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ABSTRACT

The probabilistic diffusion model has become highly effective across various do-
mains. Typically, sampling from a diffusion model involves using a denoising
distribution characterized by a Gaussian with a learned mean and either fixed or
learned covariances. In this paper, we leverage the recently proposed covariance
moment matching technique and introduce a novel method for learning the diago-
nal covariance. Unlike traditional data-driven diagonal covariance approximation
approaches, our method involves directly regressing the optimal diagonal analytic
covariance using a new, unbiased objective named Optimal Covariance Matching
(OCM). This approach can significantly reduce the approximation error in covari-
ance prediction. We demonstrate how our method can substantially enhance the
sampling efficiency, recall rate and likelihood of commonly used diffusion models.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have achieved
remarkable success in modeling complex data across various domains (Rombach et al., 2022; Li et al.,
2022; Poole et al., 2022; Ho et al., 2022; Hoogeboom et al., 2022; Liu et al., 2023). A conventional
diffusion model operates in two stages: a forward noising process, indexed by t ∈ [1, T ], which
progressively corrupts the data distribution into a Gaussian distribution via Gaussian convolution,
and a reverse denoising process, which generates images by gradually transforming Gaussian noise
back into coherent data samples. In traditional diffusion models, the generation process typically
predicts only the mean of the denoising distribution while using a fixed, pre-defined variance (Ho
et al., 2020). This approach often requires a very large number of steps, T , to produce high-quality,
diverse samples or to achieve reasonable model likelihoods, leading to inefficiencies during inference.

To address this inefficiency, several works have proposed estimating the diagonal covariance of
denoising distributions rather than relying on pre-defined variance values. For instance, Bao et al.
(2022b) introduces an analytical form of isotropic, state-independent covariance that can be estimated
from the data. This analytical solution achieves an optimal form under the constraints of isotropy
and state independence. A more flexible approach involves learning a state-dependent diagonal
covariance. Nichol & Dhariwal (2021) propose learning this form by optimizing the variational lower
bound (VLB). Bao et al. (2022a) explore learning a state-dependent diagonal covariance directly from
data, also examining its analytical form. These methods have demonstrated improved image quality
with fewer denoising steps. Learning the covariance through VLB optimization (Nichol & Dhariwal,
2021) has become a widely adopted strategy in state-of-the-art image and video generative models.

Building on this line of research, the goal of our paper is to develop an improved denoising covariance
strategy that enhances both the generation quality and likelihood evaluation while reducing the
number of total time steps. Recently, Zhang et al. (2024b) derived the optimal state-dependent full
covariance for the denoising distribution. While this method offers greater flexibility than state-
dependent diagonal covariance, it requires O(D2) storage for the Hessian matrix and O(D) network
evaluations per denoising step, where D is the data dimension. This makes it impractical for high-
dimensional applications, such as image generation. To address this limitation, we propose a novel,
unbiased covariance matching objective that enables a neural network to match the diagonal of the
optimal state-dependent diagonal covariance. Unlike previous methods (Bao et al., 2022a; Nichol &
Dhariwal, 2021), which learn the diagonal covariance directly from the data, our approach estimates
the diagonal covariance from the learned score function. We show that this method significantly
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reduces covariance estimation errors compared to existing techniques. Moreover, we demonstrate
that our approach can be applied to both Markovian (DDPM) and non-Markovian (DDIM) diffusion
models, as well as latent diffusion models. This results in improvements in generation quality, recall,
and likelihood evaluation, while also reducing the number of function evaluations (NFEs).

2 BACKGROUND OF PROBABILISTIC DIFFUSION MODELS

We first introduce two classes of diffusion models that will be explored further in our paper.

2.1 MARKOVIAN DIFFUSION MODEL: DDPM

Let q(x0) be the true data distribution, denoising diffusion probabilistic models (DDPM) (Ho et al.,
2020) constructs the following Markovian process

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1), (1)

where q(xt|xt−1) = N (
√
1− βtxt−1, βtI) and 0<β1< · · ·<βT<1 is the pre-defined noise sched-

ule. We can also derive the following skip-step noising distribution in a closed form
q(xt|x0) = N (

√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt ≡
∏t
s=1(1 − βs). When T is sufficiently large, we have the marginal distribution

q(xT ) → N (0, I). The generation process utilizes an initial distribution q(xT ) and the denoising
distribution q(xt−1|xt). We assume for a large T and variance preversing schedule discussed in
Equation 1, we can approximate q(xT ) ≈ p(xT ) = N (0, I). The true q(xt−1|xt) is intractable and
is approximated as a variational distribution pθ(xt−1|xt) within a Gaussian family, which defines the
reverse denoising process as

pθ(xt−1|xt) = N (xt−1|µt−1(xt; θ),Σt−1(xt; θ)). (3)
With Tweedie’s Lemma (Efron, 2011; Robbins, 1992), we can have the following score representation

µt−1(xt; θ) = (xt + βt∇xt log pθ(xt))/
√
1− βt, (4)

where the approximated score function ∇xt log pθ(xt) ≈ ∇xt log q(xt) can be learned by the
denoising score matching (DSM) (Vincent, 2011; Song & Ermon, 2019).

For the covariance Σt−1(xt; θ), two heuristic choices were proposed in the original DDPM paper:
1. Σt−1(xt; θ) = βt, which is equal to the variance of q(xt|xt−1) and 2. Σt−1(xt; θ) = β̃t where
β̃t = (1− ᾱt−1)/(1− ᾱt)βt is the variance of q(xt−1|xt, x0). Although heuristic, Ho et al. (2020)
show that when T is large, both options yield similar generation quality.

2.2 NON-MARKOVIAN DIFFUSION MODEL: DDIM

In additional to the Markovian diffusion process, denoising diffusion implicit models (DDIM) (Song
et al., 2020) only defines the condition q(xt|x0) = N (

√
ᾱtx0, (1− ᾱt)I) and let

q(xt−1|xt) ≈
∫
q(xt−1|xt, x0)pθ(x0|xt)dx0, (5)

where q(xt−1|xt, x0) = N (µt−1, σ
2
t−1) with

µt−1 =
√
ᾱt−1x0 + (xt−

√
ᾱtx0)/(

√
1− ᾱt)

√
1−ᾱt−1−σ2

t−1. (6)

When σt−1 =
√

(1− ᾱt−1)/(1− ᾱt)βt, the diffusion process becomes Markovian and equivalent
to DDPM. Specifically, DDIM chooses σ → 0, which implicitly defines a non-Markovian diffusion
process. In the original paper (Song et al., 2020), the q(x0|xt) is heuristically chosen as a delta
function pθ(x0|xt) = δ(x0 − µ0(xt; θ)) where

µ0(xt; θ) = (xt + (1− ᾱt)∇xt log pθ(xt))/
√
ᾱt. (7)

In both DDPM and DDIM, the covariance of pθ(xt−1|xt) or pθ(x0|xt) are chosen based on heuristics.
Nichol & Dhariwal (2021) have shown that the choice of covariance makes a big impact when T is
small. Therefore, for the purpose of accelerating the diffusion sampling, our paper will focus on how
to improve the covariance estimation quality in these cases. We will first introduce our method in the
next section and then compare it with other methods in Section 4.
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3 DIFFUSION MODELS WITH OPTIMAL COVARIANCE MATCHING

Recently, Zhang et al. (2024b) introduce the optimal covariance form of the denoising distribution
q(x|x̃) ∝ q(x̃|x)q(x) for the Gaussian convolution q(x̃|x) = N (x, σ2I), which can be seen as a
high-dimensional extension of the second-order Tweedie’s Lemma (Efron, 2011; Robbins, 1992). We
further extend the formula to scaled Gaussian convolutions in the following theorem.

Theorem 1 (Generalized Analytical Covariance Identity). Given a joint distribution q(x̃, x) =
q(x̃|x)q(x) with q(x̃|x) = N (αx, σ2I), then the covariance of the true posterior q(x|x̃) ∝
q(x)q(x̃|x), which is defined as Σ(x̃) = Eq(x|x̃)[x2]− Eq(x|x̃)[x]2, has a closed form:

Σ(x̃) =
(
σ4∇2

x̃ log q(x̃) + σ2I
)
/α2. (8)

See Appendix A.1 for a proof. This covariance form can also be shown as the optimal covariance
form under the KL divergences (Bao et al., 2022b; Zhang et al., 2024b). We can see that the exact
covariance in this case only depends on the score function, which indicates the exact covariance can
be derived from the score function. In general, the score function already contains all the information
of the denoising distribution q(x|x̃), see Zhang et al. (2024b) for further discussion. We here only
consider the covariance for simplicity.

Table 1: Comparison of different covariance choices on CI-
FAR10 (CS). We use Rademacher estimator (M = 100) for
the diagonal covariance approximation in OCM-DDPM.

FiD ↓ NLL ↓
# timesteps 5 10 15 20 5 10 15 20

DDPM, β̃ 58.28 34.76 24.02 19.00 203.29 74.95 44.94 32.20
DDPM, β 254.07 205.31 149.67 109.81 7.33 6.51 6.06 5.77
OCM-DDPM 38.88 21.60 13.35 9.75 6.82 4.98 4.62 4.43

In the case of the diffusion model, we
use the learned score function as a
plug-in approximation in Equation (8).
Although the optimal covariance can
be directly calculated from the learned
score function, but it requires calculat-
ing the Hessian matrix, which is the
Jacobian of the score function. This
requires O(D2) storage and D num-
ber of network evaluation (Martens
et al., 2012) for each denoising step at the time t. Zhang et al. (2024b) propose to use the following
consistent diagonal approximation (Bekas et al., 2007) to remove the O(D2) storage requirement

diag(H(x̃)) ≈ 1/M
∑M

m=1
vm ⊙H(x̃)vm, (9)

where H(x̃) ≡ ∇2
x̃ log q(x̃) and vm∼p(v) is a Rademacher random variable (Hutchinson, 1990)

with entries ±1 and ⊙ denotes the element-wise product. In Table 1, we compare the generation
quality of DDPM using different covariance choices. The results demonstrate that generation quality
improves significantly when using the Rademacher estimator to estimate the optimal covariance,
compared to the heuristic choices of β and β̃. However, as shown in Figure 7 in the Appendix,
achieving a desirable approximation on the CIFAR10 dataset necessitates M ≥ 100 Rademacher
samples. Each calculation of vm ⊙H(x̃)vm requires two network passes, resulting in a total of 2M
network evaluations. This significantly slows down the generation speed, making it impractical for
diffusion models. Inspired by Nichol & Dhariwal (2021); Bao et al. (2022a) and also the amortization
technique used in variational inference (Kingma & Welling, 2013; Dayan et al., 1995), we propose to
use a network to match the diagonal Hessian, which only requires one network pass to predict the
diagonal Hessian in the generation time and can be done in parallel with the score/mean predictions
with no extra time cost. In the next section, we introduce a novel unbiased objective to learn the
diagonal Hessian from the learned score, which improves the covariance estimation accuracy and
leads to better generation quality and higher likelihood estimations.

3.1 UNBIASED OPTIMAL COVARIANCE MATCHING

To train a network hϕ(x̃) to match the Hessian diagonal diag(H(x̃)), a straightforward solution is to
directly regress Equation 9 for all the noisy data

min
ϕ

Eq(x̃)||hϕ(x̃)−
1

M

M∑
m=1

vm⊙H(x̃)vm||22, (10)
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Algorithm 1 OCM-DDPM
1: Compute µt′(xt) with Equation (15);
2: Compute Σt′(xt) with Equation (16);
3: Sample ϵ∼N (0, I);
4: Let xt′ ← µt′(xt) + Σt′(xt)

1/2ϵ.

Algorithm 2 OCM-DDIM
1: Compute µ0(xt) with Equation (18);
2: Compute Σ0(xt) with Equation (19);
3: Sample x0∼N (µ0(xt),Σ0(xt));
4: Let xt′ ←

√
ᾱt′x0+

√
1− ᾱt′

xt−
√
ᾱtx0√

1−ᾱt
.

Figure 1: The sampling procedure from t→ t′ in OCM-DDPM and OCM-DDIM.

where vm ∼ p(v). Although this objective is consistent when M → ∞, it will introduce additional
bias when M is small. To avoid the bias, we propose the following unbiased optimal covariance
matching (OCM) objective

Locm(ϕ) = Eq(x̃)p(v)||hϕ(x̃)− v ⊙H(x̃)v||22, (11)

which does not include an expectation within the non-linear L2 norm. The following theorem shows
the validity of the proposed OCM objective.
Theorem 2 (Validity of the OCM objective). The objective in Equation (11) upper bounded the base
objective (i.e., Equation (10) with M → ∞). Moreover, it attains optimal when hϕ(x̃) = diag(H(x̃))
for all x̃ ∼ q(x̃).

See the Appendix A.2 for a proof. The integration over v in Equation (11) can be unbiasedly
approximated by the Monte-Carlo integration given M Rademacher samples vm ∼ p(v). In practice,
we found M = 1 works well (see Table 11 in the appendix for the ablation study on varying M
values), which also shows the training efficiency of the proposed OCM objective. The learned hϕ can
form the covariance approximation

Σ(x̃;ϕ) = (σ4hϕ(x̃) + σ2I)/α2. (12)

We then discuss how to apply the learned covariance to diffusion models.

3.2 DIFFUSION MODELS APPLICATIONS

Given access to a learned score function, ∇xt log pθ(xt), from any pre-trained diffusion model, we
denote the Jacobian of the score as Ht(xt). Assuming M = 1 in the OCM training objective, the
covariance learning objective for diffusion models can be expressed as follows:

min
ϕ

1

T

T∑
t=1

Eq(xt,x0)p(v)∥hϕ(xt)− v⊙Ht(xt)v∥22, (13)

where v ∼ p(v) and hϕ(xt) is a network that conditioned on the state xt and time t. After training
this objective, the learned hϕ(xt) can be used to form the diagonal Hessian approximation hϕ(x̃) ≈
diag(H(x̃)) which further forms our approximation of covariance. We then derive its use cases in
skip-step DDPM and DDIM for Diffusion acceleration.

Skip-Step DDPM: For the general skip-step DDPM with denoising distribution q(xt′ |xt) with t′ < t.
When t′ = t− 1, this becomes the classic one-step DDPM. We further denote ᾱt′:t =

∏t
s=t′ αs, and

thus ᾱ0:t = ᾱt, ᾱt′:t = ᾱt/ᾱt′ . We can write the forward process as

q(xt|xt′) = N (xt|
√
ᾱt′:txt′ , (1− ᾱt′:t)I). (14)

The corresponding Gaussian denoising distribution pθ,ϕ(xt′ |xt) = N (µt′(xt; θ),Σt′(xt;ϕ)) has the
following mean and covariance functions:

µt′(xt; θ)=(xt + (1− ᾱt′:t)∇xt log pθ(xt))/
√
ᾱt′:t, (15)

Σt′(xt;ϕ)=((1−ᾱt′:t)2hϕ(xt)+(1−ᾱt′:t)I)/ᾱt′:t. (16)

The skip-step denoising sample xt′ ∼ pθ,ϕ(x
′
t|xt) can be obtained by xt′ = µt′(xt; θ)+ϵΣ

1/2
t′ (xt;ϕ).

Skip-Step DDIM: Similarly, we give the skip-step formulation of DDIM, where we set the σt−1 =
0 in Equation (6) which is also used in the original paper Song et al. (2020). We can use the

4
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Table 2: Overview of different covariance estimation methods. Methods are ranked by increasing
modeling capability from top to bottom. We also include the intuition of the methods and how many
additional network passes are required for estimating the covariance.

M
od

el
in

g
C

ap
ab

ili
ty

Covariance Type +#Passes Intuition
xt-independent Isotropic β (Ho et al., 2020) 0 Cov. of q(xt|xt−1)

xt-independent Isotropic β̃ (Ho et al., 2020) 0 Cov. of q(xt|xt−1, x0)
xt-independent Isotropic Estimation (Bao et al., 2022b) 0 Estimate from data
xt-dependent Diagonal VLB (Nichol & Dhariwal, 2021) 1 Learn from data
xt-dependent Diagonal NS (Bao et al., 2022a) 1 Learn from data
xt-dependent Diagonal OCM (Ours) 1 Learn from score
xt-dependent Diagonal Estimation (Zhang et al., 2024b) 2M Estimate from score
xt-dependent Diagonal Analytic (Zhang et al., 2024b) D Calculate from score
xt-dependent Full Analytic (Zhang et al., 2024b) D Calculate from score

approximated covariance of pθ,ϕ(x0|xt) to replace the delta function used in the vanilla DDIM,
which gives the skip-steps DDIM sample

xt′ =
√
ᾱt′x0 +

√
1− ᾱt′/

√
1− ᾱt · (xt −

√
ᾱtx0), (17)

where x0 ∼ pθ,ϕ(x0|xt) = N (µ0(xt; θ),Σ0(xt;ϕ)) and

µ0(xt; θ) = (xt + (1− ᾱt)∇xt log pθ(xt))/
√
ᾱt, (18)

Σ0(xt;ϕ) = ((1− ᾱt)
2
hϕ(xt, t) + (1− ᾱt)I)/ᾱt. (19)

The sample x0 ∼ pθ,ϕ(x0|xt) can be obtained by x0 = µ0(xt; θ) + ϵΣ
1/2
0 (xt;ϕ). In the next section,

we will compare the proposed method to other covariance estimation methods in practical examples.

3.3 DETAILS OF TRAINING AND INFERENCE

Our model comprises two components: a score prediction network sθ and a diagonal Hessian
prediction network hϕ. In line with Bao et al. (2022a), we parameterize the score prediction network
using a pretrained diffusion model, and the Hessian prediction network is parameterized by sharing
parameters as follows:

sθ(xt) = NN1(BaseNet(xt, t; θ1); θ2), hϕ(xt) = NN2(BaseNet(xt, t; θ1);ϕ) (20)
where BaseNet represents the commonly used architecture in diffusion models, such as UNet and DiT
(Ho et al., 2020; Peebles & Xie, 2023). This parameterization approach only requires an additional
small neural network, NN2, resulting in negligible extra computational and memory costs compared
to the original diffusion models (see Appendix B.1 for more details). In our experiment, we fix the
parameter θ = {θ1, θ2} and train the Hessian prediction network exclusively with the proposed OCM
objective. After training, samples can be generated using the algorithms summarized in Figure 1.

4 RELATED COVARIANCE ESTIMATION METHODS

We then discuss different choices of Σt′(xt) used in the diffusion model literature, see also Table 2
for an overview. For brevity, we mainly focus on DDPM here, in which the mean µt′(xt) can be
computed as in Equation (15).

1. xt-independent isotropic covariance: β/β̃-DDPM (Ho et al., 2020). The β-DDPM uses the
variance of p(xt′ |xt), which is Σt′(xt) = (1− ᾱt/ᾱt′)I , when t′ = t− 1, we have Σt−1(xt) = βt.
The β̃-DDPM uses the covariance of p(xt′ |x0, xt), which is (1−ᾱt′ )

(1−ᾱt) (1− ᾱt′:t).

2. xt-independent isotropic covariance: A-DDPM (Bao et al., 2022b). A-DDPM assumes a
state-independent isotropic covariance Σt′(xt) = σ2

t′I with the following analytic form of

σ2
t′ =

1−ᾱt′:t
ᾱt′:t

− (1−ᾱt′:t)2

dᾱt′:t
Eq(xt)

[
∥∇xt log pθ(xt)∥

2
2

]
,

where the integration of q(xt) requires a Monte Carlo estimation before conducting generation. This
variance choice is optimal under the KL divergence within a constrained isotropic state-independent
posterior family.
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3. xt-dependent diagonal covariance: I-DDPM (Nichol & Dhariwal, 2021). In I-DDPM, the
diagonal covariance matrix is modelled as the interpolation between βt and β̃t

Σt−1(xt;ψ) = exp(vψ(xt) log βt + (1− vψ(xt)) log β̃t), (21)

where vψ is parametrized via a neural network. The covariance is learned with the variational lower
bound (VLB). In the optimal training, the covariance learned by VLB will recover the true covariance
in (8). Notably, Nichol & Dhariwal (2021) heuristically obtain the covariance of skip sampling
Σt′(xt;ψ) by rescaling βt and β̃t accordingly: βt → 1− ᾱt′:t, β̃t → (1−ᾱt′ )

(1−ᾱt) (1− ᾱt′:t). However,
when t′ = 0, Σ0(xt;ψ) is ill-defined; thus, iDDPM is inapplicable within the DDIM framework.

4. xt-dependent diagonal covariance: SN-DDPM (Bao et al., 2022a). SN-DDPM learns the
covariance by training a neural network gψ to estimate the second moment of the noise ϵt =
(xt −

√
ᾱtx0)/

√
1− ᾱt:

min
ψ

Et,q(x0,xt)∥ϵ
2
t − gψ(xt)∥22. (22)

After training, the covariance Σt′(xt;ψ) can be estimated via

Σt′(xt;ψ)=
(1−ᾱt′)
(1− ᾱt)

β̄t′:tI+
β2
t

αt

(
gψ(xt)

1−ᾱt
−∇xt logpθ(xt)

2

)
. (23)

where β̄t′:t = 1 − ᾱt′:t. In optimal, Σt′(xt;ψ) in Equation (23) will recover the true covariance
in Equation (8). We demonstrate the equivalence between OCM-DDPM and SN-DDPM in Ap-
pendix A.3. However, due to the appearance of the quadratic term in Equation (23), SN-DDPM tends
to amplify the estimation error as t→ 0, leading to suboptimal solutions. To mitigate this issue, Bao
et al. (2022a) also propose NPR-DDPM, which models the noise prediction residual instead. We
recommend referring to their paper for detailed explanations.

Notably, almost all these methods can be applied within the DDIM framework by setting t′ = 0.
Specifically, p(xt′ |xt) can be sampled using Equation (17) with x0 ∼ N (µ0(xt),Σ0(xt)), where
µ0(xt) is the same as in (18), but Σ0(xt) differs for various methods as discussed previously.

5 EXPERIMENTAL RESULTS

To support our theoretical discussion, we first evaluate the performance of optimal covariance
matching by training diffusion probabilistic models on 2D toy examples. We then demonstrate
its effectiveness in enhancing image modelling in both pixel and latent spaces, focusing on the
comparison between optimal covariance matching and other covariance estimation methods, and
showing that the proposed approach has the potential to scale to large image generation tasks.

5.1 TOY DEMONSTRATION

We first demonstrate the effectiveness of our method by considering the data distribution as a two-
dimensional mixture of nine Gaussians (MoG) with means located at [−3, 0, 3] ⊗ [−3, 0, 3] and a
standard deviation of σ = 0.1, where ⊗ denotes Cartesian product. In this case, both the true score
∇xt log p(xt) and the optimal covariance Σt′(xt) are available, allowing us to compare the covariance
estimation error. All methods, including I-DDPM, A-DDPM, SN-DDPM, and our OCM-DDPM,
assume accurate score estimation. We first learn the covariance using the true scores. Specifically,
we train the covariance networks for these methods over 50,000 iterations with a learning rate of
0.001 using an Adam optimizer (Kingma & Ba, 2014). Figure 2a shows the L2 error of the estimated
diagonal covariance Σt−1(xt), and our method, OCM-DDPM, consistently achieves the lowest error
compared to the other methods. In practice, the true score is not accessible. Therefore, we also
conduct a comparison using a score function learned with DSM. We then apply different covariance
estimation methods under the same settings. In Figure 2b, we plot the same L2 error for the learned
score setting and find that our method achieves the lowest error for all t values.

We further use the learned score and the covariance estimated by different methods to conduct
DDPM and DDIM sampling for this MoG problem. For evaluation, we employ the Maximum

6
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(a) Cov Error with True Score (b) Cov Error with Learned Score (c) DDPM MMD v.s. Steps (d) DDIM MMD v.s. Steps

Figure 2: Comparisons of different covariance estimation methods based on estimation error and
sample generation quality. Figures (a) and (b) show the mean square error of the estimated diagonal
covariance under the assumptions: (a) access to the true score, and (b) learned score of the data
distribution at various noise levels. Figures (c) and (d) present the MMD evaluation against the total
sampling steps in the DDPM (c) and DDIM (d) settings (see Figure 5 in the metric of log-scale for
better visualization). We can find the proposed OCM method can achieve the lowest estimation error
and consistently outperform other baseline methods when fewer generation steps are applied.

Mean Discrepancy (MMD) (Gretton et al., 2012), which utilizes five kernels with bandwidths
{2−2, 2−1, 20, 21, 22}. In Figures 2c and 2d, we show the MMD comparison among different
methods. Specifically, we choose to conduct different diffusion steps with the skip-step scheme as
discussed in Section 3.2. We find that our method outperforms the baselines when the total time step
is small, demonstrating the importance of accurate covariance estimation in the context of diffusion
acceleration. Additionally, we include two methods utilizing the true diagonal and full covariance,
serving as benchmarks that indicate the best achievable performance. Notably, these two methods
exhibit similar performance because the MoG used in this setting has symmetric components, in which
the covariance is dominated by the diagonal entries. For further analysis, we present an additional
experiment in Appendix C.1 using a mixture of 40 Gaussians with a non-diagonal covariance structure.

5.2 IMAGE MODELLING WITH DIFFUSION MODELS

Following the experimental setting in Bao et al. (2022a), we then evaluate our method across varying
pre-trained score networks provided by previous works (Ho et al., 2020; Nichol & Dhariwal, 2021;
Song et al., 2020; Bao et al., 2022b; Peebles & Xie, 2023). In this experiment, we mainly focus on
four datasets: CIFAR10 (Krizhevsky et al., 2009) with the linear schedule (LS) of βt (Ho et al., 2020)
and the cosine schedule (CS) of βt (Nichol & Dhariwal, 2021); CelebA (Liu et al., 2015); LSUN
Bedroom (Yu et al., 2015). The details of the experimental setting can be found in Appendix B.

IMPROVING LIKELIHOOD RESULTS

We first evaluate the negative log-likelihood (NLL) of the diffusion models by calculating the negative
evidence lower bound (ELBO): − log q(x0) ≤ Eq log p(x0:T )

q(x1:T |x0)
≡ −Lelbo(x0) with the same mean

yet varying covariances. As per Bao et al. (2022b), we report results only for the DDPM forward
process, as −Lelbo = ∞ under the DDIM forward process. As shown in Table 3, our OCM-DDPM
demonstrates the best or second-best performance in most scenarios, highlighting the effectiveness
of our covariance estimation approach. We also note that SN-DDPM performs poorly on likelihood
results in small-scale datasets like CIFAR10 and CELEBA, likely due to the amplified error of the
quadratic term in Equation (22). Although NPR-DDPM achieves slightly better performance in
certain scenarios, it falls short in terms of sample quality, as measured by FID, shown in Table 5.
In Appendix C.2, we also compare our method to Improved DDPM (Nichol & Dhariwal, 2021) in
terms of likelihood on ImageNet 64x64. The results show that our method achieves better likelihood
estimation with a small number of timesteps, while achieving comparable results with full timesteps.

IMPROVING SAMPLE QUALITY

Next, we compare sample quality quantitatively using the FID score, with results reported for both
the DDPM and DDIM forward processes. As shown in Table 5, our OCM-DPM consistently achieves
either the best or second-best results across most settings. The qualitative results of the samples
generated by our method can be found in Appendix C.6.
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Table 3: The NLL (bits/dim) ↓ across various datasets using different sampling steps.

CIFAR10 (LS) CIFAR10 (CS)

# TIMESTEPS K 10 25 50 100 200 1000 10 25 50 100 200 1000

DDPM, β̃ 74.95 24.98 12.01 7.08 5.03 3.73 75.96 24.94 11.96 7.04 4.95 3.60
DDPM, β 6.99 6.11 5.44 4.86 4.39 3.75 6.51 5.55 4.92 4.41 4.03 3.54
A-DDPM 5.47 4.79 4.38 4.07 3.84 3.59 5.08 4.45 4.09 3.83 3.64 3.42
NPR-DDPM 5.40 4.64 4.25 3.98 3.79 3.57 5.03 4.33 3.99 3.76 3.59 3.41
SN-DDPM 30.79 11.83 7.13 5.24 4.39 3.74 90.85 19.81 9.72 6.72 5.58 4.73
OCM-DDPM 5.32 4.63 4.25 3.97 3.78 3.57 4.99 4.34 3.99 3.76 3.59 3.41

CELEBA 64X64 IMAGENET 64X64

# TIMESTEPS K 10 25 50 100 200 1000 25 50 100 200 400 4000

DDPM, β̃ 33.42 13.09 7.14 4.60 3.45 2.71 105.87 46.25 22.02 12.10 7.59 3.89
DDPM, β 6.67 5.72 4.98 4.31 3.74 2.93 5.81 5.20 4.70 4.31 4.04 3.65
A-DDPM 4.54 3.89 3.48 3.16 2.92 2.66 4.78 4.42 4.15 3.95 3.81 3.61
NPR-DDPM 4.46 3.78 3.40 3.11 2.89 2.65 4.66 4.22 3.96 3.80 3.71 3.60
SN-DDPM 18.09 8.05 5.29 4.05 3.40 2.84 4.56 4.18 3.95 3.80 3.71 3.63
OCM-DDPM 4.69 3.86 3.43 3.13 2.90 2.66 4.45 4.15 3.93 3.79 3.70 3.59

Notably, while SN-DDPM often demonstrates slightly better FID performance in certain cases, it
struggles with likelihood estimation, as shown in Table 3. Conversely, as discussed in the previous
section, NPR-DDPM sometimes achieves superior likelihood results in Table 3, but its image
generation quality is significantly worse than OCM-DDPM. Therefore, the proposed OCM-DDPM
provides a more balanced model, offering a better trade-off between generation quality and likelihood
estimation. To better highlight this benefit, we include a visualization in Figure 6 in the Appendix.

5.3 IMAGE MODELLING WITH LATENT DIFFUSION MODELS

In this section, we apply our methods to latent diffusion models (Vahdat et al., 2021; Rombach
et al., 2022) and with ImageNet 256×256 to demonstrate the scalability of our method. Specifically,
we compare our methods to other approaches within the DiT architecture (Peebles & Xie, 2023),
evaluating sample quality using the FID score and diversity using the Recall score (Sajjadi et al.,
2018). We focus on conditional generation with classifier-free guidance (CFG), which is consistent
to Peebles & Xie (2023).
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Figure 3: Results of DiT training on ImageNet 256x256.
We generate samples using 10 timesteps with varying CFG
coefficients (see Table 12 for exact numerical values).

It is important to note that DiT was
initially trained using the Improved
DDPM (I-DDPM) algorithm (Nichol
& Dhariwal, 2021). Therefore, the re-
sults of I-DDPM reflect the original
performance of the pre-trained DiT
model1 provided by Peebles & Xie
(2023). For DDPM and DDIM sam-
pling, we discard the learned covari-
ance in DiT and use only the learned
noise prediction neural network for
the posterior mean. In contrast, our
OCM-DPM retains the same mean
function while learning the covariance
using the optimal covariance matching objective. We then generate samples with 10 sampling steps
and report FID and Recall scores across different CFG coefficients on the ImageNet 256x256 dataset.
The results are displayed in Figure 3, with DDPM-β excluded due to its poor performance. It shows
that our OCM-DPM method achieves the best FID performance with CFG = 2.0. Although DDPM-β̃
and DDIM perform better in terms of FID at CFG = 1.5, their Recall scores are lower than those of
the proposed OCM methods. This discrepancy arises partly because DDPM and DDIM model the

1We use the DiT XL/2 checkpoint released in https://github.com/facebookresearch/DiT.
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Table 4: The least number of timesteps ↓ required to achieve an FID around 6 (along with the
corresponding FID). To account for the additional time cost incurred by the covariance prediction
network, we multiply the results by the ratio of the time cost per single timestep, reflecting the extra
computational overhead (see Appendix B.1 for details).

METHOD CIFAR10 CELEBA 64X64 LSUN BEDROOM IMAGENET 256X256

DDPM 90 (6.12) > 200 130 (6.06) 21 (5.89)
DDIM 30 (5.85) > 100 BEST FID > 6 11 (5.58)
IMPROVED DDPM 45 (5.96) MISSING MODEL 90 (6.02) 22 (6.08)
ANALYTIC-DPM 25 (5.81) 55 (5.98) 100 (6.05) MISSING MODEL
NPR-DPM 1.002×23 (5.76) 1.013×50 (6.04) 1.021×90 (6.01) MISSING MODEL
SN-DPM 1.005×17 (5.81) 1.019×22 (5.96) 1.114×92 (6.02) MISSING MODEL
OCM-DPM (OURS) 1.003×16 (5.83) 1.015×21 (5.94) 1.112×90 (6.04) 1.007×10 (5.33)

inverse process with deterministic variance, whereas OCM methods explicitly learn the variance from
data, allowing for more accurate density estimation and generating more diverse results. As Peebles
& Xie (2023) report that DiT achieves the best FID performance with CFG = 1.5, we further evaluate
performance with different sampling steps under CFG = 1.5, as shown in Table 13. The results
indicate that our OCM-DPM methods offer a great improvement in sample quality and diversity.

To provide an overview of the superiority of our method, we compare the minimum sampling step to
achieve the FID score (Heusel et al., 2017) close to 6 across different approaches (see Appendix B.1
for details). As shown in Table 4, our method requires the fewest denoising steps in most settings.
Moreover, we emphasize that compared to recent advanced methods like SN-DPM and NPR-DPM,
our approach is the only one that consistently delivers both competitive likelihood and FID.

6 RELATED WORK AND FUTURE DIRECTIONS

In this paper, we show that improving diagonal covariance estimation can significantly enhance
the performance of diffusion models. This raises a natural question: can more flexible covariance
structures further improve these models? In Figure 4 in the Appendix, we demonstrate that a
full covariance structure achieves better generation quality with fewer NFEs in a toy 2D problem.
However, for high-dimensional problems, the quadratic growth in parameter scale makes a full
covariance approach computationally impractical. To address this, low-rank or block-diagonal
covariance approximations offer promising alternatives. Developing effective training objectives for
flexible covariance structures remains a compelling direction for future research.

In addition to the covariance estimation methods discussed in Section 4, there are other approaches to
accelerate sampling in diffusion models. One approach involves using faster numerical solvers for
differential equations with continuous timesteps (Jolicoeur-Martineau et al., 2021; Liu et al., 2022;
Lu et al., 2022). Another strategy, inspired by Schrödinger bridge (Wang et al., 2021; De Bortoli
et al., 2021), is to introduce a nonlinear, trainable forward diffusion process. Additionally, combining
diffusion models with GANs enhances GAN sample quality while speeding up diffusion model
sampling (Xiao et al., 2021; Wang et al., 2022).

Recently, distillation techniques have gained popularity, achieving state-of-the-art in one-step genera-
tion (Zhou et al., 2024). There are two prominent types of distillation methods. The first is trajectory
distillation (Salimans & Ho, 2022; Berthelot et al., 2023; Song et al., 2023; Heek et al., 2024; Kim
et al., 2023; Li & He, 2024), which focuses on accelerating the process of solving differential equa-
tions. The second type involves distillation techniques that utilize a one-step implicit latent variable
model as the student model (Luo et al., 2024; Salimans et al., 2024; Xie et al., 2024; Zhou et al.,
2024) and distills the diffusion process into the student model by minimizing the spread divergence
family (Zhang et al., 2020; 2019) through score estimation (Poole et al., 2022; Wang et al., 2024).

Although these distillation methods typically offer faster generation speeds (fewer NFEs) compared
to covariance estimation methods, they often lack tractable density or likelihood estimation. This
presents a challenge for generative modeling applications where likelihood or density estimation is
crucial. For example, in AI4Science problems involving energy-based data, accurate model density
estimation is essential for enabling importance sampling to correct sample bias, as discussed in (Zhang
et al., 2024a; Vargas et al., 2023; Chen et al., 2024; Akhound-Sadegh et al., 2024). Another example
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Table 5: FID score ↓ across various datasets using different sampling steps.

CIFAR10 (LS) CIFAR10 (CS)

# TIMESTEPS K 10 25 50 100 200 1000 10 25 50 100 200 1000

DDPM, β̃ 44.45 21.83 15.21 10.94 8.23 5.11 34.76 16.18 11.11 8.38 6.66 4.92
DDPM, β 233.41 125.05 66.28 31.36 12.96 3.04 205.31 84.71 37.35 14.81 5.74 3.34
A-DDPM 34.26 11.60 7.25 5.40 4.01 4.03 22.94 8.50 5.50 4.45 4.04 4.31
NPR-DDPM 32.35 10.55 6.18 4.52 3.57 4.10 19.94 7.99 5.31 4.52 4.10 4.27
SN-DDPM 24.06 6.91 4.63 3.67 3.31 3.65 16.33 6.05 4.17 3.83 3.72 4.07
OCM-DDPM 24.94 9.19 5.95 4.36 3.48 3.98 14.32 5.54 4.10 3.84 3.75 4.18

DDIM 21.31 10.70 7.74 6.08 5.07 4.13 34.34 16.68 10.48 7.94 6.69 4.89
A-DDIM 14.00 5.81 4.04 3.55 3.39 3.74 26.43 9.96 6.02 4.88 4.92 4.66
NPR-DDIM 13.34 5.38 3.95 3.53 3.42 3.72 22.81 9.47 6.04 5.02 5.06 4.62
SN-DDIM 12.19 4.28 3.39 3.23 3.22 3.65 17.90 7.36 5.16 4.63 4.63 4.51
OCM-DDIM 10.66 4.35 3.48 3.27 3.29 3.74 16.70 6.71 4.72 4.30 4.54 4.53

CELEBA 64X64 IMAGENET 64X64

# TIMESTEPS K 10 25 50 100 200 1000 25 50 100 200 400 4000

DDPM, β̃ 36.69 24.46 18.96 14.31 10.48 5.95 29.21 21.71 19.12 17.81 17.48 16.55
DDPM, β 294.79 115.69 53.39 25.65 9.72 3.16 170.28 83.86 45.04 28.39 21.38 16.38
A-DDPM 28.99 16.01 11.23 8.08 6.51 5.21 32.56 22.45 18.80 17.16 16.40 16.34
NPR-DDPM 28.37 15.74 10.89 8.23 7.03 5.33 28.27 20.89 18.06 16.96 16.32 16.38
SN-DDPM 20.60 12.00 7.88 5.89 5.02 4.42 27.58 20.74 18.04 16.61 16.37 16.22
OCM-DDPM 21.55 12.71 9.24 6.97 5.92 5.04 28.02 20.81 17.98 16.74 16.32 16.31

DDIM 20.54 13.45 9.33 6.60 4.96 3.40 26.06 20.10 18.09 17.84 17.74 19.00
A-DDIM 15.62 9.22 6.13 4.29 3.46 3.13 25.98 19.23 17.73 17.49 17.44 18.98
NPR-DDIM 14.98 8.93 6.04 4.27 3.59 3.15 28.84 19.62 17.63 17.42 17.30 18.91
SN-DDIM 10.20 5.48 3.83 3.04 2.85 2.90 28.07 19.38 17.53 17.23 17.23 18.89
OCM-DDIM 10.28 5.72 4.42 3.54 3.17 3.03 28.28 19.62 17.71 17.42 17.26 19.02

is diffusion model-based data compression, where better likelihood corresponds to better compression
rates (Townsend et al., 2019; Zhang et al., 2021; Ho et al., 2020; Kingma et al., 2021). In these cases,
the proposed OCM-DDPM can be used to provide better likelihood estimates, resulting in improved
task performance. Additionally, a recent paper (Salimans et al., 2024) shows how moment-matching
improves distillation, achieving state-of-the-art diffusion quality with first-order matching. Our
method could extend this to higher-order moment matching, potentially accelerating distillation
training. We leave it as a promising direction for future work.

Beyond image modelling, our method can be straightforwardly applied to accelerate large-scale video
diffusion models (Blattmann et al., 2023; Chen et al., 2023), which are based on latent diffusion
models. A recent study (Zhao et al., 2024) shows that covariance estimation is crucial in mitigating the
image-leakage issue in image-to-video generation problems, presenting another promising application
of our method. Moreover, our method can be applied to solve inverse problems, where the optimal
covariance can enhance the accuracy of posterior sampling (Chung et al., 2022; Rozet et al., 2024).
While this work focuses on the DDPM and DDIM sampler, incorporating the improved covariance
into the general stochastic and deterministic differential solver (Song et al., 2021; Karras et al., 2022)
also represents exciting directions for future research.

7 CONCLUSION

In this paper, we proposed a new method for learning the diagonal covariance of the denoising
distribution, which offers improved accuracy compared to other covariance learning approaches.
Our results demonstrate that enhanced covariance estimation leads to better generation quality and
diversity, all while reducing the number of required generation steps. We validated the scalability
of our method across different problem domains and scales and discussed its connection to various
acceleration techniques and highlighted several promising application areas for future exploration.
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Appendix for “Improved Diffusion Models with
Optimal Covariance Matching"
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A ABSTRACT PROOF AND DERIVATIONS

A.1 DERIVATIONS OF THE ANALYTICAL FULL COVARIANCE IDENTITY

Theorem 1 (Generalized Analytical Covariance Identity). Given a joint distribution q(x̃, x) =
q(x̃|x)q(x) with q(x̃|x) = N (αx, σ2I), then the covariance of the true posterior q(x|x̃) ∝
q(x)q(x̃|x), which is defined as Σ(x̃) = Eq(x|x̃)[x2]− Eq(x|x̃)[x]2, has a closed form:

Σ(x̃) =
(
σ4∇2

x̃ log q(x̃) + σ2I
)
/α2. (8)

Proof. This proof generalizes the original analytical covariance identity proof discussed in Zhang
et al. (2024b). Using the fact that ∇x̃q(x̃|x) = − 1

σ2 (x̃ − αx)q(x̃|x) and the Tweedie’s formula
∇x̃ log q(x̃) =

1
σ2

(
αEq(x|x̃)[x]− x̃

)
, we can expand the hessian of the log qθ(x̃):

∇2
x̃ log q(x̃) = − 1

σ2

∫
∇x̃

(
(x̃− αx)

q(x̃|x)q(x)
q(x̃)

)
dx

= − 1

σ2

∫
q(x̃|x)q(x)

q(x̃)
dx− 1

σ2

∫
(x̃− αx)

∇x̃q(x̃|x)q(x̃)q(x)−∇x̃q(x̃)q(x̃|x)q(x)
q2(x̃)

dx

=⇒ σ2∇2
x̃ log q(x̃) + 1 = −

∫
(x̃− αx)

∇x̃q(x̃|x)q(x)−∇x̃ log q(x̃)q(x̃|x)q(x)
q(x̃)

dx

= −
∫
(x̃− αx)

− 1
σ2 (x̃− αx)q(x̃|x)q(x) + 1

σ2 (x̃− αEq(x|x̃)[x])q(x̃|x)q(x)
q(x̃)

dx

=⇒ σ4∇2
x̃ log q(x̃) + σ2I =

∫ (
(x̃− αx)2 − (x̃− αx)(x̃− αEq(x|x̃)[x])

)
q(x|x̃) dx

= α2Eq(x|x̃)[x2]− α2Eq(x|x̃)[x]2 ≡ α2Σ(x̃)

Therefore, we obtain the analytical full covariance identity: Σq(x̃) =
(
σ4∇2

x̃ log q(x̃) + σ2I
)
/α2.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 VALIDITY OF THE OCM OBJECTIVE

Theorem 2 (Validity of the OCM objective). The objective in Equation (11) upper bounded the base
objective (i.e., Equation (10) with M → ∞). Moreover, it attains optimal when hϕ(x̃) = diag(H(x̃))
for all x̃ ∼ q(x̃).

Proof. Recall that to learn the optimal covariance, we can minimize the following loss function

min
ϕ

Eq(x̃)
∥∥hϕ(x̃)− Eq(v)[v ⊙H(x̃)v]

∥∥2
2

(24)

We call this the grounded objective because it remains unbiased and consistent, i.e., hϕ∗ =
diag(H(x̃)), when the inner expectation is approximated with infinite Monte Carlo samples. Using
Jensen’s inequality, we can show that the OCM objective defined in (11) provides an upper bound for
the grounded objective

Eq(x̃)
∥∥hϕ(x̃)− Eq(v)[v ⊙H(x̃)v]

∥∥2
2
= Eq(x̃)

∥∥Eq(v)[hϕ(x̃)− v ⊙H(x̃)v]
∥∥2
2

≤ Eq(x̃)Eq(v) ∥hϕ(x̃)− v ⊙H(x̃)v∥22
= Locm(ϕ).

Thus, minimizing the OCM objective also minimizes the grounded objective, leading to a more
accurate approximation of the diagonal Hessian. We then show that these two objectives are equivalent
when attaining their optimal. To see this, we can expand the OCM objective

Locm(ϕ) = Ep(v)q(x̃)||hϕ(x̃)− v ⊙H(x̃)v||22
= Eq(x̃)||hϕ(x̃)||22 − 2Ep(v)q(x̃)[hϕ(x̃)T (v ⊙H(x̃)v)] + c

= Eq(x̃)||hϕ(x̃)||22 − 2Eq(x̃)[hϕ(x̃)T diag(H(x̃))] + c

= Eq(x̃)||hϕ(x̃)− diag(H(x̃))||22 + c′,

where c, c′ are constants w.r.t. the parameter ϕ, and line 2 to line 3 follows from the fact that
Ep(v)[v ⊙H(x)v] = diag(H(x)). Therefore, Locm(ϕ) attains optimal when hϕ(x̃) = diag(H(x̃))
for all x̃ ∼ q(x̃).

A.3 CONNECTION TO SN-DDPM

In this section, we showcase the connection between OCM-DDPM and SN-DDPM through the
second-order Tweedie’s formula. Before delving into it, we present the following lemmas, which are
essential for our derivation.
Lemma 1 (First order Tweedie’s formula (Efron, 2011)). Let q(x̃|x) = N (x̃|

√
αx, βI), we have the

mean of the inverse density equals

Eq(x|x̃)[x] =
1√
α
(x̃+ β∇x̃ log q(x̃)). (25)

Lemma 2 (Second order Tweedie’s formula). Let q(x̃|x) = N (x̃|
√
αx, βI), we have the second

moment of the inverse density equals

Eq(x|x̃)[xxT ] =
1

α

(
x̃x̃T + βs1(x̃)x̃

T + βx̃s1(x̃)
T + β2s2(x̃) + β2s1(x̃)s1(x̃)

T + βI
)
, (26)

where s1(x̃) ≡ ∇x̃ log q(x̃) and s2(x̃) ≡ ∇2
x̃ log q(x̃).

Proof. The proof follows that in (Meng et al., 2021, Appendix B) with the generalization to the scaled
Gaussian convolutions. Specifically, we first reparametrized q(x̃|x) as a exponential distribution

q(x̃|η) = eη
T x̃−ψ(η)q0(x̃), (27)

where η =
√
α
β x, q0(x̃) ∝ e−

1
2β x̃

T x̃, and ψ(η) denotes the partition function. By applying the Bayes

rule q(η|x̃) = q(x̃|η)p(η)
q(x̃) , we have the corresponding posterior

q(η|x̃) = eη
T x̃−ψ(η)−λ(x̃)p(η), (28)
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where λ(x̃) ≡ log q(x̃)− log q0(x̃). Since
∫
q(η|x̃)dη = 1, by taking the derivative w.r.t. x̃ on both

sides, we have ∫
(η −∇x̃λ(x̃))

T
q(η|x̃) = 0, (29)

which implies that E[η|x̃] = ∇x̃λ(x̃). Taking the derivative w.r.t. x̃ on both sides again, we have∫
η (η −∇x̃λ(x̃))

T
q(η|x̃) = ∇2

x̃λ(x̃), (30)

which implies that E[ηηT |x̃] = ∇2
x̃λ(x̃) +∇x̃λ(x̃)∇T

x̃ λ(x̃). By substituting η =
√
α
β x,∇x̃λ(x̃) =

s1(x̃) +
1
β x̃, and ∇2

x̃λ(x̃) = s2(x̃) +
1
β I , we get the result as desired.

Lemma 3 (Convert the covariance of q(x̃|x) to the hessian of q(x̃)). Let q(x̃|x) = N (x̃|
√
αx, βI),

we have the covariance of the inverse density equals

Covq(x|x̃)[x] =
β

α
(I + β∇2

x̃ log q(x̃)). (31)

Proof. Let s1(x̃) ≡ ∇x̃ log q(x̃) and s2(x̃) ≡ ∇2
x̃ log q(x̃). We have

Covq(x|x̃)[x] =
β2

α
Covq(x|x̃)

[
x̃−

√
αx

β

]
=
β2

α

(
Eq(x|x̃)

(
x̃−

√
αx

β

)(
x̃−

√
αx

β

)T
− Eq(x|x̃)

(
x̃−

√
αx

β

)
Eq(x|x̃)

(
x̃−

√
αx

β

)T)

=
β2

α

(
1

β2
Eq(x|x̃)

(
x̃−

√
αx
) (
x̃−

√
αx
)T − s1(x̃)s1(x̃)

T

)
=
β2

α

(
1

β2

(
x̃x̃T − 2x̃(x̃+ βs1(x̃))

T + αEq(x|x̃)[xxT ]
)
− s1(x̃)s1(x̃)

T

)
=
β2

α

(
1

β2

(
β2s2(x̃) + β2s1(x̃)s1(x̃)

T + βI
)
− s1(x̃)s1(x̃)

T

)
=
β2

α

(
1

β
I + s2(x̃)

)
≡ β

α

(
I + β∇2

x̃ log q(x̃)
)
,

where line 2 to line 3 follows Lemma 1 and line 4 to line 5 follows Lemma 2.

It is noteworthy that line 3 in the proof of Lemma 3 also showcases the connection between the
covariance of q(x̃|x) and the score of q(x̃):

Covq(x|x̃)[x] =
β2

α

(
1

β
Eq(x|x̃)[ϵϵT ]−∇x̃ log q(x̃)∇x̃ log q(x̃)

T

)
, (32)

where ϵ = (x̃−
√
αx)/

√
β. Now we can apply Equations (31) and (32) to establish the connection

between OCM-DDPM and SN-DDPM, as demonstrated in the following theorem.
Theorem 3 (Connection between OCM-DDPM and SN-DDPM). Suppose q(x0:T ) is defined as Equa-
tion (1), and the pre-trained score function is well-learned, i.e., ∇xt log pθ(xt) = ∇xt log q(xt),∀xt.
Let hϕ, gψ be parameterized neural networks. OCM-DDPM learns hϕ by minimizing the objective
LOCM(ϕ) as in Equation (13), and SN-DDPM learns gψ by minimizing the objective LSN(ψ) as in
Equation (22). Then in optimal training with ϕ∗ = argminLOCM(ϕ) and ψ∗ = argminLSN(ψ), we

have the optimal diagonal covariance of OCM-DDPM Σt−1(xt;ϕ
∗) =

(1−αt)2hϕ∗ (xt)+(1−αt)I
αt

and

that of SN-DDPM Σt−1(xt;ψ
∗) = 1−ᾱt−1

1−ᾱt βt +
β2
t

αt

(
gψ∗ (xt)

1−ᾱt −∇xt logpθ(xt)
2
)

are identical.

Proof. In optimal training, we know that hϕ∗(xt) = diag(∇2
xt log q(xt)) and gψ∗(xt) =

Eq(x0|xt)[ϵ
2
t ]. Bao et al. (2022b) show that the covariance of the denoising density q(xt−1|xt)

has a closed form (see Lemma 13 in Bao et al. (2022b))

Covq(xt−1|xt)[xt−1] = λ2t I + γ2tCovq(x0|xt)[x0], (33)
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where λ2t = 1−ᾱt−1

1−ᾱt βt and γt =
√
ᾱt−1 −

√
1− ᾱt−1 − λ2t

√
ᾱt

1−ᾱt =
√
ᾱt−1

βt
1−ᾱt . Since

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I), applying Lemma 3 gives

diag(Covq(x0|xt)[x0]) =
(1− ᾱt)

ᾱt
(I + (1− ᾱt)hϕ∗(xt)).

Substituting it into Equation (33), we have

diag(Covq(xt−1|xt)[xt−1]) =
(1− αt)

2hϕ∗(xt) + (1− αt)I

αt
= Σt−1(xt;ϕ

∗)

as desired. Alternatively, applying Equation (32), we have

diag(Covq(x0|xt)[x0]) =
(1− ᾱt)

2

ᾱt

(
gψ∗(xt)

1− ᾱt
−∇xt logpθ(xt)

2

)
.

Substituting it into Equation (33) gives

diag(Covq(xt−1|xt)[xt−1]) =
1− ᾱt−1

1− ᾱt
βt +

β2
t

αt

(
gψ∗(xt)

1−ᾱt
−∇xt logpθ(xt)

2

)
= Σt−1(xt;ψ

∗).

Therefore, diag(Covq(xt−1|xt)[xt−1]) = Σt−1(xt;ϕ
∗) = Σt−1(xt;ψ

∗) as desired.

Remark. Theorem 3 establishes the connection between OCM-DDPM and SN-DDPM using the
second-order Tweedie’s formula. This connection allows OCM-DDPM to utilize the same covariance
clipping trick as in SN-DDPM (see Appendix B.2 for details). Additionally, as highlighted in Bao
et al. (2022a), SN-DDPM suffers from error amplification in the quadratic term, a limitation not
present in OCM-DDPM. As shown in Figure 2 and Table 3, OCM-DDPM demonstrates superior
covariance estimation accuracy and likelihood performance compared to SN-DDPM, underscoring
the advantages of the proposed optimal covariance matching objective.

B DETAILS OF EXPERIMENTS

B.1 DETAILS OF MODEL ARCHITECTURES

In this section, we describe our model architectures in detail. Following the approach in Bao et al.
(2022a), our model comprises a pretrained score neural network with fixed parameters, along with a
trainable diagonal Hessian prediction network built on top of it.

Table 6: Source of pretrained score prediction networks
used in our experiments.

PROVIDED BY

CIFAR10 (LS) BAO ET AL. (2022B)
CIFAR10 (CS) BAO ET AL. (2022B)
CELEBA 64X64 SONG ET AL. (2020)
IMAGENET 64X64 NICHOL & DHARIWAL (2021)
LSUN BEDROOM HO ET AL. (2020)
IMAGENET 256X256 PEEBLES & XIE (2023)

Details of Pretrained Score Prediction
Networks. Table 6 lists the pretrained
neural networks utilized in our experi-
ments. These models parameterize the
noise prediction ϵθ(x), allowing us to de-
rive the score prediction as sθ(xt) =

∇x log pθ(xt) = − ϵθ(xt)√
1−ᾱt

, following the
forward process defined in Equation (1). It
is important to note that the pretrained net-
works for ImageNet 64x64 and 256x256
include both noise prediction networks and covariance networks. In our model architectures, we
utilize only the noise prediction networks.

Table 7: Architecture details of our models.

NN1 NN2

CIFAR10 (LS) Conv Conv
CIFAR10 (CS) Conv Conv
CELEBA 64X64 Conv Conv
IMAGENET 64X64 Conv Res+Conv
LSUN BEDROOM Conv Res+Conv
IMAGENET 256X256 AdaLN+Linear AdaLN+Linear

Details of Diagonal Hessian Prediction
Networks. For fair comparisons, we fol-
low the parameterization as per Bao et al.
(2022a) for all models excluding the one
on ImageNet 256x256, which was not ex-
plored in their paper. The architecture de-
tails of NN1 and NN2 are provided in Ta-
ble 7, where Conv denotes the convolu-
tional layer, Res denotes the residual block
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Table 8: The number of parameters and the averaged time (ms) to run a model function evaluation.
All are evaluated with a batch size of 64 on one A100-80GB GPU.

SCORE PREDICTION
NETWORK

SCORE & SN PREDICTION
NETWORKS

SCORE & DIAGONAL HESSIAN
PREDICTION NETWORKS

CIFAR10 (LS) 52.54 M / 44.37 MS 52.55 M / 44.61 MS (+0.5%) 52.55 M / 44.51 MS (+0.3%)
CIFAR10 (CS) 52.54 M / 45.13 MS 52.55 M / 45.24 MS (+0.2%) 52.55 M / 45.23 MS (+0.2%)
CELEBA 64X64 78.70 M / 67.88 MS 78.71 M / 69.15 MS (+1.9%) 78.71 M / 68.89 MS (+1.5%)
IMAGENET 64X64 121.06 M / 106.58 MS 121.49 M / 112.53 MS (+5.6%) 121.49 M / 112.23 MS (+5.3%)
LSUN BEDROOM 113.67 M / 692.58 MS 114.04 M / 771.55 MS (+11.4%) 114.04 M / 770.73 MS (+11.2%)
IMAGENET 256X256 675.13 M / 22.84 MS MISSING MODEL 677.80 M / 23.01 MS (+0.7%)

(He et al., 2016), AdaLN denotes the adaptive layer norm block (Peebles & Xie, 2023), and Linear
denotes the linear layer.

Cost of Memory and Inference Time. In Table 8, we present the number of parameters and
inference time for various models. It is evident that the additional memory cost of the diagonal
Hessian prediction network is minimal compared to the original diffusion models, which only include
the score prediction. Regarding the extra inference cost, it is negligible for CIFAR10, CelebA 64x64,
and ImageNet 256x256. The additional time is at most 5.3% on ImageNet 64x64, and 11.2% on
LSUN Bedroom, but this is offset by the benefit of requiring fewer sampling steps to achieve an FID
around 6, as shown in Table 4. Notably, although the model size on ImageNet 256x256 is the largest,
it has the shortest inference time because DiT learns the diffusion model in the latent space.

Details of Table 4. In Table 4, the FID results of baselines are taken from Bao et al. (2022a).
Notably, the time cost for a single neural function evaluation is identical across DDPM, DDIM,
and Analytic-DPM, all of which use a fixed isotropic covariance in the backward Markov process.
The ratio of the time cost to the baselines is based on Table 8. For the FID results of our model,
OCM-DPM, we report performance using the DDPM forward process for LSUN Bedroom and the
DDIM forward process for the other datasets.

B.2 DETAILS OF TRAINING, INFERENCE, AND EVALUATION

Our training and inference recipes largely follow those outlined in Bao et al. (2022a); Peebles & Xie
(2023). Below, we provide a detailed description.

Training Details. We use the AdamW optimizer (Loshchilov, 2017) with a learning rate of 0.0001
and train for 500K iterations across all datasets. The batch sizes are set to 64 for LSUN Bedroom,
128 for CIFAR10, CelebA 64x64, and ImageNet 64x64, and 256 for ImageNet 256x256. During
training, checkpoints are saved every 10K iterations, and we select the checkpoint with the best FID
on 2048 samples generated with full sampling steps2. We train our models using one A100-80G GPU
for CIFAR10, CelebA 64x64, and ImageNet 64x64; four A100-80G GPUs for LSUN Bedroom; and
eight A100-80G GPUs for ImageNet 256x256.

Sampling Details. As per Bao et al. (2022b), covariance clipping is crucial to the performance
in diffusion models with unfixed variance in the backward Markovian. Leveraging the connection
between OCM-DPM and SN-DPM established in Theorem 3, we can apply the same clipping
strategies outlined in Bao et al. (2022a;b). Specifically, we only display the mean of p(x0|x1) at the
last sampling and clip the covariance Σ1(x2) of p(x1|x2) such that ∥Σ1(x2)∥∞E|ϵ| ≤ 2

255y, where
∥·∥∞ denotes the infinity norm and ϵ is the standard Gaussian noise. Following Bao et al. (2022b), we
use y = 2 on CIFAR10 (LS) and CelebA 64x64 under the DDPM forward process, and use y = 1 for
other cases. For all skip-step sampling methods, we employ the even trajectory (Nichol & Dhariwal,
2021) for selecting the subset of sampling steps.

Evaluation Details. The performance is evaluated on the exponential moving average (EMA) model
with a rate of 0.9999. For computing the negative log-likelihood, we follow Ho et al. (2020); Bao
et al. (2022a) by discretizing the last sampling step p(x0|x1) to obtain the likelihood of discrete
image data and report the upper bound of the negative log-likelihood on the entire test set. The
FID score is computed on 50K generated samples. Following Nichol & Dhariwal (2021); Bao et al.

2We use 2048 samples instead of 1000 to ensure that the covariance of the Inception features has full rank.
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Table 9: The corresponding mean and standard deviation of NLL and FID reported in Tables 3 and 5.
Note that the standard deviation is reported under the scale of percentage (%).

CIFAR10 (LS) CIFAR10 (CS)

# TIMESTEPS K 10 25 50 100 200 1000 10 25 50 100 200 1000

MEAN-DDPM (NLL) 5.33 4.63 4.35 3.97 3.78 3.57 4.99 4.34 3.99 3.76 3.59 3.41
STD-DDPM (NLL) % 0.04 0.03 0.03 0.04 0.04 0.01 0.02 0.01 0.03 0.03 0.02 0.01

MEAN-DDPM (FID) 25.07 9.30 5.90 4.37 3.54 4.00 14.46 5.49 4.09 3.83 3.81 4.22
STD-DDPM (FID) % 9.05 7.54 3.48 2.77 4.25 2.30 10.40 7.74 2.66 1.32 5.26 3.08

MEAN-DDIM (FID) 10.61 4.31 3.48 3.26 3.25 3.75 16.85 6.70 4.73 4.33 4.56 4.59
STD-DDIM (FID) % 5.17 3.55 3.19 1.87 3.97 0.99 13.22 4.23 2.28 2.94 1.61 5.30

CELEBA 64X64 IMAGENET 64X64

# TIMESTEPS K 10 25 50 100 200 1000 25 50 100 200 400 4000

MEAN-DDPM (NLL) 4.69 3.86 3.43 3.13 2.90 2.66 4.45 4.15 3.93 3.79 3.70 3.59
STD-DDPM (NLL) % 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01

MEAN-DDPM (FID) 21.58 12.65 9.24 6.96 6.00 5.02 28.01 20.85 18.01 16.76 16.35 16.33
STD-DDPM (FID) % 2.24 7.65 2.29 2.32 5.50 1.37 0.77 4.66 6.82 3.28 3.04 3.21

MEAN-DDIM (FID) 10.36 5.69 4.37 3.50 3.11 3.03 28.34 19.68 17.84 17.41 17.36 18.91
STD-DDIM (FID) % 7.40 4.04 5.12 4.88 6.46 1.55 6.59 3.77 9.15 4.08 7.88 5.26

(a) Training Data and Density (b) DDPM MMD v.s. Steps (c) DDIM MMD v.s. Steps

Figure 4: Comparisons of different covariance estimation methods. Figure (a) demonstrates the
training data and the ground truth density. Figures (b) and (c) present the MMD evaluation against
the total sampling steps in the DDPM (b) and DDIM (c) settings.

(2022a); Peebles & Xie (2023), the reference distribution statistics for FID are calculated using
the full training set for CIFAR10 and ImageNet, and 50K training samples for CelebA and LSUN
Bedroom. Performance results are reported using the same random seed3 as in Bao et al. (2022a).
Additionally, the variance across different random seeds is provided in Appendix C.4.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results for comparison. First, we present an
additional toy experiment in Appendix C.1 and likelihood comparison between I-DDPM, NPR-
DDPM, and OCM-DDPM in Appendix C.2 and present results using different numbers of Rademacher
samples in Appendix C.3. We also analyze the performance variance in Appendix C.4. Additionally,
we include further experimental results on latent diffusion models in Appendix C.5 and conduct
qualitative studies by showcasing samples generated by our models in Appendix C.6.

C.1 ADDITIONAL TOY DEMONSTRATION

To further verify the effectiveness of our method, we include a more complex toy experiment using
a mixture of 40 Gaussians (see Figure 4a for visualization). Unlike the MoG shown in Figure 2,
this new MoG does not have symmetric means for its components, resulting in a non-diagonal

3We use the official code from https://github.com/baofff/Extended-Analytic-DPM.
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(a) DDPM log-MMD on 9 MoG (b) DDIM log-MMD on 9 MoG (c) DDPM log-MMD on 40 MoG (d) DDIM log-MMD on 40 MoG

Figure 5: Comparisons of different covariance estimation methods. The MMD metric is presented
on a logarithmic scale. Figures (a) and (b) correspond to Figures 2c and 2d; Figures (c) and (d)
correspond to Figures 4b and 4c.

covariance structure. The results, shown in Figures 4b and 4c, demonstrate that the proposed method
outperforms other covariance learning approaches. Additionally, we include two methods utilizing the
true diagonal and full covariance, serving as benchmarks for the best achievable performance. Notably,
in this case, using the full covariance yields better performance compared to the diagonal covariance.
This observation highlights the importance of accurate covariance approximation, suggesting that
improved methods for learning the off-diagonal terms could lead to even better results. This represents
a promising direction for future research.

C.2 ADDITIONAL LIKELIHOOD COMPARISON

Table 10: Upper bound on the negative log-likelihood
(bits/dim) on the ImageNet 64x64 dataset.

# TIMESTEPS K 25 50 100 200 400 4000

I-DDPM 18.91 8.46 5.27 4.24 3.86 3.57
NPR-DDPM 4.66 4.22 3.96 3.80 3.71 3.60
SN-DDPM 4.56 4.18 3.95 3.80 3.71 3.63
OCM-DDPM 4.45 4.15 3.93 3.79 3.70 3.59

Here, we provide additional likelihood
comparisons against I-DDPM (Nichol &
Dhariwal, 2021) on the ImageNet 64x64
dataset. As discussed in Section 4, I-
DDPM parameterizes the diagonal covari-
ance by interpolating between β and and
learns the covariance by maximizing the
variational lower bound. For ease of com-
parison, we also include the performance
of NPR-DDPM and SN-DDOM, which em-
ploy an alternative MSE loss as detailed in
Equation (22) to learn the covariance. Table 10 presents the results, showing that OCM-DDPM
achieves the best likelihood with fewer sampling steps while maintaining performance comparable
to I-DDPM when using full sampling steps. This highlights the superiority of the proposed optimal
covariance matching objective in learning a diffusion model for data density estimation.

C.3 IMPACT OF THE NUMBERS OF RADEMACHER SAMPLES

Table 11: Results of OCM-DDPM on CIFAR10 (CS)
with varying numbers of Rademacher Samples.

FID ↓ NLL (%) ↑
K = 10 25 50 100 10 25 50 100

M = 1 14.32 5.54 4.10 3.84 4.99 4.34 3.99 3.76
M = 3 14.18 5.51 4.11 3.82 4.99 4.34 3.99 3.76
M = 5 14.17 5.51 4.11 3.82 4.99 4.34 3.99 3.76
M = 10 14.16 5.51 4.11 3.82 4.99 4.34 3.99 3.76

In this section, we include an ablation study
examining the effect of varying the number
of Rademacher samples M . Specifically,
we conduct experiments on CIFAR10 (CS)
using the proposed OCM-DDPM method
and evaluate performance based on FID
and NLL. The empirical results, presented
in Table 11, indicate that a larger M (e.g.,
M = 3) can give a small improvement
in FID. This improvement is likely due to
the reduced gradient estimation variance
during training with a larger M . However,
in most cases, different values of M yield consistent performance. This is practically desirable as, in
practice, setting M = 1 allows for efficient training while maintaining strong performance
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Table 12: Results with varying CFG coefficients using 10 sampling steps on ImageNet 256x256.

FID ↓ RECALL (%) ↑
CFG = 1.5 1.75 2.0 3.0 4.0 1.5 1.75 2.0 3.0 4.0

DDPM, β̃ 30.41 19.26 13.53 11.52 14.76 39.74 35.29 32.08 24.93 19.91
DDPM, β 210.28 182.78 158.16 89.86 58.16 16.98 22.28 25.13 23.07 19.48
I-DDPM 44.96 20.71 13.01 9.76 13.75 50.32 43.75 41.08 31.77 25.49
OCM-DDPM 30.55 17.57 11.12 9.52 13.74 49.39 45.87 42.33 32.13 24.96

DDIM 9.41 6.54 6.12 10.49 14.18 49.15 45.82 41.15 29.27 23.16
OCM-DDIM 11.30 6.67 5.33 9.20 13.49 54.50 50.32 46.58 34.53 25.67

Table 13: Results with CFG=1.5 across different sampling steps on ImageNet 256x256.

FID ↓ RECALL (%) ↑
# TIMESTEPS K 10 25 50 100 200 250 10 25 50 100 200 250

DDPM, β̃ 30.41 4.79 3.55 3.09 3.05 2.97 39.74 49.02 51.79 53.54 54.21 54.34
DDPM, β 210.28 42.09 9.43 3.63 2.91 2.75 16.98 46.76 51.67 55.01 55.50 55.21
I-DDPM 44.96 9.01 3.70 2.48 2.25 2.74 50.32 54.78 56.45 57.88 58.76 54.69
OCM-DDPM 30.55 4.96 3.21 2.71 2.50 2.75 49.39 53.75 54.68 55.85 54.97 54.75

DDIM 9.41 2.70 2.33 2.25 2.23 2.20 49.15 56.41 57.00 57.83 57.81 57.99
OCM-DDIM 11.30 3.26 2.56 2.28 2.23 2.18 54.50 58.33 58.09 58.80 58.16 58.56

C.4 MEAN AND VARIANCE OF PERFORMANCE

In Tables 3 and 5, we evaluate our models using the same random seed as Bao et al. (2022a). To
minimize the impact of randomness, we report the mean and standard deviation in Table 9 by repeating
the evaluation three times with different seeds.

C.5 MORE RESULTS ON LATENT DIFFUSION MODELS

We report the performance using 10 sampling steps with varying CFG coefficients in Table 12.
The results indicate that our methods perform best at CFG = 2.0. While DDPM-β̃ and DDIM
show strong FID scores, their Recall is lower due to fixed variance, suggesting less diversity in
the generated samples. In Table 13, we further compare the performance across different sampling
steps at CFG = 1.5. The results again demonstrate that our methods, which estimate the optimal
covariance from the data, produce more diverse samples while maintaining comparable image quality.

C.6 GENERATED SAMPLES

In this section, we conduct qualitative studies by showcasing the generated samples from our models
using different sampling steps K. The results are summarized as follows:

• In Figure 8, we visualize the generated samples using varying numbers of Monte Carlo
samples with the Rademacher estimator (refer to Table 1).

• In Figure 9, we visualize the training data and the generated samples using the minimum
number of sampling steps required to achieve an FID of approximately 6 (refer to Table 4).

• In Figures 10 to 13, we visualize the generated samples of our models using different number
of sampling steps on CIFAR10 (LS), CIFAR10 (CS), CelebA 64x64, and ImageNet 64x64,
respectively (refer to Table 5).

• In Figure 14, we visualize the generated samples on ImageNet 256x256, using 10 sampling
steps with different CFG coefficients. (refer to Figure 3 and Table 12).

• In Figure 15, we visualize the generated samples on ImageNet 256x256, using varying
number of sampling steps with CFG set to 1.5 (refer to Table 13).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 6: The results of FID v.s. NLL for different methods with varying numbers of sampling steps
on CIFAR10 (CS). Our method consistently achieves the best trade-off between FID and NLL.

Data M = 1 M = 10 M = 100 M = 1000

Figure 7: Diagonal covariance estimation visualisation with different Rademacher sample numbers.

(a) OCM-DDPM (M=5) (b) OCM-DDPM (M=10) (c) OCM-DDPM (M=15) (d) OCM-DDPM (M=20)

Figure 8: Generated samples with 10 sampling steps using ifferent Rademacher sample numbers on
CIFAR10 (CS) (ref: Table 1).
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(a) CIFAR10 Data (b) CelebA 64x64 Data (c) LSUN Bedroom Data (d) ImageNet 256x256 Data

(e) CIFAR10 (K=16) (f) CelebA 64x64 (K=17) (g) LSUN Bedroom (K=90) (h) ImageNet 256x256 (K=10)

Figure 9: The training data and generated samples of OCM-DPM with minimum steps to achieve an
FID around 6. (ref: Table 4)

(a) OCM-DDPM (K = 10) (b) OCM-DDPM (K = 25) (c) OCM-DDPM (K = 50) (d) OCM-DDPM (K = 100)

(e) OCM-DDIM (K = 10) (f) OCM-DDIM (K = 25) (g) OCM-DDIM (K = 50) (h) OCM-DDIM (K = 100)

Figure 10: Generated samples with different sampling steps on CIFAR10 (LS) (ref: Table 5).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) OCM-DDPM (K = 10) (b) OCM-DDPM (K = 25) (c) OCM-DDPM (K = 50) (d) OCM-DDPM (K = 100)

(e) OCM-DDIM (K = 10) (f) OCM-DDIM (K = 25) (g) OCM-DDIM (K = 50) (h) OCM-DDIM (K = 100)

Figure 11: Generated samples with different sampling steps on CIFAR10 (CS) (ref Table 5).

(a) OCM-DDPM (K = 10) (b) OCM-DDPM (K = 25) (c) OCM-DDPM (K = 50) (d) OCM-DDPM (K = 100)

(e) OCM-DDIM (K = 10) (f) OCM-DDIM (K = 25) (g) OCM-DDIM (K = 50) (h) OCM-DDIM (K = 100)

Figure 12: Generated samples with different sampling steps on CelebA 64x64 (ref: Table 5).
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(a) OCM-DDPM (K = 10) (b) OCM-DDPM (K = 25) (c) OCM-DDPM (K = 50) (d) OCM-DDPM (K = 100)

(e) OCM-DDIM (K = 10) (f) OCM-DDIM (K = 25) (g) OCM-DDIM (K = 50) (h) OCM-DDIM (K = 100)

Figure 13: Generated samples with different sampling steps on ImageNet 64x64 (ref: Table 5).

(a) OCM-DDPM (CFG=1.5) (b) OCM-DDPM (CFG=1.75) (c) OCM-DDPM (CFG=2.0) (d) OCM-DDPM (CFG=3.0)

(e) OCM-DDIM (CFG=1.5) (f) OCM-DDIM (CFG=1.75) (g) OCM-DDIM (CFG=2.0) (h) OCM-DDIM (CFG=3.0)

Figure 14: Generated samples with 10 sampling steps using different CFG coefficients on ImageNet
256x256 (ref: Table 12)
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(a) OCM-DDPM (K = 25) (b) OCM-DDPM (K = 50) (c) OCM-DDPM (K = 100) (d) OCM-DDPM (K = 200)

(e) OCM-DDIM (K = 25) (f) OCM-DDIM (K = 50) (g) OCM-DDIM (K = 100) (h) OCM-DDIM (K = 200)

Figure 15: Generated samples with CFG=1.5 using different sampling steps on ImageNet 256x256
(ref: Table 13)
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