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Abstract

Snake robots offer promising capabilities for locomotion in complex environments
and terrain due to their modular structure and distributed actuation. However,
achieving efficient movement in the real world requires not only effective con-
trol policies but also morphological designs adapted to the terrain. This paper
investigates real-world co-adaptation in snake robots by coupling Soft Actor-Critic
(SAC) reinforcement learning. Specifically, we investigate the effect on locomo-
tion nd control of bio-inspired scale-designs on the contact-surfaces of a snake
robot. We evaluate four morphological designs across three physical terrains in the
real world. Results demonstrate that morphology significantly influences learning
speed and final performance, and that certain designs generalize better across
environments. This is a first step towards bio-inspired and -mimetic snake designs
utilizig optimized scales combining reinforcement learning with parameterized
scale designs.

1 Introduction

The development of robotic snakes capable of navigating confined or cluttered terrains, due to their
flexibility and distributed motors, has garnered significant interest in recent years [1, 2]. Their
effective deployment in real-world settings requires coordination between body design and control
policy. However, the impact of individual design parameters in snake designs in combination
with reinforcement learning is not well studied, due to a combination of experimental cost and
the simulation-to-reality-gap: Optimizing and studying design parameter of contact surfaces in
classic robot simulators, such as Mujoco, is hard, as the interaction between contact-surfaces and
ground is hard to model accurately. This leads to a performance gap when applied in physical
environments with variable friction and external factors, due to the high number of contacts between
snake body and environment. This can be overcome by real-world experiments which are, however,
costly and time-intensive. This work presents a first study into bio-mimetic snake skin/scale designs
and their evaluation with reinforcement learning in the real world. We deploy Soft Actor-Critic
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(SAC), a state-of-the-art reinforcement learning method, to learn effective locomotion strategies
directly on hardware, without relying on prior simulation. To create directional friction and improve
propulsion, 3D-printed friction scales are attached to the underside of each segment of the snake
robot, mimicking the anisotropic surface properties found in biological snakes. Unlike prior work
that only adjusts control policies, this approach also explores how changes to physical design can
influence performance.

2 Related Work

2.1 Snake Locomotion

The study of snake-inspired locomotion provides the baseline for understanding movement efficiency
across diverse terrains. Snakes inhabit a wide range of environments, but across all species, four main
forms of locomotion are commonly observed. The first is lateral undulation, a sinusoidal wave-like
motion that propels the snake forward [3]. The second is concertina movement, where snakes move
through confided spaces by folding and unfolding their bodies like an accordion [4]. The third is
rectilinear movement, in which the skin along the underside and lower sides of the snake contracts and
extends, allowing it to crawl forward in a straight line [5]. The final form is side-winding, typically
used on loose or slippery surfaces, where the snake uses the mid-section of its body to glide sideways
across the ground [6]. See Figure 1.

Figure 1: Different locomotion
modes in snakes as presented in [7]:
(A) Lateral undulation, (B) Con-
certina movement, (C) Rectilinear
movement. (D) Sidewinding.

The most common form is the lateral undulation, as it is effec-
tive on both smooth and heterogeneous terrains. This is due to
their anisotropic scales on their skin. Frictional anisotropy is
the property of many surfaces that usually facilitate the gener-
ation of motion in a preferred direction [8]. For snakes there
is a low coefficient of friction in cranial and lateral direction,
and a high friction on the caudal direction.

2.2 Frictional Anisotropic Skins in Robotics

Snake robots mimic this biological principle using artificial
frictional surfaces. Two major categories exist: wheeled snake
robots and legless designs. The former use passive wheels or
ratchets to emulate directional resistance, as seen in Fu and Li’s
[9] design for navigating large obstacles. In contrast, legless
snake robots, such as the design by Moattari and Bagherzadeh
[10], utilize interlocking scale structures and compliant joints
to generate propulsion through surface friction. Studies show
that features like scale angle, density, geometry, and embedding
material significantly influence locomotion efficacy.

2.3 Co-adaptation in Robotics

Co-adaptation refers to the simultaneous optimization of morphology and control. While extensively
explored in simulation, [11] [12], real-world applications remain rare due to the reality gaps. Luck
et al. [13] proposed a deep RL-based framework where a critic guides the search for optimal
morphology-control pairs in a bi-level optimization loop to improve efficiency and minimizing the
need for physical prototyping. Recent approaches also include real-time adaptive control using
Central Pattern Generators (CPGs), such as the work by Ryu et al. [14], which adjusts oscillator
frequency in response to changing surface friction.

Despite these advances, real-world co-adaptation in snake robots, especially involving material and
shape variability in scale design, has not been deeply studied. Our work builds directly upon these
foundations and implements a bi-level co-adaptive loop in a physical snake robot.

3 Problem Statement
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(a) Performance per design of ran-
domly selected and optimized de-
signs.

(b) Among top performing de-
signs, within-design variation in
segment length correlates nega-
tively with total length,

(c) Best 10 design through all ex-
periments - Higher reward design
to the left - First segment (head)
is purple, last segment is the red.
Lenght values are in mm.

Figure 2: Experimental results
of co-adapting the morphol-
ogy and behaviour of a snake
robot. Link segment lengths
are adapted over 55 designs,
experiment was repeated five
times.

Achieving adaptive and efficient locomotion in real-world snake
robots remains a significant challenge in reinforcement learning
and bio-inspired robotics. Existing methods often rely on fixed
morphologies and conduct training exclusively in simulation, re-
sulting in policies that fail to generalize across diverse real-world
terrains. In addition, these approaches often overlook the importance
of morphological properties such as anisotropic friction and material
compliance, key features that contribute to effective locomotion in
biological snakes.

Simulating anisotropic scale interactions accurately remains an open
challenge due to the complex frictional and compliant behaviors
of soft and structured materials under real-world conditions. As a
result, this work addresses the challenge of real-world co-adaptation
by using the Soft Actor-Critic (SAC) for policy optimization with
empirical evaluation of physical morphology variants. Specifically,
we investigate whether a snake robot can autonomously improve
its forward locomotion performance by jointly adapting its control
policy and scale configuration through repeated physical trials in
varied environments. Our central research question is: Can a snake
robot learn to locomote efficiently by co-adapting its control policy
and physical morphology directly in the real world?

4 Co-Design of Module
Lengths and Behavior of Snake Robots in Simulation

In our first study we co-optimize the morphology parameters a snake
robot in simulation, here the link-lengths of the individual modules,
as well as a closed-loop neural network controller producing mo-
tor commands. This leads to a bi-level optimization problem with
maxξ maxπ Eπ,ξ [

∑
t γ

tR(st, at)] in which we optimize the length
parameters ξ in the outer loop and the policy parameters π in the
inner loop. In our experiments we use the recently introduced Fast
Evolution through Actor-Critic Reinforcement Learning (FEAR) [15]
algorithm as co-adaptation algorithm, and Soft Actor-Critic as un-
derlying reinforcement learning algorithm. For specific details about
FEAR we refer the interested reader to [15]. Initially, 5 randomly
selected robot designs are selected and policies learned, which then
serve as the starting point for subsequent training phases. Following
this, 55 designs are selected and optimized with FEAR. During this
phase, the design selection process alternates between selecting a
design proposed by the neural network surrogate and selecting a
design randomly from a uniform distribution.

The training is conducted with a simulation of the real snake robot
using the Mujoco Physics Engine [16]. The learning objective of the
robot is to reach a specific goal in [x, y] from its starting position.
The reward function defined for the task with R(s, a) = Rg(s, a) ∗
wg−Rc(s, a)∗wc The reward components are given with Rg(s, a) =
−w∗d(s, sg)2−v∗log(d(s, sg)2+10−α) and Rc(s, a) = ctrlcost =∑n−1

i=0 |ai|
n , where d(s, sg) represents the distance to the goal sg. w,

v, and α are adaptable parameters. The parameter’s values are w = v = 1 and α = 3. The action at
is the torque applied at the ith servomotor. The weight wg and wc are respectively 0.8 and 0.2.

4.1 Simulation Experiments

The morphology, here the individual link-lengths, and behaviour of the snake robot are adapted in a
first study in the physics simulator Mujoco. Rewards and goal position x, y = [2, 2]m were chosen
to encourage the robot to learn and evolve to traverse the terrain as fast as possible. The design

3



parameters of the robot were adapted every 300 episodes. The design parameters, i.e. link lengths,
can vary from a minimum of 0mm and a maximum of 149mm.

Five experiments were conducted, producing 28 optimized designs and 27 randomly selected designs
each. To evaluate the performance of a specific snake robot design we measure the maximal episodic
return achieved during the training time of the robot (Fig.2a). Figure 2a compares the designs found
using an optimization strategy and using random design sampling. We can find that optimization
shows increases performance and data-efficiency versus random sampling, however the results also
indicate that a larger size of design adaptations may be needed. Overall, the results underscores the
advantage of adapting robot designs and the potential of optimizing the shape of snake robots to
increase performance and energy-efficiency.

To understand the characteristics of the highest-performing snake designs, we examine the top 10
designs across all experiments. In Fig.(2c), a discernible pattern emerges: the last two segments
are consistently close to the longest possible size (red and pink), followed by a shorter third-to-last
segment (orange). The fourth segment is medium to long size(yellow), and the fifth segment is short
again (green). The first three segments vary across different designs (light blue, blue, and purple).
Among top-performers, there is also a strong, significant negative correlation (ρ = −0.977,P =
1.19× 10−6) between the total length of a given design and the amount of variation in its segment
lengths. Longer designs tend to have more evenly-sized segments, mirroring what is observed in the
skeletal structure of snakes [17].

5 Control and Design of Snake Scales in the Real World

5.1 Robot Design and Setup

(a) Snake Robot in Environment

(b) Bottom view of the snake robot with base-
plate and interchangeable scales.

Figure 3: The real world snake robot
used in the scale-adaptation experi-
ments.

The robot consists of eight PLA-printed segments con-
nected via three Dynamixel XL430-W250-T servo motors
and four XL430-W240-T servo motors , see Figure 3a. Un-
like uniform modular designs, each segment in our robot
has a distinct length. These lengths were chosen based on
the prior simulation experiments that showed improved
locomotion performance when varying segment lengths
were used (see previous section) . Specifically, we adopted
the segment dimensions identified in that work with the
highest overall locomotion efficiency. Each segment sup-
ports a baseplate designed to accept interchangeable scales,
see Figure 3b. The motor actuation range is restricted to
[−55◦, 55◦] to prevent collision with the other segments.
OptiTrack cameras (Flex13) are used to track the global
position of the snake by using reflective markers mounted
on the head of the robot.

5.2 Control Policy: Soft Actor-Critic (SAC)

We use the Soft Actor-Critic (SAC) algorithm, a state-of-
the-art off-policy reinforcement learning method that used
the standard actor-critic framework with entropy regular-
ization. This encourages the policy to promote exploration
by introducing random actions during training.

The SAC framework uses two soft Q-functions Q1(s, a)
and Q2(s, a), a stochastic policy π(a|s), and correspond-
ing target networks for both critics. The policy aims to
maximize both the expected return and the entropy of the
action distribution. The actor objective is given by:

J(π) = E(s,a)∼D [Q(s, a)− α log π(a|s)] , (1)
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where α is a fixed temperature coefficient controlling the balance between exploration and exploitation.
In our implementation, α = 0.01.

The critic networks are trained to minimize the soft Bellman residual using the target Q-values:

LQ = E(s,a,r,s′)

[(
Q(s, a)−

(
r + γ min

i=1,2
Q′

i(s
′, a′)− α log π(a′|s′)

))2
]
, (2)

where γ = 0.99 is the discount factor and Q′
i denotes the target Q-network. The target networks are

updated through an exponential moving average:

θtarget ← τθ + (1− τ)θtarget, (3)

with τ = 0.01 as the soft update coefficient.

Network Architecture Each Q-function and policy network is implemented as a fully connected
multilayer perceptron (MLP) with three hidden layers of 256 units each, using ReLU activations. The
policy outputs the mean and standard deviation of a Gaussian distribution, which is transformed by
a Tanh squashing function to ensure bounded actions. We clip the gradient across all layers with a
maximum absolute value of 1.0 to prevent exploding gradients.

Optimization Details The actor and both critic networks are optimized using the Adam optimizer
with a learning rate of 1× 10−3. We use automatic entropy tuning, where the entropy coefficient α is
adapted during training to match the target entropy, which is set to the number of motors used in the
robot.

Training Protocol Training is conducted by sampling from a global replay buffer. During each
episode, the networks undergo 1000 gradient update steps. The replay buffer stores the observation
from real-world interaction, with one update batch comprising 32 samples. The observation includes
global position changes (∆x,∆y,∆z), the robot’s orientation in 3D space (θx, θy, θz), and the current
motor angles (m1 through m6). The full observation vector is shown in Equation 4.

St = [∆x,∆y,∆z, θx, θy, θz,m1,m2,m3,m4,m5,m6] (4)

To mitigate latency between sensing and action selection, we employ multi-threaded execution
to decouple the control loop from motion tracking and learning updates. the OptiTrack thread
continuously reads global position data and posts it to a shared variable, the motor thread monitors
motor encoder values and writes them to a separate shared state variable, and the training loop thread
synchronizes these inputs to compute and execute actions using the policy network.

5.3 Reward Function

The reward function used for training encourages forward movement and penalizes unstable body
orientation. It is defined in Equation 5, where xtarget is the target x-position, xcurr is the current
x-position, dmax is the maximum expected distance (set to 40), and θy is the pitch angle.

r = exp

(
1−
|xtarget − xcurr|

dmax

)
+ (0.3− |θy|) (5)

6 Experimental Setup

6.1 Environments

We conduct experiments in three environments: a foam mat, a wooden cardboard sheet, and a carpet.
These were selected to represent a range of physical properties relevant to locomotion, such as texture,
and frictional resistance.
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(a) Foam mat (b) Wooden cardboard

(c) Carpet

Figure 4: The three different terrains used for training.

Figure 5: Snake scale geometric parameters that are able to be varied between designs.

The foam mat provides a compliant and smooth surface that introduces damping during contact, see
Figure 4a. It simulates terrain similar to soft outdoor flooring. The wooden cardboard sheet, made of
stiff compressed fiberboard, offers a flat and smooth surface with consistent low friction, see Figure
4b. The carpet, with woven synthetic fibers adds high surface roughness and resistance, challenging
the robot’s ability to generate forward thrust and maintain lateral stability, see Figure 6b.

6.2 Morphological Designs

Each scale design provides capability to adjust the angle of attack of the scales, the scale density or
the number of scales per insert, and the geometry of the scales through a beta β angle value. These
parameters are outlined in Figure 5.

We tested four configurations. For each design trial every robot link was installed with the same scale
design thus the level of frictional anisotropy in this experimentation did not vary along the snake
body. See Table 1 for designs used during experiments.

Table 1: Design Specifications
Filament Type Beta Angle Design Bottom View

No Scales - - baseline

Design 1 PLA 180

Design 2 TPU 180

Design 3 TPU 30
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Each insert includes seven spikes and is mounted in arrays of four per segment, see Figure 6.

(a) Design 2 printed with
TPU.

(b) Design 3 printed with
TPU.

Figure 6: Example of the printed scale designs used on the robot snake.

All scales are mounted using a modular plug-in system allowing rapid configuration changes. The
TPU-based scales provide greater compliance and a bit of friction, whereas PLA scales are rigid and
produce higher contact forces. The combination of material stiffness, and orientation governs the
directional friction generated during the learned gait.

6.3 Training Protocol

Each design-environment pair is trained using 30 episodes of 175 steps. Each episode spans approx-
imately 1 minute and 20 seconds, and a 30-second cool-down period to prevent performance drift
due to temperature fluctuations, resulting in one hour of real-time interaction per trial. The torque
velocity of each servo motor is limited to 120 (out of 1023) to prevent overheating and mechanical
stress during prolonged runs.

Each episode the robot is placed at the same starting point. The robot’s position and orientation are
recorded via OptiTrack and used to compute displacement-based rewards.

7 Experimental Evaluation

7.1 Performance Across Designs

Figure 7: X-axis displacement of all designs on the
foam mat.

Figure 8,7 and 9 show the x-axis displacement
over time across all terrains. On the foam
mat, Design 2 shows highest performance and
clearest upward learning trend, especially after
episode 20. This suggests that that flexible fila-
ment interacts well with the compliant surface,
and allows for effective propulsion. Design 3
also performs well on the foam mats, followed
by design 1, while no scales achieves minimal
movement.

Figure 8: X-axis displacement of all designs on the
cardboard.

On wooden cardboard, Design 3 consistently
outperforms the other designs. The sharp drops
in Design 3 is usually due to overheating of
the motors. The use of TPU material and its
sharp geometric design is the reason for its high
performance as it allows for traction over the
hard and smooth surface.

In the carpet environment, Design 1 achieves the
best performance, with consistent displacement
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over the carpet. This confirms that the design is suitable for high-friction environments, due to the
smooth and rigid nature of the filament. Design 2 shows moderate performance, while the robot was
unable to train with Design 3, as the scales tended to catch and latch into the carpet fibers, preventing
forward movement. The use of no scales performed the worst in this environment as it did not manage
to go forward at any point.

7.2 Performance Evaluation

Figure 9: X-axis displacement of all designs on the
carpet.

To access the locomotion potential of each de-
sign, we analyze the top 20% of episodes in
term of highest forward displacement across all
environments. Figure 10 presents the mean of
the 6 top performing episodes for each design
and terrain.

On foam mats and cardboard, Design 3 achieves
the highest average displacement, closely fol-
lowed by Design 2. Both designs are printed us-
ing TPU filament, which likely facilitates propul-
sion on these smooth low-friction surfaces. In
contrast, the benchmark shows minimal dis-
placement across all environments. The geometry of Design 3 proves ineffective on the carpet,
whereas Design 2 performs slightly better on the carpet than it does on the foam mats. On the carpet,
Design 1 outperforms all other designs, demonstrating its suitability for high-friction terrains, unlike
Design 3, which performs best on low-friction surfaces.

7.3 Cross-Terrain Analysis

Figure 10: Mean top 20% x-axis displacement per
environment and design.

We further analyze terrain generalization by
comparing how each design performs across
all three environments, see Figure 11. The
no scales baseline shows minimal displacement
across all surfaces, reaffirming the importance of
anisotropic friction. Design 1 shows the best per-
formance on the carpet, but performance moder-
ately on the cardboard and foam mats, indicating
that the design work effectively on smooth sur-
faces. Design 2 shows its best performance on
the foam mats with a strong upward trajectory
over the episodes, but does show limiting per-
formance on the cardboard. Design 3 stands out
on the foam mats with high displacement and a
learning stability, but shows instable learning on the cardboard and no performance on the carpet.

8 Discussion and Limitations

Our findings demonstrate that morphological features such as scale geometry, material compliance,
and density significantly impact the performance of real-world snake robot locomotion. Specifically,
we observe that certain scale designs result in distinct advantages depending on the terrain, which
underscores the importance of alignment between morphology and environment. For instance, TPU-
based designs outperform rigid PLA structures on soft foam surfaces due to their compliance, whereas
PLA scales excel on dense carpets by providing more consistent contact forces.

While SAC proved effective for control learning, training was limited to 30 episodes per configuration
due to real-world time constraints. This may prevent full policy convergence for certain morphology-
environment pairs. Another limitation is that the morphological variations were limited to three
designs. Broader exploration of design space, including different scale length or asymmetrical
configurations, may uncover richer trends. A last thing to add is the integration of an automated
morphology search method, such as Particle Swarm Optimization (PSO), to streamline the design
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(a) No-scale benchmark x-axis displacement across
all terrains.

(b) Design 1 x-axis displacement across all ter-
rains.

(c) Design 2 x-axis displacement across all terrains.
(d) Design 3 x-axis displacement across all ter-
rains.

Figure 11: Cross-terrain evaluation of each morphological design and the no-scale baseline.

selection process by identifying high-performing configurations, thereby reducing the reliance on
manual prototyping.

9 Conclusion and Future Work

This paper presents a real-world evaluation of morphology-aware control in snake robots, using Soft
Actor-Critic for locomotion policy learning and modular physical scales to study the role of directional
friction. Our results show that scale configuration substantially affects terrain-specific performance
and that even without formal design optimization, evaluation can guide effective morphology-policy
combinations. The proposed method bridges the simulation-to-reality gap by demonstrating co-
adaptation principles directly in physical systems.

In future work, we plan to extend this study by incorporating more diverse morphological parameters,
such as asymmetrical scale distribution and varying segment lengths. We aim to implement a bi-level
optimization loop with PSO as the outer loop to optimize the morphology, allowing the robot to
autonomously adapt its structure across terrain transitions, while also improving its control policy.
Finally, integrating lightweight simulation pretraining with real-world fine-tuning may further reduce
sample complexity and improve generalization.
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