (e.g., 128) lead to noticeably slower convergence and poorer
final objective values. In contrast, larger batches behave similarly to the full-batch baseline,
indicating that sufficient tensor batch size is critical for stable surrogate training.

2. Effect of Acquisition Batch Size (Inference): We vary the batch size used during the
acquisition evaluation while fixing the tensor training batch size to 128. The right panels of
Figure 12 and 13 show that changes in acquisition batch size have almost no effect on the
optimization trajectory. All curves corresponding to different batch sizes closely overlap,
indicating that acquisition inference is robust to batch size variation.
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Figure 14: PGRAD learns dense 1010 Ackley function with minibatch learning with batch size 256

H.2 APPLYING MINI-BATCHED CA-TD TO HIGH-DIMENSIONAL DISCRETE SPACE TASK

Next, we conduct experiments in a search space of size 1010 to demonstrate that the proposed mini-
batch method enables optimization even when direct full-batch tensor decomposition is computa-
tionally infeasible.

With a mini-batch size of 1024, the execution time per iteration was approximately 4.43 ms, and the
convergence behavior is shown in Figure 14. Figure 15 further compares CA-TD with NN+MILP on
the same task. The results show that CA-TD, which leverages constraint information, achieves supe-
rior performance in the early optimization phase. In contrast, NN+MILP attains better performance
in the later stages.

This performance shift is consistent with the analysis in the previous section: mini-batched CA-TD
is sensitive to the batch size used for surrogate training, and in large-scale problems that require
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highly accurate tensor decompositions, approximation errors accumulate during the later optimiza-
tion phase. As a result, CA-TD’s effectiveness diminishes over time, whereas NN+MILP maintains
stable performance throughout.
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Figure 15: Optimization progress on the constrained 10-dimensional Ackley problem (1010 search
space). CA-TD (TT-c) with the mini-batch strategy demonstrates scalability and effective optimiza-
tion performance compared to the NN+MILP-c baseline.
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Figure 16: For ease of viewing, the same figure as Figure 3 is shown separated into -c and -u.
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