
Under review as a conference paper at ICLR 2024

HOW NEURAL NETWORKS WITH DERIVATIVE LABELS
WORK: A NEURAL TANGENT KERNEL PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks have achieved impressive results in a range of fields, while
their analytical properties have been slow to develop. Recently, a theoretical tool
called Neural Tangent Kernel (NTK) has been proposed and extended to diverse
architectures based on neural networks. This tool helps explain their convergence
and generalization with a least-square loss. However, researchers in numerous
fields have trained their networks using an additional derivative loss item, such
as Jacobian Regularization and PINN (Physics-Informed Neural Networks). This
loss setup has generality, while it often leads to challenging convergence issues.
To explain this phenomenon, we propose a general paradigm that utilizes Gâteaux
derivative labels to describe all these tasks by extending tools of NTK. We pro-
vide two kinds of perspective, inductive perspective of convergence equations and
geometrical perspective of parameter updating directions, to explain the hard con-
vergence. We also conduct experiments to verify our propositions. Finally, we
provide specific expressions for distinct tasks within our paradigm.

1 INTRODUCTION

Deep neural networks with a fully-connected network (FNN) architecture have demonstrated re-
markable performance across various fields. While the fundamental premise is that FNNs can ef-
fectively approximate any function given a sufficient number of neurons Hornik et al. (1989), the
theoretical understanding of how these networks converge towards their objectives remains some-
what elusive. A promising avenue for addressing this is the exploration of infinite-wide networks,
underpinned by certain invariants of expectation derived from initialization distributions, such as
Mean Field Theory (MFT) Poole et al. (2016) Karakida et al. (2019) and Neural Tangent Kernel
(NTK) Golikov et al. (2022) and Neural Network Gaussian Process(NNGP)Lee et al. (2017).

In recent years, there has been significant attention directed towards the Neural Tangent Kernel
(NTK), a constant associated with infinite-wide networks in relation to their parameters. The NTK
has successfully shed light on the convergence behavior of infinite-wide networks towards their
objectives. However, its convergent equation is currently limited to the least-square loss, whereas
multi-loss training is a widely employed approach in practical applications. The choice of loss
function plays a pivotal role in the training process, typically involving the network’s output and
corresponding labels.

Recently, a novel form of loss formulation has gained attention, which includes an additional com-
ponent derived from the derivative of the network’s output. This additional component can be seen
as a form of interpolation. Such tasks have gained prominence across various fieldsBubeck & Sel-
lke (2021)Hoffman et al. (2019)Rodini (2022). These forms encompass various aspects, including
regularization, embedded information, and modeling constraints.

For illustrating our topic, we firstly provide a succinct overview of the Gâteaux Derivative, which
serves as a tool for characterizing the general input of tasks that treat samples as elements within a
linear norm space. Define network as a operator in linear norm space f : X → R, input such as
images, coordinate can be described as such definition.

Definition 1 Gâteaux Derivtative: An operator f is a mapping from a linear norm space X to
real space R Yosida (2012), Gâteaux Derivtative is an extension of directional derivative from real
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space that is defined as:

∂hft(x) := lim
ϵ→0

ft(x+ ϵh)− ft(x)

ϵ
(1)

in which x, h ∈ X and ϵ, ∂hft(x) ∈ R. This definition can abstractly include the first-order loss
term of input space and output of most tasks so that following analysis can be widely used in such
tasks.

This article explores a specific type of multi-loss scenario, which we refer to as the ”derivative loss”.
We delve into a generic derivative-based task involving datasets with perspective of interpolation:
input samples denoted as Tr ⊂ X , their corresponding labels L : Tr → R, and their derivative
labels L

′
: Tr → R. In theory, when employing a model with parameters equal in number to the

training samples, zero error can be achieved. Similarly, as shown in Hornik et al. (1989), the same
result can be attained when some of the data consists of input-label pairs while the rest comprises
derivative labels related to the input. However, in the context of neural networks, such analysis
becomes challenging due to the complexity of their derivatives Rodini (2022). Moreover, given their
non-convex nature and the standard training strategy, Stochastic Gradient Descent (SGD), achieving
this kind of optimality is not guaranteed.

Intuitively, extending the use of derivative labels L
′

imbues the network with additional capabilities
for a given task. Yet, empirically, after introducing an extra loss component, predicting the network’s
convergence is not as straightforward as in interpolation. In this subsection, we present a paradigm
for generic training with derivative labels based on the Neural Tangents Kernel (NTK). We expand
the kernel to encompass two invariants for the derivative loss component and then derive the kernel
for our paradigm through induction.

L(x) ≜
1

2
λr||ft(x)− L (x)||22 +

1

2
λg||∂hft(x)− L

′
(x)||22 (2)

in which we set weights λr and λg , where x represents all the training samples. This derivative
label setting has been employed in various tasks (e.g. when L

′
(x) = 0, it’s Jacobian Regulariza-

tionHoffman et al. (2019)), offering additional improvements, but it can also impact the convergence
negatively. For instance, when using Jacobian Regularization in image tasks, the training results in-
dicate that image classification maintains robust predictions even under certain perturbations. How-
ever, in such cases, the precision of image prediction without perturbations tends to decrease.

Other than that, we omit the definition of the network, including depth, rules of induction, and so on.
For all our propositions, along with their proofs, we only include the definition of NTK itself. We
refer readers to Jacot et al. (2018) for a rigorous and formalized introduction to NTK, or to Golikov
et al. (2022) for a brief introduction. The NTK is introduced in our article using the gradient of the
output of the randomly Gaussian-initialized network with respect to its parameters, as follows:

Definition 2 Neural Tangent Kernel (NTK): NTK is defined as (Omit the sign for the number
of network layers):

Θ̂(x, x′) ≜ ∇T
θ ft(x)∇θft(x

′)
w→∞
=⇒ Eθ [< ∇θft(x),∇θft(x

′) >] (3)

as the width w of network f increases significantly, the kernel Θ̂(x, x′) approaches a constant value
for t. This behavior depends solely on the structure of network f and input x. It’s worth noting
that while the Neural Tangents Kernel (NTK) was initially proposed for Feedforward Neural Net-
works (FNNs), recent research Samarin et al. (2020), Arora et al. (2019a), Hron et al. (2020), and
Franceschi et al. (2022) has extended Equation (2) to encompass diverse architectures, including
CNNs, attention layers, and GANs. The key insight is that in the infinite-width limit, the conver-
gence of a neural network trained by the least-squares loss function can be induced as follows:

∂tft(x) = Θ̂(x,x)(y − ft(x)) (4)

which is a typical a system of first-order linear differential equations, taking NTK as its basic solu-
tion matrix, thus its solution is:

ft(x) = ft(x)− (I − eΘ̂(x,x)t)(ft(x)− y) (5)

in which x represents vector of all training samples, y the correspondent labels, which means
ft(x, t) tends to converge to labels y with a large enough training step t, which is equivalent to
kernel regression with kernel NTK.
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We primarily focuses on examining the properties of networks trained with derivative labels (as
defined in definition 1) using NTK tools (as defined in definition 2). We start by introducing a com-
prehensive definition of a general loss component that incorporates derivative labels. Following that,
we provide an analysis of the NTK with the derivative loss version and offer a geometric perspective
on both the regular and derivative components. In the latter part of the article, these insights are used
to discuss batch properties. We further validate our theoretical findings with experimental results,
approaching them from two distinct perspectives. Finally, we delve into a discussion of two forms of
input for PINN, namely vectors and image adversarial Jacobian Regularization in matrix form and
discuss batch setting in NNs with our proposition. Our contributions can be summarized as follows:

• Propose a comprehensive paradigm that provides a generalized framework for training
tasks utilizing derivative loss components.

• Extend NTK to encompass this new paradigm from an analytical standpoint. Derive a ker-
nel formulation from the convergent equation, akin to the NTK, which facilitates rigorous
analysis.

• Introduce a geometric perspective on the interplay between any two loss components dur-
ing the training process. This perspective offers insight into how models can converge
consistently in both loss components prior to training.

2 PROPOSITIONS

In this section, we present a paradigm incorporating derivative labels within the context of the NTK.
This proposition aims to unify and extend the applicability of these approaches. We omit depth
of network for which isn’t we care, and notice that all parameters θ in next article is defined as
θ = (θT1 , θ

T
2 , ..., θ

T
n ) in which θ1 denotes the i-th layer parameters.

2.1 THEORETICAL RESULTS

In this subsection, we leverage the invariance properties of the Neural Tangents Kernel (NTK) to
analyze the convergence behavior in Stochastic Gradient Descent (SGD) when derivative labels
are integrated into the loss function. To derive the convergent equation, we rely on the smooth
assumption presented in Franceschi et al. (2022) and introduce the following proposition:

Proposition 1 We define two invariant about θ for the extra loss about two samples x, x′:

Θ̂′(x, x′) ≜ ∇T
θ ∂hft(x)∇θft(x

′) (6)

Θ̂′′(x, x′) ≜ ∇T
θ ∂hft(x)∇θ∂hft(x

′) (7)

which can be easily computed without iteration replaced by a simple differential operator (i.e. em-
pirical). Notice that such kernel also converge to an expression of expectation as the width in-
creasesArora et al. (2019a)Jacot et al. (2018). Induction is provided in Appendix A.1, and these
invariants play a crucial role in our next proposition. Additionally, we offer two types of analyses
for the convergence of equation (5): one follows the conventional approach of inducing a convergent
equation in NTK, and the other involves a geometric analysis of the two loss components.

With perspective of induction, set |Tr| = m, we extend analysis of continuous-time gradient descent
dynamics on (3) as following with omitting scale 1

m :

∂tθ = −∇θL(Tr)

= λr

m∑
j=1

(L (xj)− ft(xj))∇θft(xj) + λg

m∑
j=1

(L ′(xj)− ∂hft(xj))∇θ∂hft(xj)
(8)

By chain rule, Network f and its derivative structure evolves as:

∂tft(x) = ∂tθ
T∇θft(x)

∂t∂hft(x) = ∂tθ
T∇θ∂hft(x)

(9)
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which can be induced and consist a system of differential equations about ft(x), ∂hft(x) as follows
(detailed induction in Appendix A.2):{

∂tft(x) + λgΘ̂
′(x,x)∂hft(x) = λrΘ̂(x,x)(L (x)− ft(x)) + λgΘ̂

′(x,x)L ′(x)

∂2
thft(x) + λgΘ̂

′′(x,x)∂hft(x) = λrΘ̂
′(x,x)(L (x)− ft(x)) + λgΘ̂

′′(x,x)L ′(x)
(10)

in which x represents all the samples in the training set, and h corresponds to the Gâteaux directions.
As observed, when an additional loss is introduced into the loss function, the convergent equation
concerning t evolves into two equations. Specifically, at a certain time point t0, ∂hft(x, t0) can be
induced by ft(x, t0), as demonstrated in Rodini (2022). This induced value is related to both the
network parameters θ and the input point x but not to the time variable t. While we assume that
these quantities are independent of each other with respect to t; thus, it transforms into a typical set
of ordinary differential equations with respect to t. We establish that such equations can be solved
and evolve into a new kernel.

Proposition 2 Solution of (11) is:(
ft(x)

∂hft(x)

)
= e−Θ̂∗tC +

(
L
L ′

)
(11)

in which:

Θ̂∗ =

(
λrΘ̂ λgΘ̂

′

λrΘ̂
′ λgΘ̂

′′

)
. (12)

A detailed derivation is provided in Appendix A.2. As is well-known in NTK analysis, the conver-
gence properties depend on the kernel Θ̂ and its eigenvalues. Given its positive nature, as t increases,
the function will tend to the objective function. In the case of training with first-order derivatives, the
convergence properties will depend on Θ̂∗. This kernel is also semi-positive since it is a Gram ma-
trix similar to NTK, constructed using the vector (fT (x), ∂hf

T (x, t))T . Therefore, both ∂hft(x)
and ft(x) converge to their respective labels.

Furthermore, in PINNWang et al. (2022), one can dynamically adjust the weights with respect to
both loss components. In a generic PINN function, these weights change in each iteration, incurring
additional computational overhead due to the kernel computations. However, as indicated in Propo-
sition 1, we have the option to skip these adaptive weight iterations by initializing the weights, which
theoretically takes a trade-off in both regular loss item and derivative loss item about convergence
rate. In the following article, we will conduct experiments to verify such proposition.

Proposition 3 Optimal Weight Setup: λr = tr(Θ̂∗)
tr(Θ̂)

λg = tr(Θ̂∗)
tr(Θ̂′′)

(13)

which we provide short description in Appendix A.3.

From a geometric perspective, we examine the parameter updates in equation (8). In each step, the
direction of parameter updating depends on ∇θft(xj) and ∇θ∂hj

ft(xj) (or the opposite direction
if the network’s output is greater than its label) for any given sample. Consequently, the direction
of parameter updating in (8) can be expressed as a linear combination of the vectors ∇θft(xj) and
∇θ∂hft(xj) with corresponding coefficients L (xj) − ft(xj) and L ′(xj) − ∂hft(xj). The angle
between these two vectors signifies the degree of consistency between the two loss components,
which remains invariant during training under the limitation of infinite-width network, as outlined
below:

Proposition 4 Angle αj of two vectors ∇θft(xj) and ∇θ∂hft(xj) are invariant on any given
sample xj in the in the assumption that NTK is constant, and cosine of the angle is equal to:

cosαj =
Θ̂′(xj , xj)√

Θ̂(xj , xj) ∗ Θ̂′′(xj , xj)
(14)
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Figure 1: Experimental results for convergence of proposition 3, in which we always set λr = 1 and
change λg , and we normalize λr, λg to [0,1]. learning rate is 1e-3, epochs is 40000 with full batch
training. The y-coordinate is L2 loss.

it is obvious due to Θ̂′(xj , xj) is actually inner product of ∇θft(xj) and ∇θ∂hjft(xj),
Θ̂(xj , xj), Θ̂

′′(xj , xj) are modules of both respectively. We notice readers that such invariant of
angles is only be induced here for derivative loss but not other kind of multi-loss. Notice that in pre-
vious workFort et al. (2020), similar definition is used for kernel distance between different training
steps while it’s not same topic with ours.

2.2 EXPERIMENTAL CORROBORATION

We further verify our proposition by conducting experiments with fully connected ANNs. In exper-
iments for proposition 1-3, we fit function ft(x) = x1x2 in which x = (cos(γ), sin(γ)), training
set was generated by randomly selecting γ in distribution N (0, 1); in experiments for proposition
4, we conduct an extra experiment. In all our experiments, we set the width to 200 using a 4-layer
FNN.

Verification of Proposition 1. We firstly verify our proposition 1 trained with normal least-squares
cost and without derivative labels as Figure A1 in Appendix A.5 shows, which tends to be constant
regardless of trained or not by increasing of width.

Verification of Proposition 2. Θ̂′, Θ̂′′ are same to NTK Θ̂ which tends to stable with width of
network increasing. Moreover, by thearom in Du et al. (2018), the minimum eigenvalue λmin(Θ̂) is
a key to convergence rate of gradient flow. With empirical results that after adding derivative labels
in tasks, accuracy in previous loss model will decrease and training convergence is affected, we
utilize our proposition to explain this phenomenon and conduct experiment on that. Convergence in
such kernel setting depends on λ0, we shows that in same input and initialization, λ0 of Θ̂∗ is less
than Θ̂ (λ0(Θ̂

∗) ≈ 0.00662, λ0(Θ̂) ≈ 0.01157), which leads to slow convergence. We implement
10 times with different training set and two loss function with and without derivative labels, namely,
f ′
1(x) = x2 and f ′

2(x) = x1. Results are shown as Figure A2(a) in Appendix A.5.

As we can see, training with derivative labels is slower than without, which is caused by
λmin(Θ̂

∗)<λmin(Θ̂).

Verification of Proposition 3. This experiment is set to compare that where weights λg, λr are
best, we compute the theoretical setting is λr ≈ 1, λg ≈ 3, our setup is similar to Wang et al.
(2022). While notice two points: in PINN, the second loss item represents physical information
of desired function itself but in our paradigm it’s perspective of interpolation that is theoretically
same effect of the regular loss item; in PINN experiments, each experiments hold same learning
rate and weights are set from [0,500] without normalization, which causes different learning rate in
each step. Therefore, after selecting each weights, we normalize them two to [0,1] with summation
1. Results in Figure 1 shows that it’s stronger evidence for our proposition 3, in which there are a
obvious minimum around theoretical value 3.
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(a) (b)

(c) (d)

Figure 2: Experiments for proposition 4. We conduct two kinds of inputs: in ‘wo coding’ setup,
inputs are uniformly select from [−3, 3] as results shown in (c); in ‘w coding’ setup, inputs are
replaced by fourier encoding as shown in (d). (a) angles of two kinds; (b) output f(x) and its
derivative ∂hf(x) after initialization (i.e. pre-activation); (c) derivatives of each training samples
with two kinds of labels without encoding training; (d) derivatives of each training samples with
two kinds of labels with encoding training

Verification of Proposition 4. We firstly verify our proposition 4 by recording angle of each samples
in training process, we find that its fluctuation is actually very tiny with 1e-3 variants. Novak et al.
(2018) and Lee et al. (2017) has shown that training a certain point makes derivative in the point
increases in early period. We observed that derivative variants during the training process, even in
regular training, are associated with the angle of points. To verify this hypothesis, we conducted
experiments aimed at eliminating unrelated factors. We trained a single point through several steps
with only regular loss item (that is, without derivative item in training), always setting the label from
10,−10 until the output of such a point larger ( smaller) than 10(-10).

At initialization, it’s well-known that the outputs of samples are close to zero. We also found that
their derivatives are similarly close to zero, as depicted in Figure 2(b). We tested two types of inputs:
those with position encoding and those without. For inputs with position encoding, we replaced
our inputs with xe = cos(x), sin(x), where scalar inputs x were uniformly selected from [-3,3].
After several training iterations, we observed that their derivatives were predicted by our angle, as
illustrated in Figure 2(a,c,d). In Figure 2(a), we display the angles for the two types of input, while
(c) and (d) represent the two types within two different sets of labels.

2.3 GENERALITY

We have only discussed single extra one-order loss item above, in this section, we provide a general
formula. As extending (5):

L(x) ≜
1

2

k∑
i=0

li∑
j=1

λij ||∂(i)
bij

ft(x)− L
(i)
bij

(x)||22, bij = {h(i)
1 , h

(i)
2 , ..., h

(i)
li
} (15)
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in which we define ∂(0)ft(x) = ft(x), we extend all previous propositions with inductions shown
in Appendix A.4. In the next section, we demonstrate that our interpolation paradigm contains
Jacobian Regularization, and our geometric perspective can be used also in PINN.

3 TYPICAL EXAMPLES

In this section, we discuss several tasks that is trained with derivative labels. In the following, the
first two tasks: PINN and image classification obtain experimental results in previous work, and we
discuss batch setting with our geometric perspective in neural network finally.

3.1 PINN

We consider PDEs in PINN, in which network is used to fit a certain function, input norm space
X is Rn, the fitted function should be smooth (i.e. f ∈ C∞[a, b], a, b is considered range for
the problem). As aforementioned, convergence properties are revealed with perspective of NTK in
Wang et al. (2022). Such formula cannot be described within our labeled method. However, we
can still consider geometrical property of general first order homogeneous linear partial differential
equation ft(x1, x2, ..., xn):

n∑
i=1

gi(x1, x2, ..., xn)∂xif = 0 (16)

which contains various significant equations like EE(eular equation)Mao et al. (2020), such kind of
PDEs plays role of extra loss item in PINN with square, which is the derivative loss item besides the
loss of fitting error. direction of parameters updating is:

∂tθ =

n∑
i=1

gi(x1, x2, ..., xn)∂xi
f ∗

n∑
i=1

gi(x1, x2, ..., xn)∇θ∂xi
f (17)

The angle of two loss item of regular and derivative is similarly:

cosα =
∇T

θ f
∑n

i=1 gi(x1, ..., xn)∇θ∂xi
f

||∇θf || ∗ ||
∑n

i=1 gi(x1, ..., xn)∇θ∂xi
f ||

(18)

in which we use Θ̂
′

xi
, Θ̂

′′

xixj
to denote ∇T

θ f∇θ∂xi
f and ∇T

θ ∂xi
f∇θ∂xj

f respectively, that angle is
constant for certain sample:

cosα =

∑n
i=1 gi(x1, ..., xn)Θ̂

′

xi

Θ̂ ∗
∑n

i=1

∑n
j=1 gi(x1, ..., xn)gj(x1, ..., xn)Θ̂xixj

(19)

3.2 IMAGE CLASSIFICATION

In this subsection, we consider the specific task in image classification of its robustness for defending
adversarial attack, which is implemented in with Jacobian Regularization, our paradigm is equivalent
to such regularization for its ideal derivative label is actually zero. In image classification, input
norm space X is specifically Rm×n, we consider a usual Frobenius norm || · ||F in such space, the
Gâteaux Derivative is some direction h ∈ Rm×n denoting a image noise direction. For example,
for a pixel-wise and pairwise independent noise attacked, direction h should be a quantity matrix.
An ideal situation is that whatever kind of noise is added on image, network is robust to correctly
predict, which implies that whatever h is, the one-order Gâteaux derivative is zero. Formally, for any
h ∈ Rm×n, x ∈ Tr, zero value of (1) is as one-order label of such task (i.e. L ′(x) = 0). That means
Gâteaux Derivative of each bases in norm space Rm×n is zero, which is the usual partial derivative
about each dimension, that is equivalent to Jacobian Regularization, consider flatten vector of image
x = {xi}m×n, that (4) is:

L(x) =
1

2
[ft(x)− L (x)]2 + w

m×n∑
i=1

1

2
[∂xi

ft(x)− 0]2

=
1

2
[ft(x)− L (x)]2 +

1

2
w||∂xft(x)||2F

(20)
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Thanks to Arora et al. (2019a), one can compute NTK for CNN with or without average pooling,
which represents that such Regularization can be involved in our propositions.

3.3 DISCUSSION IN BATCH

In this subsection, we discuss batch setup in neural network by extending our proposition 4 to regular
item. As known that a regular task with batch is as:

L(x) ≜
1

2
||ft(x)− L (x)||22 (21)

and similar to above, its parameters updating flow is:

∂tθ =

m∑
i=1

(L (xi)− ft(xi))∇θf(xi) (22)

which is linear combination of vectors {∇θf(xi)}i=1,2,...,m. Then we can extend proposition 4 as
follows:

Proposition∗ 4 Angle αij of two samples {xi, xj} within parameters updating is as:

cosαij =
Θ̂(xi, xj)√

Θ̂(xi, xi) ∗ Θ̂(xj , xj)
(23)

Empirical evidence suggests that randomly and uniformly selecting batches is more effective, par-
ticularly in coordinate input scenariosMildenhall et al. (2021), where samples are not discrete from
each other. Uniform selection helps the model maintain a better representation of the data distri-
bution. We propose that for a given network architecture, all samples become correlated with each
other after inference, and the degree of correlation is indicated by the angle mentioned earlier. While
in the training process, direction of parameters may inverse, which leads to turbulence of training
loss. We conjecture that while in orthogonal, it’s most stable for training loss for reason that direc-
tion inverse will not change their angle.

We conducted experiments based on this concept, as illustrated in Appendix A.5. In Figure A2(b),
we trained a function f(x) = sin(x1) cos(x2) with a batch size of 2 with four batch settings:
‘normal’, ‘adaptive’, ‘worst’, ‘orthogo’. In the ‘normal’ setup, we randomly and uniformly selected
the second sample; in the ‘adaptive’ setup, we chose the sample that is farthest away (with the lowest
cosine value) from the first sample; in the ‘worst’ setup, we chose the sample that is nearest away
(with the lowest cosine value) from the first sample; in the ‘orthogo’ setup, we chose the sample
that is orthogonal from the first sample . In each setup, we iterated through all training samples.
Results shows that ‘orthogo’ holds better convergence than others. About the results, we propose
two conjectures: I. In the batch setting, samples with small angle hurt training generality, which
makes such training results of batch weak generalization of full training set; II. In the training
process, parameter updating directions will change, whose results may cause turbulence of training.
Why is ’orthogonal’ training superior? With respect to I, it helps maintain generality by considering
the perspective of updating directions. Regarding Conjecture II, it preserves the angle during the
training process, even if the direction is inverted.

4 RELATED WORK

4.1 NEURAL TANGENT KERNEL

The Neural Tangent Kernel (NTK), a widely adopted gradient kernel, was initially introduced by
Jacot Jacot et al. (2018). This kernel takes the form of a Gram matrix constructed from gradients and
offers an equivalence to training a fully-connected neural network under specific parameterization,
resembling a kernel method, whose potential of infinite-based is illustrated in the previous Lee
et al. (2020). Over time, its applicability has been extended to various neural network architectures,
including convolutional networks Samarin et al. (2020) Arora et al. (2019a), residual networks Yang
& Schoenholz (2017), networks incorporating attention mechanisms Hron et al. (2020), analysis for
GAN architecture Franceschi et al. (2022), even for graph neural networksDu et al. (2019).
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The precise computation of this kernel is outlined in Arora et al. (2019a), as infinite network is
ideal, the finite-width kernel was induced and able to compute similarlyNovak et al. (2022) while
implementation details are provided in Engel et al. (2022). Such kernels play a pivotal role in con-
vergence analysis, particularly in convergence rate evaluation, hinging on the minimum eigenvalue
of the NTK. The applications of NTK have broadened significantly since its inception. With its
constant kernel, one can readily utilize its convergence function to estimate the performance of a
specific architecture. Notably, the NTK, functioning as a kernel, seamlessly integrates with most
kernel methods Arora et al. (2019b).

Due to its capacity to encapsulate essential attributes of network architectures and datasets, the NTK
has naturally found its way into Neural Architecture Search (NAS) Chen et al. (2021). This in-
tegration contributes to reducing time overhead within NAS Xu et al. (2021) Mok et al. (2022).
Furthermore, the NTK holds substantial utility as a theoretical tool for analyzing input encoding in
Coordinate-MLP Tancik et al. (2020) and convergence property of PINN Wang et al. (2022), explain-
ing effective of adversarial training strategy Tsilivis & Kempe (2022) and active learning strategy
Wang et al. (2021b) Mohamadi et al. (2022) Its applications extend to proof of zero training loss in
polynomial time for over-parameterized residual networks Du et al. (2019), further underlining its
significance.

4.2 TASKS WITH DERIVATIVE LOSS

In the field of interpolation, both samples and their derivatives find utility in model interpolation.
Recently, the interplay between model robustness and the scale of parameters has garnered atten-
tion Bubeck et al. (2021) Bubeck & Sellke (2021). These works leverage the Lipschitz condition to
articulate robustness. Notably, the bounded derivative of models serves as a less stringent robust-
ness criterion, a notion also explored in Hoffman et al. (2019). However, in the context of neural
networks, analyzing derivatives is complex due to their intricate expressions Rodini (2022).

Moreover, various tasks incorporate the gradient or derivative of predictions with respect to inputs
as an additional loss component. For instance, a norm of a Jacobian Matrix Novak et al. (2018)
is employed as regularization to enhance network robustness. In the realm of mesh reconstruction,
SDF (Signed Distance Function) Wang et al. (2021a) incorporates an inductive differential function
of inputs and outputs. More recently, Physical Informed Neural Networks (PINN) have emerged
as a novel paradigm to tackle problems involving Partial Differential Equations (PDEs) Raissi et al.
(2019) Cuomo et al. (2022). In PINN, the loss function encompasses an extra term comprising
several partial derivatives. This paradigm facilitates the application of scientific methodologies to
traditional numerical fields, particularly in equation solving, parameter inversion, model discovery,
control, and optimization.

5 CONCLUSION

As the Neural Tangent Kernel has emerged as a powerful theoretical tool, it has been instrumental
in explaining various phenomena, albeit primarily within tasks trained using the least-square loss.
In this article, we consider a specific multi-loss, derivative loss in neural network, extending the
analytical insights derived from the Neural Tangent Kernel to expound upon a broader class of loss
functions, encompassing convergent ordinary differential equations, such extending provides kernel
for discussed multi-loss and explain why tasks with derivative loss holds slow convergence, and we
extended adaptive weights strategy in PINN to our discussion, which provides a strong selection
in all application who use derivative loss item. Furthermore, we introduce a geometric perspective
between any two loss components in neural network (in this article, two samples in batch, one sam-
ples with regular and derivative loss are discussed). This perspective offers a unique understanding
of the intricacies involved and sheds light on potential relationship between loss component. To
illustrate the versatility, we conduct experiments to illustrate our assumption and propositions. Our
propositions reveal loss relationship of various kinds of two given components.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

As is known that continuous partial derivatives can be computatively ordered, we ignore discontinu-
ous cases such as ReLu activation function for which can be replaced with continuous function with
smooth assumptions by Franceschi et al. (2022). Therefore:

Θ̂′(x, x′) = ∇T
θ ∂hft(x)∇θft(x

′) = ∂hxΘ̂(x, x′)

Θ̂′′(x, x′) = ∇T
θ ∂hft(x)∇θ∂hft(x

′) = ∂hx′ Θ̂
′(x, x′)

in which hx = hx′ = h, hx, hx′ denotes partial direction for x, x′ respectively.

A.2 INDUCTION OF PROPOSITION 2

We firstly give induction of convergent function, recall that in content parameters flow as:

∂tθ = λr

m∑
j=1

(L (xj)− ft(xj))∇θft(xj) + λg

m∑
j=1

(L ′(xj)− ∂hft(xj))∇θ∂hft(xj) (A-1)

Network f on a certain data point x0 ∈ X evolves as:

∂tft(x0) = ∂tθ
T∇θft(x0)

= λr

m∑
j=1

(L (xj)− ft(xj))∇T
θ ft(xj)∇θft(x0) +

λg

m∑
j=1

(L ′(xj)− ∂hj
ft(xj))∇T

θ ∂hft(xj)∇θft(x0)

= λrΘ̂(x0,x)(L (x)− ft(x)) + λgΘ̂
′(x0,x)(L

′(x)− ∂hft(x))

(A-2)

which denotes:

∂tft(x0) + λgΘ̂
′(x0,x)∂hft(x) = λrΘ̂(x0,x)(L (x)− ft(x)) + λgΘ̂

′(x0,x)L
′(x) (A-3)

Consider on all the training set:

∂tft(x) + λgΘ̂
′(x,x)∂hft(x) = λrΘ̂(x,x)(L (x)− ft(x)) + λgΘ̂

′(x,x)L ′(x) (A-4)

Such convergent equation is related to two different functions ft(x), ∂hft(x) about time t, for that
we need extra equation about one-order derivative:

∂t∂hft(x0) = ∂tθ
T∇θ∂hft(x0)

= λrΘ̂
′(x0,x)(L (x)− ft(x)) + λgΘ̂

′′(x0,x)(L
′(x)− ∂hft(x))

(A-5)

similarly:

∂t∂hft(x) + λgΘ̂
′′(x,x)∂hft(x) = λrΘ̂

′(x,x)(L (x)− ft(x)) + λgΘ̂
′′(x,x)L ′(x) (A-6)

which consist a system of differential equations about ft(x, t), ∂hft(x, t) as follows:{
∂tft(x) + λgΘ̂

′(x,x)∂hft(x) = λrΘ̂(x,x)(L (x)− ft(x)) + λgΘ̂
′(x,x)L ′(x)

∂t∂hft(x) + λgΘ̂
′′(x,x)∂hft(x) = λrΘ̂

′(x,x)(L (x)− ft(x)) + λgΘ̂
′′(x,x)L ′(x)

(A-7)
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We skip the script x and denote ft(x) and ∂hft(x) as Y (t) and Z(t) respectively, Y ′(t) denotes
∂tft(x, t) and Z ′(t) is similar, rewriting (A-7) as:

Y ′(t) = −Θ̂Y (t)− Θ̂′Z(t) + (Θ̂L + Θ̂′L ′) (A-8)

Z ′(t) = −Θ̂′Y (t)− Θ̂′′Z(t) + (Θ̂′L + Θ̂′′L ′) (A-9)

which is a system of ordinary differential equations, with basic solution matrix:

−Θ̂∗ = −
(

Θ̂ Θ̂′

Θ̂′ Θ̂′′

)
.

Thus we have it’s general solution, then we induce its particular solution. With eliminating variable
Y (t) and Z(t) respectively, we can induce them as following: by (A-8), we have:

Z(t) = Θ̂′−1[−Y ′(t)− Θ̂Y (t) + (Θ̂L + Θ̂′L ′)] (A-10)

then differentiate the two sides in equation (A-8):

Y ′′(t) = −Θ̂Y ′(t)− Θ̂′Z ′(t) (A-11)

take (A-8) and (A-9) into (A-11) we have:

Y ′′(t) = −Θ̂Y ′(t)− Θ̂′{−Θ̂′Y (t)− Θ̂′′Θ̂′−1[−Y ′(t)

− Θ̂Y (t) + (Θ̂L + Θ̂′L ′)] + (Θ̂′L + Θ̂′′L ′)}
= −(Θ̂ + Θ̂′Θ̂′′Θ̂′−1)Y ′(t) + (Θ̂′2 − Θ̂′Θ̂′′Θ̂′−1Θ̂)Y (t)

+ Θ̂′Θ̂′′Θ̂′−1(Θ̂L + Θ̂′L ′)− Θ̂′(Θ̂′L + Θ̂′′L ′)

As all Θ̂, Θ̂′, Θ̂′′ are invertible and positive symmetry, matrix multiplication among them is ex-
changeable, therefore:

Y ′′(t) = −(Θ̂ + Θ̂′′)Y ′(t) + (Θ̂′2 − Θ̂Θ̂′′)Y (t)

+ Θ̂′′(Θ̂L + Θ̂′L ′)− Θ̂′(Θ̂′L + Θ̂′′L ′)

= −(Θ̂ + Θ̂′′)Y ′(t) + (Θ̂′2 − Θ̂Θ̂′′)Y (t) + (Θ̂Θ̂′′ − Θ̂′2)L

similar to function Z(t), we induce two independent equation about Y (t),Z(t) respectively:

Y ′′(t) + (Θ̂ + Θ̂′′)Y ′(t) + (Θ̂Θ̂′′ − Θ̂′2)Y (t) = (Θ̂Θ̂′′ − Θ̂′2)L

Z ′′(t) + (Θ̂ + Θ̂′′)Z ′(t) + (Θ̂Θ̂′′ − Θ̂′2)Z(t) = (Θ̂Θ̂′′ − Θ̂′2)L ′

It’s obvious that particular solution is constant:

Y ∗(t) = L , Z∗(t) = L ′ (A-12)

A.3 INDUCTION OF PROPOSITION 3

As proposition 2 shows a general solution system of ordinary differential equations, whose scalar
formulation is related about eigenvalues and eigenvectors of matrix Θ̂ (here we use ‘matrix’ instead
‘kernel’ to denote Θ̂ appropriately). As we know as real symmetric matrix, there are only real eigen-
values and eigenvectors. We define the average convergence representation as sum of eigenvalues:

λ∗ = tr(Θ̂∗) (A-13)

so that we can see in proposition 3 setting, the average convergence representation doesn’t change
but the regular average convergence representation and derivative correspondence is equal:

tr(λrΘ̂) = tr(λgΘ̂
′′)

tr(λrΘ̂) + tr(λgΘ̂
′′) = tr(Θ̂∗)

(A-14)
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A.4 GENERALITY

For concisely showing induction, we skip order-time subscript, and define that {hi}i∈{1,2,..,k} is a
set of derivative subscript set with arbitrary length. Moreover, we demand several order smoothness
for NTK, as Assumption 1.

Proposition∗ 1 We define:

Θ̂hihj (x, x
′) ≜ ∇T

θ ∂
|hi|
hi

ft(x)∇θ∂
|hj |
hj

ft(x
′) (A-15)

that is constant in infinite neural network, this proof is same to Proposition 1.

Proposition∗ 2 Solution of (11) is:
∂
|h1|
h1

ft(x)

∂
|h2|
h2

ft(x)
...

∂
|hk|
hk

ft(x)

 = e−Θ̂∗tC +

 Lh1

Lh2

...
Lhk

 (A-16)

in which Θ̂∗ is a km× km matrix shown in k × k chunked matrix, its (i,j)th chunked entry is:

Θ̂∗
ij = (λijΘ̂hihj )k×k (A-17)

Proof : We firstly give induction of each convergent function, parameters flow as:

∂tθ =

k∑
i=1

λi

m∑
j=1

(Lhi(xj)− ∂
|hi|
hi

ft(xj))∇θ∂
|hi|
hi

ft(xj) (A-18)

A certain derivative item ha on a certain data point x0 ∈ X evolves as:

∂t∂
|ha|
ha

ft(x0) = ∂tθ
T∇θ∂

|ha|
ha

ft(x0)

=

k∑
i=1

λi

m∑
j=1

(Lhi
(xj)− ∂

|hi|
hi

ft(xj))∇T
θ ∂

|hi|
hi

ft(xj)∇θ∂
|ha|
ha

ft(x0)

=

k∑
i=1

λiΘ̂hiha(x0,x)(Lhi(x)− ∂
|hi|
hi

ft(x))

(A-19)

On the full training set, this construct a system of ordinary differential equations for all ha. Its basic
solution matrix and particular solution is obvious.

Proposition∗ 3 Optimal Weight Setup:

λi =
tr(Θ̂∗)

tr(Θ̂hihi)
(A-20)

Proposition∗ 4 Angle α
(ij)
l of two loss items for a certain point xl is similarly as:

cosα
(ij)
l =

Θ̂hihj
(xl, xl)√

Θ̂hihi(xl, xl) ∗ Θ̂hjhj (xl, xl)
(A-21)

these generalities allow us to explain most of neural tasks with derivative loss items including image
processing, PINN and so on.
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A.5 EXTRA FIGURE

Figure A1: Experimental results for convergence of proposition 1 to a fixed limit for two widths
n and two times t. (a), (b) denotes Θ̂′, Θ̂′′ respectively in which we performed three independent
initialization of network weights and trained respectively

(a) (b)

Figure A2: Experimental results for verification, (a) in ‘gradient’, we set weight λr = λg = 1 with
fitting ft(x) = x1x2 in which x = (cos(γ), sin(γ)); while in ‘regular’, λr = 1andλg = 0. Results
shows that ‘regular’ converge slower than ‘gradient’. (b) we conduct 10 times for two kind of batch
setting, plot their average lines with their upper and lower confident bounds;
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