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Abstract

Typographic attacks are often attributed to the
ability of multimodal pre-trained models to fuse
textual semantics into visual representations, yet
the mechanisms and locus of such interference re-
main unclear. We examine whether such models
genuinely encode textual semantics or primarily
rely on texture-based visual features. To disen-
tangle orthographic form from meaning, we intro-
duce the ToT dataset, which includes controlled
word pairs that either share semantics with dis-
tinct appearances (synonyms) or share appearance
with differing semantics (paronyms). A layer-
wise analysis of Intrinsic Dimension (ID) reveals
that early layers exhibit competing dynamics be-
tween orthographic and semantic representations.
In later layers, semantic accuracy increases as
ID decreases, but this improvement largely stems
from orthographic disambiguation. Notably, clear
semantic differentiation emerges only in the fi-
nal block, challenging the common assumption
that semantic understanding is progressively con-
structed across depth. These findings reveal how
current vision-language models construct text rep-
resentations through texture-dependent processes,
prompting a reconsideration of the gap between
visual perception and semantic understanding.
The code is available at: https://github.
com/Ovsia/Textural-or-Textual

1. Introduction
While vision-language models have demonstrated the ca-
pacity to process textual content embedded within images,
a fundamental question remains: do they genuinely capture
the semantic meaning of the text, or merely treat it as an-
other visual pattern? This distinction is especially pertinent
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given that textual elements, while structurally and sym-
bolically distinct from visual objects, may nevertheless be
encoded in ways that resemble general visual pattern recog-
nition rather than language-specific processing. This echoes
findings in cognitive neuroscience suggesting that the brain
regions supporting visual word recognition (e.g., the visual
word form area) are recycled from object recognition sys-
tems and may initially process written words similarly to
visual objects before being modulated by linguistic feedback
(Carreiras et al., 2014). Such a tendency raises concerns
that these models may be aligning low-level textures rather
than achieving a deeper, cross-modal semantic integration.
Moreover, given the hierarchical nature of neural network
processing, it remains unclear at what stage textual features
begin to influence an image’s semantic interpretation. These
challenges motivate our study, which aims to disentangle
textual and textural representations to better understand how
vision-language models encode and form textual semantics.

One significant manifestation of these uncertainties is typo-
graphic attacks (Goh et al., 2021), which highlight vulner-
abilities in vision-language models when interpreting text
within images. These attacks embed misleading text into
images, causing misclassifications driven by the misalign-
ment between textual and visual modalities. For instance, an
image of a dog overlaid with the word ”laptop” may be mis-
classified as an electronic device (Lemesle et al., 2022). As
models like GPT-4v (Yang et al., 2023) become increasingly
capable, these vulnerabilities raise pressing security con-
cerns, including the risk of unintended command execution
resembling model ”jailbreaking” (Gong et al., 2023; Robey
et al., 2023; Wang et al., 2023). Addressing such vulnera-
bilities requires a deeper understanding of how typographic
attacks exploit the models’ internal representations.

Although typographic attacks may not conform to traditional
definitions of adversarial perturbations, they nonetheless ex-
pose how vision-language models can conflate visual text
with image content, reflecting a fragile alignment between
symbolic and perceptual representations. These models of-
ten exhibit implicit associations between textual cues and
corresponding visual concepts (Cao et al., 2023), suggesting
a shared embedding space where semantically related modal-
ities are co-located. For instance, a model might position
the visual features of a cat near both the textual token ”cat”
and its associated conceptual representation. However, it
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remains unclear whether such proximity reflects genuine se-
mantic understanding or arises from superficial correlations
learned during pretraining. Disentangling these factors is
essential for understanding the robustness and interpretabil-
ity of vision-language representations under multimodal
perturbations.

These observations raise an important question: to what ex-
tent do vision-language models distinguish between the vi-
sual appearance of text and its semantic content? To explore
this, we use Intrinsic Dimension (ID) to quantify the com-
plexity of visual representations by measuring the degrees
of freedom required to encode them accurately. Rooted in
high-dimensional geometry, ID has been widely applied
to the analysis of neural network behavior, particularly in
the context of adversarial robustness (Amsaleg et al., 2017;
Ma et al., 2018). We extend this approach by applying ID
to the ToT dataset, which introduces controlled variations
in both orthographic form and semantic meaning. This al-
lows us to examine how visual and conceptual sources of
complexity affect the internal representations learned by
vision-language models.

We introduce the ToT (Textural or Textual) typographic
attack dataset, which contains text overlays that are seman-
tically consistent, irrelevant, or nonsensical with respect to
the underlying image. This setup allows us to examine how
a pre-trained vision-language model responds to different
types of text-image relationships. We further introduce 10
paronym-synonym pairs designed to disentangle how the
model represents orthographic similarity versus semantic
relatedness. Our analysis shows a non-linear progression in
representational dynamics: earlier layers refine texture-level
features that facilitate surface-level text recognition, with
semantic distinctions emerging only in the final block of the
network. Specifically, the main contributions of this work
are as follows:

• We provide a systematic analysis of how vision-
language models process typographic attacks, using
intrinsic dimension (ID) to quantify representational
complexity across network layers. Our results show
that improvements in semantic decoding accuracy are
largely attributable to orthographic recognition, which
relies on texture-based features rather than abstract se-
mantic understanding. This challenges the common
assumption that semantic representations are gradually
constructed across layers. Clear semantic differentia-
tion emerges only at the final block.

• Building on these observations, we defend against ty-
pographic attacks by simply fine-tuning only the fi-
nal block of the model to better distinguish between
textural and textual representations. Experimental re-
sults show that our strategy effectively balances the

performance between the original image and the typo-
graphic classification, achieving significant improve-
ments across diverse defense scenarios.

2. Related Work
2.1. Typographic Attacks

CLIP (Radford et al., 2021) is known for its ability to joint
understanding of language and vision. Due to its large
amount and spin of training images, many of which incor-
porate both visual and textual features, it can read visually
presented text, or scene-text (Materzyńska et al., 2022; Cao
et al., 2023). A notable aspect of CLIP is its tendency, in
certain instances, to rely predominantly on text for image
classification. This reliance can lead to what’s termed a ty-
pographic attack (Goh et al., 2021), where misclassification
occurs due to overemphasis on text.

In response to such vulnerabilities, various defense strate-
gies have been explored. (Materzyńska et al., 2022) imple-
ment a linear transformation to bifurcate the model into two
distinct streams: one dedicated to visual information and
the other to textual data. (Azuma & Matsui, 2023) introduce
the Dense-Prefix token in conjunction with prompt learning,
placing it before class names to significantly enhance accu-
racy against real-world typographic attack scenarios. PAINT
(Ilharco et al., 2022) involves a method that interpolates be-
tween a model’s pre- and post-fine-tuning weights, showing
notable success in mitigating typographic attacks. (Cao
et al., 2023) takes a different route by filtering out dataset
samples containing text regions within images, leading to
not only improved defense against typographic attacks but
also heightened accuracy in other tasks.

2.2. Disentangling Visual and Textual Semantics in
Vision-Language Models

Large vision-and-language pre-trained models like CLIP
(Radford et al., 2021) showcase their efficacy through exten-
sive pre-training on diverse datasets, excelling in tasks such
as image classification (Zhang et al., 2022), visual question
answering (VQA) (Song et al., 2022), and image captioning
(Mokady et al., 2021). The treatment of visually presented
text within these models sparks debate in the field. Some re-
searchers recommend removing the language representation
from the visual aspects of the model (Materzyńska et al.,
2022; Cao et al., 2023). In contrast, other researchers un-
derscore the indispensable role of language comprehension
in tasks like Text-VQA and Text-Captioning (Yang et al.,
2021; Kil et al., 2023). They advocate for a harmonious in-
tegration of visual and textual information, pointing out that
such synergy is crucial for a more holistic understanding of
images.
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Figure 1. Example images from Subset 1 of the ToT dataset, illustrating consistent, irrelevant, and semantically nonsensical image-text
pairs.

In line with this debate, our research undertakes a series of
comparative experiments focusing on CLIP’s Vision Trans-
former (Dosovitskiy et al., 2020). These experiments aim to
unravel the intricate dynamics between scene-text recogni-
tion and the multi-modal properties inherent in CLIP. Ad-
dressing the complexities of multi-modal models, particu-
larly their challenge in differentiating visual elements from
textual semantics, our study seeks to fine-tune this delicate
balance. We endeavor to enhance the model’s capability
to discern physical objects from scene text, thereby enrich-
ing its understanding and interpretation of both visual and
textual components in a unified and coherent manner.

2.3. Intrinsic Dimensions of Multimodal Representation

The Intrinsic Dimension (ID) is the minimum number of
dimensions required to represent data effectively (Levina &
Bickel, 2004). In neural networks, ID is derived from the
model’s representations, indicating the fewest parameters
needed to capture specific features (Amsaleg et al., 2015).
Ansuini et al. (2019) demonstrated a correlation between
the final layer’s ID and the model’s accuracy, noting that ID
typically follows a hunchback-shaped curve across layers,
reflecting the learning process (Ansuini et al., 2019). More-
over, ID is crucial for interpreting learned representations
and exploring its relationship with neural network training
(Aghajanyan et al., 2020; Pope et al., 2021). Basile et al.
(2025) introduced a correlation-based metric that uses local
intrinsic dimensionality to reveal non-obvious connections
between paired visual and textual features, which standard
distance or similarity metrics fail to capture.

Amsaleg et al. (2017) and Ma et al. (2018) used local ID
to assess adversarial robustness, finding that LID increases
with noise in adversarial perturbations. This connection em-
phasizes how ID influences a model’s vulnerability. Tulchin-
skii et al. (2024) further explored ID in textual data, reveal-
ing that human-generated texts have an average ID of 7 to 9,
while AI-generated texts often fall below 1.5. This distinc-
tion enables classifiers to effectively differentiate between
human and AI-generated content.

3. Method
3.1. ToT Datasets

3.1.1. SUBSET 1: SEMANTIC CONFUSION

We propose the ToT (Textural or Textual) dataset, derived
from ImageNet-1k, which features 100 categories of com-
mon objects overlaid with texts of varying semantics. The
dataset contains 50,000 images, with 500 randomly selected
images per category. These categories represent frequently
encountered real-world objects with short, distinct names
and minimal semantic overlap, making the dataset highly
relevant for studying typographic attack scenarios in practi-
cal contexts. Figure 1 illustrates the three types of textual
modifications applied to the images to generate a diverse set
of compositions.

The Original subset consists of unaltered images from
ImageNet-1k, serving as a baseline. In the Consistent
subset, each image is overlaid with its matched category
label, preserving semantic alignment. The Irrelevant sub-
set pairs each image with a randomly selected label from a
mismatched ImageNet-1k category, ensuring the overlaid
text is a valid label but semantically irrelevant to the image
content. The Nonsense subset overlays each image with a
string formed from random combinations of letters, averag-
ing six characters in length and resembling the structure of
category names, but carrying no semantic meaning.

3.1.2. SUBSET 2: PARONYMS VS. SYNONYMS
CONFUSION

Since the form of a word is often intrinsically linked to its
meaning, variations in word structure typically lead to words
with distinct semantic differences. This suggests that neural
networks may distinguish words based solely on superficial
textural features, leading to what appears to be semantic-
level comprehension. To explore this hypothesis, we design
a subset of 10-word pairs specifically aimed at disentangling
the relationship between word form and meaning.

This subset explores how models differentiate between
words that are visually similar but semantically distinct,
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Figure 2. Image-text examples from Subset 2 of the ToT dataset
with paronym and synonym word pairs, designed to isolate ortho-
graphic and semantic similarity.

as well as those that share semantic meaning but have dif-
ferent visual forms. Each of the 10-word pairs consists of a
base word (selected from the ToT dataset) and two related
words: the Paronyms Pair, which refers to words that are
visually similar but differ in meaning, and the Synonyms
Pair, which refers to words that have similar meanings but
distinct spellings. All words are real-world entities and are
commonly used. For example, as shown in Figure 2, ’goose’
is paired with ’moose’ as its Paronyms Pair and ’gander’ as
its Synonyms Pair. This dataset enables a detailed analysis
of how models process both visual and semantic similarities
in language.

3.2. Estimating the Intrinsic Dimensions of ToT
Datasets

For images containing varying levels of semantic complex-
ity, we estimate the Intrinsic Dimension (ID) of their rep-
resentations layer by layer. As Algorithm 1 shows, this
process involves using the ID’s magnitude as a metric to
evaluate how specific layers of the model articulate the tex-
tual semantics embedded within the images.

Our study focuses on ViT-based vision models, particularly
CLIP ViT-B/16 (cli), given its widespread use in multi-
modal pretraining. The results on additional architectures
are presented in the appendix. CLIP ViT-B/16 is based on a
Vision Transformer (ViT) architecture with 12 transformer
blocks, and our analysis examines the representations ex-
tracted from each block. Within each block, we evaluate
three key layers: Attn refers to the output of the attention
mechanism after the linear transformation. c fc is a feed-
forward expansion layer that projects features from 768 to
3072 dimensions. c proj is a projection layer that reduces
the dimensionality from 3072 back to 768.

The TwoNN algorithm (Facco et al., 2017) estimates the
intrinsic dimension (ID) of visual representations by ana-

Algorithm 1 Intrinsic Dimension Estimation Across Layers

Require: n: number of images; Λ: number of layers;
model(·, λ): layer-wise representation

Ensure: ID[λ]: estimated intrinsic dimension at each layer
S ← randomly select n images
for λ = 1 to Λ do
Z[λ]← model(S, λ)
for i = 1 to n do

Compute d1, d2: distances to nearest neighbors of
Z[λ][i]
R[i]← d1/d2

end for
Estimate ID[λ] from the distribution of R

end for
return ID

lyzing the distances between nearest neighbors in a dataset.
Algorithm 1 details the procedure applied to layers in a
pre-trained model. Specifically, model(S, λ) extracts the
representation of layer λ for the image set S, and ID[λ]
stores the estimated ID values for each layer.

The algorithm computes the distance ratios R[i] = d1

d2
for

each sample, where d1 and d2 are the distances to the first
and second nearest neighbors, respectively. For higher in-
trinsic dimensions, the ratios R follow a Pareto distribution,
denoted as Pa(d+ 1). This relationship is captured by the
likelihood function:

P (R|d) = dN
N∏
i=1

R[i]−d−1,

where P (R|d) represents the likelihood of observing the
distance ratios R given an intrinsic dimension d. A linear
fit on the log-transformed distance ratios is then used to
estimate the intrinsic dimension, maximizing the likelihood
under the assumed Pareto distribution.

4. ID Analysis of Textual and Textural
Representations in Typographic Attacks

4.1. Layer Sensitivity to Typographic Attacks

To analyze how different layers of visual models respond
to semantic variations, we first cluster image representa-
tions with various textual overlays using t-SNE, offering a
preliminary two-dimensional visualization. However, since
t-SNE is limited to low-dimensional spaces, we further esti-
mate the intrinsic dimensions (ID) of each layer to evaluate
whether intermediate layers preserve semantic distinctions
in higher-dimensional spaces.

Representation Clustering. We sample image represen-
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Relative Depth of Network
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Figure 3. t-SNE visualization of representations from ViT-B/16 in different depths. Early layers show two clusters primarily based on
image backgrounds, while the final layer shows eight clusters corresponding to all semantic categories.

tations from different network depths and visualize them
using t-SNE (Van der Maaten & Hinton, 2008), as shown in
Figure 3. In the earlier layers, the representations form two
clusters, likely reflecting variations in image background
content. In contrast, the final layer reveals eight distinct
clusters, capturing a combination of image and text seman-
tics. This pattern suggests that multi-modal visual models
initially treat text as a visual texture before gradually incor-
porating semantic information in deeper layers. To explore
this hypothesis further, we estimate the intrinsic dimensions
(ID) of representations across layers in the next section.

Intrinsic Dimensionality Estimation. We randomly sam-
pled 2,000 images from each subset of the ToT dataset to
estimate the Intrinsic Dimension (ID) of representations in
the CLIP visual model. The results, shown in Figure 4,
reveal a swell-shrink pattern across network layers: repre-
sentation complexity initially increases before decreasing.
This behavior, consistent with prior findings in CNN visual
models (Ansuini et al., 2019; Muratore et al., 2022), also
emerges in Transformer-based models, aligning with the in-
formation bottleneck theory (Shwartz-Ziv & Tishby, 2017),
which describes an early fitting phase followed by compres-
sion. Notably, while ID values fluctuate across layers, their
ratios to the original image’s ID remain stable. Typogra-
phy is observed to consistently increase representational
complexity by a factor of 1.2 to 1.3 across most layers.

However, in the final block, nonsensical and irrelevant sub-
sets show significantly higher IDs than the original, while
consistent images exhibit a notable decrease. This discrep-
ancy, particularly pronounced in the last layer closest to
the classification layer, suggests that the final block has a
significant impact on the semantic representation of the en-
tire image. In addition to ViT-B/16, we also tested the IDs
of multiple visual encoders with different architecture, the
results are shown in Figure 9 in the appendix.

Overall, typography increases the complexity of representa-
tions in the intermediate layers, regardless of the semantic
relationship between the image and text. However, in the
final block, text overlay primarily influences the semantic

Figure 4. The Intrinsic Dimension (ID) variations of ViT-B/16 on
the ToT datasets.

aspect of representations. Notably, when the text closely
relates to the image content, it appears to reduce represen-
tational complexity, as indicated by lower ID values in this
layer.

4.2. Disentangling Textual and Textural Representations

To better understand the findings in Section 4.1, we design
two experiments to disentangle orthographic and seman-
tic representations and analyze their effects on typographic
attack. Semantic Constancy using the subset 1 of ToT to
examines how variations in font size affect texture-level
representations while keeping semantic content unchanged.
Linear Probe leverages paronym-synonym pairs (subset 2
of ToT ) to assess the model’s progressive disentanglement
of textual and textural features across layers. Despite their
different implementations, both experiments aim to char-
acterize the interaction between texture and semantics in
vision-language models.

Semantic Constancy with Varying Font Size. Despite
differences in visual appearance, images containing text of
varying sizes are often perceived as semantically equiva-
lent (Figure 8, appendix). This raises the question of how
visual models encode such variability while preserving se-
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Table 1. Accuracy (%) on the ToT dataset for multimodal (CLIP, MetaCLIP) and vision-only (ViT, DINOv2) models across different
semantic contexts and font sizes. Numeric suffixes (e.g., 80 or 120) indicate font size. Cons, Nons, and Irr refer to consistent, nonsensical,
and irrelevant textual content, respectively. Examples are shown in Figure 8 (Appendix).

Orig Cons 80 Nons 80 Irr 20 Irr 40 Irr 60 Irr 80 Irr 100 Irr 120

CLIP 86.6 98.4 80.4 78.8 60.7 49.2 42.9 40.5 38.9
MetaCLIP 84.7 94.6 79.3 83.3 79.6 75.2 72.1 70.0 68.4

ViT 91.1 86.8 86.3 91.0 89.9 88.9 87.1 85.9 84.2
DINOv2 82.8 82.4 82.0 82.7 82.6 82.4 81.8 80.7 80.2

mantic consistency. We compare multimodal models (CLIP
(Radford et al., 2021) and MetaCLIP (Xu et al., 2023)) with
unimodal vision models (ViT-B/16 (Dosovitskiy et al., 2022)
and DINOv2 (Oquab et al., 2023)), evaluating their perfor-
mance across variations in text size and semantic context.
To ensure a fair comparison, both models share the same
ViT-B/16 backbone architecture. The ViT-B/16 model, pre-
trained on ImageNet-1k (Russakovsky, 2015), serves as the
baseline for vision-only models. Both models are evaluated
on the ToT dataset, with results presented in Table 1.

Multimodal models exhibit marked sensitivity to both the
semantics and the visual appearance of overlaid text. For
instance, CLIP achieves 98.4% accuracy in the Cons 80
condition, but its performance drops to 42.9% under Irr 80,
despite the font size remaining constant. This suggests that
the model’s internal representations are shaped not only
by surface-level features, such as texture, but also by the
semantic alignment between text and image.

In contrast, vision-only models show minimal performance
variation across Cons 80, Nons 80, and Irr 80, regardless
of semantic content. This contrast indicates that while mul-
timodal models integrate textual meaning into visual un-
derstanding, pure vision models primarily treat text as
texture, not as language.

Linear Probe on Paronym-Synonym Pairs. We apply a
linear binary classifier probe to the final outputs (ln 2 layer)
of all 12 Residual Attention Blocks for both Synonyms
and Paronyms pairs. For each pair in subset 2 of the ToT
dataset, we use 320 image samples for training and 80 for
testing. Following the approach used in CLIP’s linear probe
experiments, we employ logistic regression as the classifier.

As shown in Figure 5, each lighter-colored line represents a
paronym pair (orthographically similar, pink) or a synonym
pair (semantically similar, orange), the darker lines indicate
the average accuracy of the corresponding 10 pairs. It is
evident that all layers achieve higher accuracy when classi-
fying based on orthographic similarity. However, the layers
with the steepest slopes for these curves show a distinct pat-
tern: the significant improvement for texture features occurs
primarily in the middle layers, whereas the notable enhance-

Figure 5. Linear probe results: Classification accuracy of each
layer for paronym pairs (pink) and synonym pairs (orange). Lighter
lines represent individual pairs, while darker lines show the average
accuracy for each set of 10 pairs.

ment for textual features is concentrated in the layers closer
to the output.

4.3. Tracking Semantic Emergence through Intrinsic
Dimension

To investigate how visual models progressively form textual
representations across layers, we analyze the relationship
between intrinsic dimension (ID) and semantic decoding
performance, as shown in Figure 6. The combined results
reveal a two-phase trajectory—initial representational ex-
pansion followed by compression—which aligns with the
information bottleneck theory (Saxe et al., 2019). Within
this broader pattern, we identify four functionally distinct
stages: initialization, texture dominance, compression, and
semantic integration.

Random Initialization. In the early layers, representational
complexity increases gradually, but neither orthographic nor
semantic features are reliably formed. Both paronym and
synonym classification accuracies remain near chance.

Texture Dominance. Intrinsic dimension rises substantially,
reflecting increasing representational complexity. Ortho-
graphic decoding (i.e., paronym classification) improves
rapidly, driven by heightened sensitivity to low-level visual
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Figure 6. Combined visualization of intrinsic dimension (ID) and linear probe accuracy (from Figures 4 and 5), illustrating the progression
of text representations across network layers.

features. During this stage, textural and semantic signals
initially compete but gradually begin to co-activate within
shared representational space.

Compression. In the mid-to-late layers, the model under-
goes sharp compression, as evidenced by a steep drop in ID.
Semantic decoding accuracy (e.g., synonym classification)
increases markedly during this period. However, no signifi-
cant divergence in ID is observed across different semantic
categories, suggesting that the learned representations re-
main largely texture-dependent.

Semantic Integration. In the final block, semantic accuracy
peaks, and ID values diverge significantly across semantic
categories. This indicates that semantic variation is increas-
ingly reflected in the structure of the learned representations.

Together, these observations suggest that while semantic
accuracy increases gradually across layers, true semantic
differentiation does not emerge progressively. Instead, it
appears abruptly at the final block. We further highlight
three key findings:

(1) Overlapping Features in Textual and Textural En-
coding. Across most layers, textural and semantic features
rely on partially shared representations. Semantic encod-
ing consistently lags behind, indicating a dependency on
lower-level visual patterns during early stages.

(2) Texture-Induced Accuracy Gains. Early improve-
ments in semantic decoding may be misleading, as they
reflect the model’s reliance on texture-based patterns rather
than semantic comprehension in its commonly assumed

form.

(3) Late-Stage Semantic Differentiation. A clear separa-
tion based on semantic content emerges only at the final
block, marking a shift from texture-level correlation to se-
mantic abstraction.

5. Defense Against Typographic Attacks
through Fine-Tuning

Building on the findings in Section 4, different layers of the
visual model encode text in distinct ways, influencing its vul-
nerability to typographic attacks. This suggests a targeted
defense strategy: fine-tuning specific layers to enhance ro-
bustness. In this section, we explore two approaches, se-
lectively fine-tuning individual blocks (Section 5.1) and
fine-tuning only the last block (Section 5.2), to assess their
effectiveness in mitigating typographic attacks.

To verify this, we design three typographic attack tasks of
varying difficulty: Easy: Recognizing image content while
ignoring text, similar to the setup in most typography attack
work (Materzyńska et al., 2022; Ilharco et al., 2022; Azuma
& Matsui, 2023). Medium: Detecting the presence of text
without understanding its meaning. Hard: Distinguishing
the semantics of both text and image.

The progression from easy to hard illustrates the increas-
ing complexity of semantic understanding required at each
stage. Ideally, fine-tuning only the swell blocks should
not effectively defend against any level of attack. In con-
trast, fine-tuning the shrink and last in shrink blocks should
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Table 2. Accuracy (%) comparison of defense performance when fine-tuning different parts of the CLIP visual encoder.

Fine-tuned Easy Medium Hard
Blocks Orig Cons Irr Nons Cons Irr Nons Cons Irr Nons

CLIP w/o ft 82.3 97.3 50.6 73.7 94.5 65.9 77.4 14.5 59.9 77.2

Swell 62.8 85.8 39.1 51.2 79.0 52.1 56.3 6.6 29.7 56.2
Shrink 82.6 98.6 43.0 77.0 97.8 68.9 81.3 32.6 70.8 81.1
Shrink - Last 83.5 98.7 32.0 76.6 98.1 61.2 81.4 36.0 68.9 81.7
All 54.8 50.1 50.3 49.1 48.8 48.9 48.1 0.1 0.5 48.2

Last (Ours) 84.7 98.2 60.0 76.8 96.7 74.5 81.0 35.0 69.5 81.7

Figure 7. Example image-text pairs from the dataset across easy,
medium, and hard defense levels (ground truth).

provide varying levels of defense based on semantic compre-
hension. For example, medium difficulty may only require
recognition of word orthography, necessitating adjustments
to the shrink blocks, while the hard level requires under-
standing specific meanings, thereby requiring fine-tuning of
the last block for effective defense.

All of our experiments are conducted on a GeForce RTX
3090 GPU. We use a batch size of 512 and a learning rate of
1× 10−4, with a weight decay of 0.2. The Adam optimizer
is employed for fine-tuning.

5.1. Block-Specific Fine-Tuning for Textual and
Textural Control

We divide the CLIP encoder into three sections: Swell,
Shrink-Last, and Last, as described in Section 4. We fine-
tune each section on the hard-level task and evaluate their
performance across easy, medium, and hard tasks. The
results are shown in Table 2.

Fine-tuning the Swell block alone yields suboptimal per-
formance across all difficulty levels, particularly in tasks
requiring semantic understanding. Fine-tuning the Last
block proves most effective, particularly in handling higher
complexity tasks like Hard-Nons (81.7%) and maintaining
high Orig performance (84.7%).

The Shrink strategy also performs well, especially in tasks

Table 3. Cross-evaluation of SOTA defense methods on handwrit-
ten typographic datasets (easy level). Results are reported as accu-
racy (%).

Method Disentangle PAINT Prefix Avg.

CLIP 43.3 50.0 47.2 46.8

Disentangle 77.8 55.5 57.6 63.6
PAINT 53.2 58.2 53.6 55.0
Prefix 71.9 63.6 58.0 64.5
Ours 73.3 68.2 67.0 69.5

requiring nuanced text-image understanding, with strong
results in the Medium and Hard categories (70.8% in Hard-
Irr). However, fine-tuning the Shrink-Last module provides
a balanced performance, almost matching Last in the most
difficult tasks while still lagging slightly in simpler cases
like Orig (83.5%). This suggests that while Shrink-Last
captures some mid-layer texture refinement, it is not as
adept at final-stage semantic comprehension as Last alone.

5.2. Fine-Tuning the Last Block

5.2.1. DEFENSE WITH IGNORING TYPOGRAPHY

Setup. Following standard practices, we fine-tune the model
on subsets of original and irrelevant images under the easy
setting, simulating a training scenario where textual con-
tent is treated as noise. To assess real-world performance,
we evaluate our method on three publicly available typo-
graphic attack datasets: Disentangle (Materzyńska et al.,
2022), PAINT (Ilharco et al., 2022), and Prefix (Azuma &
Matsui, 2023), which all feature handwritten text overlaid
on notepads. We perform cross-dataset evaluations using
the respective test sets provided by each method.

Results. Table 3 presents the cross-dataset accuracy of
various defense methods. Notably, the Prefix approach fine-
tunes only the language model, whereas others fine-tune
both vision and language components. Our method, which
fine-tunes only the vision model, achieves the best overall
performance across all datasets, with a slight exception on
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Table 4. Comparison of defense accuracy (%) between our method and SOTA approaches (CLIP, Prefix (Azuma & Matsui, 2023), and
Disentangle (Materzyńska et al., 2022)) on medium and hard difficulty levels, which require semantic understanding of text rather than
simply ignoring it, as in the easy-level setting.

Medium Hard
Method Orig Cons Irr Nons Cons Irr Nons

CLIP 82.3 94.5 66.0 77.4 14.5 59.9 77.2
Prefix 82.0 91.4 69.9 76.0 10.6 27.1 75.5
Disentangle 79.9 85.0 72.0 75.2 12.9 13.8 75.3

Ours Med 83.5 92.2 82.4 82.9 8.1 22.0 82.4
Ours Hard 84.7 96.7 74.5 81.0 35.0 69.5 81.7

the Disentangle dataset, where it is marginally outperformed
by the original method. This cross-evaluation demonstrates
that our method is not overly fitted to our ToT dataset but
instead captures a generalizable defense strategy effective
across diverse typographic attack scenarios.

5.2.2. DEFENSE WITH PRESERVING THE TYPOGRAPHY
SEMANTICS

Table 4 presents the evaluation results for medium and hard
levels of defense, which require the recognition of the ab-
sence of words and specific semantics, respectively. Our
method outperforms other models across all difficulty levels.
The Prefix and Disentangle methods, trained on datasets
similar to those used for easy-level tasks, reveal limitations
in recognizing character forms and semantics, as demon-
strated by their performance in the hard-level results. In
contrast, our model exhibits superior comprehension across
various difficulty levels, particularly when the image-text
relationship is semantically consistent.

Training on datasets with higher difficulty levels presents
challenges in balancing ’Cons’ and ’Irr’ image-text pairings
in the medium scenarios. However, in hard scenarios, where
understanding both textual and visual semantics is essential,
performance can be improved simultaneously. With the
appropriate training data, our method effectively fine-tunes
models to comprehend both textual and visual semantics.

Another advantage of our approach is its ability to balance
adversarial tasks with the original task. As shown in the
’orig’ column of Table 4, our methods outperform all other
models, despite primarily being trained on typographic sam-
ples. Notably, the ’Ours Hard’ model demonstrates im-
proved ’orig’ accuracy, even when typographic semantics
potentially conflict with original image classification.

6. Conclusion
We explore how visual models process textual semantics
in the context of typographic attacks. By introducing the
ToT dataset and applying Intrinsic Dimension (ID) analysis,

we reveal that early layers of visual models primarily rely
on texture features rather than true semantic understanding.
Only in the final block do models construct a meaning-
driven semantically understanding after significant compres-
sion of textural information. Furthermore, we demonstrate
an effective defense strategy by fine-tuning the final block,
which enhances the model’s ability to distinguish between
textural and textual elements. This approach significantly
improves performance across various defense scenarios, of-
fering a practical solution to typographic attacks.
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Impact Statement
This paper investigates how multimodal vision models pro-
cess textual semantics, revealing that early layers rely more
on visual textures than on textual meaning, which makes
these models vulnerable to typographic attacks.

By shedding light on the internal mechanisms of these mod-
els, this work advances the transparency and accountability
of machine learning systems. It contributes to the broader
effort to make AI more interpretable and aligned with so-
cietal values, particularly as these systems are increasingly
deployed in decision-making processes. From a societal
perspective, the vulnerabilities exposed in this research have
important implications for the safety and fairness of AI sys-
tems in real-world applications. Typographic attacks could
lead to unintended consequences in fields such as law en-
forcement, healthcare, or finance, where misinterpretations
could disproportionately affect vulnerable groups. Ensuring
that models are both transparent and secure is crucial for
their responsible integration into these high-impact areas.
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A. Appendix
A.1. Details of the ToT Datasets

To create the Textural or Textual (ToT) dataset, we follow the approach of PAINT and Prefix. We resize the images to 224
pixels in the shorter dimension using bicubic interpolation and crop a 224x224 pixel area from the center, consistent with
standard CLIP resizing and cropping techniques. The text is randomly overlaid at arbitrary positions on the images.

Font. We randomly select from Roman, Courier, and Times fonts and utilize eight colors: black, blue, cyan, green, magenta,
red, white, and yellow. The text is outlined with a 1-point shadow in a contrasting color.

Font sizes. We use 80 points to generate images for the Consistent, Irrelevant, and Nonsense categories. Additionally, to
further investigate the impact of font size on identification (ID), Irrelevant images are created in font sizes ranging from 20
to 120 points. The examples are shown in Figure 8.

Figure 8. Examples of typography with different sizes.

Subset 1 Categories. The 100 categories of the ToT datasets are peacock, goose, koala, jellyfish, snail, flamingo, sea lion,
Chihuahua, tabby cat, lion, tiger, bee, dragonfly, zebra, pig, llama, panda, backpack, barrel, basketball, bikini, bottlecap, bow,
broom, bucket, buckle, candle, cannon, cardigan, carton, coffee mug, coffeepot, crib, envelope, fountain, iPod, iron, jean,
ladle, laptop, lighter, lipstick, lotion, mailbox, mask, microwave, mitten, mouse, nail, necklace, paddle, pajama, perfume,
pillow, plastic bag, printer, projector, purse, radio, refrigerator, ruler, shovel, sock, stove, suit, sunglass, swing, switch,
table lamp, teapot, television, toaster, tray, tub, umbrella, vacuum, vase, violin, wallet, whistle, ice cream, bagel, hotdog,
cucumber, mushroom, Granny Smith, strawberry, orange, lemon, banana, hay, dough, pizza, potpie, red wine, espresso, cup,
volcano, daisy, and corn.

Subset 2 Categories. The subset includes the following paronym-synonym pairs: Goose (n01855672): Moose, Gander; Bee
(n02206856): Beef, Wasp; Pig (n02395406): Fig, Hog; Fountain (n03388043): Mountain, Spring; Mitten (n03775071):
Kitten, Glove; Nail (n03804744): Mail, Spike; Hay (n07802026): Ray, Straw; Espresso (n07920052): Express, Coffee;
Lemon (n07749582): Demon, Lime.

A.2. ID Variations of Different Architectures and Datasets

Other vision models. To further assess the generalizability of our findings, we examined the Intrinsic Dimension (ID) of
visual encoders from several multimodal architectures, beyond the ViT-B/16 used in CLIP. Figure 9 shows the intrinsic
dimension curves of these models. Except for DINOv2, which is a vision-only pretrained model, all other models exhibit a
clear divergence in ID at the final block when different semantic texts are overlaid.
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(a) ResNet-50x4 (b) DINOv2 (ViT-S/14)

(c) MetaCLIP (ViT-B/32) (d) SigLip2 (ViT-B/16)

(e) CLIP (ViT-L/16) (f) CLIP (ViT-H/14)

(g) ShareGPT-4v

Figure 9. Layer-wise intrinsic dimensions (IDs) of visual encoders across different architectures.
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Other datasets. While our primary focus is on the ToT dataset, we observe that the behavior of the Intrinsic Dimension
(ID) also holds across other datasets. Using the same methodology as for the ToT dataset, we applied text overlays to the
Caltech101 dataset. As shown in Figure 10, the resulting ID variations follow the similar trend as those observed with the
ToT dataset.

Figure 10. IDs of ViT-B/16 on the Caltech101 Dataset.

A.3. Defense Performance on MetaCLIP

Table 5. Performance comparison when fine-tuning different parts of the MetaCLIP visual encoder.
Fine-tuned Orig Easy Medium Hard
Blocks Cons Irr Nons Cons Irr Nons Cons Irr Nons

Swell 19.3 17.5 16.7 15.7 17.1 16.8 15.9 0.4 0.1 16.0
Shrink 70.5 89.3 63.2 65.0 88.0 60.7 63.3 17.5 46.3 62.5
Shrink - Last 73.1 87.5 64.8 66.4 86.7 62.4 65.1 22.8 44.8 64.0
Last (Ours) 83.6 91.3 79.0 80.0 90.3 77.4 78.2 40.3 54.7 78.3

A.4. Correlation Between ID and Accuracy

Table 6 shows the relationship between the ID of the last fully connected layer (ID Last), the maximum ID (ID Max), and
classification accuracy for ViT and CLIP models. The Spearman correlation coefficient (Spearman, 1987) is used to measure
the correlation between accuracy and ID values.

The correlations for ViT are ρ(ID Last,Acc) = −0.98 and ρ(ID Max,Acc) = −0.63, while for CLIP, they are
ρ(ID Last,Acc) = −0.13 and ρ(ID Max,Acc) = −0.73. Overall, an inverse correlation is observed, suggesting that
lower ID values correspond to higher classification accuracy. However, this trend is not consistent for the last layer ID,
deviating from patterns typically found in standard image classification tasks (Ansuini et al., 2019).

Table 6. Correlation between classification accuracy and ID values for the last layer and maximum ID across layers, differentiated by
typography type and size. The models compared are pre-trained via multimodal (CLIP) and pure vision (ViT) models.

Model Orig Cons 80 Nons 80 Irr 20 Irr 40 Irr 60 Irr 80 Irr 100 Irr 120
ViT Acc. 91.1 86.8 86.3 91.0 89.9 88.9 87.1 85.9 84.2

ID Last 6.8 7.8 8.0 7.0 7.2 7.6 7.8 8.1 8.3
ID Max 89.9 92.4 95.4 95.6 89.1 95.2 100.0 99.1 102.5

CLIP Acc. 86.6 98.4 80.4 78.8 60.7 49.2 42.9 40.5 38.9
ID Last 12.4 9.8 14.0 14.8 14.3 13.0 12.7 12.5 12.6
ID Max 26.2 29.4 29.6 29.2 29.5 29.4 29.5 29.8 29.8

For the ViT model, there is a clear correlation between accuracy and text size: as text size increases, accuracy decreases,
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which aligns with changes in ID last values. This observation supports findings from (Ansuini et al., 2019), where text size
plays a significant textural role in pure vision models.

In contrast, the CLIP model shows that text semantics significantly impact accuracy, even when size is controlled. The
relationship between accuracy and ID metrics is more complex here; while no clear correlation exists with ID last for
semantically irrelevant texts, there is a strong inverse correlation between accuracy and ID max as text size increases. This
suggests that ID max captures textural complexity, whereas ID last reflects both textural and textual features. CLIP’s
representation of text involves a complex interaction between these elements, with semantics heavily influencing accuracy,
yet no single layer fully captures this correlation.
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