
Taxonomy of reduction matrices for Graph Coarsening

Antonin Joly
CNRS, IRISA, Rennes, FRANCE

antonin.joly@irisa.fr

Nicolas Keriven
CNRS, IRISA, Rennes, FRANCE
nicolas.keriven@cnrs.fr

Aline Roumy
INRIA, Rennes, FRANCE
aline.roumy@inria.fr

Abstract

Graph coarsening aims to diminish the size of a graph to lighten its memory
footprint, and has numerous applications in graph signal processing and machine
learning. It is usually defined using a reduction matrix and a lifting matrix, which,
respectively, allows to project a graph signal from the original graph to the coars-
ened one and back. This results in a loss of information measured by the so-called
Restricted Spectral Approximation (RSA). Most coarsening frameworks impose a
fixed relationship between the reduction and lifting matrices, generally as pseudo-
inverses of each other, and seek to define a coarsening that minimizes the RSA.
In this paper, we remark that the roles of these two matrices are not entirely
symmetric: indeed, putting constraints on the lifting matrix alone ensures the
existence of important objects such as the coarsened graph’s adjacency matrix or
Laplacian. In light of this, in this paper, we introduce a more general notion of
reduction matrix, that is not necessarily the pseudo-inverse of the lifting matrix.
We establish a taxonomy of “admissible” families of reduction matrices, discuss
the different properties that they must satisfy and whether they admit a closed-form
description or not. We show that, for a fixed coarsening represented by a fixed
lifting matrix, the RSA can be further reduced simply by modifying the reduction
matrix. We explore different examples, including some based on a constrained
optimization process of the RSA. Since this criterion has also been linked to the
performance of Graph Neural Networks, we also illustrate the impact of this choices
on different node classification tasks on coarsened graphs.

1 Introduction

In recent years, several applications in data science and machine learning have produced large-scale
graph data [18, 5]. For instance, online social networks [13] or recommender systems [36] routinely
produce graphs with millions of nodes or more. To handle such massive graphs, researchers have
developed general-purpose graph reduction methods [4], such as graph coarsening [27, 7] as well
as specific learning techniques on these coarsened graphs [23, 19]. Graph coarsening starts to play an
increasingly prominent role in machine learning applications [7].

Graph Coarsening and Spectral guarantees Graph coarsening consists in producing a small
graph from a large graph while retaining some of its key properties. There are many ways to evaluate
the quality of a coarsening, following different criteria [10, 27, 7]. The majority of these approaches
aims to preserve spectral properties of the graph and its Laplacian, and have given rise to different
coarsening algorithms [27, 8, 4, 22, 28]. The most widely used spectral guarantee is the so-called
Restricted Spectral Approximation (RSA, see Sec. 2), introduced by Loukas [27]. In broad terms,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

the RSA states that the frequency content of a certain subspace of graph signals is approximately
preserved when projected on the coarsened graph and then re-lifted in the original one, or intuitively,
that the coarsening is well-aligned with the low-frequencies of the Laplacian. The RSA is a general-
purpose criterion with many applications, from clustering to signal reconstruction [27, 23]. Recently,
RSA guarantees were also used to guarantee the performances of Graph Neural Networks on the
coarsened graph [23].

Projection and lifting. The projection and re-lifting operations are generally described by two
matrices: the reduction matrix allows to transform graph signals from the original graph to the
coarsened one, while the lifting matrix does the opposite. In virtually all works on graph coarsening,
these two matrices are simply pseudo-inverse of each other, and both can represent the “graph
coarsening” indifferently. However, in this paper we make the following remark: their roles are
not entirely symmetric. Mathematically, as we will see, the lifting matrix alone has to be quite
constrained for the graph coarsening to be “well-defined”, with a consistent adjacency matrix and
Laplacian. The reduction matrix, on the other hand, does not seem to play a role in the definition of
graph coarsening. However, it does play a role in computing the RSA. Therefore, in this paper, we
examine the following questions: for a fixed lifting matrix, 1) What are the admissible degrees of
freedom for the reduction matrix? and 2) Can we improve the RSA by simple modification of
the reduction matrix alone?

Contribution. In this paper, we thus define and then explore the admissible sets of reduction
matrices over which to optimize the RSA. We introduce several interesting examples, from closed-
form ones motivated by notions of optimality and memory footprint to optimization-based ones over
well-defined sets with various properties. We compare these different choices, both in terms of RSA
and performance when used within GNNs trained on coarsened graphs.

Related work Graph coarsening is derived from the multigrid-literature [33] and belongs to a
broader class of methods commonly referred to as graph reduction. The latter includes graph sampling
[17], graph sparsification [34, 1, 26], or more recently graph distillation [20, 41, 21], inspired by
dataset distillation [37]. Some of the first coarsening algorithms were linked to the graph clustering
community, e.g. [9] which used recursively the Graclus algorithm [10] algorithm. Linear algebra
technics such as the Kron reduction were also employed [27] [12]. In [27], the author introduces
the RSA, and presents a greedy algorithm that recursively merge nodes by optimizing some cost,
which in turns leads to RSA guarantees. This is the approach we use in our experiments (Sec. 5).
It was followed by several similar methods with the same spectral criterion [8, 4, 22, 28]. Since
modern graph often includes node features, other approaches proposed to take them into account in
the coarsening process, often by learning the coarsening with specific regularized loss [25, 29, 11].
On the contrary, the RSA guarantees [27] leveraged in this paper are uniform over a whole subspace
to ensure the spectral preservation of the coarsened graph.

Closer to us, some works aim to optimize various quantities after the coarsening has been computed.
For instance, GOREN [6] optimizes in a data-driven manner the edges’ weights in the coarsened
graph, which is quite different from focusing on reduction/lifting matrices as proposed here. Moreover,
we consider the RSA, a general-purpose criterion not necessarily related to downstream tasks. The
literature also includes different choices of reduction/lifting matrices, or propagation matrices in
GNNs on coarsened graphs [23], but to our knowledge this paper is the first to put forth the idea
of decorrelating reduction and lifting matrices up to a certain point, with precise mathematical
definitions of the consequences.

Finally, we mention graph pooling, which is designed to mimick the pooling process in deep
convolutional models on images and is somewhat related to graph coarsening in terms of vocabulary.
One difference is that graph pooling tends to focus only on the reduction phase while graph coarsening
focuses on repeated reduce-then-lift operations between the coarsened and original graphs. Although
some pooling method can be computed as preprocessing such GRACLUS [10], the most well-known
pooling methods are data-driven and fully differentiable (Diffpool [40], top-K pooling [14], DMoN
[35]). These methods use interchangeably the reduction and the lifting matrix by choosing one as the
transposed of the other. Usually in graph pooling, this matrix is unconstrained and is either defined
heuristically or learned, while graph coarsening proposes mathematical links between the reduction
and the lifting matrix. In this paper, we explore these mathematical links.

2

Outline. We start by background material on graph coarsening in Sec. 2, highlighting the roles
of the lifting and reduction matrices. We emphasize the asymmetricity of their roles, along with
the strong constraints put on the lifting matrix alone. Then in Sec. 3, we study sets of admissible
reduction matrices, focusing on various notions of “generalized inverses”. Some will be very
generic, while others will admit parametrizations that are convenient for optimization. In Sec. 4,
we then study several motivated examples of reduction matrices, classical or entirely novel, with
an analytical closed-form expression or based on optimization procedures. We relate them to the
properties defined in the section before. Finally, we compare their performance in terms of RSA
or GNN performance in Sec. 5. The code is available at https://gitlab.inria.fr/anjoly/
taxonomy-coarsening-matrices, and proofs are deferred to App. B.

2 Characterizing graph coarsening with the lifting matrix

Notations A graph G with N nodes is described by its weighted adjacency matrix A ∈ RN×N .
The combinatorial Laplacian is defined as L = L(A) := D −A, where D = D(A) := diag(A1N)
is the diagonal matrix of the degrees. A matrix is said to be binary if all its coefficients are either
0 or 1. For a symmetric positive semi-definite (p.s.d) matrix M , we denote ∥x∥M =

√
x⊤Mx the

Mahalanobis semi-norm associated with M .

Coarsening The goal of coarsening is to reduce the size of a graph G with N nodes to a coarsened
graph Gc with n < N nodes. The proportion of reduction achieved is measured by the coarsening
ratio r = 1 − n

N . The mapping from G to Gc is obtained by grouping set of nodes in G to form
supernodes in Gc. This mapping can be represented by a matrix Q ∈ RN×n, where Qik > 0 means
that node i from G has been mapped onto the supernode k of Gc. To represent a true mapping from
the original nodes to the supernodes, the matrix Q needs to be well-partitioned.
Definition 1 (Well-partitioned Q matrix). Q is said to be well-partitioned if it has exactly one
non-zero coefficient per row.

One natural way [27] to define the adjacency matrix of the coarsened graph is then to take

Ac = Q⊤AQ (1)

In addition to be well-partitioned, it is also natural to impose that Q is binary, as shown by [27,
Prop.7] in the following Lemma.
Lemma 1 ([27]). Let Q be a well-partitioned matrix. The two following properties are equivalent:
(i) Q is proportional to a binary matrix; (ii) for all A, we have Lc := L(Ac) = Q⊤L(A)Q.

In other words, the Laplacian of the coarsened graph can be defined by the same equation as (1). In
light of this, matrices Q in this paper will always be well-partitioned and binary. This results in a
particularly interpretable Ac: a weighted edge between two supernodes has a value equal to the sum
of the weights of all the edges between the two groups of original nodes.

Lifting, Reduction, and spectral quality measure for Graph Coarsening The quality of a
coarsening can be assessed from a signal processing point of view [27]. Indeed, one way to interpret
Q is that it can be used to “lift” a signal y ∈ Rn from the coarsened graph to the original one, as
x = Qy, and is thus called the lifting matrix in the literature. Its counterpart is a reduction matrix
P ∈ Rn×N that reduces a signal from G to Gc. More formally, let x ∈ RN be a signal over the
nodes of G. The coarsened signal xc ∈ Rn and the re-lifted signal x̃ ∈ RN are defined by

xc = Px, x̃ = Qxc = Πx (2)

where Π = QP . To measure the quality of the coarsening, a popular criterion introduced by Loukas
[27], is then the Restricted Spectral Approximation (RSA), which measures the loss of information
from x to x̃. Since Π is at most of rank n < N , only a subspace R of RN may be preserved. This
leads to the definition of the RSA constant below.
Definition 2 (Restricted Spectral Approximation constant). Consider a subspace R ⊂ RN , a
Laplacian L, a lifting matrix Q, a reduction matrix P . The RSA constant ϵL,Q,P,R is defined as

ϵL,Q,P,R = sup
x∈R,∥x∥L=1

∥x−QPx∥L (3)

3

https://gitlab.inria.fr/anjoly/taxonomy-coarsening-matrices
https://gitlab.inria.fr/anjoly/taxonomy-coarsening-matrices

Classically, the preserved subspace R is spanned by the eigenvectors of the first eigenvalues of
L. In this case, the RSA constant can be used to bound the deviation between the spectrums of L
and Lc. When R is an eigen-subspace of L, the RSA has an explicit expression [27]: ϵL,Q,P,R =

∥L1/2(IN − PQ)V V TL+1/2∥2 where V is an orthogonal basis ofR and ∥·∥2 is the spectral norm.
Note that this expression is convex in P , which will be useful for optimization. This definition
slightly differs from [27], as it disentangles the roles of the lifting matrix Q and the reduction matrix
P , while in [27], Q was fixed as the Moore Penrose inverse of P .

Q is more constrained than P One might have noticed that P andQ do not exactly play symmetric
roles. Indeed, and this is the first key message of the paper: as shown by (1) and Lem. 1, the matrix
Q alone fully characterizes the graph coarsening, and the matrix Q alone must respect strong
constraints (it must be well-partitioned and binary). Technically, the reduction matrix P does not
play any role in the definition of Ac or Lc.

However, P still plays a role in the computation of the RSA constant. As mentioned in the introduction,
in virtually every formulations of graph coarsening, P is taken as the Moore-Penrose pseudo-inverse
P = Q+. For a well-partitioned, binary Q, this matrix has the same support as Q⊤, with rows that
contain only coefficients 1/nk where nk is the size of the kth supernode. In this paper, we challenge
this choice and argue that there is no real reason for it. As we will see, there is a relative degree
of freedom in designing P , and this is our second main message: for a fixed Q, the matrix P can
be optimized to improve the RSA constant. Of course, this optimization may still satisfy important
constraints in terms of interpretability, feasibility, memory footprint, or just simplicity, and this forms
the main questions mentioned in the introduction: given a well-partitioned and binary lifting matrix,
what are the “valid” reduction matrices? Is there a more “optimal” choice to minimize the RSA?

Normalized Laplacian matrices Before moving on to the next section, we adapt the previous
discussion to a broader notion of “normalized” Laplacian, that we call ∆-Laplacian, defined as

L = L(A) = ∆L∆ (4)
where L = L(A) is the combinatorial Laplacian, and ∆ = ∆(A) ∈ RN×N a strictly positive
diagonal matrix that depends on the adjacency matrix. This ∆-Laplacian thus encompasses the
combinatorial Laplacian when ∆ = IN , or the classical normalized Laplacian when ∆ = D−1/2.
Another interesting example is the self-loop normalized Laplacian ∆ = (D + IN)

−1/2, which is
such that L = IN − S where S is the propagation matrix of the classical Graph convolution network
defined by Kipf [24].

To extend the definition of the RSA constant (3) to the case of the generalized ∆-Laplacian, it
is first necessary to ensure that the norms used in the original and coarsened graphs, G and Gc,
are comparable [27, Corollary 12]. This requires establishing the consistency of the ∆-Laplacian
matrices of G and Gc. This is shown with the following lemma, provided that, starting from any
binary well-partitioned lifting matrix Q ∈ RN×n, a generalized lifting matrix is constructed as

Q = Q(A,Q) := ∆−1Q∆c. (5)
where ∆c = ∆(Ac) with Ac defined in (1). Note that Q is also well-partitioned when Q is well-
partitioned, however it is generally not binary. Instead, the constraint still lies on Q, as shown
below.
Lemma 2 (Consistency, adaptation [27]). Let Q be a well-partitioned lifting matrix. The two
following properties are equivalent:

a) Q is proportional to a binary matrix.
b) For all adjacency matrices A, we have L(Ac) = Q(A,Q)⊤L(A)Q(A,Q), where we recall

that L is defined in (4) and Q in (5).

Hence, the normalized Laplacian of the coarsened graph can again be directly deduced from the
normalized Laplacian of the original graph when adopting the generalized lifting matrix Q = Q(A,Q)
with a well-partitioned and binary Q. This consistency then enables the definition of a generalized
RSA constant

ϵL,Q,P,R = sup
x∈R,∥x∥L=1

∥x−QPx∥L (6)

where, again, we emphasize that L is defined in (4) and Q in (5). The main question that we will
examine in the rest of the paper remains: for a fixed Q that is well-partitioned and binary, what are
the “valid” reduction matrices P , and is there a more “optimal” choice to minimize ϵL,Q,P,R?

4

3 Expanding the space of reduction matrices

In this section, we examine the first of the above questions: what are the “valid” reduction matrices
P ? One might be tempted to simply minimize the RSA equation (6) over all P matrices, however
this discards important properties of graph coarsening that we want to preserve. To address this, we
introduce several ensembles of admissible P matrices and derive key properties that will enable us,
in Sec. 4, to optimize P and to compare several examples.

In the beginning of this section, Q will indicate any well-partitioned matrix. We note that, unlike
all the matrices considered in the literature, some matrices P with a support different from Q⊤ will
be acceptable. Intuitively, Q defines the “true” mapping between the nodes and the supernodes by
enforcing the well-partitioned aspect, while P will be allowed to relax this constraint. We begin by
examining the largest such ensemble, denoted E1.

E1: P such that Π is a projection. A first minimal property in graph coarsening is that applying
successively coarsen and lift procedures does not degrade further the signal, or in other words, the
coarsen and lift operator Π = QP is a projection Π2 = Π.

The classical choice, where P is the Moore Penrose inverse of Q, satisfies the projection property –
Π is even an orthogonal projector in this case. However it is only an example among a bigger set of
reduction matrices which satisfies Π2 = Π. To characterize this larger set, we first recall the notion
of generalized inverse.
Definition 3 (Generalized Inverse). Let A ∈ Km×n. We consider a matrix B ∈ Rn×m which can
satisfy the following conditions:

(i) B ∈ Ag with Ag := {M |AMA = A}
(ii) A ∈ Bg i.e BAB = B

(iii) AB is Hermitian: (AB)
∗
= AB.

(iv) BA is Hermitian: (BA)
∗
= BA.

The matrix B is said to be:
• generalized inverse of A when it satisfies (i);
• generalized reflexive inverse of A if it satisfies simultaneously (i) and (ii);
• Moore Penrose inverse of A if it satisfies (i), (ii), (iii) and (iv).

Remark 1 (uniqueness). The Moore Penrose inverse is unique while there may exist infinitely many
"generalized inverses" [31].

E1 = {P | Q ∈ P g}
E2 = Qg

E3 = Qg
supp

Popt

PLoukas PMP

Figure 1: Ensembles of admissible reduction ma-
trices. E1 includes all P satisfying only the pro-
jection constraint for PQ = Π. E2 contains all
generalized inverses of Q, and is shown to be a
subset of E1 in Lem. 4. E3 restricts E2 to P ma-
trices sharing the same support as QT .

We now propose an alternative characterization of
the E1 ensemble.
Lemma 3 (Generalized Inverse and Π projection).
For a well-partitioned lifting matrix Q:

Π2 = Π ⇐⇒ Q ∈ P g

The proof can be found in App. B.4. Lem. 3 means
that, assuming that Q is well-partitioned, E1 =
{P | Π projection} = {P | Q ∈ P g}. Note that
the hypothesis on Q is important here: this lemma
is not true in general, and only valid because Q is
particularly simple.

In general, the set E1 does not admit further descrip-
tion, and it seems difficult to optimize over with algorithms such as projected gradient descent. We
see next that a relatively minor additional constraints considerably simplifies the situation.

E2: P generalized inverse of Q. We now consider an ensemble characterized in a reverse manner
of E1. The rationale is that this set admits a closed form characterization, which allows for an easy
implementation of optimization algorithms over it.
Lemma 4 (Generalized reflexive inverse). For a well-partitioned lifting matrix Q and a reduction
matrix P such that Q ∈ P g , we have the following equivalence:

rank(P) = n ⇐⇒ P ∈ Qg

Conversely, P ∈ Qg implies Q ∈ P g and rank(P) = n, such that Qg ⊂ E1.

5

Again, this proof relates specifically to well-partitioned matrices Q. We thus define E2 := Qg, and
the lemma shows that E2 ⊂ E1 (Fig. 1). The inclusion is often strict, as there generally exists P such
that Q ∈ P g but such that rank(P) < n. The proof of this lemma can be found in App. B.5.

Remark 2 (Generalized inverse ⇒ reflexive). In Lem. 4 we show that, for well-partitioned Q,
generalized inverses of Q are automatically reflexive generalized inverses. Of course, this is not true
in general, here this is again due to the fact that Q is well-partitioned.

As hinted above, the set E2 is far easier to describe than E1.

Lemma 5 (Characterization of generalized reflexive inverses of Q). Let Q ∈ RN×n be a well-
partitioned lifting matrix. All the reflexive generalized inverses of Q can be characterized as:

E2 = Qg = {Q+ +M (IN −QQ+) |M ∈ Rn×N}

with Q+ the Moore Penrose inverse of Q.

These two lemmas are important because they provide a way to optimize P . Indeed, by the converse
of Lem. 4, it is shown that E2 (being a subset of E1) contains admissible matrices. Moreover, Lem. 5
(proven in App. B.6) offers a convenient characterization of E2 through the matrix M .

E3: P generalized reflexive inverse with same support Up until now, matrices in E1 and E2 have
no reason to have the same support as Q+, unlike for instance the Moore-Penrose inverse. Worse,
matrices in E2 may be very dense, which might hinder computation time and increase memory usage.
Therefore, we consider sparser P , and add the constraint that P has the same support as Q⊤, while
still being a reflexive inverse. By construction, E3 ⊂ E2, as shown in Fig. 1. Moreover, E3 is not
empty, as it contains at least the Moore-Penrose inverse (see next section).

Lemma 6 (Generalized reflexive inverse with same support). Let Q = Q(A,Q) ∈ RN×n be
generalized lifting matrix with Q well-partitioned and binary. The set of reflexive generalized inverse
of Q with the same support as Q⊤ is defined as :

E3 =

{
P ∈ Rn×N

∣∣∣∣∣
{
supp(P) = supp(Q⊤)∑N

k=1
Pik

∆(k) =
1

∆c(i)
∀i ∈ [1, n]

}

Note that, while Lem. 3, 4 and 5 were valid for any well-partitioned matrix Q, here we specifically
examine Q = Q(A,Q) with Q well-partitioned and binary. Moreover, all matrices with non-zero
coefficients on the support of Q⊤ that are also in E1 are in E2 and E3, as their rank is equal to n. To
provide a better intuition about Lem. 6, consider the case of the combinatorial Laplacian (∆ = IN)
where Q = Q; this lemma reduces to

∑N
k=1 Pik = 1, which appears to be a natural condition already

used in [3].

The lemma is proved in App. B.7. Note that optimizing over E3 is particularly light compared to the
previous dense examples, as it requires optimizing only over the N non-zero coefficients located on
the support of Q⊤. Projected gradient descent can be implemented with a simple renormalization of
the rows at each iteration.

4 From classical to novel reduction matrices: a comparative study

Now that we have proposed a taxonomy of the valid reduction matrices P , we investigate the second
question raised in Sec. 2: what are good examples of reduction matrices? In all this section, we
consider Q = Q(A,Q) with Q well-partitioned and binary. As outlined in Sec. 2, Lc = Q⊤LQ is
then the ∆-Laplacian of the coarsened graph. We will start with three examples with closed-form
analytic expression, then outline a possible optimization framework, emphasizing that it is only one
choice among many possible. It is worth noting that the transposed matrix P = Q⊤, commonly used
in graph pooling, does not belong to E1, and is therefore not considered in our analysis.

Moore-Penrose Reduction. The most common choice for P in the literature [27, 11, 25], is simply
the Moore Penrose inverse of Q (the derivation is in App. B.2):

PMP := Q+ = (Q⊤Q)−1Q⊤ (7)

6

By Def. 3, PMP ∈ E2 and has the same support as Q⊤ since Q⊤Q is diagonal when Q is well-
partitioned. Thus, PMP ∈ E3.

Interestingly, PMP is the solution of the following optimization problem, which we note is formulated
over all matrices P ∈ Rn×N without any constraint:

argmin
P

sup
x∈RN ,∥x∥2=1

∥x−QPx∥2. (8)

This problem looks suspiciously similar to the RSA (6), but differs in several key aspects. Namely,
the signals lives in RN not in R, the Mahalanobis norm ∥ · ∥L in (6) is replaced by the Euclidean
l2 norm. This suggests that PMP is still “optimal” from a certain point of view, but for a different
(much simpler) problem than the RSA. Below, we will formulate an optimal matrix for a problem
closer to the RSA, but first examine another potential choice in E3.

Loukas Reduction [27], aka iterative coarsening. Many coarsening algorithms construct the
lifting matrix iteratively, as a product of individual coarsening Q = Q1 . . . Qc. In [27], Loukas
implements such an algorithm, and chooses the reduction matrix as the product of the Moore-Penrose
inverses of each lifting matrix

PLoukas = Q+
c . . . Q+

1 (9)

Note that this is not equal to the Moore-Penrose inverse of Q in general. However, and as shown in
App. B.3, this results in a matrix PLoukas ∈ E3, (see Fig. 1).

Rao and Mitra inspired reduction As we have seen above, the Moore-Penrose inverse can be
interpreted as the solution of an optimization problem (8), that differs from the RSA (6) in two key
aspects: the subspaceR and the Mahalanobis norm. We now consider the following problem, where
we reintroduce the latter:

argmin
P

sup
x∈RN ,∥x∥L=1

∥x−QPx∥L (10)

Rao and Mitra show that (10) admits a unique solution under some hypotheses. In our case, several
simplification over their original result happen, and we obtain the following: if L and Lc are positive
definite, then the optimal solution is P = L−1

c Q⊤L. This solution does not technically apply when L
and Lc are ∆-Laplacians since they are not invertible, but inspired by this, we propose the following
reduction matrix:

Popt = L+
c Q

⊤L (11)

Note that, even though (10) is again an optimization problem with no constraints on P , it is easy to
check that Popt ∈ E1. However Popt /∈ E2 as it is not full rank (see Fig. 1). Hopefully, Popt should
lead to a better RSA constant than PMP , even thoughR is still absent from (10). However, its main
drawback is that it is dense in general.

Optimization based Reduction We now turn to the true RSA minimization of (6). To our knowl-
edge, it does not have a simple solution such as PMP for (8) or Popt for (10), so that we need to
implement an iterative optimization algorithm. As discussed in the previous section, it is particularly
convenient to minimize over the set E2, thanks to the characterisation of E2 with Lem. 5. The
minimization can then be written as:

P ∗
g = ΦQ(M

∗) with M∗ = arg min
M∈Rn×N

sup
x∈R,∥x∥L=1

∥x−QΦQ(M)x∥L (12)

with ΦQ(M) = Q+ +M (IN −QQ+). Again, solutions P ∗
g are usually dense. A potential remedy

is to add a sparsity constraint on P , which leads to the following problem:

P ∗
g,l1 = ΦQ(M

∗
l1) with M∗

l1 = argmin
M

sup
x∈R,∥x∥L=1

∥x−QΦQ(M)x∥L + λ∥ΦQ(M)∥1 (13)

As mentioned before, whenR is a subspace of L, the RSA has a close form expression that is convex
in P . This results in optimization problem that are convex in M in these cases. In our experiments,
we treat the l1 penalty simply with gradient descent combined with a final thresholding operation (for
simplicity we leave aside more complex optimization procedures with e.g. proximal operators).

7

Finally, we also mentioned that optimization over E3 was also particularly simple: a simple renor-
malization is sufficient for projected gradient descent. It has the advantage of being always sparse, as
it respects the support of Q⊤ (of size N). This leads to the following problem:

P ∗
Q⊤ = arg min

P∈E3

sup
x∈R,∥x∥L=1

∥x−QPx∥L (14)

This is again convex in P , as the constraint P ∈ E3 is linear.

5 Experiments

In Sec. 4, we have proposed several examples of reduction matrices P that aimed to minimize the
RSA with various constraints. In this section, we evaluate numerically the performance of these
examples, both in terms of RSA constant and used within GNNs.

Setup: (i) Graph. We consider the two classical medium-scale graphs Cora [30], and Citeseer
[15], and use the public split from [39] for training the GNNs. We restrict ourselves to medium-scale
graphs because handling larger graphs presents challenges. Indeed, in the optimizations we propose,
the RSA requires computing the square root of the original Laplacian, which is not sparse in general
and, for graphs like Reddit [16], cannot be stored on modern GPUs . Furthermore, we only consider
the largest connected component since connected graphs are better suited for coarsening (see details
in App. C). This may induce some slight difference with other reported results on these datasets.

(ii) Laplacian and preserved space. We choose two different Laplacians: the combinatorial
Laplacian L and the self-loop normalized Laplacian L = ∆L∆ with ∆ = (diag(A1N) + 1)−1/2.
The motivation for this Laplacian comes from the fact that it is related to the propagation matrix
S = D̂−1/2(A+ IN)D̂−1/2 (via L = IN − S) commonly used in GNNs [24, 23]. For the RSA, the
preserved spaceR is chosen as the K = 100 first eigenvectors of L and L.

(iii) Lifting matrix Q. The method that has introduced the notion of RSA [27] is particularly relevant
for computing Q, as we share the same objective of reducing the RSA constant. However, it requires
adaptation because this method minimizes the RSA constant for the combinatorial Laplacian, and
yields a binary well-partitioned matrix lifting matrix Q. We generalize this method to minimize
the RSA constant for a ∆-Laplacian, resulting in a lifting matrix Q. It is worth noting that some of
the assumptions made in [27] no longer hold in the ∆-Laplacian setting. Nevertheless, we observe
that this generalized construction still achieves good RSA constants. The details of the generalized
algorithm are provided in App. F.

RSA minimization. The RSA constants achieved by the reduction matrices introduced in Sec. 4
are shown in Fig. 2a for the combinatorial Laplacian L and in Fig. 2b for the self-loop normalized
Laplacian L. The coarsening ratios range from 0.05 to 0.85. As expected, the two proposed
methods Popt and P ∗

g achieve better RSA constants than the usual PMP and PLoukas. Moreover,
the performance gap increases with higher reduction ratios. Another interesting observation is that
the optimization methods P ∗

g,l1
and P ∗

Q⊤ that incorporate sparsity constraints also perform very
well. At low reduction ratios, their performance is nearly indistinguishable from their unconstrained
counterparts P ∗

g . This is particularly surprising given that the reduction in the number of non-zero
coefficients is around 99.8% , regardless of the coarsening ratios (see App. G.2 for a detailed analysis
on the sparsity of the P matrices and App. E for their computational hyperparameters). We also
observe that the two approaches P ∗

g,l1
and P ∗

Q⊤ yield similar performance. This may be due to the
strong regularization parameter used in the sparsity penalty in P ∗

g,l1
; a different setting could yield a

more balanced trade-off for P ∗
g,l1

between the performance of P ∗
g and P ∗

Q⊤ .

GNN application Inspired by the paper [23] which link the training of Graph Neural Networks
(GNN) and the RSA : we have trained for three different coarsening ratio (r = {0.3, 0.5, 0.7}) a
convolutional GNN [24] and a Simplified convolution network (SGC [38]) on Cora [30] and Citeseer
[15]. Each training is averaged on 10 random split, using the same experimental setting as in [23],
and the hyperparameters are provided in App. G.1. For the training on coarsened graphs, we used
the propagation matrix SMP

c = PSQ from the paper [23], where S − L and L is the self-loop
normalized Laplacian. This matrix depends on both the reduction matrix P and the lifting matrix Q.

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RS
A

PLoukas

PMP

Popt

P*
Q

P*
g

P*
g, l1

(a) Cora graph, combinatorial Laplacian L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

RS
A

PLoukas

PMP

Popt

P*
Q

P*
g

P*
g, l1

(b) Cora graph, self-loop normalized Laplacian L

Figure 2: RSA for different reduction matrices

The results reported in Tab. 1 show slightly better performances on Cora for high coarsening ratio
and RSA-optimized reduction matrices such as P ∗

g , P ∗
g,l1

and P ∗
Q⊤ . The results on CiteSeer are less

pronounced, which may be due to its higher level of heterophily compared to Cora: indeed, since
spectral coarsening is designed to preserved the low frequencies of the Laplacian and [23] the RSA is
more relevant when homophily is high. Lastly, we note that Popt has the best RSA but poor GNN
performance. We might explain this by its density which implies a propagation with SMP

c that is
similar to a complete graph. The sparsity of each matrix can be found in App. G.2. Therefore, the
RSA only relatively translates to a better GNN accuracy, mitigating the theoretical results of [23].

Table 1: Accuracy in % for node classification with SGC and GCNconv on different coarsening ratio

SGC Cora Citeseer

r 0.3 0.5 0.7 0.3 0.5 0.7

PLoukas 80.5 ± 0.0 79.7 ± 0.0 76.8 ± 0.0 72.6 ± 0.3 71.7 ± 0.1 69.7 ± 0.7
PMP 80.5 ± 0.0 80.1 ± 0.0 77.7 ± 0.0 72.8 ± 0.5 72.7 ± 0.0 69.5 ± 0.3
Popt 77.1 ± 0.6 75.9 ± 0.1 73.8 ± 0.3 70.9 ± 0.2 70.2 ± 0.1 67.3 ± 0.4
P ∗
Q⊤ 80.3 ± 0.0 80.0 ± 0.1 77.2 ± 0.0 72.7 ± 0.3 72.6 ± 0.5 67.6 ± 0.2
P ∗
g 80.7 ± 0.0 80.0 ± 0.0 77.6 ± 0.0 72.6 ± 0.2 72.7 ± 0.0 68.6 ± 0.4

P ∗
g,l1

80.4 ± 0.0 79.2 ± 0.0 78.3 ± 0.0 73.0 ± 0.0 71.2 ± 0.1 69.2 ± 0.4
Full Graph 81.0 ± 0.1 71.6 ± 0.1

GCN Cora Citeseer

r 0.3 0.5 0.7 0.3 0.5 0.7

PLoukas 80.6 ± 0.8 80.5 ± 1.0 78.1 ± 1.4 71.0 ± 1.6 72.2 ± 0.6 70.4 ± 0.8
PMP 80.4 ± 1.0 80.7 ± 0.9 78.6 ± 0.9 70.8 ± 1.9 72.1 ± 1.0 71.0 ± 1.0
Popt 73.7 ± 1.5 63.3 ± 1.4 55.11 ± 2.4 64.6 ± 0.7 50.4 ± 1.6 42.6 ± 4.0
P ∗
Q⊤ 80.5 ± 0.9 80.9 ± 0.6 78.0 ± 0.9 71.1 ± 1.5 72.3 ± 0.7 70.0 ± 0.9
P ∗
g 80.6 ± 1.1 81.3 ± 0.6 78.7 ± 0.9 71.1 ± 1.7 72.1 ± 1.2 69.6 ± 1.0

P ∗
g,l1

80.4 ± 0.9 80.0 ± 0.9 78.2 ± 0.7 70.2 ± 1.8 66.8 ± 1.1 66.7 ± 1.2
Full Graph 81.3 ± 0.8 70.9 ± 1.4

6 Conclusion

In this paper, we highlighted the crucial role of the lifting matrix Q in graph coarsening. Surprisingly,
we found that we can take advantage of the degree of freedom over the reduction matrix to obtain
better spectral guarantees, without changing the coarsening itself or the lifting matrix. We have
defined various sets of “admissible” reduction matrices with different properties, from the very
generic property of simply obtaining a projection Π, to convenient parametrization with reflexive
generalized inverses, and support constraints. We then showed that the classical choices of reduction
matrices can be outperformed, both by well-motivated novel examples with analytic expressions,
or by matrices resulting from various optimization processes with sparsity or support constraints.
Even if previous works linked the performances of GNNs trained on coarsened graph with the RSA,
we empirically showed that the benefits of improving the RSA were somewhat marginal, although

9

visible for high coarsening ratio and homophilous graphs. This suggests that other factors, such the
sparsity of the reduction matrix, could also play in GNNs training.

In this work, we have selected the RSA as a general-purpose score to optimize, however our theoretical
characterization of the admissible sets of reduction matrices does not particularly rely on it. We
thus believe that considering more complex scoring function to take into account graphs heterophily
or node features while being scalable to larger graphs is a major path for future works. Notably,
our optimization framework is agnostic to the specific choice of scoring function and coarsening
algorithm and directly applies to these extensions.

Acknowledgments and Disclosure of Funding

The authors acknowledge the fundings of France 2030, PEPR IA, ANR-23-PEIA-0008 and European
Union ERC-2024-STG-101163069 MALAGA.

References
[1] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret minimization

beyond matrix multiplicative updates. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 237–245, 2015.

[2] Adi Ben-Israel and Thomas NE Greville. Generalized inverses: theory and applications. Springer Science
& Business Media, 2006.

[3] Filippo Maria Bianchi and Veronica Lachi. The expressive power of pooling in graph neural networks.
Advances in neural information processing systems, 36:71603–71618, 2023.

[4] Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-preserving graph
sparsification and coarsening. Advances in Neural Information Processing Systems, 32, 2019.

[5] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478, 2021. URL http://arxiv.org/abs/2104.
13478.

[6] Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In 9th International
conference on Learning Representations, 2021.

[7] Jie Chen, Yousef Saad, and Zechen Zhang. Graph coarsening: from scientific computing to machine
learning, volume 79. Springer International Publishing, 2022. ISBN 4032402100282. doi: 10.1007/
s40324-021-00282-x. URL https://doi.org/10.1007/s40324-021-00282-x.

[8] Yifan Chen, Rentian Yao, Yun Yang, and Jie Chen. A Gromov-Wasserstein geometric view of spectrum-
preserving graph coarsening. In International Conference on Machine Learning, pages 5257–5281. PMLR,
2023.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.

[10] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a multilevel
approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):1944–1957, 2007.

[11] Charles Dickens, Edward Huang, Aishwarya Reganti, Jiong Zhu, Karthik Subbian, and Danai Koutra.
Graph coarsening via convolution matching for scalable graph neural network training. In Companion
Proceedings of the ACM on Web Conference, pages 1502–1510, 2024.

[12] Florian Dorfler and Francesco Bullo. Kron reduction of graphs with applications to electrical networks.
IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150–163, 2012.

[13] David Ediger, Karl Jiang, Jason Riedy, David A. Bader, Courtney Corley, Rob Farber, and William N.
Reynolds. Massive social network analysis: Mining twitter for social good. Proceedings of the International
Conference on Parallel Processing, pages 583–593, 2010. ISSN 01903918. doi: 10.1109/ICPP.2010.66.

[14] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pages
2083–2092. PMLR, 2019.

[15] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. CiteSeer: An Automatic Citation Indexing System,
1998. URL www.neci.nj.nec.com.

10

http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
https://doi.org/10.1007/s40324-021-00282-x
www.neci.nj.nec.com

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[17] Pili Hu and Wing Cheong Lau. A Survey and Taxonomy of Graph Sampling. pages 1–34, 2013. URL
http://arxiv.org/abs/1308.5865.

[18] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. Neural Information
Processing Systems (NeurIPS), (NeurIPS):1–34, 2020. URL http://arxiv.org/abs/2005.00687.

[19] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural
networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pages 675–684, 2021.

[20] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph Condensation
for Graph Neural Networks. In International Conference on Learning Representations, 2021.

[21] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin. Condensing
graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 720–730, 2022.

[22] Yu Jin, Andreas Loukas, and Joseph JaJa. Graph coarsening with preserved spectral properties. In
International Conference on Artificial Intelligence and Statistics, pages 4452–4462. PMLR, 2020.

[23] Antonin Joly and Nicolas Keriven. Graph Coarsening with Message-Passing Guarantees. Advances in
Neural Information Processing Systems, 37:114902–114927, 2024.

[24] Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In
International Conference on Learning Representations, 2016.

[25] Manoj Kumar, Anurag Sharma, Shashwat Saxena, and Sandeep Kumar. Featured graph coarsening with
similarity guarantees. In International Conference on Machine Learning, pages 17953–17975. PMLR,
2023.

[26] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear time. SIAM
Journal on Computing, 47(6):2315–2336, 2018.

[27] Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning Research,
20(116):1–42, 2019.

[28] Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller graphs. In
International conference on machine learning, pages 3237–3246. PMLR, 2018.

[29] Tengfei Ma and Jie Chen. Unsupervised learning of graph hierarchical abstractions with differentiable
coarsening and optimal transport. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pages 8856–8864, 2021.

[30] Andrew Kachites Mccallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the Construc-
tion of Internet Portals with Machine Learning, 2000. URL www.campsearch.com.

[31] Roger Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge
philosophical society, volume 51, pages 406–413. Cambridge University Press, 1955.

[32] Calyampudi Radhakrishna Rao and Sujit Kumar Mitra. Generalized inverse of a matrix and its applications.
In Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, volume 1,
pages 601–620. University of California Press Oakland, CA, USA, 1972.

[33] John W Ruge and Klaus Stüben. Algebraic multigrid. In Multigrid methods, pages 73–130. SIAM, 1987.

[34] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on Computing,
40(4):981–1025, 2011.

[35] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
neural networks. Journal of Machine Learning Research, 24(127):1–21, 2023.

[36] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun Lee. Billion-scale
commodity embedding for E-commerce recommendation in alibaba. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 839–848, 2018. doi: 10.1145/
3219819.3219869.

11

http://arxiv.org/abs/1308.5865
http://arxiv.org/abs/2005.00687
www.campsearch.com

[37] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

[38] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pages 6861–6871. PMLR,
2019.

[39] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016.

[40] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. Advances in neural information processing
systems, 31, 2018.

[41] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui Pan.
Structure-free graph condensation: From large-scale graphs to condensed graph-free data. Advances in
Neural Information Processing Systems, 36, 2024.

A Useful property and definitions

Definition 4 (Left inverse). If the matrix A has dimensions m × n and rank(A) = n, then there
exists an n×m matrix A−1

L , called the left inverse of A, such that:

A−1
L A = In

where In is the n× n identity matrix.
Definition 5 (Right inverse). If the matrix A has dimensions m× n and rank(A) = m, then there
exists an n×m matrix A−1

R , called the right inverse of A, such that:

AA−1
R = Im

where Im is the m×m identity matrix.
Lemma 7 (rank of well-partitioned matrices). For a well-partitioned lifting matrix Q ∈ RN×n,

rank(Q) = n (15)

Proof. For a well-partitioned lifting matrix Q ∈ RN×n, there is only one non zero value per row.
Consequently all the columns are independent and the rank of the rank of this matrix is equal to
n.

Remark 3. Similarly a reduction matrix P ∈ Rn×N , which has the same support as Q⊤ with Q a
well-partitioned lifting matrix is also of rank n.
Lemma 8 (QQ⊤ is diagonal). Let Q be a well-partitioned lifting matrix. For all matrix P ∈ Rn×N

with the same support as Q⊤, PQ is diagonal.

Proof. Let P a reduction matrix with the same support as Q⊤. Let’s show that (Q⊤Q is diagonal) :

For i, j ∈ {1 . . . N}2 and i ̸= j:

(Q⊤Q)ij =

N∑
k=1

QkjQki

= 0

Indeed if one term is different from 0, it means that two nodes i and j of Gc have been expanded to a
same node k of G which contradicts the well-partitioned definition.

Thus Q⊤Q is diagonal and by equality of the support PQ is also diagonal.

Lemma 9 (PQ = In). Let Q be a well-partitioned lifting matrix. We have the following equivalence
:

PQ = In ⇐⇒ P ∈ Qg

Proof. Let’s show the two sides of the equivalence.

12

=⇒ If PQ = In, we have directly Π2 = Π and thus with Lem. 3, Q ∈ P g . Then as PQ = In, we
have rank(P) = n and using Lem. 4 as Q ∈ P g we have P ∈ Qg

⇐= if P ∈ Qg then QPQ = Q, by multiplying by the Moore Penrose inverse Q+ to the left, we
have Q+QPQ = Q+Q thus PQ = In. The Moore Penrose inverse being a left inverse of Q as seen
in App. B.2

B Proofs

B.1 Consistency Lem. 2

This property is an extension of Loukas work [27] on the consistency of the combinatorial Laplacian.
We will use the Lem. 1 proven in [27] for our proof.

Let Q be a well-partitioned lifting matrix. For all adjacency matrix A, consider L(A) =

∆(A)L(A)∆(A) and Q(A,Q) = ∆(A)
−1Q∆(Ac) = ∆−1Q∆c.

⇐= When Q is a binary matrix. By using Lem. 1 L(Ac) = Q⊤L(A)Q. Thus,

Q⊤LQ = Q(A,Q)⊤L(A)Q(A,Q)
= ∆cQ⊤∆−1∆L(A)∆−1Q∆c

= ∆(Ac)Q⊤L(A)Q∆(Ac)

= ∆(Ac)L(Ac)∆(Ac)

= L(Ac)

= Lc

=⇒ When Lc = Q⊤LQ then

Lc = Q⊤LQ =⇒ ∆cLc∆c = ∆cQ⊤∆−1∆L∆∆−1Q∆c

=⇒ ∆cLc∆c = ∆cQ⊤LQ∆c

=⇒ Lc = Q⊤LQ
=⇒ Q is binary

The last line using Lem. 1.

B.2 Proof of Lemma Moore Penrose inverse

Proof. Let’s show that Q+ = (Q⊤Q)−1Q⊤.

For a given well-partitioned lifting matrix Q ∈ RN×n , we have rank(Q) = n as proposed in Lem. 7.

We can compute one left inverse as Q−1
L = (Q⊤Q)−1Q⊤.

It verifies the four properties of Moore Penrose inverse :
1. QQ−1

L Q = Q(Q⊤Q)−1Q⊤Q = Q

2. Q−1
L QQ−1

L = (Q⊤Q)−1Q⊤Q(Q⊤Q)−1Q⊤ = (Q⊤Q)−1Q⊤ = Q−1
L

3. (QQ−1
L)⊤ = ((Q⊤Q)−1Q⊤)⊤Q⊤ = Q((Q⊤Q)−1)⊤Q⊤ = QQ−1

L

4. (Q−1
L Q)⊤ = In = Q−1

L Q
Thus it is the unique Moore Penrose inverse of the lifting matrix Q.

Please note that for the third condition we used that (Q⊤Q) diagonal (see Lem. 8) and so (Q⊤Q)−1

is symmetric.

It is thus by definition a generalized reflexive inverse of Q with the same support as Q⊤.

13

B.3 Proof PLoukas generalized reflexive inverse

For a multilevel coarsening scheme we have intermediary coarsening with intermediary well-
partitioned Qi. We remark that Q = Q1 . . . Qc is also a well-partitioned lifting matrix.

Let’s examine PLoukas = Q+
c . . . Q+

1 : First it is of same support as Q⊤. Secondly, PLoukasQ =
Q+

c . . . Q+
1 Q1 . . . Qc = In as Moore Penrose inverse are left inverse. Using Lem. 9, we have P ∈ Qg .

Thus PLoukas is a generalized reflexive inverse of Q and has the same support as Q⊤.

B.4 Proof of Coarsen-lift operator projection Lem. 3

Proof. Let’s show the two side of the equivalence :

=⇒ Π projection implies Q ∈ P g :

We have Π2 = Π then QPQP = QP .

As Q is well-partitioned, we have that rank(Q) = n (using Lem. 7). Thus we have the existence of a
left inverse (one example is the Moore Penrose inverse) such that Q−1

L Q = In.

We multiply our expression at the left by Q−1
L , then Q−1

L QPQP = Q−1
L QP thus PQP = P .

Consequently Q is a generalized inverse of P .

⇐= Q ∈ P g implies Π = QP projection :

ΠΠ = QPQP = QP = Π. Thus Π is a projection using directly the generalized inverse property
on Q. (condition (i)).

B.5 Proof of Reflexive generalized inverse Lem. 4

Proof. For a well-partitioned lifting matrix Q and a reduction matrix P such that Q ∈ P g. Let’s
show the two sides of the equivalence:

=⇒ rank(P) = n implies P ∈ Qg :

With this "full rank" reduction matrix, using Lem. 7 there is the existence of a right pseudo inverse
P−1
R such that PP−1

R = In.

As we have Q ∈ P g that implies Π2 = Π, using the Lem. 3. We thus have QPQP = QP using the
existence of P−1

R we multiply this equality by P−1
R .

QPQP = QP =⇒ QPQPP−1
R = QPP−1

R

=⇒ QPQ = Q

Thus P ∈ Qg .

⇐= P ∈ Qg implies rank(P) = n :

QPQ = Q by assumption. As we know that rank(Q) = n, we can compute one left inverse Q−1
L

and multiply at left for both side of this equation. Thus we have PQ = In.

This is only possible if rank(P) ≥ n otherwise the kernel of PQ would not be null. Thus bounded
by the dimension of the matrix rank(P) = n.

Second implication of the theorem Now for the second part of the theorem: we have P ∈ Qg.
Thus PQPQ = PQ and Π2 = Π.

Using the Lem. 3, we have Q ∈ P g . this justifies the inclusion of E2 ⊂ E1

B.6 Proof of Generalized inverse Characterization Lem. 5

Proof. We will use the following theorem presented as theorem 2.1 in [32], but presented as a
Corollary of [31] in [2].

14

Theorem 1 (Generalized inverse characterization). Let A ∈ Rm×n. Then Ag exists. The entire
classe of generalized inverses is generated from any given inverse Ag by the formula

Ag + U −AgAUAAg (16)

where U ∈ Rn×m is arbitrary.

We apply this characterization to the well-partitioned lifting matrix Q ∈ RN×n using a well known
generalized inverse of Q, namely the "Moore-Penrose pseudo inverse" Q+ that has been characterized
in App. B.2.

Thus Q+ +M −Q+QMQQ+, for M ∈ Rn×N arbitrary, generates all the generalized inverse of
the lifting matrix Q.

But this formula has some simplifications. Indeed Q+Q = In as we have proved in App. B.2. Thus
the characterization can be rewritten as Q+ +M(In −QQ+) for an arbitrary M ∈ Rn×N .

Reflexive Let’s show that these generalized inverse are also reflexive :

We have QPQ = Q as P ∈ Qg . Thus Π2 = QPQP = QP = Π. Using the equivalence of Lem. 3
we have that Q ∈ P g . This is a characterization of reflexive generalized inverse.

B.7 Proof of Generalized reflexive inverse of same support Lem. 6

Proof. Let’s show the two side of the equivalence :

=⇒ P ∈ Qg with same support implies
∑N

k=1
Pik

∆(k) =
1

∆c(i)
:

For a well-partitioned, degree-wised valued matrix Q and a matrix P ∈ Qg with same support as
Q⊤, using Lem. 9, we have PQ = IN . Thus each diagonal term must be equal to one :

∀i, (PQ)ii = 1 =⇒ ∀i,
N∑

k=1

PikQki = 1

=⇒ ∀i,
N∑

k=1

Pik
∆c(i)

∆(k)
= 1

=⇒ ∀i,
N∑

k=1

Pik

∆(k)
=

1

∆c(i)

It is the normalization condition we have.

⇐=
∑N

k=1
Pik

∆(k) =
1

∆c(i)
and with same support as Q⊤ implies P ∈ Qg :

For a reduction matrix P with the same support as Q⊤, PQ is thus a diagonal matrix (Lem. 8).

Moreover
∑N

k=1
Pik

∆(k) =
1

∆c(i)
we have

(PQ)ij =

N∑
k=1

PikQkj

=
∑

k|Qkj ̸=0,Qki ̸=0

Pik
∆c(i)

∆(k)

=

{
0 when i ̸= j

1 wheni = j

15

Thus PQ = In, using Lem. 9 we have P ∈ Qg .

C Presentation of datasets

We restrict the well known Cora and Citeseer to their principal connected component(PCC) as it more
compatible with coarsening as a preprocessing step. Indeed, the loukas algorithm tend to coarsen
first the smallest connected components before going to the biggest which leads to poor results
for coarsening with a small coarsening ratio. However working with this reduced graph make the
comparison with other works more difficult as it is not the same training and evaluating dataset. The
characteristics of these datasets and their principal connected component are reported in Tab. 2.

Table 2: Characteristics of Cora and CiteSeer Datasets

Dataset # Nodes # Edges # Train Nodes # Val Nodes # Test Nodes
Cora 2,708 10,556 140 500 1,000
Cora PCC 2,485 10,138 122 459 915

Citeseer 3,327 9,104 120 500 1,000
Citeseer PCC 2,120 7,358 80 328 663

D Random Geometric graphs

A random geometric graph is built by sampling nodes with coordinates in [0, 1]2 and connecting them
if their distance is under a given threshold. For this additional experiment on minimizing the RSA,
we sample 1000 nodes with a threshold of 0.05 (Fig. 3).

The results presented in Fig. 4 confirms the observation made for the same experiment on Cora, Popt

being the best option to minimize the RSA.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RS
A

PLoukas

PMP

Popt

P*
Q

P*
g

P*
g, l1

(a) L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RS
A

PLoukas

PMP

Popt

P*
Q

P*
g

P*
g, l1

(b) L

Figure 4: RSA minimization on a Random Geometric Graph

E Convergence of optimization algorithm

For the optimization hyperparameters, we compared different optimizer, different learning rate,
different initialization. The results for the three different problems can be find below.

E.1 Parameters for P ∗
g

We present here the chosen parameters for the optimization problem defined in Eq. 12.

As initialization matrix M for our optimization procedure, we choose the Moore Penrose inverse
matrix PMP compared to Popt and PLoukas. Indeed as shown in Fig. 5, the Popt initialization is too

16

Figure 3: Example of a random Geometric graph

close to the minima and thus the matrix doesn’t change and is too similar to Popt. PMP is a better
initialization for combinatorial Laplacian as PLoukas. Furthermore PMP is more generic as PLoukas

which can only be computed in a multi-level coarsening algorithm. The random initialization does
not converge fast enough and show the relevance to consider a more "classic" reduction matrix as
initialization.

We choose the stochastic gradient optimizer (SGD) as it is more stable than the Adam optimizer. For
the Learning rate we choose lr = 0.01 for an improved stability.

Fig. 5 is computed for a coarsening on Cora with r = 0.5.

0 25 50 75 100 125 150 175 200
Epoch

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

RS
A

MP
Loukas
Rao

(a) Initialization

0 25 50 75 100 125 150 175 200
Epoch

2

4

6

8

10

RS
A

MP
Random

(b) Random Init

0 25 50 75 100 125 150 175 200
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

RS
A

MP SGD
MP Adam
Rao SGD
Rao Adam

(c) Optimizer

0 25 50 75 100 125 150 175 200
Epoch

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

RS
A

lr=0.01
lr=0.001
lr=0.1

(d) Learning rate

Figure 5: Parameters for P ∗
g

E.2 Parameters for P ∗
g,l1

We present here the chosen parameters for the optimization problem defined in Eq. 13.

To enforce the sparsity we apply after the optimization procedure a threshold of 0.001 to erase the
small coefficients.

We choose as initialization matrix M the Popt matrix. PMP and PLoukas provide a better combined
loss as shown in Fig. 6, but due to the sparsity constraint they do not leave their support and the

17

sparsity remains unchanged (as shown in Tab. 3). It then becomes an optimization on the same
support and the RSA is less improved. Oppositely when we initialize with Prao which is very dense,
we obtain a number of non zero coefficients close to the support of PMP with an additional 500
coefficients.

We choose an λ coefficients which control the l1 penalty equals to λ = 0.01 to enforce the sparsity.

As the previous experiment, we choose the SGD optimizer and a learning rate lr = 0.01 for an
improved stability.

Fig. 6 and Tab. 3 are computed for a coarsening on Cora with r = 0.5.

0 25 50 75 100 125 150 175 200
Epoch

15

20

25

30

35

40

45

50

RS
A

+
sp

ar
sit

y

Loukas
MP
Rao

(a) Initialization

0 25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

RS
A

+
sp

ar
sit

y

lambda = 0.001
lambda = 0.1
lambda = 0.01

(b) λ Sparsity

0 25 50 75 100 125 150 175 200
Epoch

25

50

75

100

125

150

175

200

RS
A

+
sp

ar
sit

y

Adam
SGD

(c) Optimizer

0 25 50 75 100 125 150 175 200
Epoch

15

20

25

30

35

40

45

50

RS
A

+
sp

ar
sit

y

lr=0.01
lr=0.001
lr=0.1

(d) Learning rate

Figure 6: Parameters for P ∗
g

Table 3: Influence of Sparsity coefficient λ for P ∗
g,l1

(ex with r = 0.5 and threshold = 0.001)

Initialization λ #Non zero coefficients of Initialization # Non zero Coefficients
PLoukas 0.01 2,485 2,479
PMP 0.01 2,485 2,509
Popt 0.01 3,080,144 3,007
Popt 0.001 3,080,144 29,585
Popt 0.1 3,080,144 654,080

E.3 Parameters for P ∗
Q⊤

We present here the chosen parameters for the optimization problem defined in Eq. 14.

As initialization vector µ for our optimization procedure, we choose the non zero coefficients of
the Moore Penrose inverse matrix PMP compared to the non zero coefficient of PLoukas, a random
initialization and the uniform vector which has all same values for each node in the same super node.
Indeed as shown in Fig. 7, the PMP vector initialization is the only stable method.

The SGD optimizer is still more stable than the Adam optimizer which motivate its choice. For the
Learning rate we choose lr = 0.05 for a fast convergence and an improved stability. The results are
reported in Fig. 7

0 25 50 75 100 125 150 175 200
Epoch

1

2

3

4

5

6

RS
A

Uniform init
MP init
Random init
Loukas init

(a) Initialization

0 25 50 75 100 125 150 175 200
Epoch

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

RS
A

SGD
Adam

(b) Optimizer

0 25 50 75 100 125 150 175 200
Epoch

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

RS
A

lr=0.05
lr=0.01
lr=0.2

(c) Learning rate

Figure 7: Parameters for P ∗
Q⊤

18

Fig. 7 is computed for a coarsening on Cora with r = 0.5.

F Adaptation of Loukas Algorithm

You can find below the pseudo-code of Loukas algorithm Alg. 1. This algorithm works by greedy
selection of contraction sets (see below) according to some cost, merging the corresponding nodes,
and iterate. The main modification is to replace the combinatorial Laplacian in the Loukas code by any
Laplacian L = ∆L∆. Note that we also remove the diagonal of Ac at each iteration, as Loukas given
its lower value of RSA. The output of the algorithm is the resulting lifting matrix Q = Q1 . . . Qc,
the coarsened adjacency Ac and the the Loukas and Moore Penrose reduction matrices PLoukas and
PMP .

Algorithm 1 Loukas Algorithm

Require: Adjacency matrix A, Laplacian L = ∆L∆, a coarsening ratio r , preserved space R,
percentage number of nodes merged at one coarsening step : ne

1: nobj ← int(N −N × r) the number of nodes wanted at the end of the algorithm.
2: compute cost matrix B0 ← V V ⊤L−1/2 with V an orthonormal basis ofR
3: Q← IN
4: while n ≥ nobj do
5: Make one coarsening STEP l
6: Create candidate contraction sets.
7: For each contraction C, compute cost(C, Bl−1, Ll−1) =

∥ΠCBl−1(B
⊤
l−1Ll−1Bl−1)

−1/2∥LC
|C|−1

8: Sort the list of contraction set by the lowest score
9: Select the lowest scores non overlapping contraction set while the number of nodes merged is

inferior to min(n− nobj , ne)
10: Compute the binary 0-1 matrix Ql intermediary lifting matrix with contraction sets selected
11: Ql−1Ql ← ∆−1

l−1Ql∆l

12: PLoukas ← Q+
l PLoukas

13: PMP ← reuniform(Q⊤
l)PMP

14: Bl ← Q+Bl−1

15: Al ← Q⊤Al−1Q− diag
(
(Q⊤Al−1Q)1n

)
16: Ll ← Q⊤Ll−1Q
17: n← min(n− nobj , ne)
18: end while
19: PMP ← (Q⊤Q)−1Q⊤

20: return Ac, Q, PLoukas, PMP

The terms ΠC and LC denote specific projection of the contraction set. Their precise definitions are
provided in Loukas work [27]. We kept them unchanged in our experiments and defer any potential
adjustments to future work.

In our adaptation we also add a parameter ne to limit the number of nodes contracted at each
coarsening step. In one coarsening step, when a contraction set C is selected, we merge |C| nodes. In
practice Loukas proposed in its implementation to force ne =∞ and coarsen the graph in one single
iteration. We observed empirically that decreasing ne leads to improved results.

Candidate contraction Set. Candidate contractions sets can take two main forms: either pairs of
nodes connected by an edge (referred to as the variation edges version), or the full neighborhood of
each nodes (the variation neighborhood version). In practice, since neighborhoods tend to be large in
our graph, this second option proves impractical for small coarsening ratios and typically leads to
suboptimal results. We therefore rely on edge-based candidate sets, and adjust the parameter ne to
control the greedy behaviour of the algorithm.

19

G Experiments hyperparameters

For all the experiments, we preserve K eigenvectors of the normalized self looped Laplacian L =
∆L∆ with ∆ = (diag(A1N) + 1)−1/2 with K = 100. We apply our adapted version of Loukas
variation edges coarsening algorithm with ne = 10%N .

For the optimization hyperparameters as discussed previously in the appendix, we choose :
• P ∗

Q⊤ is initialized with the non zero coefficients of PMP . We use a SGD optimizer with a
momentum of 0.9, a learning rate lr = 0.05 and 200 epochs.

• P ∗
g is initialized with the non zero coefficients of PMP . We use a SGD optimizer with a

momentum of 0.9, a learning rate lr = 0.01 and 200 epochs.
• P ∗

g,l1
is initialized with the non zero coefficients of Popt and we use a l1 penalty coefficient

λ = 0.01 and a threshold of 0.001 to enforce the sparsity. We use a SGD optimizer with a
momentum of 0.9, a learning rate lr = 0.01 and 200 epochs.

G.1 Hyperparameters for Tab. 1

For the GCN, for both Cora and CiteSeeer we have 3 convolutional layers with the hidden dimensions
[256, 128]. We use an Adam Optimizer with a learning rate lr = 0.01 and a weight decay wd =
0.001.

For the SGC model on Cora and Citeseer we make 2 propagations as preprocessing for the features.
We use an Adam Optimizer with a learning rate lr = 0.1 and a weight decay wd = 0.001.

G.2 Sparsity of the reduction matrices for Tab. 1

Table 4: Number of non zero elements for the different reduction matrices of Tab. 1

#Non zero coefficients Cora Citeseer

r 0.3 0.5 0.7 0.3 0.5 0.7

PLoukas 2,485 2,485 2,485 2,120 2,120 2,120
PMP 2,485 2,485 2,485 2,120 2,120 2,120
Popt 4,315,200 3,080,144 1,846,584 3,136,320 2,235,527 1,341,714
P ∗
Q⊤ 2,485 2,485 2,485 2,120 2,120 2,120
P ∗
g 2,261,446 2,202,595 1,596,687 1,505,412 1,533,820 1,131,521

P ∗
g,l1

2,822 3,003 2,881 2,629 3,505 3,278
Popt (coeff > 0.001) 583,431 766,439 580,971 537,353 594,807 421,027
P ∗
g (coeff > 0.001) 5,735 46,080 99,288 18,601 24,874 79,609

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper is mainly theoretical. The abstract and introduction present the
theorems and their consequences.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the experiments, in particular the scalability of the method,
are discussed in the main body of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The proofs are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

21

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is included as supplementary material, it can be executed on any
computer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets are available through Torch-Geometric, and the code is included
as supplementary material. It only uses open-source Python libraries.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All these details are mentioned in the setup paragraph of the experiments
(Sec. 5) and in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results in Tab. 1 are averaged over ten runs and reported with standard
deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: This is small-scale code, reproducible without specific computational re-
sources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our paper complies with the NeurIPS Code of Ethics. This is
mainly a theoretical paper, and the code uses only open-source Python libraries.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Given the theoretical nature of our work, we do not expect any direct societal
impact. Future work on the scalability of graph coarsening algorithm may raise these
questions, but this is beyond the scope of this paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not present such models.

24

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers for Cora and Citeseer are cited. Further details on these
datasets are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

25

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Characterizing graph coarsening with the lifting matrix
	Expanding the space of reduction matrices
	From classical to novel reduction matrices: a comparative study
	Experiments
	Conclusion
	Useful property and definitions
	Proofs
	Consistency Lem. 2
	Proof of Lemma Moore Penrose inverse
	Proof PLoukas generalized reflexive inverse
	Proof of Coarsen-lift operator projection Lem. 3
	Proof of Reflexive generalized inverse Lem. 4
	Proof of Generalized inverse Characterization Lem. 5
	Proof of Generalized reflexive inverse of same support Lem. 6

	Presentation of datasets
	Random Geometric graphs
	Convergence of optimization algorithm
	Parameters for P*g
	Parameters for P*g, l1
	Parameters for P*Q

	Adaptation of Loukas Algorithm
	Experiments hyperparameters
	Hyperparameters for Tab. 1
	Sparsity of the reduction matrices for Tab. 1

