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Abstract

Deep generative models have emerged as both scalable and high-fidelity solutions
for generating high-quality synthetic data, effectively capturing the bulk of the train-
ing data distribution. However, these models often struggle to adequately generate
samples that are rare, underrepresented or that satisfy user-defined conditions or
constraints, which are valuable in fields such as finance and healthcare. Retraining
generative modes from scratch or using expensive sampling-based methods to
capture these targeted outcomes can be computationally prohibitive. To address
this challenge, we propose a general framework that enables targeted generation of
user-defined conditions from pretrained deep generative models without extensive
retraining. Specifically, we address two practical scenarios. In scenarios where
explicit rules can evaluate whether generated samples satisfy desired conditions,
we propose to use contrastive learning to learn a latent space prior to guide gen-
eration towards rule-satisfying outcomes. In settings where only examples of the
desired outcomes are provided, we adapt methodologies from the simulation-based
inference literature to condition the generation process. Experiments demonstrate
that our approach reliably produces condition-satisfying samples, significantly
outperforming existing techniques on tabular data in terms of generation quality.

1 Introduction

Generating synthetic data that satisfy user-defined constraints or corresponding to rare events is a
critical problem in generative modeling, especially with class imbalance or low-incidence scenarios.
In finance, rare events such as fraudulent transactions or market crashes carry disproportionate
importance despite their low frequency [56, 34], while in healthcare, the scarcity of data on rare
diseases motivates the use of generative models to create synthetic data for research purposes [29].
Additionally, with the recent development of large language models (LLMs), fine-tuning of pretrained
models and in-context learning approaches [8, 66] require user-defined data to cover specific tasks.

However, standard generative modeling approaches predominantly capture high-probability regions
of the training data distribution, typically underrepresenting distribution tails or minority classes
[9]. Training deep generative models on inherently imbalanced datasets often results in models
biased toward common events, inadequately representing or missing lower-incidents events altogether
[11, 7, 44]. This limitation motivates the adoption of post-hoc conditioning methods designed to bias
synthetic data generation towards critical outcomes without requiring expensive modifications or
retraining of the original generative architectures.

Many modern deep generative models synthesize data by first sampling from a latent space, typically
Gaussian, and then transforming these samples into realistic data points. Models such as variational
autoencoders (VAE, [42]), generative adversarial networks (GAN, [31]), normalizing flows [54] and
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diffusion models [38] are usually trained unconditionally, meaning they aim to replicate the statistical
distribution of the entire training dataset without specific constraints. In this work, we address two
practical scenarios for such deep generative models by exploring the structure in their latent space.

In the first scenario, we assume an on-the-fly evaluator that can quantify whether generated samples
satisfy desired conditions or rules. Examples include specific patterns in tabular datasets or temporal
patterns in time series, such as volatility levels or trends. Our approach requires the evaluator
to be able to quantitatively assess a condition but we do not restrict to differentiable conditions,
thus providing versatility across diverse applications and domains. Given a pretrained generative
model G, we introduce Contrastive Latent Amplification via Interpretable Mapping (CLAIM),
which uses contrastive learning to learn a mapping from a low-dimensional interpretable prior to
embedding regions that preferentially generate condition-satisfying outputs, optimizing only the
auxiliary parameters while keeping G frozen. Our work stems directly from post-hoc conditioning
methods such a latent constraints [23], where regions in the latent space are explored using an
actor-critic discriminative model and identify that samples from the same region of the latent space
share similar structure, as well as more recent approaches on latent space explorations [3, 71, 1, 2],
providing a lightweight interpretable alternative which does not require external labeled data or
semantic direction in the latent space. Additionally, while other successful methods have achieved
conditional generation by modifying specific generative models such as diffusion models [32, 14]
or normalizing flows [25, 4], our approach is applicable to any generative model which generates
samples by decoding them from a latent space. Finally, we note that the same goal could also be
achieved by applying model corrections during the generation phase, as shown in robotics [46, 47].

In the second scenario, we assume direct condition evaluation may be computationally expensive,
but practitioners possess examples of condition-satisfying samples that can provide guidance. We
propose Simulation-based Posterior Inference for Relevant Examples (SPIRE), which casts the
conditional generation as a simulation based inference (SBI, [16]) problem, treating samples from a
latent embedding as parameters and the frozen pretrained generative model G as a simulator. This
is in line with what noted by [30], who show that one can use a transformer-based diffusion model
to approximate any function model and conditionally sample from it. As in our case a frozen deep
generative model is available, we directly apply SBI methods to infer a posterior distribution over
latent embeddings responsible for generating similar condition-satisfying events.

2 CLAIM: Contrastive Latent Amplification via Interpretable Mapping

Our first scenario addresses cases where practitioners have access to an on-the-fly evaluator capable
of assessing whether generated samples satisfy a given set of criteria or rules. This evaluator does not
need to be differentiable and can incorporate complex domain-specific logic. Our proposed approach
CLAIM learns a compact mapping gϕ from a low-dimensional space H ⊆ Rk to the embedding
of the pretrained generation Z ⊆ Rd, where (k ≪ d). A low-dimensional space H with k = 2, 3
offers an interpretable mechanism to explore how different regions correspond to various types of
condition-satisfying samples. We learn the mapping gϕ using a lightweight multi-layer perceptron
(MLP), with LeakyReLu activations [68].

The training proceeds through three phases:

Phase I: Latent Space Exploration. We begin by exploring the pretrained generator’s latent
space to identify regions associated with the condition-satisfying samples, sampling a set of m d-
dimensional space vectors {zi}Mi=1 ∼ N (0, Id), generating corresponding data samples xi = G(zi),
and evaluating each sample using a (potentially multivariate) condition function c(xi)

1. This yields
two sets of samples, Z+ = {zi : c(G(zi)) = 1}, the set of condition-satisfying samples, and
Z− = {zi : c(G(zi)) = 0}, a set of samples that do not satisfy the conditions. While it might
be likely that |Z+| ≪ |Z−|, according to the given rules and constraints, the positive set provides
crucial anchor points for the mapping training.

Phase II: Distribution Alignment. We pretrain the MLP for the mapping gϕ by learning the
mapping between two Gaussians of dimensions k and d respectively, using the following loss:

1While this approach corresponds to Monte Carlo sampling [36], one could use more efficient techniques
such as Bayesian optimization [60] or Parzen tree estimators [67].
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Lpretrain = Eh∼N (0,Ik)

[
∥ztarget − gϕ(h)∥22

]
+ λcov

d∑
j=1

(Var[gϕ(h)j ]− 1)2 (1)

where ztarget ∼ N (0, Id) represents samples from the original latent distribution, and the second term
regularizes the covariance of the mapping gϕ to avoid dimension collapse.

Phase III: Contrastive Learning. Finally, we train the mapping gϕ via constrastive learning,
pushing generated latent samples towards condition-satisfying samples z+ ∈ Z+ and away from
negative samples z− ∈ Z−. More specifically, for each mapped sample z = gϕ(h), we optimize:

Lcontrastive(z) = − log

( ∑
z+∈Z+ exp(cs(z, z+)/τ)∑

z+∈Z+ exp(cs(z, z+)/τ) + β
∑

z−∈Z− exp(cs(z, z−)/τ)

)
, (2)

where cs(z1, z2) = zT1 z2/∥z1∥∥z2∥ is the cosine similarity. The loss function (2) is a version of the
N-pair loss function [61], to encourage the generation of samples that exhibit high cosine similarity
with condition-satisfying synthetic data, where the temperature parameter τ controls the sharpness of
the similarity, and β emphasizes the importance of avoiding non-condition-satisfying samples.

Additionally, in order to prevent mode collapse and avoid the network focusing on a single region of
the latent embedding, we incorporate an maximum mean discrepancy (MMD, [33]) regularization
term: Lreg = MMD({gϕ(h(i))}Ni=1,N (0, Id)). By choosing a Gaussian distribution N (0, Id) to
regularize our mapped samples h, we ensure coverage of the embedding space. Finally, we note that
in case of conditionally sampling based on a different set of constraints, only Phase III would need to
be run, as the samples in Phase I can be evaluated according to the new set of constraints.

3 SPIRE: Simulation-based Posterior Inference for Relevant Examples

The second scenario addresses situations where evaluating sample conditions is computationally
expensive or time-consuming, but modelers or practitioners might have a curated set of examples
representing the conditions of interest. This setting is common in domains like medical diagnosis,
where obtaining expert annotations is costly, or financial risk modeling, where historical rare events
are key in the modeling process.

We propose SPIRE, which reframes the generation of condition-satisfying samples as a simulation
based inference task. We start with a collection of observed condition-satisfying samples {x(l)

obs}
Lobs
l=1,

and our objective becomes inferring the posterior distribution of p(z|xobs), to capture the regions of
the embedding space Z which can generate similar events. In this context, the forward simulator is
the frozen pretrained generator: simulator(z) = f(G(z+ ϵ)), to which we add a small regularization
noise term (σ ≈ 10−4). This noise term enforces the stochasticity of the simulator, under the
assumptions that samples within the same regions of the embedding generate data points x that are
close to each other. For our approach, we use neural posterior score estimation (NPSE, [28]), with a
large uniform prior of the embedding space p(z) = U([−a, a]d), setting a = 5.

Note that by recasting condition-satisfying sampling as a SBI problem we not only inherit the wealth
of posterior inference models developed in the SBI literature, but we gain in efficiency as our approach
works even with only a single condition-satisfying sample, i.e., when L = 1.

4 Experiments

We evaluate both our proposed approaches CLAIM and SPIRE on three tabular UCI datasets,
choosing conditions with varying degrees of occurrence in the training data: (1) Adult dataset
[6], with conditions being individuals younger than 25 and earning more than USD50,000 (0.3%
occurrence), (2) Wine Quality dataset [15], with condition being high-quality wine with rating 8+
(1.5% occurrence) and (3) Abalone dataset [49], with condition being the animal being older than 10
years (12.1% occurrence). We train three tabular models, TVAE (tabular variation autoencoder [69]),
CTGAN (conditional tabular generative adversarial model [69]) and TabDDPM (tabular diffusion
model [43]). We compare claim against two baselines, Latent Constraints [23], which learns value

3



functions to identify condition-satisfying latent regions in a variational autoencoder, and NCP (Neural
Conditional Priors [1]), which provides a better exploration of the latent space of a variational
autoencoder and represents a baseline for the true occurrence of the condition-satisfying samples in
the embedding space. Note that for SPIRE, we utilize a single sample xobs.

Tables 1 and 2 report results by evaluating the condition sampling ratio of the generated data, the
improvement ratio over the occurrence in the training data, the Wasserstein distance from condition-
satisfying samples in the test set versus the generated ones, the Vendi score [26] to evaluate diversity
of the generated samples and the average Pearson correlation of the generated samples with the
condition-satisfying samples in the test set. Values reported include mean and average over 5 runs.
CLAIM provides a consistent alternative to the baselines, by generating condition-satisfying samples
with a better distributional quality and diversity than Latent Constraint. On the challenging Adult
dataset with only 0.3% natural occurrence, CLAIM with TVAE achieves 100% condition satisfaction
with 296x improvement, while Latent Constraints fails to generate due to mode collapse in the
actor/critic architecture. SPIRE demonstrates remarkable effectiveness despite using only a single
condition-satisfying sample. TabDDPM consistently show lower performance with both methods,
likely due to to a potential overfitting to the training data or to the nature of their decoding process.

Table 1: Comparison of conditional generative methods with an on-the-fly evaluator available.

Dataset Model Method % Rare (↑) Improvement (↑) Wasserstein (↓) Vendi (↑) Avg Pearson (↑)
Ratio Distance Score Corr

Wine Red
(1.5%)

NCP 0.28 ± 0.10 0.18 ± 0.06 2.42 ± 0.11 6.41 ± 0.11 0.90 ± 0.02

Latent Constraint 100.00 ± 0.00 64.00 ± 0.00 179.74 ± 0.00 3.41 ± 0.02 0.94 ± 0.02
TVAE Ours 65.24 ± 0.71 41.75 ± 0.45 2.42 ± 0.11 3.15 ± 0.02 0.93 ± 0.01
CTGAN Ours 67.40 ± 1.04 43.14 ± 0.67 5.04 ± 0.02 3.05 ± 0.02 0.93 ± 0.02
TabDDPM Ours 24.81 ± 0.73 15.90 ± 0.46 3.01 ± 0.23 6.75 ± 0.02 0.95 ± 0.01

Abalone
(12.1%)

NCP 11.50 ± 0.87 0.95 ± 0.07 0.12 ± 0.02 4.50 ± 0.04 0.25 ± 0.01

Latent Constraint 100.00 ± 0.00 8.28 ± 0.00 8.49 ± 0.02 3.74 ± 0.03 0.25 ± 0.00
TVAE Ours 100.00 ± 0.00 8.28 ± 0.00 1.26 ± 0.01 3.97 ± 0.03 0.25 ± 0.01
CTGAN Ours 100.00 ± 0.00 8.28 ± 0.00 1.73 ± 0.02 3.82 ± 0.01 0.24 ± 0.01
TabDDPM Ours 54.56 ± 1.98 4.52 ± 0.16 0.32 ± 0.02 5.13 ± 0.04 0.26 ± 0.01

Adult
(0.3%)

NCP 0.44 ± 0.15 1.30 ± 0.44 417.06 ± 109.86 7.19 ± 0.04 0.32 ± 0.01

Latent Constraint 0.00 ± 0.00 0.00 ± 0.00 - - -
TVAE Ours 100.00 ± 0.00 296.02 ± 0.00 1066.39 ± 27.59 3.71 ± 0.06 0.32 ± 0.01
CTGAN Ours 13.68 ± 0.76 40.50 ± 2.25 311.58 ± 0.03 3.68 ± 0.04 0.34 ± 0.01
TabDDPM Ours 21.82 ± 0.69 64.5 ± 1.57 226.25 ± 31.82 6.59 ± 0.11 0.37 ± 0.02

Table 2: Conditional generation with our approach SPIRE, given one condition-satisfying example.

Dataset Name Model Type % Rare (↑) Improvement (↑) Vendi Score (↑) Wasserstein (↓)
Ratio Rare Distance

Wine Red
(1.5%)

TVAE 47.32 ± 2.02 30.28 ± 1.29 3.61 ± 0.06 3.28 ± 0.09
CTGAN 43.64 ± 1.05 27.93 ± 0.67 3.62 ± 0.05 4.87 ± 0.11
TabDDPM 25.24 ± 0.53 5.91 ± 0.34 4.46 ± 0.24 2.78 ± 0.27

Abalone
(12.1%)

TVAE 92.44 ± 0.30 7.65 ± 0.02 5.14 ± 0.05 0.38 ± 0.01
CTGAN 92.06 ± 0.72 7.62 ± 0.06 4.67 ± 0.05 0.50 ± 0.01
TabDDPM 42.58 ± 1.89 3.52 ± 0.16 3.61 ± 0.12 0.48 ± 0.05

Adult
(0.3%)

TVAE 52.02 ± 1.53 153.99 ± 4.53 2.97 ± 0.02 2483.17 ± 40.57
CTGAN 11.88 ± 0.49 26.29 ± 1.44 3.34 ± 0.11 675.76 ± 106.20
TabDDPM 9.80 ± 0.20 5.33 ± 0.59 2.89 ± 0.12 976.65 ± 700.78

5 Conclusions and Future Work

We introduce two complementary approaches for conditional sampling from frozen generative
models: CLAIM for scenarios with on-the-fly constraints evaluation and SPIRE for example-based
guidance. Our experimental results demonstrate that both methods achieve effective conditional
sampling without expensive retraining, with CLAIM generating samples close in quality to the
original condition-satisfying data and SPIRE providing robust performance even when provided
a single condition-satisfying example. Future research directions include extending our work to
additional data modalities, as well as targeting language generation by large language models (LLMs).
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Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates ("JP Morgan”) and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.
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In this section we elaborate on the details on how our proposed methods relate to the broader
literature of post-hoc conditioning approaches for frozen pretrained models.

Diffusion Model Guidance Methods. A category of post-hoc conditioning approaches has
emerged for diffusion models [38], for which guidance techniques can be incorporated without
architectural changes. Among methods that require training-time modifications, [39] train a diffusion
model both conditionally and unconditionally, randomly dropping conditioning information during
training, and by interpolating between the two at inference time. [20] show that by predicting the
scalar energy directly rather than the diffusion score, one can enable compositional operatoins,
while [72] improve conditioning of frozen text-to-image models by creating trainable copies of
encoder layers. Other approaches include the training of a separate classifiers. [18] train a separate
classifier on noisy images across all diffusion timesteps, and include the the gradient information in
the diffusion model score, with [5] extending classifier guidance to any differentiable loss function.
However, [52] note that classifier-free guidance achieves better human evaluation. Finally, among
the training-free approaches, [13] approximate posterior guidance without training by computing
likelihood in inverse problem settings, [40] use attention energy modulation for condition-free
guidance by blurring attention queries, and [37] refine the guided diffusion by projecting onto the
data manifold using gradient projection. Our proposed methods CLAIM and SPIRE do not require
any training-time adjustment, and operate in latent space rather than relying on gradient-based
guidance. However, one would expect bespoke techniques for diffusion models to achieve better
results in conditional generation especially for high-dimensional generation task, like image or
text-to-image generation.

Latent Space Manipulation and Exploration. Exploring latent spaces has first been a prominent
research direction for generative adversarial networks. [35] provides an unsupervised discovery of
interpretable directions in pretrained GAN models by applying PCA on intermediate layer activations
of pretrained GANs, with layer-wise perturbations along principal components enabling semantic
editing without attribute classifiers. A similar approach is also presented by [65], where a reconstructor
network is trained to identify interpretable directions through orthogonality constraints and Jacobian
penalties, and by [58], which use linear SVM in latent space to find semantic boundaries. The
introduction of a secondary classification model over any generative model latent space was pioneered
by [51, 50], who show that a plug & play approach with a prior over the latent space can dramatically
improve generation quality. Finally, energy-based models have also been show to have desirable
properties in conditional generations [22, 21, 53]. Our proposed approach CLAIM is inspired by the
success of disentanglement of latent spaces via contrastive learning in generative models [71, 57].
We also note that further work has explored the native semantic properties of latent space in diffusion
models [45], as well as the geometric structure of diffusion models latent spaces [55].

Sampling Methods. Although simple rejection sampling might be computationally inefficient to
generate conditionally at scale, recent work has developed rejection sampling approaches in settings
with limited sampling budgets or data availability [64, 63]. Additionally, methods that incorporate
traditional annealed importance sampling [19] or Monte Carlo Markov Chain (MCMC) in diffusion
models [41] could also be modified conditionally for the generation of condition-satisfying samples.
Our proposed approach SPIRE would also benefit from methods that improve the fit and the sampling
from the posterior distribution over the latent space, such as [27, 62, 48]. Finally, the generation of
data points is also key for supervised learning in presence of imbalanced datasets. Oversampling
approaches like SMOTE [10] and more recent deep learning variants [17, 12, 59, 24, 70] aim to
increase the number of rare points in the training set by creating synthetic rare events. Our proposed
approaches CLAIM and SPIRE could directly be used to generate data points from the minority class
to augment imbalanced datasets for downstream supervised learning performance improvement.
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