
Neural Differential Recurrent Neural Network with
Adaptive Time Steps

Yixuan Tan1, Liyan Xie2, and Xiuyuan Cheng∗1

1Department of Mathematics, Duke University
2School of Data Science, The Chinese University of Hong Kong, Shenzhen

Abstract

The neural Ordinary Differential Equation (ODE) model has shown success in
learning continuous-time processes from observations on discrete time stamps. In
this work, we consider the modeling and forecasting of time series data that are
non-stationary and may have sharp changes like spikes. We propose an RNN-
based model, called RNN-ODE-Adap, that uses a neural ODE to represent the time
development of the hidden states, and we adaptively select time steps based on the
steepness of changes of the data over time so as to train the model more efficiently
for the “spike-like” time series. Theoretically, RNN-ODE-Adap yields provably a
consistent estimation of the intensity function for the Hawkes-type time series data.
We also provide an approximation analysis of the RNN-ODE model showing the
benefit of adaptive steps. The proposed model is validated on simulated spiral data,
point process data, and a real electrocardiography dataset. It was shown to achieve
higher prediction accuracy with a reduced computational cost.

1 Introduction
We consider the modeling and forecasting of time series with irregular time steps and non-stationary
patterns, as commonly observed in various applications [10, 3]. We treat the data as a sequence of
observations from an unknown continuous-time process, sampled at discrete times. We follow the
previous continuous-time RNN neural-ODE approach [1, 6] to model the hidden dynamics h(t) as

h′(t) = f(h(t), x(t); θh), (1)
where f is a neural network parameterized by θh. The model (1) incorporates the observed incoming
time series data x(t) as an input to f . The time evolution of the observed series x(t) is modeled by
an output neural network g that maps the hidden value h(t) to x(t) as

x̂(t) = g(h(t); θd), (2)
where g is called the output function parameterized by θd.

For highly non-stationary data, such as a time series with sudden spikes (see examples in Figure 1
(Left)), it becomes imperative for the classical neural ODE type approaches to select sufficiently
small time steps to ensure accurate modeling. To train the neural ODE for data with non-stationary
patterns more effectively, we propose an approach that employs adaptive time steps in the neural
ODE model, which we refer to as RNN-ODE-Adap. The model adaptively selects the time steps
based on the local variation of the time series, enabling it to capture underlying trends with potentially
fewer time steps. The algorithm is described and analyzed in Section 2.

2 Method and Theory
2.1 Adaptive Time Steps

*Email: xiuyuan.cheng@duke.edu

DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Continuous Discontinuous

Binary (0,1) Time Series
e.g., counting data

Continuous Time Series
e.g., spirals, smooth functions

Abrupt Spikes
e.g., ECG, Covid-19 data

Continuous Discontinuous

Binary (0,1) Time Series
e.g., counting data

Continuous Time Series
e.g., spirals, smooth functions

Abrupt Spikes
e.g., ECG data, Covid-19 data

t

𝒌 = 𝟏

𝒊 = 𝟎 𝒊 = 𝟐 𝒊 = 𝟒 𝒊 = 𝟔 𝒊 = 𝟖

𝒊 = 𝟒 𝒊 = 𝟖

𝒌 = 𝟐
𝒊 = 𝟒 𝒊 = 𝟖

Deleted: variation ≤ threshold

Initial

Deleted: variation ≤ threshold

Figure 1: Left: Illustration of spike-like time series. The crosses denote the discrete (irregular) time
steps. The subsequences enclosed with brackets represent training windows. Right: Illustration of
adaptive time steps constructed from Algorithm 1. In this example, N = 8 and L = 2.

Algorithm 1 A dyadic algorithm for selecting
adaptive time steps.

1: Input: Data series {x0, x1, x2, . . . , xN};
threshold ϵ > 0; L ∈ Z+.

2: Initialize: D = ∅. A flag vector Flag =
{0, 0, . . . , 0} of length N .

3: for l = 1 to L do
4: Define a new flag: Flagnew = {0, 0, . . . , 0}

of length ⌊N/2l⌋.
5: for i = 1 to ⌊N/2l⌋ do
6: if Flag[2(i − 1) + 1] = Flag[2i] = 0

then
7: Compute the monitoring function

M({x2l(i−1), x2l(i−1)+2l−1 , x2li}).
8: if M < ϵ then
9: D = D ∪ (2l(i− 1) + 2l−1).

10: else
11: Mark Flagnew[i] = 1.
12: end if
13: else
14: Mark Flagnew[i] = 1.
15: end if
16: end for
17: Update Flag = Flagnew.
18: end for
19: Output: Indexes of removed time steps D.

The construction of adaptive time steps in RNN-
ODE-Adap is summarized in Algorithm 1. The
intuition is to assign longer (rough) time inter-
vals during time regions where the time series
is slowly time-varying (such as “flat” curves),
while assigning shorter (fine) time intervals dur-
ing regions with “spikes” (highly non-stationary
and fast time-varying regimes). For construct-
ing the adaptive time stamps, we assume the
initial time grid is sufficiently fine and adopt a
dyadic-partition type algorithm detailed below.

Given a raw (discrete-time) training window
x(t0), . . . , x(tN) sampled at the finest level of
time stamps 0 ≤ t0 < · · · < tN ≤ T . For sim-
plicity, below we write it as x0, x1, x2, . . . , xN .
We first define a monitor function M(·) that
measures the variation of the sub-sequence
{xi, . . . , xj}, i < j. In this paper, we mainly
adopt the maximum variation defined as

M({xi, . . . , xj}) :=max
i<k≤j

∥xk − xk−1∥2
|tk − tk−1|

, (3)

which captures the maximum variation among
any two adjacent time stamps. We then screen
from the finest level of time grids and adaptively
merge neighboring time grids if their maximum
variation is below a pre-specified threshold ϵ > 0. The selection procedure is repeated similarly
for l = 1, 2, 3, . . . until a pre-specified maximum integer L. In other words, we only keep the time
stamps on which the maximum variation exceeds ϵ.

The output of Algorithm 1 is the set D of removed time stamps. The model is trained on the remaining
time steps only. We provide an illustration in Figure 1 of the algorithm for selecting adaptive time
steps. From the final results in Figure 1 (Right), it can be seen that the output of the adaptive time
steps uses longer time steps to model stationary periods and uses shorter time steps to model spikes.

2.2 Approximation Analysis of RNN-ODE-Adap

In this section, we analyze the approximation error of the RNN-ODE model, revealing the benefit of
adaptive step size. Further details on the theory, including consistency estimation for binary event
data, continuous-time model approximation, and additional content from this section, can be found in
Appendix B. All proofs can be found in Appendix C.

For theoretical generality, we consider the continuous-time process y(t) ∈ RD′
satisfying

h′(t) = f(h(t), x(t)), y(t) = g(h(t)), h(0) = h0, t ∈ [0, T], (4)

where x(t) ∈ RD is the observable input data and h(t) ∈ Rdh is the underlying hidden process.
Taking y(t) to be x(t) reduces the model to the case (1)-(2) considered in the other parts of the work.
We assume that x(t) is only observed at discrete time grids {ti}Ni=1 and the time grids can be chosen

2

adaptively. For ∆ti := ti − ti−1 and ĥNN(0) = h0, the forward Euler scheme is applied on the
approximation of (4) by neural networks as follows:

ĥNN(ti) = ĥNN(ti−1) + ∆tifθ(ĥNN(ti−1), x(ti−1)), ŷNN(ti) = gϕ(ĥNN(ti)), i = 1, . . . , N. (5)

Theorem 2.1 below provides an upper bound of the approximation error using x(t) observed at
discrete time grids.
Theorem 2.1. Under mild Assumption B.8 on the Lipschitz continuity and given a time grid
{ti}Ni=1 on [0, T] at which x(t) is observed. Suppose ϵf , ϵg > 0 and ϵf , {∆tj}j satisfy
T exp(

∑N
i=1 L

f,h
i ∆ti)(ϵf +maxj{µj∆tj}) < 0.1. Let fθ, gϕ be the neural networks approximating

f, g up to ϵf , ϵg in L∞ norm, then

max
i

∥y(ti)− ŷNN(ti)∥ ≤ ϵg + LgT exp(

N∑
i=1

Lf,h
i ∆ti)

(
ϵf +max

j
{µj∆tj}

)
, (6)

where Lg , {Lf,h
j }j and {µj}j denote the (global or local) Lipschitz constants of g, f , and x(t).

Theorem 2.1 provides insights into the utility of the adaptive steps for improving the model fitting
performance, which is reflected in the last term in Eq. (6) involving maxj{µj∆tj}. Specifically,
time grids may be selected such that ∆ti is small if Lx

i is great, indicating a steep change in x(t) for
t ∈ [ti−1, ti]. On the contrary, when the variation in x(t) is smaller, we employ larger ∆ti to reduce
the total number of required time grids.

3 Numerical Experiments

We validate the performance of the proposed method using three datasets: (1) the simulated spiral
series, (2) the simulated event data, and (3) a real ECG dataset. Experimental details can be found in
Appendix D. We examine and report the performance of two models, RNN-ODE and RNN-ODE-Adap,
both are trained to minimize the weighted Mean Squared Errors (MSEs) defined in (A13). Their
difference lies in the choice of the time grid: RNN-ODE is trained using regular (non-adaptive) time
steps, while RNN-ODE-Adap is trained with adaptive time steps from Algorithm 1.

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n
of

 M
SE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

Spiral data: Testing Precition MSE vs. Complexity

Figure 2: Comparison of the MSE prediction
errors on the simulated spiral data for RNN, LSTM,
RNN-ODE, RNN-ODE-Adap. The x-axis is the
average length of the training windows, reflecting
the complexity of the models (see Appendix D.2).

We compare the tradeoff curves, between com-
plexity (average length of the training windows)
and accuracy, for different methods and demon-
strate the advantage of RNN-ODE-Adap.

Simulated Spiral Data: We first investigate
the capability of our method to fit and capture
the underlying dynamics of the simulated spiral
data. For a given matrix A ∈ R2×2, one spiral
is generated by integrating the ODE

x′(t) = f(x(t)) = ∥x(t)∥−2Ax(t), (7)

over the time span [0, T], with the initial value
x(0) = x0 ∈ R2. The initial training and testing
windows are of length N = 64, corresponding
to the largest complexity shown in Figure 2.

We first compare the on-sample prediction performance with RNN and LSTM [14] under different
computational complexities. For each testing window, we use the first half as historical data and
predict the second half. Figure 2 shows the averaged MSEs computed as in Eq. (A15) for the models,
with varying complexities. We observe from Figure 2 that for the same complexity, RNN-ODE
significantly improves the forecasting performance compared to the vanilla RNN, especially when
the number of grids is not too small so that the models begin to learn the dynamics well. Additionally,
RNN-ODE-Adap further achieves smaller prediction errors than RNN-ODE since it selects data
points more informatively with the same number of grids. Finally, we note that while LSTM performs
best in most cases, it possesses a more complex network structure. We refer to Appendix D.7 for
additional results about the LSTM and Lipschitz-RNN [6] variants of the adaptive model. We also
present the reconstructions performance in Appendix D.7 (Figure A6).

3

Simulated Point-Process Data: We further apply our method to a simulated example of event
times data generated from temporal Hawkes processes [23] as described in Appendix B.1. We train
the model (1)-(2) and estimate the true intensity function λ(t) using the output x(t). The mean
squared loss L =

∫ T

0
(dN(t)/dt− λ(t))2dt is used when fitting the neural ODE model.

The fitting errors of the four models versus the complexity are shown in Figure 3 (left). It can be
observed that RNN-ODE-Adap achieves the best fitting performance. The right panel shows the
log-log plot of RNN-ODE and RNN-ODE-Adap, from which we can see more clearly that for fixed
model complexity (network structure), the proposed model recovers the true intensity function. Figure
3 (right) shows two examples of fitting performance. In this example, all models use 33 grids on
average. Thus, the complexity is 50% of the largest one. It can be observed that RNN fails to capture
the smooth decay of the kernel, while RNN-ODE-Adap can learn the dynamics of the intensity
function much better – it can estimate the “jump” in the intensity accurately.

Real ECG Data: We validate the proposed RNN-ODE-Adap on one public electrocardiography
(ECG) dataset PTB-XL [30, 9]. We focus on learning the underlying dynamics of ECG signals and
use adaptive time steps for “spikes” in data series. We remark that windows of the highest sampling
rate are chosen to have N = 96 time grids, in which usually two cycles are contained. In this way,
the prediction of the second half given the first half would be more meaningful.

Figure 4 (left) shows the on-sample prediction MSEs of the four methods for two different prediction
lengths, 24 and 48, which are 1/4 and 1/2 of the whole window. Here, the prediction is performed
with the original finest grids by integrating the ODE function. It can be seen that RNN-ODE has
smaller prediction errors than RNN on average, and adding addictive steps helps achieve slightly
better performance. Furthermore, LSTM still achieves the smallest error most of the time. The reason
for this is similar to the spiral data and may be due to its more complex network structure.

17 33 49 65
number of grids

0.00

0.05

0.10

0.15

L2
 e
rro

r

L2 error vs. complexity
RNN-ODE
RNN-ODE-Adap
RNN
LSTM

4.0 4.5 5.0 5.5 6.0
log2 (number of grids)

−5

−4

−3

lo
g 2

 (L
2
er
ro
r)

log -log plot of L2 error vs. complexity

RNN-ODE, slope = -0.73
RNN-ODE-Adap, slope = -0.86

L2 Testing Error vs. Complexity & log -log Plot

0 1 2 3 40.0

0.5

1.0

1.5 Testing Window (Example 1)
true traj
true event
RNN

0 1 2 3 40.0

0.5

1.0

1.5 Testing Window (Example 2)
LSTM
RNN-ODE
RNN-ODE-Adap

Example: Hawkes data & fit

Figure 3: Left: Comparison of the fitting errors of the underlying intensity function of the simulated
event-type data generated from the Hawkes process. x-axis represents computational complexity,
y-axis is the fitting error computed as in Eq. (A16). Right: Examples of fitted intensity function of
the simulated event times data generated from the Hawkes process.

Figure 4 (right) and Figure A13 present examples of prediction on the testing windows. These
examples demonstrate that RNN-ODE-Adap captures the trends of the ECG more effectively than
RNN.The good performance implies that the proposed algorithm could be used to fit and predict the
ECG-type signal well.

25 49 73 97
number of grids

0.00

0.05

0.10

0.15

0.20

M
SE

prediction length = 24

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

25 49 73 97
number of grids

0.00

0.05

0.10

0.15

0.20

M
SE

prediction length = 48

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

ECG data: Testing Precition MSE vs. Complexity

Figure 4: Left: Comparison of the prediction errors on the real ECG data under two different
prediction lengths (24 and 48) for RNN, LSTM, RNN-ODE, RNN-ODE-Adap. Right: Examples of
48 steps ahead prediction for the testing ECG data using RNN (marked in blue) and RNN-ODE-Adap
(marked in red). The predicted region is marked between dashed lines.

4

References

[1] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. AntisymmetricRNN: A dynamical
system view on recurrent neural networks. arXiv preprint arXiv:1902.09689, 2019.

[2] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[3] Changqing Cheng, Akkarapol Sa-Ngasoongsong, Omer Beyca, Trung Le, Hui Yang, Zhenyu
Kong, and Satish TS Bukkapatnam. Time series forecasting for nonlinear and non-stationary
processes: a review and comparative study. Iie Transactions, 47(10):1053–1071, 2015.

[4] Tommy WS Chow and Xiao-Dong Li. Modeling of continuous time dynamical systems with
input by recurrent neural networks. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 47(4):575–578, 2000.

[5] Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo Shang. Towards adaptive residual network
training: A Neural-ODE perspective. In International conference on machine learning, pages
2616–2626. PMLR, 2020.

[6] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

[7] Richard FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. The
bulletin of mathematical biophysics, 17:257–278, 1955.

[8] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous
time recurrent neural networks. Neural networks, 6(6):801–806, 1993.

[9] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215–e220, 2000.

[10] Gloria Gonzalez-Rivera and Javier Arroyo. Time series modeling of histogram-valued data: The
daily histogram time series of S&P500 intradaily returns. International Journal of Forecasting,
28(1):20–33, 2012.

[11] Sam Greydanus, Stefan Lee, and Alan Fern. Piecewise-constant Neural ODEs. arXiv preprint
arXiv:2106.06621, 2021.

[12] Mansura Habiba and Barak A Pearlmutter. Neural ordinary differential equation based recurrent
neural network model. In 2020 31st Irish Signals and Systems Conference (ISSC), pages 1–6.
IEEE, 2020.

[13] Stefan Heinrich, Tayfun Alpay, and Yukie Nagai. Learning timescales in gated and adaptive
continuous time recurrent neural networks. In 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 2662–2667. IEEE, 2020.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[15] Anil Kag and Venkatesh Saligrama. Time adaptive recurrent neural network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15149–15158,
2021.

[16] Anil Kag, Ziming Zhang, and Venkatesh Saligrama. RNNs incrementally evolving on an
equilibrium manifold: A panacea for vanishing and exploding gradients? In International
Conference on Learning Representations, 2020.

[17] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. Advances in Neural Information Processing Systems,
33:6696–6707, 2020.

[18] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. Advances in Neural Information Processing Systems,
33:6696–6707, 2020.

[19] Xiao-Dong Li, John KL Ho, and Tommy WS Chow. Approximation of dynamical time-variant
systems by continuous-time recurrent neural networks. IEEE Transactions on Circuits and
Systems II: Express Briefs, 52(10):656–660, 2005.

5

[20] Zhong Li, Jiequn Han, E Weinan, and Qianxiao Li. Approximation and optimization theory for
linear continuous-time recurrent neural networks. J. Mach. Learn. Res., 23:42–1, 2022.

[21] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International Conference
on Machine Learning, pages 3276–3285. PMLR, 2018.

[22] James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential
equations for long time series. In International Conference on Machine Learning, pages
7829–7838. PMLR, 2021.

[23] Jakob Gulddahl Rasmussen. Temporal point processes: The conditional intensity function.
Lecture Notes, Jan, 2011.

[24] Frank Rosenblatt. Principles of neurodynamics. Spartan Books, 1962.
[25] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations

for irregularly-sampled time series. Advances in neural information processing systems, 32,
2019.

[26] T Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network
(coRNN): An accurate and (gradient) stable architecture for learning long time dependencies.
arXiv preprint arXiv:2010.00951, 2020.

[27] T Konstantin Rusch, Siddhartha Mishra, N Benjamin Erichson, and Michael W Mahoney. Long
expressive memory for sequence modeling. arXiv preprint arXiv:2110.04744, 2021.

[28] T Konstantin Rusch, Siddhartha Mishra, N Benjamin Erichson, and Michael W Mahoney. Long
expressive memory for sequence modeling. arXiv preprint arXiv:2110.04744, 2021.

[29] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49,
1978.

[30] Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze,
Wojciech Samek, and Tobias Schaeffter. PTB-XL, a large publicly available electrocardiography
dataset. Scientific data, 7(1):1–15, 2020.

[31] E Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 1(5):1–11, 2017.

[32] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103–114, 2017.

[33] Tianjun Zhang, Zhewei Yao, Amir Gholami, Joseph E Gonzalez, Kurt Keutzer, Michael W
Mahoney, and George Biros. ANODEV2: A coupled Neural ODE framework. Advances in
Neural Information Processing Systems, 32, 2019.

6

A Related Works

The related works are provided in this section.

Neural ODE. Our work is closely related to the neural ODE [2] model, which parameterizes
the derivative of the hidden state using a neural network. In [2], a generative time-series model
was proposed, which takes the neural ODE as the decoder. Furthermore, [25] proposed a non-
generative model with continuous-time hidden dynamics to handle irregularly sampled data based
on [2]. Compared with existing works related to neural ODE [25, 31, 33, 5, 21, 17, 22, 12, 11], we
model the ODE that determines the progression of hidden states by including the data itself in the
derivative of the hidden state. In contrast to existing works on non-stationary environments such
as the piecewise-constant ODE [11], our work proposes to use adaptive time steps to automatically
adapt to sparse spikes in the time series, without pre-defining the time period for each piece of ODE.

Neural CDE. We note that the Neural Controlled Differential Equation (CDE) [18] also incorpo-
rates the observations into the model continuously. Specifically, the hidden states in [18] follow the
CDE h(t) = h(t0) +

∫ t

t0
fθ(h(s))dXs, where the integral is a Riemann-Stieltjes integral. We would

like to emphasize some key differences between model (1) and Neural CDE. The Xs in Neural CDE
is the natural cubic spline of {(x(ti), ti)}i, and fθ : Rdh → Rdh×(D+1), where dh is the number of
hidden units and D is the data dimension. Thus, for the same number of hidden units, Neural CDE
requires a more complex parameterized fθ to model h(t). Moreover, since Xs is obtained by cubic
spline, it is less naturally adapted to the prediction task that requires extrapolation to the time stamps
not seen when computing the spline. Therefore, it is hard to evaluate the prediction performance of
Neural CDE and thus we defer the evaluation under the Neural CDE setting for future work.

Continuous-Time RNNs. Our model belongs to the extensive family of continuous-time RNNs,
originating from [24]. Several existing studies explore various RNN architectures, such as [1, 16, 6,
26, 15] These RNN models leverage their structures to address the exploding and vanishing gradient
problem. Our model also adopts a continuous-time ODE framework for time series data, and the
proposed adaptive time stamp selection method can be viewed as effectively reducing the length
of the discrete sequence when a significant part of the process is changing slowly. Meanwhile, our
approach can also be used concurrently with the methodologies such as in [6]. As the focus of our
work is to model the “spike-like” time series data, the combination of our model and the existing
continuous-time RNN models can further improve the efficiency when applied to such data.

Time Adaptivity. Previous studies have investigated the incorporation of time adaptivity in
continuous-time RNNs, such as GACTRNN [13], TARNN [15], and LEM [27]. In these works, time
adaptivity was incorporated by multiplying the ODE with an adaptively learned time modulator,
usually parametrized by another sub-network. In contrast, our method adaptively selects time steps
during the preprocessing phase, where the selection process only utilizes the steepness of change of
the time series data. Therefore, the proposed model does not involve the training of a sub-network
for the time modulator as in the previous models, which may incur an increase in model size and
additional computational costs.

B More Details on Theory

B.1 Function Estimation for Event-type Data

We present the theoretical analysis for function estimation based on the proposed model under
counting-type time series. Counting-type time series represent a special class of continuous-time
models since they exemplify the extreme case of “spike-like” data, as shown at the right end of
Figure 1.

For event-type sequences, the raw data contains a list of event times 0 < t1 < t2 < . . . < tn < T on
the time horizon [0, T]. Each timestamp is the time when an event happens. In practice, the estimation
is performed on discrete-time grids. Define the counting process N(t) :=

∑n
i=1 1(ti ≤ t) as the

total number of events happened before time t. We convert such continuous-time data into discrete
observations by discretizing the time interval [0, T] into M intervals of equal length ∆t = T/M , and

7

then let xm = N(m∆t)−N((m− 1)∆t), m = 0, 1, . . . ,M (by convention x0 = 0). When ∆t is
chosen sufficiently small, it becomes the Bernoulli process where xi ∈ {0, 1}.

We consider the temporal Hawkes processes [23], in which the values xi are mostly zero under mild
assumptions, corresponding to sparse “spikes”. Such temporal Hawkes processes can be characterized
by its conditional intensity function defined as

λ∗(t) = lim
∆→0

∆−1E[N(t+∆)−N(t)|Ft],

where the filtration Ft stands for the information available up to time t. In the case of Hawkes
processes, λ(t) = µ+ α

∫ t

0
ϕ(t− s)dN(s) is simply a linear function of past jumps of the process,

where ϕ(·) is the influence kernel. For example, under the special case of exponential kernels, the
intensity function becomes λ∗(t) = µ+ αβ

∫ t

0
e−β(t−τ)dN(τ).

The intensity function recovery consistency by minimizing least-square population loss is proved in
Theorem B.2 under a memory constraint. We parameterize the function by a neural network (NN)
based structure characterized as in (1)-(2). We define the prototypical network architecture below.
Definition B.1. Define the function class NN-ODE(dout, Lh, ph, Ld, pd) as

NN-ODE(dout, Lh, ph, Ld, pd) := {F : R 7→ Rdout |F (t) = g(h(t)), h′(t) = f(h(t), x(t)),

g is NN with Ld layers and max-width pd, h is NN with Lh layers and max width ph.}
(A1)

Theorem B.2. Assume there exist d buffer time steps with samples x−d, . . . , x−1 prior to the
Hawkes count data {x0, . . . , xM} and each time step has duration ∆t = T/M . We further assume
NN-ODE(dout, Lh, ph, Ld, pd) is rich enough to model the true intensity function. Then the minimizer
F ∗ to the population loss function

Ψ(F) :=

M∑
m=1

E
[
(xm − F (m∆t)∆t)2

∣∣xm−d . . . xm−1

]
,

optimized within the neural network class F ∈ NN-ODE(D,Lh, ph, Ld, pd), satisfies F ∗(m∆t) =

λ̃(m) := 1
∆t

∫m∆t

(m−1)∆t
λ∗(t)dt, which is the discretized intensity.

Remark B.3. We have the recovered intensity function F ∗(m∆t) = λ̃(m) and is extendable to the
entire time horizon as F ∗(t) = F ∗(m∆t)1{(m−1)∆t < t ≤ m∆t} for any t ∈ [0, T]. In Appendix
C.1 it is shown that under the asymptotic scenario when M → ∞,

∫ T

0
|F ∗(t)− λ∗(t)|dt → 0.

B.2 Approximation Analysis of RNN-ODE-Adap

B.2.1 Approximation of the Continuous-Time Model

We will use neural network functions fθ and gϕ to approximate the functions f and g, respectively,
see Lemma B.4. Given x(t) on [0, T], let hNN(t) be the solution to the hidden-process ODE
h′

NN(t) = fθ(hNN(t), x(t)) from hNN(0) = h0. This leads to the output process yNN(t) defined by

h′
NN(t) = fθ(hNN(t), x(t)), yNN(t) = gϕ(hNN(t)), hNN(0) = h0, t ∈ [0, T]. (A2)

The approximation of yNN(t) to y(t) will be based on the approximation of fθ and gϕ, which calls
for the regularity condition of the system (4).

The next lemma directly follows by applying [32] to the case where f and g have 1st-order regularity
(Lipschitz continuity). The proof is given in appendix C.2.
Lemma B.4. For any ϵf , ϵg > 0, there exist neural networks fθ, gϕ such that

max
η∈[−1.1,1.1]dh ,x∈[−1,1]D

∥f(η, x)− fθ(η, x)∥2 < ϵf , max
η∈[−1.1,1.1]dh

∥g(η)− gϕ(η)∥2 < ϵg, (A3)

and

• fθ has O(ln
Cf

ϵf
+ ln dh + 1) layers and O((Cf/ϵf)

dh+D(ln
Cf

ϵf
+ ln dh + 1)) trainable

parameters.

• gϕ has O(ln
Cg

ϵg
+lnD′+1) layers and O((Cg/ϵg)

dh(ln
Cg

ϵg
+lnD′+1)) trainable parameters.

8

! "

#$"%

#$!%
!
!

&$!%

& "

&

&&

!
"

' (

!!
!

!!

"#"$

Figure A1: Demonstration of the domains Bx and Bh defined as in (A4) for the time interval [s, t]
(here dh = 2, D = 1). The domains D1 and D2 that correspond to slowly and fast varying regions
are colored in orange and blue respectively.

The constants in big-O may depend on D,D′, and dh. Here Cf := max{Lf,h, Lf,x,Mf}, where
Mf = sup(η,x)∈[−1.1,1.1]dh×[−1,1]D ∥f(η, x)∥ and Lf,h, Lf,x are denote the Lipschitz constant of f
on [−1.1, 1.1]dh × [−1, 1]D (see formal definitions in (A9) in the proof of Lemma B.4 in Appendix
C.2). Cg := max{Lg,Mg}, and Mg = supη∈[−1.1,1.1]dh ∥g(η)∥.

For the spike-like data, the majority of the regions are slow-varying, with the spikes occupying only
a minor part of the whole interval [0, T]. Thus, the whole interval [0, T] may be partitioned into
two disjoint sets D1 and D2, each of which consisting of unions of disjoint intervals in [0, T]. To
characterize this partition more precisely, we define the constants related to an interval in [0, T] as
follows:

• For an interval [s, t] ⊂ [0, T], we define the domains Bh, Bx as

Bh := (h([s, t]) +Bdh
r) ⊂ [−1.1, 1.1]dh , Bx := (x([s, t]) +BD

r) ∩ [−1, 1]D, (A4)

with r = 0.1, and Bdh
r , BD

r represent balls with radius r in Rdh ,RD respectively (see
Figure A1 for illustration). Here, h([s, t]) + Bdh

r means the Minkowski addition, namely
{h1 + h2, h1 ∈ h([s, t]), h2 ∈ Bdh

r }, and x([s, t]) + BD
r is defined in the same way. Then,

we denote

Lf,h
[s,t]

:= sup
x∈Bx

sup
η1,η2∈Bh

∥f(η1, x)− f(η2, x)∥
∥η1 − η2∥

,

Lf,x
[s,t]

:= sup
h∈Bh

sup
x1,x2∈Bx

∥f(η, x1)− f(η, x2)∥
∥x1 − x2∥

, (A5)

as the local Lipschitz constants of f within the domain Bh ×Bx, and

Mf
[s,t]

:= sup
(η,x)∈Bh×Bx

∥f(η, x)∥2. (A6)

Suppose that any time grid [s1, t1] in D1 corresponds to a local Lipschitz constant Lf,h
[s1,t1]

≤ Llow.

On contrast, if [s2, t2] belongs to D2, the local Lipschitz constant Llow < Lf,h
[s2,t2]

≤ Lhigh(≤ Lf,h).
Here, D1 is comprised of regions with slow variations, while D2 encompasses regions with sharp
changes, as demonstrated in Figure A1. It may often be the case that |D1| is greater than |D2|. Then,
we define

L(avg) :=
1

T
(Llow|D1|+ Lhigh|D2|). (A7)

Following Lemma B.4 and the partition described above, Theorem B.5 below provides the approxi-
mation results for the continuous-time process y(t) using (A2).
Theorem B.5. Under Assumption B.8 and for L(avg) defined as in (A7), suppose ϵf , ϵg > 0 and
ϵf satisfies TeL

(avg)T ϵf < 0.1, and let fθ, gϕ be the neural networks satisfying (A3) (the model
complexity is bounded as in Lemma B.4), then

max
t∈[0,T]

∥y(t)− yNN(t)∥ < ϵg + LgTe
L(avg)T ϵf . (A8)

9

Remark B.6 (Interpretation of L(avg) and local Lipschitz constants). (A8) can provide an improved
bound because when the data have sharp changes, Lhigh (as the ∞-norm of the Lipschitz constant) can
be large while L(avg) = (Llow|D1|+ Lhigh|D2|)/T (as certain L1-norm of the Lipsthictz constant)
may stay at a smaller value. The partition D1 ∪ D2 reflects how adaptively choosing grids may help
improve the theoretical results, and this will be further explored in the next subsection.
Remark B.7 (Arbitrary desired accuracy in (A8)). For any ε > 0, we can choose ϵf <

1
T exp(L(avg)T)

min{0.1, ε
2Lg

}, ϵg < ε
2 , then the right-hand side of (A8) is bounded by ε.

B.2.2 More Details about Approximation under Time Discretization in Section 2.2

Assumption B.8. (A1) The observed process x : [0, T] → [−1, 1]D and is Lipschitz continuous
over t; the hidden process h : [0, T] → [−1, 1]dh .

(A2) f : [−1.1, 1.1]dh × [−1, 1]D → Rdh , (η, x) 7→ f(η, x), and is Lipschitz continuous with
respect to both η and x.

(A3) g : [−1.1, 1.1]dh → [−1, 1]D
′
, η 7→ g(η) is Lipschitz continuous.

We let Lg denote the global Lipschitz constant of g on [−1.1, 1.1]dh . For f , both global and local
Lipschitz constants on the domain [−1.1, 1.1]dh × [−1, 1]D are used.

Given the time grids {ti}Ni=1, we define the following local constants used in Theorem 2.1:

• By (A2), for each i, let Lf,h
i , Lf,x

i and Mf
i be defined as in (A5) and (A6) respectively, where

we take the interval as [ti−1, ti].
• By (A1), for each i, let Lx

i be the Lipschitz constant of x(t) on t ∈ [ti−1, ti]. i = 1, . . . , N+1.

We define
µi := Lf,h

i Mf
i + Lf,x

i Lx
i ,

which characterizes the Lipschitz continuity of the system on on t ∈ [ti−1, ti].

The condition T exp(
∑N

i=1 L
f,h
i ∆ti) (ϵf +maxj{µj∆tj}) < 0.1 in Theorem 2.1 is imposed to

guarantee that the numerically integrated hidden states {ĥNN(ti)} ⊂ [−1.1, 1.1]dh , so that the
approximation results in Lemma B.4 are applicable.
Remark B.9 (Arbitrary desired accuracy in (6)). For any ε > 0, suppose the time grids sat-
isfy that maxj{µj∆tj}} < 1

T exp(
∑N

i=1 Lf,h
i ∆ti)

min{0.05, ε
3Lg

}, then we can choose ϵf <

1

T exp(
∑N

i=1 Lf,h
i ∆ti)

min{0.05, ε
3Lg

}, ϵg < ε
3 , to make the right-hand side of (6) bounded by ε.

Remark B.10 (Extension to higher-order integration schemes). The numerical integration scheme
(5) can be extended to the multi-step explicit methods of higher orders (e.g. Runge-Kutta methods),
given that the time grid selection appropriately fulfills the requirements of the integration scheme.
For example, we may choose ti+1 − ti = ti − ti−1 for adjacent sub-intervals [ti−1, ti], [ti, ti+1] to
apply the commonly used RK4 method .

C Proofs

C.1 Proofs in Section B.1

Proof of Proposition B.2. We consider the case with discretized and finite time grids. We assume
there exists d buffer time steps with samples x−d, . . . , x−1. The samples used for estimation are
x0, . . . , xM , and each time step is with duration ∆t. Thus the whole time duration is T = M∆t.
The random process we observe on discrete time horizon {m : 1 ≤ m ≤ M} is as follows. At time
m we observe integer variable xm ∈ {0, 1, 2, . . .}. Here xm means the number of event happening
within ((m− 1)∆t,m∆t] and xm = 0 means no event happening. Note that for the Hawkes process,
which is essentially an inhomogeneous Poisson process, the variable xm is just a Poisson random
variable with the intensity parameter depending on the historical observations. We denote the average
intensity function within the time interval ((m− 1)∆t, n∆t] as:

λ̃(m) =
1

∆t

∫ m∆t

(m−1)∆t

λ∗(t)dt,

10

where λ∗(t) = µ+ α
∫ t

0
ϕ(t− s)dN(s) is the true (continuous-time) intensity function.

By the properties of the Poisson distribution, we have E[xm|Fm−1] = λ̃(m)∆t and
Var[xm|Fm−1] = λ̃(m)∆t. Our goal is to recover the intensity function λ(·) using the given
observations. We consider the population loss function:

Ψ(θh, θd) =

M∑
m=1

E[(xm − F (m; θh, θd)∆t)2|xm−d, . . . , ωm−1]

=

M∑
m=1

{
E[x2

m|xm−1
m−d]− 2E[xm · F (m; θh, θd)∆t|xm−1

m−d] + E[F 2(m; θh, θd)(∆t)2|xm−1
m−d]

}

∝
M∑

m=1

(λ̃(m)− F (m; θh, θd))
2

.

Thus the optimizer will equal to λ̃(n) as long as the function class RNN-ODE(dout, Lh, ph, Ld, pd)
is rich enough to model the structure of the true intensity function.

Proof of the claim in Remark B.3. Note that when there is no event happening within the time inter-
val ((m − 1)∆t,m∆t] or when there is one event happening at m∆t, we have |λ̃(m) − λ∗(t)| ≤
Cα∆t where C is a constant related to the Lipschitz constant of the influence kernel ϕ(·). And when
there is one event happening in ((m− 1)∆t,m∆t), we have |λ̃(n)− λ∗(t)| ≤ α. By the concentra-
tion of Poisson distribution, there exists positive constant M ′ such that there are at most M ′ events
happening within [0, T] with high probability, and there is at most one event in each sub-interval
[(m−1)∆t,m∆t] for M sufficiently large, we have that

∫ T

0
|λ̃(t)−λ∗(t)|dt ≤ CαT∆t+M ′α∆t →

0 as M → ∞.

C.2 Proofs in Section 2.2

Remark C.1 (Expressiveness of the model). The hidden state h(t) ∈ Rdh in (4) encodes the historical
data, enabling x(t) to be time-inhomogeneous. This raises the question regarding the expressiveness
of Eq. (4) in representing a general dynamical system described by x′(t) = F (x(t), t). There
exist works that explored the expressiveness of the system h′(t) = fθ(h(t), x(t)), y(t) = gϕ(h(t)),
where fθ, gϕ are neural networks and fθ possesses a RNN structure [8, 4, 19, 20]. Among these
works, [8, 4, 19] assumed that x(t) was generated from the underlying dynamics (4), and thus the
approximation problem was reduced to estimating f and g using neural networks fθ and gϕ. On the
other hand, [20] took into account a broader range of input-output relationships. Specifically, it studied
the expressiveness of the linear RNN structure in representing functionals Ht that determined the
output at time t according to Ht({x(τ), τ ∈ T }), where T is an ordered index set (e.g., T = [0, T]).
[20] mainly focused on the case when {Ht({x(τ), τ ∈ T })} is linear and time-homogeneous.

Our approximation analysis bears more resemblance to the first category of studies and examines the
approximation error for the discretely observed data.

Remark C.2 (Time-homogeneous dynamical systems). For a time-homogeneous dynamical system
x′(t) = F (x(t)), it can be represented as Eq. (4) by setting dh = D, f(h, x) = F (h), and g(h) = h.
Theorems B.5 and 2.1 indicate that neural networks fθ, gϕ can be configured such that the observed
data is approximated to any pre-specified accuracy. Prior studies [8, 4, 19, 20] proved that the system
x′(t) = F (x(t)) could also be approximated using a continuous-time RNN, although without upper
bounding the network size.

Proof of Lemma B.4 Following the notations in [32], we consider Sobolev space Wn,∞([−1, 1]d),
with n = 1, 2, . . ., defined as the space of functions on [−1, 1]d lying in L∞ with their weak deriva-
tives up to order n. From the proof of [32, Theorem 1], for any f : [−1, 1]d → R such that f ∈
Wn,∞([−1, 1]d) and ϵ > 0, there exists a neural network f̃ such that maxx∈[−1,1]d |f(x)−f̃(x)| < ϵ,
and f̃ has O(ln(d+1)(ln(

αf

ϵ)+1)) layers and O(2d(d+1)dd+2 ln(d+1)2(
2βf

ϵ)
d
n (ln(

αf

ϵ)+1)) train-
able parameters, where αf = ∥f∥Wn,∞([−1,1]d) := maxn:|n|≤n ess supx∈[−1,1]d |Dnf(x)|, βf :=

maxn:|n|=1 ess supx∈[−1,1]d |Dnf(x)|.

11

In our case, we take n = 1. For f : [−1.1, 1.1]dh × [−1, 1]D → Rdh that is Lipschitz in both η and
x, we define Lf,h, Lf,x as follows:

Lf,h := sup
x∈[−1,1]D

sup
η1,η2∈[−1.1,1.1]dh

∥f(η1, x)− f(η2, x)∥
∥η1 − η2∥

,

Lf,x := sup
h∈[−1.1,1.1]dh

sup
x1,x2∈[−1,1]D

∥f(η, x1)− f(η, x2)∥
∥x1 − x2∥

.

(A9)

For f̃ = (f̃1, . . . , f̃dh
) : [−1, 1]dh × [−1, 1]D → Rdh defined as f̃(η̃, x) := f(1.1η̃, x), we have

that αf̃i
≤ 1.1Cf , βf̃i

≤ 1.1Cf , i = 1, . . . , dh. Therefore, there exist dh subnetworks, denoted as
f̂1, . . . , f̂dh

, such that

max
η̃∈[−1,1]dh ,x∈[−1,1]D

|f̃i(η̃, x)− f̂i(η̃, x)| <
ϵf√
dh

,

and each subnetwork has O(ln(
1.1Cf

ϵf
)+ln dh+1) layers and O((

2.2Cf

ϵf
)dh+D(ln(

1.1Cf

ϵf
)+ln dh+1))

weights, where the constants of big-O notations depend on dh and D.

Thus, we can construct f̃θ as a network consisting of dh parallel sub-networks that implement each
of f̂i. Then, for fθ(η, x) := f̃θ(

1
1.1η, x),

max
η∈[−1.1,1.1]dh ,x∈[−1,1]D

∥f(η, x)− fθ(η, x)∥2 = max
η̃∈[−1,1]dh ,x∈[−1,1]D

∥f̃(η̃, x)− f̃θ(η̃, x)∥2

≤
√

dh max
η̃∈[−1,1]dh ,x∈[−1,1]D

∥f̃(η̃, x)− f̃θ(η̃, x)∥∞ < ϵf .

fθ has O(ln(
1.1Cf

ϵf
)+ ln dh+1) layers and O((

2.2Cf

ϵ)dh+D(ln(
1.1Cf

ϵf
)+ ln dh+1)) weights, where

the constants of big-O notations depend on dh and D. Specifically,

#(layers of fθ) ≤ C ln(dh +D + 1)(ln(
1.1Cf

ϵf
) + ln dh + 1),

#(weights of fθ) ≤ C2(dh+D)(dh+D+1)(dh +D)dh+D+2d
dh+D+2

2

h ln(dh +D + 1)2

· (2.2Cf

ϵ
)dh+D(ln(

1.1Cf

ϵf
) + ln dh + 1),

for some absolute constant C > 0. gϕ can be constructed similarly. We define g̃ = (g̃1, . . . , g̃D′) :

[−1, 1]dh → RD′
as g̃(η̃) := g(1.1η̃). Then, there exist D′ subnetworks, denotes as ĝ1, . . . , ĝD′ ,

such that

max
η̃∈[−1,1]dh

∥g̃i(η̃)− ĝi(η̃)∥2 <
ϵg√
D′

, i = 1, . . . , D′,

and each subnetwork has O(ln(
1.1Cg

ϵg
)+ lnD′ +1) layers and O((

2.2Cg

ϵg
)dh(ln(

1.1Cg

ϵg
)+ lnD′ +1))

weights, where the constants of big-O notations depend on dh and D′. We construct g̃ϕ as a network
consisting of D′ parallel subnetworks that implements {ĝi}. Then, for gϕ(η) := g̃ϕ(

1
1.1η),

max
η∈[−1.1,1.1]dh

∥g(η)− gϕ(η)∥2 < ϵg,

and

#(layers of gϕ) ≤ C ln(dh + 1)(ln(
1.1Cg

ϵg
) + lnD′ + 1),

#(weights of gϕ) ≤ C2dh(dh+1)ddh+2
h D′ dh+2

2 ln(dh + 1)2(
2.2Cg

ϵg
)dh · (ln(1.1Cg

ϵg
) + lnD′ + 1).

This proves the claim.

12

Proof of Theorem B.5.

Proof of Theorem B.5. We denote u(t) := ∥h(t)−hNN(t)∥, and t0 = inft∈[0,T]{u(t) ≥ 0.1}. Since
u(0) = 0 and u(t) is continuous, we know that t0 > 0. In the following, we show that t0 = T by
contradiction. Otherwise, suppose that t0 < T . Then for t ∈ [0, t0], u(t) = ∥h(t)− hNN(t)∥ ≤ 0.1,
which implies that hNN(t) ∈ [−1.1, 1.1]dh .

Then, by (A3), for t ∈ [0, t0],

u(t) =

∥∥∥∥∫ t

0

(f(h(s), x(s))− fθ(hNN(s), x(s))) ds

∥∥∥∥
≤
∫ t

0

∥f(h(s), x(s))− fθ(hNN(s), x(s))∥ ds

≤
∫ t

0

(ϵf + L(s)∥h(s)− hNN(s)∥) ds,

where
L(s) = Lf,h

i , if s ∈ [ti−1, ti], i = 1, . . . , n+ 1,

and {ti}ni=1 the time grid corresponding to the partition D1 ∪ D2 such that 1
T

∑n+1
i=1 Lf,h

i (ti −
ti−1) ≤ 1

T (Llow|D1|+ Lhigh|D2|) = L(avg), and Lf,h
i is defined as in (A5) with taking the interval

[s, t] = [ti−1, ti]. Therefore,

u(t) ≤ ϵf t+

∫ t

0

L(s)u(s)ds, t ∈ [0, t0].

By the Grönwall’s inequality,

u(t) ≤ ϵf t exp(

∫ t

0

L(s)ds) ≤ ϵfT exp(

n+1∑
i=1

Lf,h
i (ti−ti−1)) ≤ ϵfT exp(L(avg)T) < 0.1, t ∈ [0, t0].

Specifically,
u(t0) ≤ ϵfT exp(L(avg)T) < 0.1.

Since u(t) is continuous, there exists a sufficiently small δ > 0, such that u(t) < 0.1 for t ∈ [t0, t0+δ].
This is a contradiction to the definition of t0. Thus, we conclude that t0 = T , and therefore
hNN(t) ∈ [−1.1, 1.1]dh , ∀t ∈ [0, T]. By the similar analysis above, we have that

u(t) ≤ ϵfT exp(L(avg)T), t ∈ [0, T].

Thus, for t ∈ [0, T],

∥y(t)− yNN(t)∥ ≤ ∥g(h(t))− g(hNN(t))∥+ ∥g(hNN(t))− gϕ(hNN(t))∥
≤ LgT exp(L(avg)T)ϵf + ϵg,

which proves the claim.

Proof of Theorem 2.1.

Proof of Theorem 2.1. Denote εi = h(ti) − ĥNN(ti), then ε0 = 0. In the following, we apply the
induction argument, iteratively showing that

∥εi∥ ≤ eh < 0.1, ĥNN(ti) ∈ [−1.1, 1.1]dh , i = 0, . . . , N, (A10)

where

eh := T exp(

N∑
i=1

Lf,h
i ∆ti)

(
ϵf +max

j
{µj∆tj}

)
.

13

For i = 0, (A10) naturally holds since h(0) = ĥNN(0). If (A10) holds For i ≤ k, then for i = k + 1,
by ∥εk∥ < 0.1, ĥNN(tk) ∈ [−1.1, 1.1]dh . From the definition of εk+1,

εk+1 =

∥∥∥∥(h(tk) + ∫ tk+1

tk

f(h(s), x(s))ds

)
−
(
ĥNN(tk) + ∆tk+1fθ(ĥNN(tk), x(tk))

)∥∥∥∥
≤ εk +

∫ tk+1

tk

∥∥∥f(h(s), x(s))− fθ(ĥNN(tk), x(tk))
∥∥∥ds.

Next, we upper bound the second term. By the triangle inequality, ĥNN(tk) ∈ [−1.1, 1.1]dh and (A3),
for s ∈ [tk, tk+1],∥∥∥f(h(s), x(s))− fθ(ĥNN(tk), x(tk))

∥∥∥
≤
∥∥∥f(h(s), x(s))− f(ĥNN(tk), x(tk)

∥∥∥+ ∥∥∥f(ĥNN(tk), x(tk)− fθ(ĥNN(tk), x(tk))
∥∥∥

≤ ∥f(h(s), x(s))− f(h(tk), x(s))∥+ ∥f(h(tk), x(s))− f(h(tk), x(tk))∥

+
∥∥∥f(h(tk), x(tk))− f(ĥNN(tk), x(tk))

∥∥∥+ ϵf

≤ (Lf,h
k+1M

f
k+1 + Lf,x

k+1L
x
k+1)∆tk+1 + Lf,h

k+1∆tk+1εk + ϵf ,

where the first component is due to ∥h(s)− h(tk)∥ = ∥
∫ s

tk
f(h(u), x(u))du∥ ≤ Mf

k+1∆tk+1 and
the second term results from |x(s)− x(tk)| ≤ Lx

k+1∆tk+1.

This implies that
εk+1 ≤ (1 + Lf,h

k+1∆tk+1)εk + γk+1, (A11)
where

γk+1 := ϵf∆tk+1 + (Lf,h
k+1M

f
k+1 + Lf,x

k+1L
x
k+1)∆t2k+1 = ϵf∆tk+1 + µk+1∆t2k+1.

From (A11), we obtain that

εk+1 ≤
i+1∑
j=1

γj ·
k+1∏

l=j+1

(1 + Lf,h
l ∆tl)

 .

Since 1 + x ≤ exp(x),

k+1∏
l=j+1

(1 + Lf,h
l ∆tl) ≤ exp(

k+1∑
l=j+1

Lf,h
l ∆tl) ≤ exp(

N∑
l=1

Lf,h
l ∆tl).

Hence, we have

εk+1 ≤ exp(

N∑
i=1

Lf,h
i ∆ti)

N∑
j=1

γj = exp(Lf,hT)

 N∑
j=1

ϵf∆tj + µj∆t2j

≤ T exp(

N∑
i=1

Lf,h
i ∆ti)

(
ϵf +max

j
{µj∆tj}

)
= eh.

Therefore, (A10) holds for i = k + 1. By the induction argument, (A10) is true for i = 1, . . . , N .

Finally, for i = 1, . . . , N , by triangle inequality and the fact that ĥNN(ti) ∈ [−1.1, 1.1]dh , applying
(A3) results in

∥y(ti)− ŷNN(ti)∥ = ∥g(h(ti))− gϕ(ĥNN(ti))∥
≤ ∥g(h(ti))− g(ĥNN(ti))∥+ ∥g(ĥNN(ti))− gϕ(ĥNN(ti))∥ (A12)
≤ ϵg + Lgεk+1 < ϵg + Lgeh.

This proves the claims in Theorem 2.1.

14

D Experimental Details

We provide More details of the experiment settings in this section, with the boxplots of the error plots
and additional results provided in Appendix D.7.

D.1 Training Objective

Given the time horizon [0, T], suppose that we have a collection of training windows with the k-th one
denoted as x(Tr,k) = {x(Tr,k)(t

(Tr,k)
1), . . . , x(Tr,k)(t

(Tr,k)
N)}. We train the model (1)-(2) parametrized

by neural networks with trainable parameters Θ using the mean-squared regression loss function

L(Θ; {x(Tr,k)}K
(Tr)

k=1) =

K(Tr)∑
k=1

N∑
i=1

∥x̂(Tr,k)(t
(Tr,k)
i)− x(Tr,k)(t

(Tr,k)
i)∥2|t(Tr,k)

i − t
(Tr,k)
i−1 |, (A13)

where x̂(k)(t) is the output of the neural ODE model under parameter Θ conditioned on all past
observation.

D.2 Computational Complexity

The computational complexity of applying Algorithm 1 in the preprocessing stage to K(Tr) training
windows is O(K(Tr)ND), where D is the data dimension. For the neural ODE model described as in
(1)-(2), when f possesses the same network structure as a vanilla RNN with dh hidden units and g is
a one-layer fully connected network, the complexity in the training process is O(neK

(Tr)N̄adh(dh +
D)), where ne and N̄a represent the number of training epochs and the average length of the adaptive
windows, respectively.

Since the computational cost in the training process usually dominates that in the preprocessing
step (which happens as long as nedh ≥ 2L), the overall complexity of the RNN-ODE-Adap model
is O(neK

(Tr)N̄adh(dh + D)). This is of the same order as the complexity of training a vanilla
RNN with dh hidden units (we refer to Appendix D.4 for the architecture) in ne epochs, using K(Tr)

training windows with the same length N̄a. Therefore, compared with the complexity when training
with the original finest N time grids, the complexity associated with the adaptive method will be
reduced by a factor of N̄a/N . The smallest achievable complexity will be reduced by a factor of
1/2L when choosing a sufficiently large threshold ϵ.

D.3 Implementation Details

Given the training windows {x(Tr,k)}K(Tr)

k=1 , the algorithm 1 is used as a preprocessing step to prepare
each training window to the irregular sub-window with adaptive time steps. The resulting adaptive
training windows are then used to train the neural ODE model (1)-(2) using the mean-squared loss
function (A13). During the inference phase, the learned ODE model (1) will be used for fitting and
prediction tasks. It can be used for arbitrary and irregular (future) time steps.

Choice of Monitor Functions. The monitor function in Algorithm 1 can be chosen flexibly, not
restricted to the maximum variation defined in (3). We may also choose ℓp norms for any p ≥ 1.
Since this work mainly uses non-stationary time series with “spike”-like patterns as an example,
the monitor function (3) is a natural choice for identifying abrupt “spikes”. In general, the monitor
function may be designed case-by-case depending on the problem context. For example, when
modeling the event-type counting process (such as the simulated Hawkes process), where xi ∈ N
is the number of events in the current time interval, we may choose to use the maximum counts
M(xi, . . . , xj) := max{xi, . . . , xj}. By setting the threshold ϵ ∈ (0, 1), such a monitor function
will assign the finest time steps to intervals with events (xi > 0) and use rough time steps for regions
without events (xi = 0).

Choice of Threshold in Algorithm 1. The choice of the selection threshold ϵ used in Algorithm 1
can be selected from training data via simulation. In detail, note that a larger threshold ϵ would lead to
a sparser set of selected time steps (the output of Algorithm 1). Therefore, we primarily determine the
threshold ϵ by calibrating the number of remaining time stamps after applying Algorithm 1, allowing

15

0 10 20 30

0.2

0.4

0.6

0.8

1.0
Original data

0 10 20 30

0.2

0.4

0.6

0.8

1.0
ε=0.01

0 10 20 30

0.2

0.4

0.6

0.8

1.0
ε=0.05

0 10 20 30

0.2

0.4

0.6

0.8

1.0
ε=0.80

Figure A2: Illustration of adaptively selected time steps with different thresholds (ECG data). The
gray dots depict the original data points and the red points illustrate the time steps selected by
Algorithm 1 using threshold ϵ = 0.01, 0.05, and 0.8, and L = 3.

us to control the desired efficiency. Specifically, we employ a validation data set to calibrate the
selection of threshold values, ensuring that the chosen ϵ yields the desired average lengths for the
adaptively selected time steps. As illustrated in Figure A2, an example of ECG data demonstrates the
influence of the threshold parameter ϵ on the chosen grids. It can be observed that an increasing ϵ
leads to a reduction in the number of selected grids. Furthermore, for each value of ϵ, the chosen
grids correspond to sub-intervals with greater variation.

Evaluation Metric. To compare the multi-step prediction performance of different time series
models, we use the mean-squared multi-step ahead prediction error as follows. After obtaining the
fitted model, we can use the trained networks (1)-(2) to make predictions on the testing windows
{x(Te,k)}K(Te)

k=1 , where x(Te,k) = {x(Te,k)(t
(Te,k)
1), . . . , x(Te,k)(t

(Te,k)
n)}. Given a historical trajectory

{x(t1), . . . , x(tn)}, we can apply the fitted model to perform multi-step ahead prediction

ĥ(ti+1) = ĥ(ti) +

{∫ ti+1

ti
f(ĥ(s), x(s); θh)ds, when i ≤ n,∫ ti+1

ti
f(ĥ(s), x̂(s); θh)ds, when n < i ≤ n+m,

(A14)

x̂(ti+1) = g(ĥ(ti+1); θd),

which will be iteratively solved for i = 1, . . . , n + m. The first ODE can be solved by, for
instance, the Euler method. When comparing the m-step ahead prediction performance of different
methods, we use the averaged ℓ2 norm of the prediction error of length m; specifically, we take
n = ⌊N/2⌋,m = N − n in the experiments in Section 3 and perform the prediction in Eq. (A14)
for each testing window x(Te,k) with the predicted value denoted as x̂(Te,k)(·), then the resulting
prediction performance on test data is measured as follows

MSEpred =
1

K(Te)

K(Te)∑
k=1

(
1

m

n+m∑
i=n+1

∥∥∥x(Te,k)(t
(Te,k)
i)− x̂(Te,k)(t

(Te,k)
i)

∥∥∥2)1/2

. (A15)

We could also use other reasonable metrics that measure the discrepancy between times series data,
such as the averaged ℓ1 norm or the dynamic time warping distance [29].

To compare the one-step prediction performance of different methods on the intensity function of the
event data generated from Hawkes processes, we employ the error as defined in (A16), which has the
similar form to the training loss (A13):

MSEfit =
1

K(Te)

K(Te)∑
k=1

N∑
i=1

∥∥∥λ̂(Te,k)(t
(Te,k)
i)− λ(Te,k)(t

(Te,k)
i)

∥∥∥2 |t(Te,k)
i − t

(Te,k)
i−1 |, (A16)

here the superscript (Te) denotes that the error is evaluated on the testing data. λ and λ̂ denote the true
and fitted intensity functions of the event data, respectively. In this case, λ̂ is obtained by iteratively
solving (A14) with n = N − 1 and m = 0.

Buffer Steps. To facilitate training and improve the performance of the models, we leverage
additional “buffer steps” at the beginning of each window to mitigate the effect of the zero initialization

16

!"##$% &%'(')*+,-*.*

Figure A3: Illustration of buffer steps constructed on a discrete-time event data generated from a
Hawkes process.

of the hidden states. Buffer steps refer to the additionally padded time stamps before each window.
Specifically, for the k-th training window {x(Tr,k)(t

(Tr,k)
i)}Ni=1, adding m buffer steps means that the

original time series is augmented to {x(Tr,k)(t
(Tr,k)
i)}Ni=−m, where for i = −m, . . . ,−1, t(Tr,k)

i+1 −
t
(Tr,k)
i = ∆t := mini=0,...,N−1{t(Tr,k)

i+1 − t
(Tr,k)
i }. An illustration of the buffer steps for the discrete

point process data is shown in Figure A3. Detailed information on buffer steps, pertaining to the
experiments in Section 3, along with additional experiments examining the impact of incorporating
buffer steps and selecting the appropriate number of buffer steps using validation data, can be found
in Appendix D.6.

D.4 Network Structure

In the experiments, we use the same network structure for RNN, RNN-ODE, and RNN-ODE-Adap,
namely the ODE function f follows the vanilla RNN structure

f(h, x; Θf) = tanh(Wf [h, x] + bf),

where h ∈ Rdh ,Wf ∈ Rdh×(dh+D), bf ∈ Rdh , and Θf = {Wf , bf}. RNN updates the hidden states
discretely by htn = f(htn−1 , xtn ; Θf).

Furthermore, in this paper, the output function g for RNN, RNN-ODE, and RNN-ODE-Adap is taken
as a fully connected (FC) layer

g(h; Θg) = Wgh+ bg, (A17)

where h ∈ Rdh ,Wg ∈ RD×dh , bg ∈ RD, and Θg = {Wg, bg}. In all the experiments, we take
dh = 128.

For the LSTM model, we use the same output function as in (A17) to decode hidden states and the
vanilla LSTM block to update hidden states. The latter is detailed as

fLSTM(h, c, x; ΘfLSTM) = o(h, x; Θo)⊙ tanh (c(h, c, x; Θc)) ,

where

o(h, x; Θo) = σ(Wo[h, x] + bo),

c(h, c, x; Θc) = p(h, x; Θp)⊙ c+ i(h, x; Θi)⊙ q(h, x; Θq),

i(h, x; Θi) = σ(Wi[h, x] + bi),

p(h, x; Θp) = σ(Wp[h, x] + bp),

q(h, x; Θq) = σ(Wq[h, x] + bq),

here h, c ∈ Rdh ,Wo,Wi,Wp,Wq ∈ Rdh×(dh+D), bo, bi, bp, bq ∈ Rdh , and the parameters
in the LSTM model is denoted as ΘfLSTM = {Wo,Wi,Wp,Wq, bo, bi, bp, bq}. LSTM up-
dates the cell states and hidden states iteratively by ctn = c(htn−1

, ctn−1
, xtn ; Θc), htn =

fLSTM(htn−1
, ctn−1

, xtn ; Θf) = o(htn−1
, xtn ; Θo)⊙ tanh(ctn).

17

D.5 Training, Validation, and Testing Data Sets

D.5.1 Windows of the Finest Grids

In all the experiments, the results are obtained from multiple replicas. In each replica, training,
validation, and testing windows of the finest grids are independently generated, and then used for
training the neural networks, validating, and evaluating performance.

For the data in the spiral example, 50 of the total 500 training windows of length 65 are randomly
chosen as validation data, and there are 500 testing windows of the same length. Each spiral follows
the ODE system described in Section 3, with A perturbed. 5 windows are randomly chosen for each
spiral sampled at 200 regular time steps.

For event-time data generated from Hawkes process, 200 of the total 2000 training Hawkes sequences
are randomly chosen as validation data, and there are 1000 testing sequences. Each sequence is
generated with α = 0.5, µ(t) ≡ 0.5 and an exponential kernel φ(t) = 2e−2t. The data lies in
physical time [1, 5]. Note that the original data set only consists of the time stamps when the events
happen. We need to further preprocess the original data to time series that indicate the number of
events happening in small intervals. Specifically, we discretize the time space into uniform bins,
transforming the continuous-time event times into discrete counts.

For ECG data, we select ten patients from the PTB-XL ECG dataset. For each patient, we have the
12-lead ECGs of 10-second length, with 50Hz frequency. We use 3-lead in our training and testing.
Thus, there are in total 30 trajectories of length 500. The first 70% and last 30% of each trajectory
are used to extract training and testing windows respectively to avoid overlapping. 300 of the total
3000 training windows are randomly chosen as validation data, and there are 900 testing windows. In
this case, for each of the 30 trajectories, 100 training windows of length 97 are taken from the first
350 time steps, and 30 testing windows of the same length are from the last 150 time steps.

D.5.2 Windows of the Predetermined Lengths

To get windows of a certain length, for RNN, LSTM, and RNN-ODE that use regular time steps,
the original windows are interpolated to get regular time steps with the desired number of grids;
RNN-ODE-Adap selects the time steps by adjusting hyper-parameters ϵ and L in Algorithm 1, such
that the averaged length of the adaptively selected validation windows is close to the desired length.

The situation is different for the event-type data since the time when the event happens is available.
In this case, RNN, LSTM, and RNN-ODE utilize the windows that count the number of events
happening in time intervals formed by regular time steps of the required length. RNN-ODE-Adap
first generates longer windows (and smaller ∆t) and then takes L = 1, ϵ = 0.5 in Algorithm 1 to
generate windows with similar lengths to the required one. In this way, RNN-ODE-Adap utilizes
windows with irregular time steps.

D.6 More Details on Buffer Steps

For RNN, LSTM, and RNN-ODE that use regular training time series {xti}ni=0 with ti+1 − ti =
∆t (i = 0, . . . , n − 1), adding m buffer steps means that the original time series is augmented to
{xti}ni=−m, with ti+1 − ti = ∆t (i = −m, . . . , n − 1). For spiral and ECG data, we take m = 2
and x−2 = x−1 = x0. For the event-type data from the Hawkes process, we take m = ⌊n

4 ⌋ and
{xti}−1

i=−m as the true event data, in this way t0 − t−m = m∆t = ⌊n
4 ⌋

4
n ≈ 1. Here ∆t =

4
n due to

that the event-time data are generated in an interval with physical time 4.

For RNN-ODE-Adap that is trained with irregular training time series {xti}ni=0, we first find the
minimal increment in time ∆t := mini{ti+1 − ti}, then the series with m buffer steps added is
{xti}ni=−m, with ti+1 − ti = ∆t (i = −m, . . . ,−1). For spiral and ECG data, we still take m = 2
and x−2 = x−1 = x0. For the event-time data, we use the same number of buffer steps as the other
three methods for a fair comparison.

Figure A4 below presents two examples of the event-type data from the Hawkes process, illustrating
the performance improvement achieved by incorporating buffer steps, which mitigate the effects
of zero-initialized hidden states. The light and dark green lines represent the fitted intensity of
RNN-ODE without and with buffer steps, respectively. It can be observed that, in the absence of

18

buffer steps, the initial few steps are not accurately estimated due to zero initialization. The inclusion
of buffer steps effectively eliminates this issue.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0

1

2

in
te
ns
ity

Example 1
RNN-ODE (16 buffer steps)
RNN-ODE (no buffer steps)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0

1

2

in
te
ns
ity

Example 2

Figure A4: Comparison of RNN-ODE models with or without buffer steps on the two examples of
the discrete event-time data generated from the Hawkes process (the number of grids is 65).

We investigate more on the number of buffer steps for the event-type data. Specifically, Figure A5
below shows the fitting errors of RNN-ODE for different buffer steps when the number of grids is
65. We remark that ∆t keeps the same for all the number of buffer steps, thus the number of buffer
steps also reflects the physical buffer time used. It can be observed that as the number of buffer steps
increases from 2 to 16, the fitting error decreases. This implies that for the data with long history
dependence like the Hawkes process, enough buffer steps should be kept to circumvent non-stationary
results.

2 4 6 8 10 12 14 16
Number of buffer steps

0.070

0.075

0.080

0.085

0.090

m
ea

n
of
 L
2
er
ro
r

L2 error v.s. number of buffer steps
RNN-ODE

Figure A5: Comparison of the fitting errors versus the number of buffer steps for the discrete event-
type data generated from the Hawkes process for RNN-ODE (the number of grids is 65).

D.7 Other Implementation Details and Additional Results

We implement all the methods using PyTorch (Paszke et al., 2019), and all the experiments are run
on a PC with 2.6 GHz 6-Core. We use Adam (Kingma & Ba, 2014) for optimization. Moreover,
additional numerical results are given in Figures A7, A7, A8, A9, A10, A11, A12, and A13.

Reconstructions of the spirals. Figure A6 shows examples of spiral reconstructions using about
30% of the data. The time steps might be obtained by interpolation and regular (the upper half of
Figure A6), or be chosen adaptively by Algorithm 1 and thus irregular (the lower half of Figure A6).
We can see that there are mismatches between shapes reconstructed by RNN and LSTM and the
ground truth spiral shape. In contrast, we note that RNN-ODE and RNN-ODE-Adap are consistent
with the underlying spirals.

19

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

LSTM

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE-adap
Example: Rec nstructi n f the Spiral fr m Regular Time Series, Using 31% Data

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

LSTM

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE-adap
Example: Reco structio of the Spiral from Irregular Time Series, Usi g 31% Data

Figure A6: Comparison of RNN, LSTM, RNN-ODE, RNN-ODE-Adap on the reconstruction of
simulated spiral data generated from Eq. (7), using regular (upper) v.s. irregular (lower) time series.

Boxplot of Figure 2. Figure A7 shows the boxplot of the prediction errors of the models for the
spiral data (the mean of MSE over replicas is plotted in Figure 2).

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

RNNODE
RNN-ODE-Adap
RNN
LSTM

Spiral data: Testing Precition MSE vs. Complexity (boxplot)

Figure A7: The boxplot of the prediction errors on the simulated spiral data from Eq. 7 for RNN,
LSTM, RNN-ODE, and RNN-ODE-Adap. x and y axes have been explained in the caption of Figure
2.

LSTM and Lipschitz-RNN variants. Figure A8 shows the mean and the boxplot of the prediction
errors of the models for the spiral data, including the LSTM variant of the adaptive model (which
we refer to as LSTM-ODE-Adap and is plotted in the orange dashed lines). Similarly, Figure A9
shows the mean and the boxplot of the prediction errors of the models for the spiral data, including
the Lipschitz-RNN [6] and its adaptive variant (which we refer to as Lipschitz-RNN-Adap and are
plotted in the light and dark purple solid lines respectively).

The results in Figures A8 and A9 indicate that LSTM and Lipschitz-RNN with adaptive time steps
achieve higher accuracy than the other models, thus validating the utility of incorporating adaptive
time steps. Furthermore, this demonstrates that our proposed scheme of adaptive time steps can be
easily and flexibly integrated into various time series models, leading to enhanced performance.

Sensitivity of LSTM to the number of parameters. Figure A10 shows the mean and the boxplot
of the prediction errors of the models for the spiral data, including the LSTM with a similar number
of parameters to that of RNN models. It can be observed that the performance of LSTMs with varying
numbers of parameters is comparable and thus, the performance of LSTM is not sensitive to the
number of parameters.

20

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n
of

 M
SE

mean of MSE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM
LSTM-ODE-Adap

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

boxplot of MSE

RNNODE
RNN-ODE-Adap
RNN
LSTM
LSTM-ODE-Adap

Spiral data: Testing Precition MSE vs. Complexity

Figure A8: Comparison of prediction errors on the simulated spiral data from Eq. 7, including the
LSTM variant (plotted in the orange dashed lines). The left and right panels show the mean and
boxplot of MSE, respectively. x and y axes have been explained in the caption of Figure 2.

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea
n
of
 M
SE

mean of MSE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM
Lipschitz-RNN
Lipschitz-RNN-Adap

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
M
SE

boxplot of MSE

RNNODE
RNN-ODE-Adap
RNN
LSTM
Lipschitz-RNN
Lipschitz-RNN-Adap

Spiral data: Testing Precition MSE vs. Complexity

Figure A9: Comparison of prediction errors on the simulated spiral data from Eq. 7, including the
Lipschitz-RNN and its adaptive variant (plotted in the dark and light purple solid lines). The left and
right panels show the mean and boxplot of MSE, respectively. x and y axes have been explained in
the caption of Figure 2.

Ablation study of the time difference term in the training objective (A13). Figure A11 shows
the boxplot of MSE of the models for the ablation study without the term |t(Tr,k)

i − t
(Tr,k)
i−1 | on the

event-type data, and RNN-ODE-Adap is plotted in a red dashed line. The results indicate that if the
neural networks are trained without considering the time intervals, the models fail to fit the underlying
intensity function, despite having the same network structure as before.

Boxplot of Figure 4. Figure A12 shows the boxplots of the prediction errors for ECG data, and the
corresponding mean of MSE is shown in Figure 4.

Examples of 24-step predictions for the ECG data. Figure A13 presents a comparison of 24-step
ahead predictions for the testing ECG data using RNN and RNN-ODE-Adap. The corresponding
48-step ahead predictions can be found in Figure 4 (b).

Comparison with LEM. We compare our model with LEM [28], which incorporates the time-
adaptivity through the time modulator multiplied by the ODE function. The performance is evaluated

21

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n
of

 M
SE

mean of MSE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM
LSTM (smaller model)

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

boxplot of MSE

RNNODE
RNN-ODE-Adap
RNN
LSTM
LSTM (smaller model)

Spiral data: Testing Precition MSE vs. Complexity

Figure A10: Comparison of prediction errors on the simulated spiral data from Eq. 7, including the
LSTM with a similar number of parameters to that of RNN models (plotted in the orange dashed
lines). The left and right panels show the mean and boxplot of MSE, respectively.

17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L2
 e
rro

r

L2 error vs. complexity
RNN-ODE
RNN-ODE-Adap
RNN-ODE-Adap (con(tant Δt)
RNN
LSTM

Figure A11: Comparison of prediction errors for the event-type data generated from Hawkes processes,
including RNN-ODE-Adap trained with constant ∆t (plotted in the red dashed line).

on the simulated data generated from the FitzHugh-Nagumo system [7],

v′ = v − v3

3
− w + Iext, w′ = τ(v + a− bw),

which is a two-scale dynamical system and included as an example in [28]. As in [28], we take
τ = 0.02, Iext = 0.5, a = 0.7, b = 0.8, the time t ∈ [0, 200], and the initial values (v0, w0) = (c0, 0),
where c0 ∼ U([−1, 1]). We rescale the system such that the time horizon is [0, 1] and |v′| is O(1).
Specifically, if we formulate the original system as y(t)′ = f(y(t)), where y = (v, w), then we
consider the rescaled system ỹ(τ) = f̃(ỹ(τ)), with t = βτ, ỹ(τ) = αy(βτ), f̃(ξ) = αf(1

αξ). We
take α = 10, β = 200, and in this way τ ∈ [0, 1].

We compare the performance of the following models,

LEM :

{
h′(t) = σ̂(W2h(t) + V2x(t) + b2) ◦ (σ(Whg(t) + Vhx(t) + bh)− h(t)),

g′(t) = σ̂(W1h(t) + V1x(t) + b1) ◦ (σ(Wgh(t) + Vgx(t) + bg)− g(t)),

LEM-0 :

{
h′(t) = σ(Whg(t) + Vhx(t) + bh)− h(t),

g′(t) = σ(Wgh(t) + Vgx(t) + bg)− g(t),

RNN-ODE :

{
h′(t) = σ(Whhg(t) +Whgg(t) + Vhx(t) + bh),

g′(t) = σ(Wghh(t) +Wggg(t) + Vgx(t) + bg),

22

25 31 37 43 49 55 61 67 73 79 85 91 97
number of grids

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

prediction length = 24

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

25 31 37 43 49 55 61 67 73 79 85 91 97
number of grids

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

prediction length = 48

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

ECG data: Testing Precition MSE vs. Complexity (boxplot)

Figure A12: Boxplot of the prediction errors on the real ECG data.

380 400 420 440 460

0.0

0.2

0.4

0.6

0.8

Testing Window (Example 1)
true traj
RNN
RNN-ODE-Adap

380 400 420 440 460
0.0

0.2

0.4

0.6

0.8

Testing Window (Example 2)
true traj
RNN
RNN-ODE-Adap

Example: ECG data, fit & prediction (for 24 time steps)

Figure A13: Examples of 24 steps ahead prediction for the testing ECG data using RNN (marked in
blue) and RNN-ODE-Adap (marked in red). The predicted region is marked between dashed lines.

with the output

x̂(t) = Wx,hh(t) +Wx,gg(t) + bx.

Here σ̂(x) = 0.5(1+tanh(x/2)), h, g ∈ Rdh . Note that LEM-0 is LEM without the time modulators,
and RNN-ODE possesses the vanilla RNN structure if we view the concatenated (h(t), g(t)) ∈ R2dh

as the hidden state. As in the other experiments, we still take dh = 128.

The length of both training and testing windows is set to N = 64, with the windows sampled at
regular time intervals defined by ti =

i
N−1 , i = 0, . . . , N . When integrating the ODE models, the

time step difference is kept consistent with the physical time difference, specified as ∆t = 1
N−1 .

Consequently, the only difference between the models is the structure of the neural ODE. To compare
the time adaptivity incorporated in the time modulator of LEM and the adaptive algorithm proposed
in this study, we additionally present the results obtained by training LEM-0 and RNN-ODE with the
adaptively chosen time steps.

Table 1 presents the MSE for one-step predictions made by the models, trained either using the
original training windows or those selected adaptively (Both LEM and LEM-0 are implemented
utilizing the code in [28]). As observed from Table 1, the RNN-ODE models exhibit a lower error
on average compared to the LEM models. The adaptive training windows slightly enhance the
performance of the RNN-ODE model, while they do not improve the performance of LEM-0. LEM
outperforms LEM-0 by incorporating time modulators, yet the RNN-ODE-Adap model behaves
better than LEM by up to one standard deviation.

23

Model Training data Testing MSE

LEM-0 Original windows, N = 64 3.54e− 02± 2.69e− 03
LEM-0 Adaptive windows, N̄a = 43 3.61e− 02± 1.85e− 03

RNN-ODE Original windows, N = 64 2.55e− 02± 4.12e− 03
RNN-ODE Adaptive windows, N̄a = 43 2.44e− 02± 5.56e− 03
LEM [28] Original windows, N = 64 3.03e− 02± 2.29e− 03

Table 1: MSE for one-step prediction of the models on data simulated from the FitzHugh-Nagumo
system [7]. The presented results are from 25 replicas, and the MSE for the one-step prediction is
calculated as in (A16).

24

	Introduction
	Method and Theory
	Adaptive Time Steps
	Approximation Analysis of RNN-ODE-Adap

	Numerical Experiments
	Related Works
	More Details on Theory
	Function Estimation for Event-type Data
	Approximation Analysis of RNN-ODE-Adap
	Approximation of the Continuous-Time Model
	More Details about Approximation under Time Discretization in Section 2.2

	Proofs
	Proofs in Section B.1
	Proofs in Section 2.2

	Experimental Details
	Training Objective
	Computational Complexity
	Implementation Details
	Network Structure
	Training, Validation, and Testing Data Sets
	Windows of the Finest Grids
	Windows of the Predetermined Lengths

	More Details on Buffer Steps
	Other Implementation Details and Additional Results

