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Abstract

Generalization in Reinforcement Learning (RL) is usually measured accord-
ing to concepts from supervised learning. Unlike a supervised learning model
however, an RL agent must generalize across states, actions and observations
from limited reward-based feedback. We propose to measure an RL agent’s
capacity to generalize by evaluating it in a contextual decision process that
combines a tabular environment with observations from a supervised learn-
ing dataset. The resulting environment, while simple, necessitates function
approximation for state abstraction and provides ground-truth labels for
optimal policies and value functions. The ground truth labels provided
by our environment enable us to characterize generalization in RL across
different axes: state-space, observation-space and action-space. Putting this
method to work, we combine the MNIST dataset with various gridworld
environments to rigorously evaluate generalization of DQN and QR-DQN
in state, observation and action spaces for both online and offline learning.
Contrary to previous reports about common regularization methods, we
find that dropout does not improve observation generalization. We find,
however, that dropout improves action generalization. Our results also
corroborate recent findings that QR-DQN is able to generalize to new ob-
servations better than DQN in the offline setting. This success does not
extend to state generalization, where DQN is able to generalize better than
QR-DQN. These findings demonstrate the need for careful consideration of
generalization in RL, and we hope that this line of research will continue to
shed light on generalization claims in the literature.

1 Generalization in Reinforcement Learning

A Reinforcement Learning (RL) agent perpetually finds itself in novel states of an environment.
To act intelligently, the agent must generalize its previous experience to new situations.
Function approximation helps distill this previous experience into the agent’s learnable
parameters, which allows previous experience to be leveraged with new state inputs (Boyan
and Moore, 1994; Sutton, 1995). While there is a growing literature of new methods for
improving generalization of deep RL algorithms, principled and quantitative methods for
evaluating generalization remain lacking. This is due in part to the complexity of the MDP
problem formulation and the difficulty of disentangling generalization from the performance
of RL algorithms in terms of achieving higher expected cumulative reward, i.e. return.

One common notion of generalization in RL evaluates an agent’s capabilities by checking
if it can achieve similar performance in an environment that is similar to, but not exactly
the same as, the environment in which it was trained (Whiteson et al., 2011). This can
be accomplished through randomization, i.e. by randomizing the parameters underlying
the environment, such as wind velocity in helicopter hovering or the mass of objects in a
simulator, thereby changing the transition dynamics (Peng et al., 2017). Generalization in
this sense draws parallels to supervised learning, where classifiers are often trained on a fixed
dataset, and evaluated on a separate testing dataset under the I.I.D. assumption. The agent
is said to generalize well if the difference between training error and testing error is small.
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While these supervised learning concepts are relevant to RL, there are two problems with
taking a cross-environment approach to evaluating RL generalization. First, this paradigm
does not disentangle the various aspects of generalization that are required for an RL agent
to succeed in its task, whether it be the value estimates or the policy, and whether they
are robust to variations in states, observations or actions. This is the question of “what”
performance criterion should be measured when we discuss generalization. In RL, we have
function approximators for many quantities: state-transition, reward, state-value, action-
value and policy. While generalization of state-value is similar to regression, generalization
with quantities related to action, such as policy or action-value, do not have supervised
learning analoguesand hence require

:
.
::::
This

::
is
:::::::
because

:::::::
policies

::::
and

::::::::::::
action-values

::::
have

::
as

::::::
many

:::::::
outputs

::
as

::::::::
actions,

::::
and

::::
only

::::
the

::::::
action

:::::
taken

:::
by

::::
the

:::::
agent

::
is
:::::::::
updated,

::::::
which

::::::::::
necessitates

separate consideration.

Second, the paradigm follows practice in supervised learning to impose a strict separation of
test and train environments. This practice effectively focuses on transfer performance across
environments but fails to evaluate the agent’s ability to generalize within a single environment.
I.e. it fails to answer the question of “how” to measure generalization under a performance
criterion. Unlike supervised learning, the agent’s state distribution changes during learning
because the policy changes. Even where we have randomly generated training and testing
sets of environments, the environments’ complex dynamics do not admit ground-truth labels
to determine optimal actions or values for comparison and evaluation. These environments
only allow an agent’s generalization capabilities to be measured in terms of Monte-Carlo
rollouts of the learned policy, leaving us restricted to the single performance criterion of
return and preventing us from specifically measuring important nuanced differences in the
agent’s ability to generalize. In addition, because the upper bound on return is unknown to
the researcher, informed judgments about the quality of the policy is very difficult to make.

Within the RL-oriented literature on generalization, there are two distinct categories
of research. The first proposes environments and methodologies for measuring RL gen-
eralization. Examples of this approach are ProcGen/CoinRun (Cobbe et al., 2020; ?)
:::::::::::::::::::::::
(Cobbe et al., 2020; 2019), randomized-reward CartPole (Zhang et al., 2018a), the Grid-
World maze (Zhang et al., 2018b), observation projection (?)

:::::::::::::::::
(Song et al., 2020) and the

hierarchy of state generalization (Witty et al., 2018). These efforts are aimed at the
second issue raised above, i.e. “how” generalization should be measured in RL. Un-
derlying these approaches is specifying how to split the environment into testing and
training scenarios. Early work by Zhang et al. (2018a) proposes using separate seeds.
This, however, does not ensure that the states encountered by the agent are truly
separate. Other works, such as those by Cobbe et al. (2020); ?); Elsayed et al. (2020)
:::::::::::::::::::::::::::::::::::::::::
Cobbe et al. (2020; 2019); Elsayed et al. (2020), procedurally generate separate environ-
ments for testing and training. When generalization is measured on truly separate testing
and training environments, we are able to determine whether an agent’s policy is generalizing
from one environment to another. Again, this formulation does not allow us to study
generalization within a single environment, nor does it allow us to measure generalization
of the value functions. The second category proposes or investigates RL methods that
improve generalization. These include regularization experiments in Atari (Farebrother
et al., 2018) and continuous control (?)

:::::::::::::::
(Liu et al., 2021), contrastive similarity embeddings

(Agarwal et al., 2021) and bisimulation metrics (?)
:::::::::::::::::
(Zhang et al., 2021). There is also the

hypothesis that better, and hence more generalizable, representations arise from auxiliary
tasks (?)

::::::::::::::::::::
(Jaderberg et al., 2017), which is also suspected to be the reason for the success

of distributional RL (?Bellemare et al., 2017)
:::::::::::::::::::::::::::::::::::::::
(Dabney et al., 2018; Bellemare et al., 2017)

and has recently been investigated in the offline setting (?).
:::::::::::::::::::
(Agarwal et al., 2020)

:
.
:

Previous work closest to ours is using Contextual Decision Processes (CDPs) as
::
To

::::::::::
understand

::::::::::::
generalization

:::
in

:::
RL,

:::
we

::::
use

:::
the

::::::::::
Contextual

::::::::
Decision

:::::::
Process

:::::::
(CDP)

::::::::::
framework,

:::::
which

::
is

:
a problem class for theoretical analysis of RL algorithms that use function approxi-

mation (Du et al., 2019; Jiang et al., 2017; Dann et al., 2018). The CDP problem formulation
renders the states unobservable, but allows the agent to view observations that contain enough
information to recover the state. This formulation enables the study of function approxima-
tion as applied to RL and has significant implications for RL in general. For example, it helps
to

:::::::::::::::
Du et al. (2019) show that there exist algorithms with exponentially more efficient explo-
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ration than Q-learning(Du et al., 2019), a result suggesting that RL algorithms should be
designed to take advantage of function approximation and its generalization abilities, rather
than naively extending tabular algorithms with function approximation. However, no existing
work has leveraged CDPs empirically, despite that it connects supervised learning with RL.
The MNIST gridworld

::
2D

:::::::
MNIST

::::::
maze environment used by ?

:::::::::::::::
Lee et al. (2019) may be

considered a CDP,
:::::
simple

::::::
CDP,

:::::
where

::::
the

:::::::::::
observations

::::
are

::::::::::::
deterministic

::::
and

:::::::::
equivalent

::
to

:::::
state, but is not recognized as such. The work by ?

::::::::::::::::
Song et al. (2020) proposed projecting

the state of simple control environment and varying this projection between training and
testing sets. These two works have similar goals to ours. However, the first work does not
investigate generalization and neither makes use of the ground-truth values to probe general-
ization rigorously, such as in the label-corruption experiment by (Zhang et al., 2017) that we
will extend to RL .

:::::
Our

::::
work

::
is
::::::::
uniquely

::::::::::
analogous

::
to

:::::::::::::
generalization

::
in

::::::::::
supervised

::::::::
learning,

:::::::::::::
simultaneously

:::::::::
answering

::::::
“how”

::::::::::::
generalization

::::::
should

:::
be

:::::::::
measured

::
in

:::
RL

::::
and

::::::
“what”

::::::
should

::
be

:::::::::
measured.

:::
In

:::::::::
answering

::::::
theses

::::
two

:::::::::
questions,

:::
we

:::::::::::
disentangle

::::::::::::
generalization

::::::
across

:::::
three

::::
axes:

:::::::
states,

::::::::::::
observations

::::
and

::::::::
actions.

::::::::
Finally,

::::
this

::::::::::::
disentangled

::::::::::
perspective

::::::
shows

:::::
how

:::::::
different

:::::::::::::
generalization

:::::::::::
mechanisms

:::::::
benefit

:::
the

::::::::
different

::::
axes

:::
of

::::::::::::
generalization.

2 A Problem Formulation For Evaluating Generalization in RL

To make generalization in RL concrete, we first make clear the Markov De-
cision Process (MDP) problem formulation that underpins task specification in
RL (?Lattimore and Szepesvári, 2020)

:::::::::::::::::::::::::::::::::::::::::
(White, 2017; Lattimore and Szepesvári, 2020). An

MDPM is defined by the tuple (S,A, r, T, µ0, γ), where A denotes the action space, S is the
state space, r : S×A → R is the reward function that maps a state and an action to a reward,
T : S ×A×S → [0, 1] is the state transition function, µ0 is the initial state distribution and
γ ∈ [0, 1] is the discount factor. A policy that interacts with the MDP is defined by a mapping
from states to a distribution over actions π : S → ∆(A), which includes deterministic policies
that concentrate the probability mass on a single action. The discounted state visitation
distribution for following the policy π, starting in state s0 and taking action a0, is defined as
dπs0,a0(s) = (1− γ)

∑∞
t=0 Pr (st = s | s0, a0, at+1 ∼ π, st+1 ∼ T (st, at)) (Agarwal et al., 2019).

If action a0 is not given, then we define dπs0(s) = Ea0∼π[ds0,a0(s)]. For any given policy, we
define the state-value and action-value functions as expectations over the discounted state
visitation distribution1,

vπ(s) =
1

1− γ
Es′∼dπs ,a′∼π [r(s′, a′)] , qπ(s, a) =

1

1− γ
Es′∼dπs,a,a′∼π [r(s′, a′)] . (1)

We denote the optimal policy that maximizes the expected cumulative reward (i.e. return)
by π∗ = arg maxπ Es∼µ0

[vπ(s)]. Lastly, we use the shorthand v∗(s) = vπ∗(s) and q∗(s, a) =
qπ∗(s, a) for the value of the optimal policy (Sutton and Barto, 2018).

2.1 The Current Paradigm: Generalization Across MDPs

Studying generalization in RL is challenging in part due to the MDP problem formulation.
As an agent interacts and learns in an environment, which is assumed to be an MDP, the
agent’s policy changes and it continuously visits new states. Due to the changing policy,
it is not possible to forbid an agent from entering a state that a practitioner would like
to use later for testing. To evaluate RL agents’ ability to generalize, one can instead use
a generalized environment E = (Θ, ρ) that provides a distribution ρ over a collection of
environments Θ = {Mi}Ni=1 (Whiteson et al., 2011). It is then the responsibility of the
environment designer to ensure that there is similarity among the environmentsMi such
that generalization is possible. Yet, the environments must also be different enough to
avoid inadvertently training on experience that is later tested. The state and action spaces,
for example, should not change between the environments. Lastly, one can think of the
distribution over environments ρ as a distribution over the distribution of start states µi for
eachMi.

1We use the continuing formulation in Equation 1 for ease of reading. The equation still holds
in the episodic setting by replacing the factor of 1

1−γ
by the expected length of the episode Eπ[T ]

(Bojun, 2020). In our experiments, we use the empirical distribution.

3



Under review as a conference paper at ICLR 2022

Even with generalized environments, such as procedurally generated games (Cobbe et al.,
2020), we are unable to probe the details of an agent’s generalization ability during learning.
By measuring only the Monte-Carlo return of the learned policy on an unseen environment
instance, we are restricting the evaluation criterion to on-policy control in this new environ-
ment instance. Even if we accept that this is the performance criterion that matters, we
can only evaluate the relative performance of the policy because we typically do not know
the optimal policy. Lastly, this evaluation protocol cannot evaluate the agent’s ability to
generalize in a single environment. Harnessing generalization within a single environment
is as important as transfer to new environments, and was the original goal for combining
reinforcement learning with function approximation (Sutton, 1995; Boyan and Moore, 1994;
Tesauro, 1995; Murphy, 2005).

2.2 Proposed Paradigm: Evaluating generalization using CDPs

The Contextual Decision Process (CDP) adds an observation space (also referred to as
context) O to the MDP, and renders the state-space unobservable to the agent (Jiang et al.,
2017). Observations are provided to the agent by an emission function φ : O × S → [0, 1]
that samples an observation o ∈ O at a state s ∈ S. The reward and state transitions are
still defined as functions of the unobservable states s ∈ S, and the agent is responsible for
learning how to map the observations to states. We write the set of observations associated
with a specific state s as Os = {o : φ−1(o) = s}, for some decoding function φ−1. In this
work, we assume that the observation space is disjoint: each state s ∈ S is associated with
a subset of the observations Os ⊂ O where Os ∩ Os′ = ∅ for s 6= s′. The disjoint property
ensures the existence of the decoding function φ−1 that maps each observation to a single
state. Recent literature introduced the term “Block MDP” to refer to a CDP with the disjoint
property (Du et al., 2019). The experiments in this paper only use Block MDPs, but this is
to focus on the generalization problem without introducing partial observability.

While CDPs have been the subject of theoretical study, no work has investigated its use as an
evaluation platform for studying generalization. To accomplish this, we outline how a CDP can
be combined with a supervised learning dataset to allow for generalization across observations.
To generate observations, we choose to use images from a supervised learning dataset. Given a
finite state MDP, we use a K-way classification dataset {(xi, yi)}ni=1, with xi ∈ Rd and labels
yi ∈ {1, . . . ,K}. If the total number of classes K is equal to the number of states |S| in the
MDP, then each state can be uniquely identified with a class label, yielding the observation
sets Os = {xi : yi = s}. If the states have structure, such as if each state is an xy-coordinate
in a gridworld environment s = (s(1), s(2)), then the emission function can concatenate
the images corresponding to each component, Os = {[xi, xj ] : yi = s(1), yj = s(2)}. Using
the provided training and testing split of supervised learning datasets, one can then use
training data during learning and testing data during evaluation. With this formulation,
generalization to new observations can be studied within a single environment. In the next
section, we discuss how to extend this idea to states and actions.

3 Characterizing Generalization in RL

With the CDP problem formulation, we can now reexamine the differences between gener-
alization in supervised learning and RL. In supervised learning, measuring generalization
requires a training distribution Dtrain, testing distribution Dtest and performance criterion
g which is low if the function approximator f is performant.

:::
The

::::::::
training

::::
and

::::::
testing

::::
set

::::
come

:::::
from

::::
the

:::::
same

::::::::::
population

::::::::::::
distribution,

::::
but

:::
we

:::::::::
maintain

::::
and

:::::::
sample

::::
from

::::::::
separate

:::::::
training

::::
and

::::
test

::::
sets

::::
and

::::::
denote

:::::
them

:::
by

:::::
their

::::
own

::::::::::::
distribution.

:
We say that a function

approximator f exhibits good generalization if the generalization gap,

GSL(f) = g(f,Dtest)− g(f,Dtrain) (2)

is small. When the training error can be minimized to zero, as in supervised learning
with over-parameterized neural networks, generalization can be characterized by the testing
performance alone. As discussed in Section 2.1, generalization in RL is often measured by
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the difference in value achieved by a policy π over a distribution2 of training instances ρtrain
and testing instances ρtest from a generalized environment E ,

GRL−MDP (π) = Es∼ρtrain [vπ(s)]− Es∼ρtest [vπ(s)] (3)

where the expectation and the value are both estimated using Monte-Carlo methods. Note
that a higher vπ is more performant, and so we flip the order in which test and train appear
in the gap so that G ≥ 0. While Equations 2 and 3 seem otherwise similar, they have a
number of differences. First, the performance criterion in RL has no ground-truth label
for comparison. An RL agent attempts to maximize the value, but the true optimal value
function v∗ is unknown in most environments used to study generalization. A randomly
initialized function will exhibit similarly poor performance during testing and training and
hence the generalization gap will be small. In supervised learning, we can detect that,
although the generalization gap is small, the error is high (or performance is low, in the case
of value or accuracy). Second, there is a difference in the distributions that are used in the
expectation. A supervised learning model learns to produce certain outputs, conditioned
on certain inputs. The model is then tested on held out inputs. An RL agent evaluated in
the current paradigm produces actions conditioned on states. However, it is then evaluated
on entire environments where it chooses actions and produces its own next states as input.
Lastly, there is a potential mismatch in the performance criterion. The value of the policy is
not the explicit objective being optimized by most reinforcement learning algorithms. This
is not an issue in supervised learning because the optimization objectives are calibrated
surrogates (Chen et al., 2019).

The two issues that we explicitly address is the discrepancy in the measuring distributions
and a lack of ground-truth labels. These two issues make operationalizing the supervised
learning notion of generalization difficult in RL. Using the CDP formulation from Section 2,
we are able to alleviate these two issues. First, we are able to sample from any distribution
over states, observations and actions, meaning that we do not have to explicitly rollout the
policy for evaluation. Second, we can use dynamic programming with the unobserved latent
states to recover the optimal value and policy, and use those as a comparison to the learned
value and policy. One question remains: what performance criterion should we use to test
an agent’s ability to generalize?

Re-examining the current paradigm for measuring generalization in RL, we see how the CDP
approach can help remedy the compromises made when learning in complex environments.
An RL agent’s task is to maximize return and hence, most RL research reports the returns
that an agent receives from interacting with the environment. Due to the the lack of ground-
truth labels, the performance criterion g is limited to the Monte-Carlo estimate of vπ. While
Monte-Carlo returns do demonstrate policy performance, it does not probe the agent in
its estimates of the actual values being learned, and is only one part of the generalization
puzzle. Given the optimal policy and action-values, an agent can be evaluated with more
acuity than Monte-Carlo returns. One possibility is to measure the accuracy of the policy,
where accuracy is given by the agreement of the learned policy with the true optimal action.
Another possibility is to measure the mean squared error between the learned action values
and the true optimal action values. While the optimal policy is defined as a function of
state, action-values can be evaluated on arbitrary actions. This means that even if an action
was not taken in a particular state, we can evaluate the agent’s estimate of that particular
action-value. Thus, we consider three types of generalization: state, observation, and action
generalization. To ease the notation, we define the joint training distribution over state,
observation and action, starting at state s0 as pπ,π

′

s0,tr(s, o, a) = dπs0,tr(s)φtr(o|s)π
′
tr(a|o), with

the testing distribution defined similarly. The second policy π′ is often the same as π, but
this second degree of freedom will be needed for action generalization. Using this shorthand,
we define the generalization gap of a function approximator f with respect to a performance
criterion g as,

GRL−CDP (f) = E
(s′,o′,a′)∼pπ,π

′
s,test

[g(s′, o′, a′, f)]− E
(s′,o′,a′)∼pπ,π

′
s,train

[g(s′, o′, a′, f)] . (4)

2As described in Section 2.1, ρ is a distribution over the distribution of start states for each
environment
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In the next two subsections, we will investigate each component of this joint distribution
and its connection to generalization across each of the three axes: state, observation and
action. We will also show examples of performance criteria g that can be minimized

::::::::
measured

::::::
during

:::::::
training, other than the scaled negative reward g(s′, o′, a′, π) = − 1

1−γ r(s
′, a′), that

may be of interest when studying generalization in RL using CDPs.
:::::
Other

:::::::
criteria

:::
are

::::::::
necessary

::::::::
because

:::
the

::::::
scaled

::::::::
negative

:::::::
reward,

::::::
which

::::::
defines

::::::
value

:::::
under

::
a
::::::::::
stationary

::::
state

:::::::::::
distribution,

::
is

:::::::::
trajectory

::::::::::
dependent

:::
and

::::::::
conflates

:::::::::::::
generalization

::::::
across

::::::
states,

:::::::::::
observations

:::
and

::::::::
actions.

3.1 Observation and State-space Generalization

Observation-space generalization is the most commonly explored notion of generalization
in RL (see, i.e. ?

::::::::::::::::
Song et al. (2020)). Given an observation o, sampled from the test

distribution φtest that the agent has not seen before, the agent is evaluated on quantities
related to that observation. In model-free algorithms that learn action-values parameterized
by θ, for example, an agent may be evaluated on the mean squared error of its value of
the greedy policy, gmse(o, s, a, θ) = (v(o; θ)− v∗(s))2. We focus on action-unconditional
quantities to separate observation-space generalization from action-space generalization
that we will discuss in the next section. Another example of an action unconditional
performance criterion is the accuracy of the greedy policy induced by q parameterized by θ,
gacc(o, s, a, θ) = 1(arg maxa q(o, a; θ) = π∗(s)) where 1 is the indicator function.

There is often no distinction between observations and states in the current RL literature
because, except in toy problems, the underlying MDP (and hence, the true Markovian state)
is not known. However, there are important differences. The state transition and reward
are functions of the state, hence generalization across states must necessarily generalize
to different state-transition and reward functions. For online algorithms, measuring state
generalization is not straightforward because the agent does not put weight on states outside
of its state visitation distribution dπs0(s). Expecting an agent to generalize to an arbitrary
state outside of this distribution is similar to the zero-shot generalization problem, and would
require a meta-learning approach. More reasonable would be to expect the agent to generalize
to states near the distribution dπs0(s). One way this can be achieved is if the observation
o′ ∼ φtest(·|s′) of a state that has not been encountered by the agent s′ ∼ dπs0,test shares
some structure with observations o ∼ φtr(·|s) of seen states s ∼ dπs0,test. Then, the function
approximator f can generalize to this new state via its observation space generalization.
It remains to construct an environment with naturally unreachable states, for which the
observation structure permits generalization, such as in certain gridworld setups (Witty
et al., 2018).

3.2 Action-space Generalization

Generalization to out-of-distribution actions is a less explored notion compared to observation
or state-space generalization. To evaluate action-space generalization, the agent sould

:::::
should

be evaluated on quantities related to actions that were not taken or that have low probability
under the current policy. In model-free algorithms that learn action-values parameterized by
θ for example, the agent can be evaluated on its estimate of the action-value for an action
a not ever taken by the agent in state s, and hence not taken in any of it’s observations
o ∈ Os, gact(s, o, a, θ) = (q(o, a; θ)− q∗(s, a))

2. One way this can be formalized is by setting
π′ to put all of its support on actions outside of the support of π. This setting is particularly
important for offline learning, where the π would be the behavior policy and π′ is the target
policy we are trying to learn.

Control is one of RL’s main differences from supervised learning, wherein the agent collects
the data that it uses to learn. We argue that action-space generalization is more important
than observation or state-space generalization because policies in RL tend to place non-zero
probability on all actions for exploration purposes. If the agent chooses to explore when
faced in an unknown situation, it must leverage its ability to generalize in action-space. It is
thus surprising that action-space generalization has seen limited investigation. The work of
Chandak et al. (2019); Dulac-Arnold et al. (2015) finds that learned action representations
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Figure 1: Observation generalization experiment after offline learning with uncorrupted
labels in the corridor MNIST CDP. Top: Train accuracy. Bottom: Difference between testing
and training accuracy. Left-Right: best agent, regularization and dropout rate respectively.

Figure 2: Observation generalization experiment after online learning with uncorrupted
labels in the corridor MNIST CDP. Top: Train accuracy. Bottom: Difference between testing
and training accuracy. Left-Right: best agent, regularization and dropout rate respectively.

are able to improve the policy’s performance in environments with large discrete action
spaces. While the authors claim that the learned representation improves performance, there
is no specific study of this finding. Furthermore, no work has explicitly measured an agent’s
ability to generalize to an unseen action.

4 Experiments

All of our experiments are conducted in a contextual decision process, where the observations
are derived from the MNIST dataset (LeCun et al., 2010) and the underlying MDP is
either a corridor environment or a four rooms gridworld (Sutton et al., 1999). See the
Appendix for details on each environment, including state, action and observation spaces.
:::
the

::::::::::::
experimental

::::::::
protocol,

:::
as

::::
well

::
as

::::
the

::::::::::::
environments.

:

While these two environments are relatively simple, they provide a thorough testbed for
probing different aspects of generalization for an RL agent. From the agent’s perspective,
the problem of mapping an observation to a state alone is challenging. Early in training,
each observation is unique and so the agent does not know if it is making progress until
it reaches the goal. Even after reaching the goal, it is not immediately clear how many
unique states were encountered in the trajectory. The agent must do this for each state, and
then learn that the

::::
learn

::::
the

::::::::
mapping

:::::
from

:::::::::::
observation

::
to

:::::::::::
action-value

::::
and

::::
the

::::
fact

:::::
that

action-values in these
::
at different observations are the same if the underlying state is the

same. Note that the optimal policy in the corridor environment is the classification policy.
However, the classification policy must be learned from a sparse reward signal

:::
that

::::::
occurs

::::
only

::
at

::::
the

:::
end

:::
of

:::
the

:::::::
episode. Taken together, the agent must generalize across different

states, observations and actions
::::
from

:::::::
limited

::::::::::
experience.
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:::
We

:::::
focus

::
on

:::::::::
off-policy

::::::::::
algorithms,

:::::::
namely

:::::
DQN

:::::::::::::::::
(Mnih et al., 2013)

::::
and

:::::::::::::::::
Quantile-Regression

:::::
DQN

:::::::::::::::::::
(Dabney et al., 2018),

::::::::
because

:::::
their

::::::
ability

:::
to

:::::
learn

::::
from

:::::::::
arbitrary

:::::
data

::::::::::
necessitates

:::::::::::::
generalization.

:::
Our goal for each experiment is to rigorously evaluate generaliza-

tion
:::::
across

:::::::
states,

::::::::::::
observations

:::::
and

::::::::
actions

:
in different RL training regimes

:
,
::::
and

::::
with

::::::::
different

::::::::::::::
generalization

:::::::::::
mechanisms. We can do this because the observations

can
::::::
states,

::::::::::::
observations

::::
and

::::::::
actions

::::
can

:::
all

::
be partitioned into training, validation

and testing sets . In addition to observation generalization, we also investigate
:
in

:::
our

::::::::::::
environment

:::::::
setup.

:::::
We

::::::::
identify

::::::
three

::::::::::::
mechanisms

:::::
that

:::::
have

:::::
been

::::::::
claimed

:::
to

:::::::
improve

:::::::::::
observation

:::::::::::::
generalization

:::
in

:::::
RL:

:::::::::
QR-DQN

::::::::::::::::::::
(Agarwal et al., 2020)

:
,
:::
as

:::::
well

::
as

::
L2

:::::::::::::
regularization

::::
and

:::::::
dropout

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Farebrother et al., 2018; Igl et al., 2019; Cobbe et al., 2019)

:
.
:::
We

:::::
begin

:::
by

:::::::::
rigorously

::::::::::
evaluating

:::::
these

::::::::
previous

::::::
claims

::
of

:::::::::::
observation

:::::::::::::
generalization.

:::
We

::::
then

::::::::::
investigate

:::
the

::::::
effects

::
of

:::::
these

::::::::::::
generalization

:::::::::::
mechanisms

:::
on action-generalization in the

corridor environment and
::
on

:
state-generalization in the four rooms environment. We focus on

off-policy algorithms, namely DQN (Mnih et al., 2013) and Quantile-Regression DQN (?),
because their ability to learn from arbitrary data necessitates generalization

::::
also

::::::::
introduce

::::::::
corrupted

::::::::
variants

::
of

:::::
these

:::::::::::::
environments,

::::::
where

:::
the

:::::
class

::::::
labels

::
in

::::
the

:::::::
dataset

:::
are

::::::::
shuffled,

::
to

::::
test

::::
the

:::::::
agent’s

::::::
ability

:::
to

:::::::::
memorize

::::
it’s

::::::::
training

:::::
input. We evaluate both off-policy

model-free algorithms
::
all

::::::::::::
combinations

::
of

:::
RL

:::::::::
algorithm

::::
and

:::::::::::::
generalization

::::::::::
mechanism

:
after

either online and offline training. In the online setting, the agent will interact with the
environment while updating its policy. The agent will be periodically evaluated against
ground-truth quantities pertaining to the environment and test set observations. In the
offline setting, the agent will learn from a logged set of experience in a replay buffer without
any direct interaction with the environment during learning. We also introduce corrupted
variants of these environments, where the class labels in the dataset are shuffled to test
the agent’s ability to memorize it’s training input. For all experiment in non-corrupted
environments, we experiment with L2 regularization and dropout, as they are common
regularization techniques in machine learning and some have reported that these techniques
improve generalization.

4.1 Observation generalization

To measure observation generalization, we train an agent using observations from the training
set and evaluate on a held out test-set. We only show the results for the corridor environment
here, but have additional experiments on four rooms in the Appendix. Referring to the
offline learning experiments depicted in Figure 1, we see that QR-DQN is able to generalize
better than DQN, as shown in its lower accuracy generalization gap. We also find that small
amounts of regularization indeed lowers the generalization gap, whereas dropout does not
improve observation generalization. In the online learning experiments, shown in Figure
2, QR-DQN and DQN both generalize to new observations similarly. Interestingly, the
generalization gap is overall larger in the online setting. We also find that setting the
regularization strength to 0.1 now inhibits learning. Small amounts of regularization still
improves generalization to new observations however. Lastly, we see that dropout hurts
learning in the offline setting.

Drawing inspiration from the work of Zhang et al. (2017), we also run an experiment where
the labels are randomized to see if DQN and QR-DQN have similar capacity to memorize
the data. Referring to

:::::
Figure

:
3, we find that DQN and QR-DQN (with a various number of

quantile heads) can easily memorize all the training experience in corridor. In the online
setting, larger QR-DQN agents begin to struggle to fit the training data. This difficulty
also extends to both the offline and online setting in four rooms, where the observations are
higher dimensional.

4.2 Action generalization

For action generalization, we focus on the corridor environment with offline learning from a
behaviour policy that systematically avoids a certain action in each state. We then measure
the action value estimate for the state-action pair that is never seen in the data and compare
it to the true action-value. Referring to Figure 4, we find QR-DQN is better able to generalize

8
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Figure 3: Corruption experiments where all MNIST labels are randomly reassigned to test
whether an agent can memorize its experience. Top Left: Corridor Offline. Top right:
Corridor online. Bottom Left: Four rooms offline. Bottom right: Four rooms online

Figure 4: Action generalization with offline learning from a policy that never takes action
a = s− 1 in state s > 1. Top: Average Training MSE for action-value q(s, s− 1). Bottom:
Difference between testing and training MSE. Left-Right: best agent, regularization and
dropout rate respectively.

9
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Figure 5: State generalization experiment after offline learning with uncorrupted labels in
the four rooms gridworld CDP. Top: Train accuracy. Bottom: Difference between testing
and training accuracy on wall states. Left-Right: best agent, regularization and dropout
rate respectively.

Figure 6: State generalization experiment after online learning with uncorrupted labels in
the four rooms gridworld CDP. Top: Train accuracy. Bottom: Difference between testing
and training accuracy on wall states. Left-Right: best agent, regularization and dropout
rate respectively.

to unseen actions. We also find that, contrasting to observation generalization, dropout now
improves action generalization whereas regularization does not.

4.3 State generalization

We use the four rooms environment to evaluate an agent’s ability to generalize to new states.
The interior walls of the four rooms environment share either an x or y coordinate with states
that the agent has encountered, and hence the student can leverage generalization between
observations to these new states. We evaluate the accuracy of the policy in these interior
wall states. Referring to Figure 5 and Figure 6 for offline and online training respectively,
we see similar trends. In both cases, DQN is able to generalize to the new states better
than QR-DQN. We also find that, despite a lower generalization gap in some setting, both
regularization and dropout hurt training accuracy. This means that, although the training
performance is more predictive of its testing performance, it’s overall testing performance is
lower.

4.4
:::::::::::
Discussion

:::
Our

::::::::
results

:::::
have

:::::::::
validated

:::::::::
previous

:::::::::
findings,

:::::::
namely

:::::::::::
QR-DQN’s

:::::::::::
superiority

:::
in

::::
the

:::::
offline

:::::::
regime

::::::::::::::::::::
(Agarwal et al., 2020)

:
,
::::
the

:::::::
benefit

::
of

::::::
small

::::::::
amounts

:::
of

:::
L2

:::::::::::::
regularization

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Farebrother et al., 2018; Igl et al., 2019; Cobbe et al., 2019)

:
.
:::
We

::::
also

::::::::
discover

:::
the

:::::::
nuanced

::::::
benefit

::
of

:::::::::
dropout,

::::::
which

::::::::
provides

::::::::::::
regularization

:::
in

:::
the

::::::::
outputs

:::::::::::::
(action-values)

::::
and

::::::
show

::::
that

::
it

:::::::
benefits

::::::::::::::::::::
action-generalization.

:::::
Our

::::::::
findings

::::
also

:::::
show

::::
that

:::::::::::
QR-DQN’s

:::::::
success

::
in

10
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::::::::::
observation

:::::::::::::
generalization

::::
does

::::
not

:::::::::
translate

::
to

:::::::
success

:::
in

:::::
state

:::::::::::::
generalization,

::::::
where

:::
the

:::::
mean

::::::::
estimate

::
of

:::::
DQN

::
is
::::::::
superior

::
to

::::::::
quantile

::::::::::
regression.

:

:::
Our

::::::::::::
experiments

:::::::
require

::::::::::
privileged

:::::::::::
information

::::::
about

::::
the

::::::
MDP

::::
and

::::
the

::::::
ability

:::
to

:::
do

:::::::
dynamic

:::::::::::::
programming

:::
on

:::::::::::
underlying

::::::
states,

:::::
and

::::::
cannot

::::
be

:::::::::
conducted

::::
on

:::::::::::
conventional

::::::::::::
environments.

:::::::
These

::::::::
insights,

::::::::
however,

:::::::
require

::::
our

::::::::::::
environment

:::::
setup

::::
and

:::::::
ground

:::::
truth

:::::::::
quantities,

::::
but

::
do

::::
not

::::
pose

::::
any

::::::::::
restriction

::
on

::::
the

:::
RL

::::::::::
algorithm.

::::
The

:::::::::
validation

:::
of

:::::::
previous

:::::::
findings

:::::::
suggest

::::
that

::::
the

:::::::::
contextual

::::::::
decision

:::::::
process

:::::::::::
environment

:::::::
studied

:::
in

::::
this

:::::
paper

:::
are

::::::::
reflective

::
of

::::::::::::
conventional

:::::::::::::
environments,

:::::
such

:::
as

:::::
Atari

::::
and

:::::::::
CoinRun.

:::::
The

:::::::::::::
generalization

::::::::
challenge

::::::
posed

:::
by

::::
our

::::::::::::
environments

::
is
:::::::
further

::::::::::
evidenced

::
by

::::
the

::::::::::
significant

:::::::::::
performance

:::::::::
differences

::::::::
between

:::::::
training

::::
and

::::::
testing

::::
(see

:::::::::::::
generalization

:::
gap

::::::
plots,

:::::::
bottom

:::
row

:::
of

::::::
Figures

:::
1-2,

::::
4-6)

::::::
across

::
all

::::::::::::
experiments.

:::
By

::::
first

:::::::::::::
demonstrating

::::
that

::::
our

::::::::::::
experimental

:::::
setup

:::::::
confirms

:::::
many

::::::::
previous

::::::::
findings,

:::
we

::::
are

:::
led

:::
to

:::::::
believe

:::::
that

:::
our

:::::
new

:::::::
findings

::::::
would

::::::::::
generalize

::
to

:::::::::::
conventional

::::::::::::
environments

:::
as

::::
well.

:

5 Conclusion

Generalization in RL is a multi-faceted issue that deserves rigorous empirical investigation.
To that end, we have presented a problem formulation using contextual decision processes
and supervised learning datasets that provides ground-truth labels for optimal policies and
values. Using

:::
that

::::::::::::
disentangles

:::::::::::::
generalization

::::::
across

::::::
states,

:::::::::::
observations

::::
and

:::::::
actions

:::
in

:
a

:::::
single

::::::::::::
environment.

:::
By

::::::::::
combining

:
various gridworld environments and the MNIST dataset,

we investigate generalization
:::::::
recover

::::::::::::
ground-truth

::::::
labels

:::
for

::::::::
optimal

:::::::
policies

::::
and

::::::
values

:::::::
through

::::::::
dynamic

:::::::::::::
programming

::::
and

::::::::::
investigate

:::::::::::::
generalization

::::::::::::
mechanisms

:
across states,

observations and actions. We validate previous claims regarding the effectiveness of L2
regularization and QR-DQN’s generalization ability in the offline setting, but find that QR-
DQN cannot generalize to states as well as DQN. We also refute claims, such as dropout’s
ability to improve observation generalization, but find that it improves action generalization.
These findings demonstrate the need for careful consideration

:::::::::
evaluation

:
of generalization

in RL, and we hope that this line of research will continue to shed light on generalization
claims in the literature.

:
,
::
as

:::::
well

::
as

::::
new

:::::::::::::
generalization

::::::::::::
mechanisms.
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A Appendix

A.1 Experiment Settings

Code to reproduce experiments is provided in the following an anonymized dropbox link:
https://www.dropbox.com/sh/ij7dvd4fr701ppe/AABf-JszLPe3AVlmaMBDsNyta?dl=0

Online Online Corrupted Offline Offline Corrupted Action Gen

Init Num Episodes 50 50 50 50 50
Init Policy Random Random Random Random Custom

Max Episode Length 100 100 10000 10000 10000
Max Num Episodes 300 300 100 100 100
Num Online Episodes 250 500 - - -

Num Grad Steps 1 (per env step) 1 (per env step) 10000 20000 20000
Target Update Freq 128 128 128 128 128

Activation Relu
:::::
ReLU Relu

:::::
ReLU

:
Relu

:::::
ReLU

:
Relu

:::::
ReLU

:
Relu

::::::
ReLU

Hidden Size 256 256 256 256 256
Num Layers 2 2 2 2 2
Optimizer ADAM

:::::
Adam

:
ADAM

::::::
Adam ADAM

:::::
Adam

:
ADAM

::::::
Adam ADAM

:::::
Adam

Batch Size 128 128 128 128 128
Gamma 0.99 0.99 0.99 0.99 0.99

Corruption Rate 0 1.0 0.0 1.0 0

Table 1: Shared Settings for both environments, but “Action Gen” is limited to the corridor
CDP. Each experiment’s hyperparameters are also shared between the two models and not
swept over. Custom Policy: Random except never take action A = S − 1 in state S > 1.

A.2 Environment Specification

The corridor environment has 10 states and 10 actions corresponding to the possible classifi-
cation decisions the policy can make in each state. The agent begins at the right-most state
of the corridor, with s = 1, and observes a handwritten 0 digit from the MNIST dataset. The
agent must correctly classify the digit to move up to the next state. For all states, the action
a = s sends the agent up a state s′ = s+ 1. For a state S > 1, the action a = 10− s+ 1 sends
the agent down a state s′ = s− 1. All other actions keep the agent in the same state, but
with a new observation. The reward for all transitions are −1 and the episode terminates
when action a = 10 is taken in s = 10. The four rooms environment has four actions for
each of the cardinal directions and the observation is a concatenated images corresponding
to the class labels for each of the x and y coordinate. If the agent tries to move into a wall,
it will stay in its current state with a new observation. Lastly, the rewards are initialized
randomly (with a fixed seed) to ensure that the optimal action in each state is unique.

0 841 2 3 5 6 7 9 T

Figure 7:
:::
An

::::::::::
illustration

::
of

::::
the

:::::::
MNIST

::::::::
Corridor

:::::::::::::
environment.

:::::
Each

:::::
state

::
is

:::::::
labeled

:::
by

:
a

:::::::
number,

:::
its

::::::
index,

::::
and

:::::::::::
observations

:::::
from

:::::::
MNIST

::::
are

:::::::
sampled

:::::::::
according

:::
to

::::
this

:::::
state.

::::
The

:::::
initial

:::::
state

::
is

:::::
state

::
0,

::::
and

:::
the

::::::
agent

::
is

:::::
given

:
a
:::::::::
randomly

::::::::
sampled

:::::::::::
observation

::::
from

::::::::
MNIST

::::::::::::
corresponding

:::
to

:::
the

:::::
class

::
of

:::::::::::
handwritten

::::::
zeros.

::::::
There

:::
are

:::
10

:::::::
actions,

::::
one

:::
for

::::
each

:::::::
possible

:::::::::::::
“classification”

:::::::
decision

::::
that

:::::
must

:::
be

:::::::
learned

:::::::
through

:::::::::::::
reinforcement

::::::::
learning.

:::::
The

:::::::
terminal

:::::
state,

::::::
should

:::
by

:
a
::::::
yellow

::::::
square

:::::
with

:::
the

:::::
letter

::::
“T”,

:::::
ends

:::
the

:::::::
episode

:::::
after

:::
the

:::::::
correct

:::::
action

:
is
::::::
taken

::
in

:::::
state

::
9.
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Figure 8:
:::
An

::::::::::
illustration

::
of

::::
the

:::::::
MNIST

:::::::::::
FourRooms

::::::::::::
environment.

:::::
Each

:::::
state

::
is

:::::::
labeled

:::
by

:::
two

:::::::::
numbers.

:::::
The

::::::::::
observation

::::::
given

::
to

::::
the

:::::
agent

::
is
::
a
:::::::::::::
concatenation

::
of
::
a
::::::::
random

::::::
sample

::::
from

::::::::
MNIST

:::
for

:::::
each

:::::::
number

:::
in

::::
the

:::::
label.

:::::
For

::::::::
example,

::::
the

::::::
initial

:::::
state

:::
is

:::
11

::::
and

::
so

:::
the

::::::
initial

::::::::::
observation

::
is
::
a
:::::::::::::
concatenation

::
of

::::
two

:::::::
images

::::
from

::::::::
MNIST

:::::::::::::
corresponding

::
to

:::
the

::::
class

::
of

::::::::::::
handwritten

:::::
ones.

:::::::::
Although

:::
the

:::::
label

::::::::
number

::
is

:::
the

:::::
same

:::
for

::::
the

::::::
initial

:::::
state,

:::
the

:::::::::::
observations

::::
can

::
be

::::
the

:::::
same

:::
or

::::::::
different

:::::::::
depending

:::
on

::::
the

:::::::::
stochastic

:::::::
sample.

:::::
The

:::::
white

:::::
states

:::
are

:::::::::
accessible

:::
to

:::
the

:::::
agent

::::
but

:::
the

:::::
blue

:::::
states

::::::::::
correspond

:::
to

::::
wall

:::::
states

::::::
which

:::::::
cannot

::
be

:::::::::::
transitioned

::::
into

:::::
from

::
a

:::::
white

::::::
state.

::::
For

:::::
state

:::::::::::::
generalization,

:::
we

::::::::
evaluate

:::
the

::::::
agent

::
on

:::
wall

::::::
states

::
in

::::
the

:::::::
interior

::::
that

::::
can

:::::::::
transition

::
to

::::::
white

::::::
states:

::::
(14,

:::
34,

:::
41,

:::
43,

::::
45,

:::
47,

:::
54,

::::
74).

A.3 Agent Specification

Both online agents use ε greedy exploration with ε = 0.1. QR-DQN computes 10 quantiles
and is optimized with respect to the Huber loss, with κ = 1.0. DQN is optimized with
respect to the mean squared error.

:::
The

:::::::::::::::
representational

:::::::::::
architecture

::::::::
between

:::
the

::::::
agents

::
is

:::
the

:::::
same,

::::
and

::
is
::::::
shown

:::
in

:::::
Table

::
1.
:

A.4 Hyperparameter settings and Experiment Protocol

The ablation setings
:::::::
settings

:
for each experiment are detailed in the legend. We

:::
For

::::::
every

::::::::::::
experiment,

:::
we

::
also conducted a grid search over learning rates α =

{0.005, 0.001, 0.0005, 0.0001}. All experiments are averaged over 30 seeds, with a shaded
region corresponding to a 95% confidence interval of the mean. The best model was selected
::::::
results

::::::
shown

::
in

::::
each

::::::
figure

::::::
profile

:
a
:::::::::
particular

:::::::::::::
generalization

::::::::::
mechanism

::::::
(DQN

::
vs

:::::::::
QRDQN,

::
L2

::::::::::::::
Regularization,

:::::::::
dropout).

::::::
Each

::::
plot

:::::::
selects

:::
the

:::::
best

:::
set

::
of

::::::::::::::::
hyperparameters

:
based on

validation accuracy, which acts as a proxy
::::::::::::::::::::
trajectory-independent

::::::::
criterion for policy perfor-

mance on the training environment instance.
::::
This

::::::::
provides

::
an

:::::::::
optimistic

::::
but

::::
fair

::::::::::
assessment
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::
of

::::
each

:::::::::::::
generalization

::::::::::
mechanism.

:
In the corruption experiments, the best model was selected

based on training accuracy.

For both the corridor and four rooms environment, we use only 10 samples from each class
label to ensure that the agent can fit its training experience, but we do not limit the size
of the test and validation sets.

::::
The

::::::
regime

::::::
where

::::
the

:::::::
training

:::::
data

::
is
:::::::::::
unbounded

::
is

::::
not

::::::::::
particularly

::::::::::
interesting

::::::::
because

:::::
there

::::::
would

:::
be

:::::
little

:::::::::
difference

::::::::
between

::::
the

:::::::
training

::::
and

::::::
testing

::::::::::::
distributions.

::::
An

::::
RL

::::::
agent,

::
in

:::::
only

::
a

:::::::
limited

:::::::
number

::
of

:::::::::
episodes,

::::
will

::::
only

::::
see

:
a

:::::
small

:::::::
fraction

::
of

::::
the

::::::::
training

::::::::::::
observations,

::::
with

::::
the

::::
rest

:::::
never

:::::::::
observed

::::
(and

::::::::::::
functionally,

::::
part

::
of

::::
the

::::::::::
observation

:::::
test

::::
set).

:::::
This

:::
is

::::::
unlike

:
a
::::::::::
supervised

::::::::
learning

:::::::::
problem,

::::::
where

::
all

:::
the

:::::
data

::
is

::::::::
provided

::::::::
upfront

:::::::
without

::::
the

:::::
need

:::
for

:::::::::::
interaction.

::::
To

:::::
make

::::
the

::::::::
analogy

::
to

:::::::::
supervised

::::::::
learning,

:::
we

:::::
were

::::::::
required

:::
to

:::::
lower

:::
the

::::::::
number

::
of

::::::::
training

:::::::
samples

:::
so

::::
that

:::
the

:::::
agent

::::::
would

:::::::::
encounter

::
a

::::
large

::::::::::
proportion

:::
of

:::
the

::::::::
training

:::::::::::
observations

:::
in

:
a
:::::::
limited

::::::::
number

::
of

::::::::
episodes.

:::::
This

:::::::::::
interpolative

:::::::
regime

::
is

::::
also

:::
the

::::::
regime

:::
of

:::::::
interest

:::
for

:::
the

::::::::::
theoretical

::::::
study

::
of

::::::::::::
generalization

:::
in

::::::
neural

::::::::
networks

:

We use dynamic programming to calculate the optimal policy and value function for the
states, and choose to report accuracy instead of Monte-Carlo rollouts. Accuracy provides
more acuity in the differences between policies, allowing us to evaluate the accuracy at each
state and under any distribution. All performance criteria (training, validation and testing)
are averaged over the same state distribution as the replay buffer.
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A.5 Observation Generalization in Four Rooms

Figure 9: Observation generalization experiment after offline learning with uncorrupted
labels in the fourrooms MNIST CDP. Top: Test accuracy for best agent, regularization
configuration and droprate configuration. Bottom: training accuracy for each of best agent,
regularization configuration and droprate.

Figure 10: Observation generalization experiment after online learning with uncorrupted
labels in the fourrooms MNIST CDP. Top: Test accuracy for best agent, regularization
configuration and droprate configuration. Bottom: training accuracy for each of best agent,
regularization configuration and droprate.
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A.6 Monte-Carlo Rollouts in Training and Testing Environments

Figure 11: Observation generalization experiment after offline learning with uncorrupted
labels in the corridor MNIST CDP. Top: Train MC return. Bottom: Test MC Return.
Left-Right: best agent, regularization and dropout rate respectively.

Figure 12: Observation generalization experiment after online learning with uncorrupted
labels in the corridor MNIST CDP. Top: Train MC return. Bottom: Test MC Return.
Left-Right: best agent, regularization and dropout rate respectively.

Figure 13: Observation generalization experiment after offline learning with uncorrupted
labels in the fourrooms MNIST CDP. Top: Train MC return. Bottom: Test MC Return.
Left-Right: best agent, regularization and dropout rate respectively.
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Figure 14: Observation generalization experiment after online learning with uncorrupted
labels in the fourrooms MNIST CDP. Top: Train MC return. Bottom: Test MC Return.
Left-Right: best agent, regularization and dropout rate respectively.

Figure 15: Corruption experiments where all MNIST labels are randomly reassigned to
test whether an agent can memorize its experience. Top Left: Corridor Offline. Top right:
Corridor online. Bottom Left: Four rooms offline. Bottom right: Four rooms online
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