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Abstract

Continual learning with parameter-efficient methods like LoRA prevents catas-
trophic forgetting but sacrifices cross-task knowledge transfer by freezing previous
adapters. We recognize this mirrors quantum mechanics: how can multiple states
coexist and interact? Qu-LoRA models task-specific LoORA adapters as quan-
tum states in superposition, translating three quantum principles into concrete
mechanisms: (1) superposition enables task coexistence through phase-controlled
interference; (2) entanglement determines gradient sharing between related tasks
while protecting unrelated ones; (3) measurement collapse eliminates task identity
requirements, where inputs naturally select relevant knowledge through interference
patterns. Unlike frozen approaches, Qu-LoRA achieves the impossible: previous
tasks improve from subsequent learning while reducing forgetting by 75%. Experi-
ments demonstrate superior performance across benchmarks, establishing quantum
mechanics as a powerful CL framework.

1 Introduction

Continual learning (CL) remains one of the fundamental challenges in deep learning, expecting models
to sequentially acquire new knowledge while preserving previously learned capabilities. It becomes
particularly critical when adapting large-scale pre-trained models, where we must preserve both the
rich representations learned during pretraining and task-specific knowledge acquired sequentially.
Despite significant progress, existing approaches face a fundamental trade-off; they either freeze
parameters to prevent forgetting, but sacrifice plasticity [20, (15} [14} [13]], or allow parameter updates
that risk catastrophic interference [6}|19]]. Recent advances in parameter-efficient fine-tuning (PEFT),
particularly Low-Rank Adaptation (LoRA) [4]], have shown promise for CL on pre-trained models
by isolating task-specific knowledge in small adapter modules while keeping pre-trained weights
frozen. However, current LoRA-based CL methods universally adopt the freezing paradigm, once a
task is learned, its adapters become immutable. Although freezing effectively prevents catastrophic
forgetting, this comes with significant limitations: early tasks remain stuck with potentially suboptimal
solutions, related tasks cannot mutually reinforce each other’s learning, and valuable insights from
later tasks can never improve earlier ones [8, [18]. For instance, learning about “trucks" in Task 5
could refine Task 1’s “cars"” classifier, but frozen adapters make this impossible.

The core challenge of CL is that frozen adapters prevent catastrophic forgetting but cannot improve
from future tasks, while unfrozen adapters enable improvement but suffer forgetting. We need
frameworks where tasks can selectively share knowledge without requiring explicit task identity
during inference. We present Quantum-inspired Low-Rank Adaptation (Qu-LoRA), the first CL
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Figure 1: Our Qu-LoRA framework leverages three quantum-inspired mechanisms. (A). Quantum
superposition allows task adapters to coexist with complex amplitudes and phases. (B). Quantum
entanglement determines task relationships and controls gradient flow between adapters. (C). During
inference, quantum measurement collapse naturally selects relevant knowledge through interference
patterns without requiring task identity.
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framework enabling non-frozen LoRA adapters. Drawing from quantum mechanics, where states
exist in superposition, become entangled, and collapse upon measurement. We implement three
mechanisms: (1) Quantum superposition: representing each task adapter as a quantum state with
learned amplitudes and phases, enabling coexistence through interference patterns; (2) Quantum
entanglement: determining task relationships via phase assignment algorithms based on feature
distribution similarity, allowing related tasks to share beneficial gradient updates while isolating
unrelated ones; (3) Schrodinger’s cat-inspired [5] inference: the model maintains superposition of all
task states until prediction triggers natural collapse to the most relevant knowledge, eliminating the
need for explicit task identity.

Our approach represents a paradigm shift from traditional CL methods. While regularization-based,
replay-based [[11]], and architecture-based [17]] approaches fundamentally assume that protecting
old knowledge requires restricting parameter updates, and prompt-based methods [13] isolate tasks
through separate tokens, Qu-LoRA demonstrates that all parameters can remain adaptable while
maintaining stability. The quantum framework provides not just inspiration but a complete practical
toolkit. Our main contributions include:

e We introduce the first LoRA-based CL framework that never freezes adapters, solving a fundamental
limitation where early tasks cannot benefit from later learning. Our quantum-inspired approach
enables backward knowledge transfer while preventing catastrophic forgetting.

e We develop a controlled gradient flow mechanism guided by quantum entanglement that allows
only beneficial updates between related tasks. This enables mutual improvement while protecting
unrelated tasks from interference, reducing forgetting by 75% compared to frozen baselines.

e We eliminate task identity requirements through quantum superposition inference, where all task
knowledge remains simultaneously accessible with phase-based interference: related tasks reinforce
each other through constructive interference while unrelated tasks actively cancel through destructive
interference until measurement collapse naturally selects the relevant adaptation.

e Our proposed method achieves superior performance across multiple benchmarks: 91.17% on
Split CIFAR-100 [[7], 79.87% on Split ImageNet-R [3] with up to 75% reduction in forgetting versus
frozen baselines and maintains high performance.



2 Methodology

Quantum mechanics offers a different perspective by providing theoretical foundations to control
interaction precisely rather than preventing it. We translate three quantum principles into neural
network operations. Task parameters become quantum states with complex amplitudes, enabling
controlled interference through phase relationships. Statistical task similarity becomes quantum
entanglement, determining gradient flow between tasks. Input features act as measurement operators
that collapse the superposition, where learned phases cause related tasks to reinforce while unrelated
tasks cancel out.

It enables Qu-LoRA to achieve what existing methods cannot: backward knowledge transfer without
catastrophic forgetting through non-frozen adapters.

Quantum Superposition: Task Coexistence Each task’s LoRA adaptation exists as a quantum
state in superposition with others:
n—1
) = 3 et
i=0

where «; controls task contribution strength and ¢; determines interference patterns. Unlike classical
averaging where all tasks contribute positively, the phase term cos(¢;) enables both constructive and
destructive interference, allowing multiple non-frozen adapters to coexist without conflict.

() ey

Quantum Entanglement: Selective Knowledge Transfer We measure task relationships through
multi-order statistical similarity (mean alignment, covariance correlation, and distributional distance)
to compute entanglement scores F;;. Highly entangled tasks receive similar phases for mutual
reinforcement, while independent tasks receive opposite phases for isolation. Related tasks share
beneficial updates through positive interference coefficients, while unrelated tasks remain protected
through negative interference. This controlled gradient mechanism enables backward knowledge
transfer, where early tasks improve from later learning.

Schrodinger’s Cat Inference: Task-Free Prediction During inference, the model maintains all
tasks in superposition until the input “measures"” the system:

n—1
y = a;cos(¢;)o(ci) fi(x) 2
=0

The interference term cos(¢;) naturally selects relevant knowledge: related tasks reinforce (positive
cosine), unrelated tasks cancel (negative cosine). This eliminates the need for explicit task identity,
where the input itself causes the superposition to collapse to the appropriate knowledge through
quantum interference (More detail can be found in Appendix).

Qu-LoRA is the first LoRA-based CL framework with permanently non-frozen adapters, achiev-
ing backward knowledge transfer without catastrophic forgetting. It attains 91.17% on Split CIFAR-
100, 79.87% on Split ImageNet-R, with a 75% reduction in forgetting compared to frozen baselines,
while requiring no task identification during deployment.

3 Experiments

We train and evaluate Qu-LoRA on multiple challenging CL benchmarks following the class-
incremental setting: Split CIFAR-100 (100 classes) and Split ImageNet-R (200 classes of artistic
renditions) to test multi-domain CL.

As detailed in Tab[I] we systematically compared Qu-LoRA with representative methods from four
CL paradigms based on regularization, prompt, adapter, and LoRA, respectively. All methods use the
same ViT-B/16 backbone with ImageNet-21K pre-training [[1].

Following standard evaluation protocols in CL, we adopt three key metrics for comprehensive
assessment. Final Average Accuracy (FA) measures the model’s overall performance across all tasks
upon completion of training. Cumulative Average Accuracy (CA) tracks the evolution of performance
by computing the running average throughout the learning sequence. Average Forgetting Measure



Table 1: Overall performance comparison on Split CIFAR-100 and Split ImageNet-R in 10 incre-
mental tasks. We present Final Average Accuracy (FA%), Cumulative Average Accuracy (CA%),
and Average Forgetting Measure (FM%) of all methods under different CL methods on the same
pre-trained model (ViT-B/16-IN21K).

Split CIFAR-100 Split ImageNet-R

Method Category Method
FA (1) CA(D) FM(}) FA (1) CA(D) FM(})

Fine-tune 34.17+£7.55 37.51+£820 5837+£9.63 31.71+£6.77 36.69+8.37 60.51 +13.51
Regularization EWC [6] 86.01+1.86 89.42+1.71 4.57+£0.56 70.31+£1.17 75.80+£0.52 5.7241.40
Prompt-based L2P [13] 80.71+1.47 86.61+091 6.29+£1.17 65.61+£0.75 69.28+0.81 827+1.72
P HiDe-Prompt [13]  89.55+0.28 91.61+£0.21 2.01+£0.28 72.31+0.21 74.174+0.15 5.36+0.27
Adapter-based SEMA ([12] 85.17+0.35 88.25+0.44 246+£051 7856+0.33 79.95+£048 6.7740.58
P EASE [20] 88.324+0.51 92.16+0.21 1.94+£0.27 7526+1.01 7857+0.45 4.98+0.81
InfLoRA [8] 82.17+0.49 86.88+0.72 3.56+£0.36 7244+0.74 73.60+0.83 7.154+0.72
LoRA-based SD-LoRA 87.16+£1.92 89.94+0.69 1.69+1.98 77.48+£0.68 79.73+£1.07 5.36=%0.67
CL-LoRA [2] 87.31+£0.18 90.22+0.16 1.96+£0.13 7584+029 77.844+0.96 5.96+0.78
Ours 91.17 £0.09 93.00 +£0.31 1174024 79.87+£027 81.95+046 3.10+0.39

Figure 2: Qu-LoRA performance analysis on CIFAR-100. (A) Effect of gradient flow parameter p on
FA and FM; (B) Task-wise accuracy heatmap where each cell represents the final accuracy of all tasks
with corresponding p, with diagonal values showing immediate task performance and off-diagonal
values revealing knowledge retention; (C) Per-task forgetting comparison between different p. The
controlled gradient flow (p = 0.5) achieves lower forgetting than frozen adapters (p = 0).
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(FM) quantifies the extent of knowledge degradation on previous tasks. Among them, we prioritize
FA and CA as they provide the most holistic view of CL performance, capturing both final capabilities
and learning dynamics throughout the training process.

Performance on Benchmark Datasets. In Tab[I] we demonstrate Qu-LoRA’s effectiveness by
achieving 91.17% FA with 1.17% average forgetting on Split CIFAR-100, outperforming HiDe-
Prompt. On ImageNet-R, Qu-LoRA reaches 79.87% FA with 3.10% FM. We observe significantly
improved knowledge retention through controlled gradient flow, with Qu-LoRA showing only 1.17%
average forgetting compared to 4.65% for frozen LoRA baselines.

Gradient Flow Analysis: Fig[J]A reveals optimal gradient flow at p = 0.5, achieving 91.17%
accuracy with only 1.17% forgetting on CIFAR-100, a 75% reduction from frozen adapters (4.65%).
This validates our core hypothesis: controlled gradient flow enables positive backward transfer. In
Fig[2]B, the task-wise heatmap shows Qu-LoRA maintains >85% performance across all task pairs,
unlike traditional methods with degrading off-diagonal values. Remarkably, in Fig[2]C, several tasks
exhibit minimal forgetting, with significantly reduced performance degradation compared to frozen
architectures. This demonstrates that controlled gradient flow dramatically reduces forgetting while
maintaining strong performance across all tasks.

4 Conclusion

We presented Qu-LoRA, the first CL framework that enables non-frozen LoRA adapters through
quantum-inspired mechanisms, achieving backward knowledge transfer without catastrophic forget-
ting. Our quantum framework fundamentally shifts the CL paradigm from isolation to controlled
interaction, opening new possibilities for adaptive learning systems that continuously improve across
all tasks.
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A More details for Methology

Our Qu-LoRA enables non-frozen adapters through quantum mechanical principles. To achieve this,
we must solve three major technical challenges. First, how can multiple task parameters coexist
without destructive interference? Second, how do we determine which tasks should share gradients
and by how much? Third, how can the model leverage all learned knowledge during inference when
task identity are unknown and asking “which task is this?" is analogous to ask whether Schrodinger’s
cat is alive or dead before opening the box?

Traditional solutions use isolated modules, frozen parameters, or explicit routing. Quantum mechanics
offers a different perspective by providing theoretical foundations to control interaction precisely
rather than preventing it. We translate three quantum principles into neural network operations. Task
parameters become quantum states with complex amplitudes, enabling controlled interference through
phase relationships. Statistical task similarity becomes quantum entanglement, determining gradient
flow between tasks. Input features act as measurement operators that collapse the superposition,
where learned phases cause related tasks to reinforce while unrelated tasks cancel out.

It enables Qu-LoRA to achieve what existing methods cannot: backward knowledge transfer without
catastrophic forgetting through non-frozen adapters.

A.1 Quantum Superposition: Enabling Task Coexistence

To enable non-frozen adapters without destructive interference, we model each task’s knowledge
as a quantum state that can exist in superposition with others. For a pre-trained model with frozen
weights Wy € R%** where d is the output dimension and k is the input dimension, each task 4 learns
low-rank adaptation matrices A; € R4*" and B; € R™** with rank r < min(d, k). The weight
update for task i is AW,; = A; B; for W; = Wy + AW,.

We encode each task’s adaptation as a normalized quantum state |;) = vec(A;B;)/||vec(A;B;)|],
where vec(-) : R¥** — R denotes vectorization that stacks columns into a single vector. The
normalization ensures unit norm for quantum state representation (formal Hilbert space construction
in Suppl. Mat.)

The complete system exists in a quantum superposition:
n—1

) = 3 e
i=0

Here, n denotes the total number of tasks learned so far, and ¢ = v/—1 is the imaginary unit. The
complex amplitude ov;e® consists of two components: a; € R is a learnable amplitude controlling
task ¢’s contribution strength (larger «; means greater influence during inference), and ¢; € [0, 27)
is the quantum phase determining interference patterns with other tasks. The imaginary unit ¢ is
essential for quantum superposition as it enables complex-valued states that can exhibit interference,
when we extract the real part via cos(¢;), tasks can constructively reinforce (positive values) or
destructively cancel (negative values) based on their phase relationships. The amplitudes satisfy Born
rule normalization Z?:_Ol |ovi|? = 1, ensuring probabilistic interpretation where |c;|? represents the
probability of observing task 7 upon measurement (Detailed proof in Suppl. Mat.).

;). 3)

Theorem 1 (Quantum Superposition in Parameter Space) During training and forward propa-
gation, we do NOT collapse this superposition. The system evolves according to quantum mechanics,
maintaining all tasks in coherent superposition. The observable quantities are computed through
quantum expectation values:

(AW) = (T|W|). )

Only during inference does measurement collapse occur:
n—1
y=Y_ ae?o(c) i) fi(x), 5
i=0

where the input x acts as measurement operator, causing the superposition to collapse based on the
quantum mechanical overlap (z|y;).



The key innovation is the phase-dependent interference term cos(¢;). Unlike classical parameter
averaging AWejassicalt = Z?;Ol |cs|(A; B;) where all tasks contribute positively with probability
weights |a;|2, our quantum formulation uses amplitudes cv; and allows both constructive and destruc-
tive interference. When two tasks have similar phases such that ¢; ~ ¢;, then cos(¢;) ~ cos(¢;) and
both contribute positively, reinforcing each other. When phases differ by 7 such that ¢; ~ ¢; + 7,
then cos(¢;) ~ — cos(¢;) and they cancel out. This is essential for multiple non-frozen adapters to
coexist.

The quantum parameters evolve during training as follows. Amplitudes «; are optimized to maximize
task performance on validation data through gradient ascent: c; <— ; + 14 Vo, Lva Where Ly, is the
validation loss and 7, is the learning rate. Phases ¢; are determined by the entanglement structure as
described in later Eq.. The coherence gates o (c;) are learned through standard backpropagation
to balance quantum coherence with training stability.

To maintain tasks in quantum superposition and enable proper interference, we introduce the coher-
ence preservation regularization:

n—1

Lecoherence = Ac Z(l - U(Ci))za (6)

=0

where A, is the regularization strength. This penalizes low coherence values, forces o(c¢;) ~ 1,
so previous tasks remain in superposition and can interfere quantum-mechanically during both
training and inference. Without this regularization, tasks would collapse to classical states, losing the
interference capabilities essential for selective knowledge sharing.

A.2 Quantum Entanglement: Enabling Backward Knowledge Transfer with Non-Frozen
Adapters

All existing LoRA-based CL methods freeze adapters because unrestricted gradient flow causes
catastrophic forgetting, which previous tasks’ knowledge gets overwritten when learning new tasks [6l
9]. To enable backward knowledge transfer where early tasks can benefit from later learning, we need
a principled way to control which tasks share gradients and how much.

Quantum entanglement provides the theoretical framework for solving this dilemma. In which
entangled particles can share information instantaneously while maintaining their individual quantum
states. This principle maps perfectly to our challenge: we need tasks to share beneficial knowledge
while protecting individual learned representations.

Connection to Quantum Superposition. In previous section, we established that tasks exist in
superposition with complex amplitudes a;e*®:. However, superposition alone doesn’t determine
which tasks should interfere constructively or destructively, this is where entanglement becomes
crucial. Entanglement determines the phase relationships: highly entangled tasks receive similar
phases for constructive interference, while independent tasks receive opposite phases for destructive
interference. This creates a complete quantum system where superposition enables coexistence and
entanglement controls interactions.

Multi-Order Task Entanglement. While quantum entanglement is traditionally measured through
correlated measurement outcomes, we adapt this concept to neural networks by measuring statistical
correlations in feature space. This parallels quantum optics, where first-order coherence functions
measure field correlations (analogous to our mean feature alignment), while higher-order coherence
functions reveal intensity correlations and quantum statistics (analogous to our covariance and
distributional measures) [[LO]. Just as distinguishing between thermal, coherent, and non-classical
light requires multiple coherence orders, identifying truly entangled tasks requires multi-order
statistical analysis:

First-Order Entanglement (Mean Feature Alignment) captures whether tasks recognize similar high-
level patterns:

1 (pris ptj) ]
Flu, ) = = 14—kl | 7
(ki ) 2[ Taall Tl @



where 11; € R? is the average feature vector at the penultimate layer for task 7. When F'(u;, wi) =~ 1,
tasks process similar semantic information (e.g.,“cats" and “dogs" both activate animal-related
features).

Second-Order Entanglement (Correlated Feature Variation) measures whether tasks vary along
similar feature dimensions:

S(5:,%5) = {H (vee(Sy), vee(S,)) ] N

1
2 [lvee(Za)|l - [lvec(X;)]|

where ¥; € R4 s the covariance matrix. This captures whether tasks not only have similar means
but also similar variation patterns, which is crucial for identifying truly related tasks.

Higher-Order Entanglement (Overall Distributional Similarity) captures complete statistical relation-
ships using symmetrized KL divergence for distributional differences:

im Dgr(pillpj) + Drr(pjlipi
R ©
The multi-order entanglement score aggregates these measures:
1 sim
Eij = F(pi, 1) + 5(Z, 25) + DiL (il lps)]- (10)

Entanglement Controls Phase Assignment. The entanglement score directly determines phase
relationships in our quantum superposition. High entanglement indicates tasks share similar feature
statistics across all orders, they recognize similar patterns, vary along similar dimensions, and have
similar distributions. Low entanglement means tasks operate on entirely different feature spaces with
minimal statistical overlap. During phase assignment, we ensure:

If F;; ~ 1 (highly entangled) = ¢; =~ ¢;. (11)
If E;; =~ 0 (independent) = ¢; ~ ¢; + . (12)

This creates a coherent quantum system where entanglement determines how tasks interact in
superposition.

Quantum-Controlled Gradient Flow. The entanglement score not only determines phases but
also controls gradient flow, implementing selective information sharing. During training of task n,
the forward pass incorporates previous tasks based on entanglement:

n—1

Yn(®) = fu(@) + Y ain(Ein) fi(2). (13)
1=0

The interference coefficient a;p, (Ei) = 8 - tanh(k(Ej, — Tent)) - Ein creates positive interference
(ain > 0) for entangled tasks, enabling knowledge sharing, and negative interference (o, < 0) for
independent tasks, preventing harmful transfer.

During backpropagation, this same entanglement controls gradient flow:
oL oL Of;
o4, ~ oy, CmBm)re g

(14)

The complete quantum picture: tasks exist in superposition, entanglement determines their relation-
ships and phase assignments, and measurement collapse selects relevant knowledge during inference).
This creates a unified quantum framework where each component plays a specific role.

Quantum-Inspired Protection Against Forgetting. To ensure stability while allowing gradient
flow to non-frozen adapters, we introduce regularization terms inspired by quantum mechanics:

o Quantum Zeno Effect protects stable parameters from drift:

n—1
Lreno =2 Y alci)]|6: — 0" V|3, (15)
=0



where protection strength is proportional to coherence o(c;).

o Entanglement Maintenance preserves discovered task relationships:
n—1ln—1
|4:B; — A;B; |13
= A 16
s =0 2 2 P | 4 B T4, B, 1o
i

o Uncertainty-Inspired Gradient Bounding limits update magnitudes:

(n)
Emeasurement - Z ReLU < ‘9 || ||V497 ‘Ctask| > . (17)

Through quantum entanglement, we achieve what existing methods cannot: selective knowledge
sharing between related tasks while protecting unrelated ones, enabling true backward transfer
without catastrophic forgetting.

A.3 Quantum Measurement Collapse: Task-Free Inference Through Interference

While existing methods achieve task-free inference through discrete selection mechanisms (prompt
matching, learned routers, or weighted combinations), they cannot actively suppress irrelevant
knowledge as all components contribute positively. Our quantum measurement collapse enables a
fundamentally different mechanism: true interference-based selection where related tasks reinforce
each other while unrelated tasks actively cancel out, eliminating the need for any task identification.

This mirrors Schrodinger’s cat principle in quantum mechanics where the system exists in superposi-
tion of all possible states until measurement causes collapse to a definite outcome. Similarly, our
model maintains all task knowledge in quantum superposition until the input “measures” the system,
causing natural collapse through interference patterns rather than explicit selection.

Phase Assignment for Interference Control. The power of quantum interference lies in phase
relationships. Before training each task n, we assign quantum phases that determine how tasks will
interfere during inference:

n—1 2

(]52(- " = argmlnz (cos o — ¢ ) —cos(m(1 — Eij))) . (18)

=0

This optimization ensures highly entangled tasks (large E;;) receive similar phases for constructive
interference. When F;; ~ 1, the target becomes cos(¢—¢;) ~ 1, achieved when ¢ ~ ¢;. Conversely,
independent tasks (small £;;) receive opposite phases for destructive interference. When F;; =~ 0,
the target becomes cos(¢ — ¢;) ~ —1, achieved when ¢ ~ ¢; + 7. The phases remain fixed during
training task ¢, ensuring stable quantum dynamics.

Quantum Superposition Inference. During inference, we eliminate task identity requirements
through quantum superposition:

Theorem 2 (Schrodinger’s Cat Principle) During inference without task identity, the model exists
in quantum superposition of all n learned task states, analogous to Schrodinger’s cat being simulta-
neously alive and dead until observed. For any input x, all task adapters remain active in coherent
superposition until the prediction “measurement” causes the system to naturally collapse to relevant
task knowledge:

y = Real Zae o(ci)(xli) fil) (19)

= Z a; cos(¢; o (c;) fi(x), (20

where the measurement process extracts the real part of the quantum amplitude since e** = cos(¢) +
vsin(¢) and we take only the real component.



The key distinction from existing methods lies in the interference term cos(qbl(-”)). Consider an input

belonging to a “cats" task. Related tasks such as “dogs" have similar phases, so cos(@dogs) > 0
contributes positively. Unrelated tasks such as “cars" have opposite phases, so cos(Peus) < 0
contributes negatively. These negative contributions actively cancel irrelevant knowledge.

This is fundamentally different from methods like SD-LoRA that use y = >_ «a; fi(z) where all
o; > 0, or prompt-based methods that select discrete components. Our approach implements true
quantum measurement collapse where the input characteristics naturally cause the superposition to
collapse toward relevant knowledge through constructive and destructive interference. This enables
active suppression of irrelevant tasks (impossible with positive-only weights), automatic blending
for ambiguous inputs, and seamless scalability as new tasks simply add terms to the superposition.
Our experiments validate this: Qu-LoRA achieves only 3.19% gap from oracle performance while
requiring no task identification, making it genuinely practical for real-world deployment.
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