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ABSTRACT

Mislabeled samples cause prediction errors. This study proposes a solution to
the problem of incorrect labels, known as AutoCleansing, to automatically cap-
ture the effect of incorrect labels and mitigate it without removing the mislabeled
samples. AutoCleansing consists of a base network model and sample-category
specific constants. Both parameters of the base model and sample-category con-
stants are estimated simultaneously using the training data. Thereafter, predictions
for test data are made using a base model without the constants capturing the mis-
labeled effects. A theoretical model for AutoCleansing is developed and showing
that the gradient of the loss function of the proposed method can be zero at true
parameters with mislabeled data if the model is correctly constructed. Experimen-
tal results show that AutoCleansing has better performance in test accuracy than
previous studies for CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.

1 INTRODUCTION

The prediction performance of supervised machine learning depends on the quality of the training
data. For classification tasks, the dataset is assumed to have a correct label for each object. However,
real-world datasets may contain some mislabeled samples. For instance, Pleiss et al. (2020) analyzed
incorrect labels in the CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton, 2009). They
reported that the mislabeled sample was 3 % of CIFAR-10 and 13 % of the CIFAR-100 datasets.

#1 #2 #3

Original label DOG TRUCK DEER

Alternative label CAT PERSON DEER and PERSON

Image

Figure 1: Example of incorrect labels in CIFAR-10. The original label is the corresponding label of
each image in the dataset. Alternative label is the possibly correct label of each image.

Figure 1 shows typical examples of incorrect labels in the CIFAR-10 dataset. It consists of 60,000
images in 10 category classes. Each image was assigned one of 10 classes. In this figure, the original
label of #1 is DOG; however, it appears to be the image of CAT. As the category set of CIFAR-10
includes both DOG and CAT, #1 is considered to be an example of an incorrect label within the
category set. The image of #2 has TRUCK as the original label. However, it shows the image of
PERSON, which does not belong to the category set. Thus, this is an example of an incorrect label
outside the category set. For the image of #3, there are two objects in this image; however, it has
only one label of DEER. It can be considered as an example of an incorrect label with multiple
objects.
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Incorrect labels in the training dataset may cause prediction errors. The most intuitive way to ad-
dress the problem of incorrect labels is by removing mislabeled samples from the training dataset.
However, to identify mislabeled samples, it is necessary to measure the correctness of labels and de-
fine the threshold determining whether the label is correct or not. Deleting excess data may reduce
the efficiency of estimation by decreasing the sample size. Finding an optimal threshold requires
several runs of learning by removing mislabeled samples with different thresholds.

This study proposes an alternative solution to the problem of incorrect labels, called AutoCleansing,
to automatically capture the effect of incorrect labels and mitigate it without removing mislabeled
samples. AutoCleansing consists of a base network model and sample-category specific constants.
Both parameters of the base model and sample-category constants are estimated simultaneously
using the training data. Thereafter, predictions for test data are made using a base model without the
constants capturing the mislabeled effects.

Figure 2 shows the concept of AutoCleansing. Let x be the input, y be the output, and y = m(x, θ)
be the base network model, where θ denotes the parameter of the base model. Consider five obser-
vations of A, B, · · · , E. The red line is the true model defined as, y = m(x, θ∗) where θ∗ denotes
the true parameter. B is a mislabeled sample, as the observed label B differs significantly from the
true label B∗. The dotted line is the estimated model y = m(x, θ̂) using incorrect data, where θ̂
denotes the estimated parameter. As can be observed, overfitting occurs owing to the mislabeled
sample. In this figure, ŷ denotes the prediction for x= 3 using the estimated model; however, the
true label is y∗. Thus, the incorrect label causes the prediction error. Consider the cleansing model,
y = m (x, θ) + α, where α denotes the constant parameter for each observation. If the constant
αB captures the effect of an incorrect label, as shown in this figure, removing the constant from the
cleansing model may mitigate the overfitting problem.

Figure 2: Concept of AutoCleansing. (Left) A to E are the observations. B is the incorrect label.
Red line represents the true model. Black dot line represents the estimated model using incorrect
data. y denotes the predicted label using the overfitting model. y∗ denotes the true label. Auto-
Cleansing consists of the base network model and constant α. The constant αB captures the effect
of the incorrect label for B. Thus, removing α mitigates the overfitting effect due to the incorrect la-
bel. (Right) (1) Training data has correct and incorrect labels. (2) Constructing the cleansing model
consists of a base network model m(x) and sample-category specific constant α. Learning with the
training data using cleansing, (3) Deleting the constant α̂, and (4) Testing with the validation data
using the cleansed network model.

As shown in the section of the theoretical analysis, the proposed AutoCleansing can address the pre-
diction errors due to the incorrect labels within the category set, outside the category set, and with
multiple objects. AutoCleansing can use any network model as the base model with any augmenta-
tion method. For example, the experimental section presents the estimation results of AutoCleansing
with base models of ResNet (He et al., 2016), WideResNet (Zagoruyko & Komodaki, 2016), Shake-
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Shake (Gastaldi, 2017), and PyramidNet+ShakeDrop (Yamada et al., 2018) using AutoAugment
(Cubuk et al., 2018). Furthermore, AutoCleansing does not require iterative runs to identify the
incorrect labels because the effects of the incorrect labels are automatically captured in a single run
by the sample-category specific constant.

The contribution of this study can be summarized as follows:

• It provides a theoretical model for AutoCleansing. The incorrect labels in the training data
cause a prediction error. The proposed method can capture the biased effects of incorrect
labels automatically and address the problem of prediction error due to incorrect labels.

• The proposed method can be implemented with any network model or augmentation
method. This study considers experiments of AutoCleansing with ResNet, WideResNet,
Shake-Shake, and PyramidNet+ShakeDrop using AutoAugment.

• Experimental results show that the proposed AutoCleansing method can improve the vali-
dation accuracy for the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.

• The additional training cost of AutoCleansing relative to the base network model can be
negligible. AutoCleansing can remove the biased effect of incorrect labels automatically in
a single run of learning. For example, the additional learning time of AutoCleansing with
CIFAR-10/100 datasets is only 0.5 % of that of the base network models.

2 RELATED WORKS

There are several studies on noisy datasets in the literature on machine learning. Frnay & Verleysen
(2014) provide a comprehensive review of label noise in classification. Algan & Ulusoy (2019)
provide a complete overview of deep learning with noisy datasets. There are three approaches to
dealing with mislabeled datasets as follows: (1) robust learning with label noise, (2) identification
of mislabeled data, and (3) utilization of a small dataset without incorrect labels.

For robust learning with label noise, after the early works of Reed et al. (2015) and Azadi et al.
(2015), several algorithms using deep neural networks have been proposed including the S-model
(Goldberger & Ben-Reuven, 2016), MentorNet (Jiang et al., 2018), decoupling (Malach & Shalev-
Shwartz, 2017), F-correction (Patrini et al., 2017), Open-set (Wang et al., 2018), Bi-level-model
(Jenni & Favaro, 2018), Lq (Zhang & Sabuncu, 2018), co-teaching (Han et al., 2018), random
reweighting (Ren et al., 2018), joint optimization (Tanaka et al., 2018), DAC (Thulasidasan et al.,
2019), SELF (Nguyen et al., 2020), dynamic bootstrapping (Arazo et al., 2019), and DivideMix (Li
et al., 2020). Goldberger & Ben-Reuven (2016) and Patrini et al. (2017) estimated a noise transition
matrix to correct for the loss function. However, it was difficult to correctly estimate the transition
matrix. Jiang et al. (2018) and Ren et al. (2018) proposed weighted samples to adapt the noisy sam-
ples. However, estimation of correctly weighted samples was also challenging. Arazo et al. (2019)
proposed a beta mixture model of the cross-entropy loss of each sample and modeled the label
noise. Their approach showed outstanding performance for high-level noise. For linear regression, a
consistent robust regression was proposed for the corrupted data (Bhatia et al., 2017). However, the
consistency of robust learning method of nonlinear estimation using the classification model was not
clear. These studies of robust learning with label noise used datasets having synthetic-label noise
added. Label noise is generated by replacing one label with another at a given probability within a
category set. These studies showed good performance for artificially generated label noise. How-
ever, most did not find mislabeled samples in real-world datasets. On the other hand, the approach
proposed in the this study considers incorrect labels within and outside the category set as well as
multiple objects in real-world datasets.

For the identification of mislabeled data, some studies found incorrect labels in famous datasets
for deep learning. For instance, Ekambaram et al. (2017) found 92 mislabeled examples in 18 of
the image classes, after reviewing more than 15 % of the images in the ImageNet dataset. Al-
Rawi & Karatzasu (2018) reported 9 incorrect samples on CIFAR10 and 15 mislabeled samples
on CIFAR100. Müller & Markert (2019) reported 4 mislabeled samples on MNIST, 7 samples on
CIFAR100, and 64 samples on Fashion-MNIST. Pleiss et al. (2020) identified incorrect labels using
the area under the margin (AUM) statistic. They showed that incorrect labels are 3 % on CIFAR10,
13 % on CIFAR100, and 24 % on Tiny ImageNet. On CIFAR100, they reported that removing
13 % of the data leads to a 1.2 % drop in error. Identifying mislabeled data requires some criteria
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to determine whether it is correct or incorrect. Several runs of learning may be required to search
for optimal criteria for the identification of incorrect labels. The method proposed in this study, in
contrast, allows us to capture and remove the effects of incorrect labels in a single run of learning.

For the utilization of a small dataset without incorrect labels, it is assumed that we have a small set
of clean data, namely, free of mislabeled samples. Sukhbaatar et al. (2015) and Hendrycks et al.
(2018) used clean data to estimate the noise-transition matrix for incorrect labels. Other studies
on the utilization of clean data include Ren et al. (2018), Li et al. (2017), and Zhang et al. (2019b).
However, it is difficult to find a small set of clean data in real-world datasets. Meanwhile, the method
proposed in this study does not require clean data.

3 AUTOCLEANSING

Consider the classification task with K categories for the N training data points X =
{x1,x2, · · · , xN} and labels Y = {y1,y2, · · · , yN}. Let the learning network model be, M (x, θ) =
{m1 (x, θ) , · · · ,mK(x, θ)} that assigns an input x to an output m with a given parameter θ. The
predicted probability of output y, given the input x using this model, is assumed to be calculated by
the following softmax function:

P (y = i|x) =
emi∑

j∈K
emj

(1)

where mi = mi(x, θ) denotes the ith element of output and K = {1, · · · ,K} the category set.

If the training data has mislabeled samples, the estimated parameter might be biased, which could
cause a prediction error. To address the problem of incorrect labels, consider the cleansing network
model, C (x, θ) = M (x, θ) + α, where α ∈ RN×K is a parameter of the sample-category specific
constant. Let αk be the constant for input x of the sample and category k. Therefore, the prediction
probability PC with the constant can be expressed as follows:

PC (y = i|x) =
emi+αi∑

j∈K
emj+αj

(2)

If the effect of the mislabeled samples is captured by the sample-category-specific constant α of the
cleansing network model C (x, θ, α) = M (x, θ) +α, the base network model M (x, θ) could avoid
the biased problem due to incorrect labels. The learning process with AutoCleansing is as follows:
(1) Learning with the training data using a cleansing network model C (x, θ, α) = M (x, θ) +
α, (2) deleting the sample-category-specific constant α̂ estimated in the learning process, and (3)
testing with the validation data using a cleansed network model, C(x, θ̂, α̂) − α̂, where θ̂ denotes
the estimated parameter of the base model.

3.1 THEORETICAL ANALYSIS OF AUTOCLEANSING

To investigate the performance of the proposed AutoCleansing for mislabeled data, we consider the
following definition of a general case:

Definition 1 (Incorrect labels and outside of the category set). Let K∗ be a full set of true categories
and K ⊂ K∗ be the category set of the model. Let π(ŷ|y∗x) be the probability such that the input
x with the true category y∗ ∈ K∗ has label ŷ ∈ K. Let P (y∗ |x,K∗, θ∗) be the true probability of
the category y∗ from the category set K∗ with input x given true parameter θ∗. Thus, the observed
probability of category ŷ∈K for the input xwith incorrect labels within and outside of the category
set is defined as follows:

Q
(
ŷ |x,K∗, θ∗

)
=
∑
y∗∈K∗

[
π (ŷ|y∗, x) · P

(
y∗ |x,K∗, θ∗

)]
This definition includes incorrect labels, outside of the category set, and multiple objects. If K∗ = K,
this definition is equivalent to that within the category set. If incorrect labels occur outside the
category set, namely π (ŷ|y∗, x) = 0 ∀ŷ 6= y∗ ∈ K and π (ŷ|y∗, x) ≥ 0 ∀y∗ ∈ K∗ \ K, it defines
the observed probability outside the category set. Let S be the combination of categories in multiple
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objects (for example, DEER and PERSON) and K+ = K
⋃
S be the true category set including

the original categories and combination of categories in multiple objects. If K∗ = K+, definition 1
describes multiple objects.

If the sample data has incorrect labels within the category set, incorrect labels outside of the category
set, or multiple objects, the estimated parameter using the minimum loss function does not converge
to the true parameter; thus, the incorrect labels cause the prediction error. However, the following
theorem shows that AutoCleansing can address the biased estimation due to mislabeled data:

Theorem 1 (AutoCleansing for incorrect labels within and outside the category set). Let K∗ be a
full set of true categories and K be the category set of the model. Let π (ŷ|y∗, x) be a probability
such that the input x with the true category y∗ ∈ K∗ has label ŷ ∈ K. Assume that the sample has
incorrect labels and the outside of the category set is defined as Definition 1. Let LC be the expected
loss function of AutoCleansing and θ+ be the set of the solution to ∂LC/∂θ = 0. Furthermore
assume that the model is correctly constructed and the probability distribution of the output is the
softmax function. Then the gradient of the expected loss function with AutoCleansing is zero at the
true parameter value θ∗. Namely, θ∗ ∈ θ+,

The proof can be found in the Appendix A.1. Note that, although this theorem states that the stochas-
tic gradient descent using the loss function of the correct model with AutoCleansing can be stopped
at true values, it does not guarantee that minimization of the loss function will converge to the true
value, if the loss function has more than one local minimum. Theorem 1 shows that the implemen-
tation of the sample-category specific constant α can capture the biased effect of incorrect labels.
This suggests that the value of α may reflect the effects of incorrect labels. The following theorem
confirms this:

Theorem 2 (Sample-category specific constants and incorrect labels). Assume that the sample has
incorrect labels and outside of the category set defined as Definition 1. Consider that the true label
t is assigned a false label f . Let α̂t and α̂f be parameters of the sample-category-specific constants
of the true and false labels, respectively, which are estimated by the minimum loss function with
AutoCleansing. Assume that the probability of observing a false label is greater than or equal to
that of the true label, namely Q (f |x,K∗, θ∗) ≥ Q (t |x,K∗, θ∗). Furthermore assume that the
model is correctly constructed, the probability distribution of the output is the softmax function, and
the loss function is minimized at true parameter values. Then, as N→∞ , the estimated parameter
of the sample-category specific constants α̂ using the minimum loss function with AutoCleansing
has the following properties :

1. General case: The sample-category-specific constants of the true label are equal to or less
than that of the false label: α̂t ≤ α̂f .

2. Symmetric case: Assume π (f |t, x) is symmetric and independent of x, namely,
π (f |t, x) = π (f |t) = π (t|f). For this case, the sample-category specific constants of
the true label are equal to or less than zero: α̂t ≤ 0.

3. Single symmetric case: Assume π (f |t, x) is symmetric, independent of x, and incorrect
labels occur between t and f only. Consequently, π (f |t, x) = π (f |t) = π (t|f) and
π (j|j, x) = 1, ∀j 6= t, f . For this case, the sample-category-specific constants of labels
except the true and false labels are equal to zero: α̂j = 0, ∀j 6= t, f .

The Appendix A.2 provides the proof of this theorem. Table 1 provides numerical examples of
the theorem. Assume that the category set has three categories K = {1, 2, 3}. Example (A) is
the incorrect label within the category set. Assume the true model output is {m∗1,m∗2,m∗3} =
{0.1, 0.1, 0.8}. Namely, the correct category is Category 3, having the highest output value. If the
first label is observed, the incorrect label causes biased learning: {c1, c2, c3} = {0.8, 0.1, 0.1}. The
estimated sample-category-specific constants are assumed to be optimal such that α = m∗ − c. The
constant of the true label (α3 = −0.7) is less than that of the false label (α1 = 0.7), such that the
output value of the biased model (c = m∗ + α) of the observed category (0.8) is larger than the
one of the true category (0.1). Example (B) is the incorrect label outside the category set. Consider
that the true category set is K∗ = {1, 2, 3, 4}. Assume the true category is Category 4 outside of the
observed category set. The optimal constant of observed label (α1 = 0.7) has the largest value. Note
that the constant of true category (α4 = −0.7) is not estimated, because this category is the outside
of category set. Example (C) is the multiple objects. Assume the observed label is 1, whereas the
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true categories are 1 and 3. The constant of unobserved true category (α3 = −0.7) is less than that
of the observed true label (α1 = 0.0),

Table 1: Neumerical example of AutoCleansing. Obs. is the observed label and True is the true
category. Outside is the outside of the category set. c is the output of biased model, m∗ is the output
of true model, and α is the biased effects estimated by AutoCleansing.

(A) Incorrect label (B) Outside of category set (C) Multiple objects

Label 1 2 3 1 2 3 4 (outside) 1 2 3

Obs. True Obs. True Obs. and True True

m∗ 0.1 0.1 0.8 0.1 0.1 0.1 0.7 0.8 0.1 0.8
c 0.8 0.1 0.1 0.8 0.1 0.1 0.0 0.8 0.1 0.1
α 0.7 0.0 -0.7 0.7 0.0 0.0 -0.7 0.0 0.0 -0.7

4 EXPERIMENTS

This section provides the experiments investigating the performance of the proposed AutoCleansing
on the CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011), and
ImageNet (Russakovsky et al., 2015) datasets. The proposed AutoCleansing method requires base
network models. In these experiments, the base network models are Wide-ResNet 40-2 and Wide-
ResNet 28-10 (Zagoruyko & Komodaki, 2016), Shake-Shake 26 2x32d, 26 2x96d and 26 2x112d
(Gastaldi, 2017), and PyramidNet+ShakeDrop (Yamada et al., 2018). All hyperparameters of base
network models are the same as those used in AutoAugment (Cubuk et al., 2018), FastAutoAugment
(Lim et al., 2019), and PBA (Ho et al., 2019)1. A cosine learning decay with one annealing cycle
was applied to all models except ResNet. For AutoCleansing, the sample-category specific con-
stants could not converge without regularization. The weight decay of the sample-category specific
constant is 5 ×10−5, except for PyramidNet, which uses 1 ×10−5.

AutoCleansing has learning parameters of the sample-category specific constant α that consists of
K variables for each sample. Note that all K variables cannot be identified; therefore, the constants
for the first category are set to zero for all samples (α1 = 0). Thus, the estimated sample-category
specific constant α ∈ RN×K has N(K − 1) estimable parameters. In this study, the AutoCleansing
with the sample-category-specific constant of N(K − 1) parameters is called as AC1. However, it
might be difficult to estimate all parameters of α for large datasets. For example, ImageNet has more
than 1.2 million images with 1,000 categories for training data. Therefore, AC1 needs to estimate
more than 1.2 billion parameters. Instead, consider the sample specific constant α ∈ RN such that
all categories except the observed label are set to zero for all samples (αj = 0 ∀j 6= ŷ); that is, α
has N estimable parameters. The AutoCleansing with the sample-specific constant of N parameters
is called as AC2. Note that AC2 corresponds to the special case of the single symmetric case of
Theorem 2. For the single symmetric case, αnj = 0 ∀n,∀j 6= t, f . If the true category belongs
to the outside of the category set, we cannot estimate the αnt of the true category, therefore, all
categories except the observed label have zero values of αnj .

The experiments compare the results with baseline preprocessing, Cutout (DeVries & Taylor, 2017),
AutoAugment (AA), FastAutoAugment (FAA), and Population Based Augmentation (PBA). The
baseline preprocessing is conventional augmentation as follows: standardizing the data, horizontal
flipping with 50 % probability, zero-padding, and randomly cropping. In the proposed AutoCleans-
ing, we follow the procedure of AutoAugment, which first applies the baseline preprocessing, then
applies the AutoAugment policy, and finally applies the Cutout.

4.1 EXPERIMENTAL RESULTS

The CIFAR-10 dataset has a total of 60,000 images, including 50,000 for training set and 10,000 for
test sets. The number of categories was 10. Thus, the sample-category specific constant for AC1 has
0.45 million estimable parameters, whereas the sample specific constant for AC2 has 0.05 million

1 See Table 7 in Appendix
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estimable parameters. Table 2 shows the results of the test accuracy for different network models
using the CIFAR-10 dataset. For all models, the proposed AutoCleansing with AutoAugment can
achieve better performance compared to previous models2.

Table 2: Test accuracy (%) on CIFAR-10. AC1+AA are the results of the proposed AutoCleansing
with sample-category specific constants and AutoAugment. All experiments in this study replicate
the results of Baseline, Cutout, and AutoAugment methods from Cubuk et al. (2018), FAA from
Lim et al. (2019), and PBA from Ho et al. (2019). Averages of five runs are reported.

Baseline Cutout AA FAA PBA AC1+AA

Wide-ResNet-40-2 94.70 95.90 96.30 96.30 - 96.56 ±0.11
Wide-ResNet-28-10 96.13 96.92 97.32 97.30 97.42 97.53 ±0.08
Shake-Shake (26 2x32d) 96.45 96.98 97.53 97.50 97.46 97.60 ±0.07
Shake-Shake (26 2x96d) 97.14 97.44 98.01 98.00 97.97 98.12 ±0.11
Shake-Shake (26 2x112d) 97.18 97.43 98.11 98.10 97.97 98.27 ±0.05
PyramidNet+ShakeDrop 97.33 97.69 98.52 98.30 98.54 98.59 ±0.05

Table 3: Test accuracy (%) on CIFAR-100. Averages of five runs are reported.
Baseline Cutout AA FAA PBA AC1+AA

Wide-ResNet-40-2 74.00 74.80 79.30 79.40 - 79.94 ±0.20
Wide-ResNet-28-10 81.20 81.59 82.91 82.70 83.27 84.07 ±0.18
Shake-Shake (26 2x96d) 82.95 84.00 85.72 85.40 84.69 86.19 ±0.12
PyramidNet+ShakeDrop 86.01 87.81 89.33 88.30 89.06 89.40 ±0.11

Table 4: Test accuracy (%) on SVHN
Baseline Cutout AA FAA PBA AC1+AA

Wide-ResNet-28-10 98.50 98.70 98.93 98.90 98.82 98.96

The CIFAR-100 dataset also has a total of 60,000 images, including 50,000 for training set and
10,000 for test sets. The number of categories was 100. Thus, the sample-category specific constant
for AC1 has 4.95 million estimable parameters, whereas the sample specific constant for AC2 has
0.05 million estimable parameters. Table 3 provides the results for the CIFAR-100 dataset. Simi-
larly, for CIFAR-10, the proposed model has better accuracy than previous models.

The SVHN dataset has 73,257 digit images for the core training set, 531,131 for the additional
training set, and 26,032 for the test set. In this experiment, both core and additional training sets
were used. The number of categories was 10. Thus, the sample-category specific constant for
AC1 has 5.44 million estimable parameters, whereas the sample specific constant for AC2 has 0.53
million estimable parameters. Table 4 reports the results for the SVHN dataset. For the SVHN
dataset, the proposed model has better accuracy than previous models.

The ImageNet dataset has more than 1.2 million images for the training set and 0.15 million images
for the validation and test sets. The number of categories was 1,000. Thus, the sample-category
specific constant for AC1 has more than 1.28 billion parameters that may not be feasible to esti-
mate. Therefore, this experiment uses the sample specific constant for AC2, which has 1.28 million
estimable parameters. Table 5 shows the results for the ImageNet dataset. The proposed model of
AC2 has better Top1 accuracy than previous models, whereas the Top5 accuracy of AC2 is less than
that of AA and FAA.

Pleiss et al. (2020) proposed the the area under the margin (AUM) statistic for robust learning with
label noise. They provided experiments of label noise using real-world datasets and the artificially
generated noise. Their experimental results showed that the AUM had better performance than

2Table 8 in Appendix provides a comparison between AC1 and AC2. Note that the test accuracy of
AC1+AA is close to that of AC2+AA.
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Table 5: Top 1 / Top 5 test accuracy (%) on ImageNet
Baseline AA FAA AC2+AA

ResNet-50 75.30 / 92.20 77.63 / 93.82 77.60 / 93.70 77.71 / 93.58

Table 6: AutoCleansing and Area Under the Margin (AUM). Base network model is ResNet32. This
table replicates the results of Baseline and AUM from Pleiss et al. (2020). Averages of five runs are
reported.

Baseline AUM AC1

CIFAR-10 91.9 92.1 92.75 ±0.06
CIFAR-100 67.0 68.2 69.13 ±0.24

those of the previous studies for datasets having synthetic label noise added. Table 6 shows the test
accuracy of AutoCleansing and AUM using the ResNet 32 model. All hyperparameters of the base
network models were the same as those used by Pleiss et al. (2020). AutoCleansing demonstrates
outperforming the AUM on both CIFAR-10 and CIFAR-100.

4.2 DETECTION OF INCORRECT LABELS USING AUTOCLEANSING

As shown in the theoretical analysis section, AutoCleansing can capture the effect of incorrect labels
using the sample-category specific constant α. If there is no mislabeled sample, α→ 0, asN →∞.
A large value of |α| indicates the existence of mislabeled samples in the data. Therefore, it might be
possible to identify incorrect labels using the estimated sample-category specific constant α̂.

Figure 4-6 in Appendix show the sample-category specific constants α̂ for the example of mis-
labeled images in CIFAR-10 and CIFAR-100. The estimation model is Wide-ResNet 40-2 with
AutoCleansing. Because α̂1 is fixed to zero, these figures show the standardized values of
α̂k − Mean{α̂1, · · · , α̂K}. Let α̂Max

n be the maximum value and α̂Min
n be the minimum value

of the standardized sample-category-specific constants for nth data. MaxRank is the percentile rank
of sorted α̂Max

n in descending order, and MinRank is sorted α̂Min
n in ascending order.

#1 in Figure 4 is an example of incorrect labels within the category set. The original label of #1 is
DOG and an alternative to this image is CAT. The estimated α̂ of an original label of #1 is 0.233,
whereas α̂ of an alternative label of #1 is -0.227. Similarly, the original labels are positive α̂, whereas
alternative labels are negative α̂ for images #2-#5 in this figure.

#6 in Figure 5 shows an example of incorrect labels outside the category set. The original label of #6
is TRUCK, whereas the correct label might be PERSON, which does not belong to the category set
for the CIFAR-10 dataset. For this image, α̂ of the original labels have positive. For these examples
of #6-#10, the estimated α̂ of the original labels are positive.

#11 in Figure 6 presents an example of multiple objects. The original label of #11 is DEER; however,
this image includes an additional object of PERSON that does not belong to the category set of the
CIFAR-10 dataset. Images of #12-#15 are examples of multiple objects in the CIFAR-100 datasets.
For example, the original label of #12 is PLANE; however, this image also has the object of SEA.
Both PLANE and SEA belong to the category set. For these images, α̂ of the original labels have
positive, α̂ and additional labels have negative labels.

Note that the values of MaxRank or MinRank are less than 0.1 % for all images in these figures. This
suggests that the mislabeled samples can be identified using the high or low value of the sample-
category-specific constants α̂ estimated by AutoCleansing. To identify the mislabeled samples, we
must specify the threshold criteria between the correct and incorrect labels. Let τ be the percentage
of mislabeled samples in the dataset. Algorithm 2 in Appendix A.4 provides the procedure for
searching for mislabeled samples given τ using AutoCleansing.

After searching for the mislabeled samples, we can remove the mislabeled data from the sample
and run the learning models using the trimmed sample. Figure 3 shows the test accuracies of the
base model using trimmed data with different threshold criteria of incorrect labels on the CIFAR-10

8
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and CIFAR-100 datasets. The base model is a Wide-ResNet 40-2 model with AutoAugmentation.
As can be observed, the test accuracies are highest when 0.2 % of incorrect labels are dropped in
both datasets. This figure shows that dropping mislabeled samples at an appropriate drop rate can
improve the classification accuracy. However, it is necessary to repeat learning several times with
different criteria to determine the optimum drop rate of mislabeled samples. If an excessively small
sample is dropped, the effects of bias due to incorrect labels might remain. If excess samples are
removed, the estimation efficiency could be reduced because of the decreasing sample size.

Notably, the maximum test accuracies using trimmed data are very close to the accuracies of Auto-
Cleansing in this figure. This suggests that AutoCleansing can remove the biased effects of incorrect
labels without dropping the mislabeled samples from the datasets. Furthermore, AutoCleansing does
not need to repeat learning because it does not require the threshold criteria of the drop rate for the
mislabeled samples. Instead of dropping the mislabeled samples that requires the threshold crite-
ria of incorrect labels, AutoCleansing drops the sample-category specific constantsby capturing the
mislabeled bias.

 

Figure 4: Test accuracies of the base model with trimmed data and AutoCleansing. Averages of five runs are reported. 
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Figure 3: Test accuracies of the base model with trimmed data and AutoCleansing. Averages of five
runs are reported.

5 CONCLUSION

This study introduces AutoCleansing to address the biased problem due to incorrect labels. The
proposed method is appealing in that it can automatically capture the effect of incorrect labels and
mitigate it without removing mislabeled samples. As shown in the theoretical analysis, if the model
is correctly constructed, the gradient of the expected loss function of AutoCleansing is equal to zero
at true parameter values using mislabeled samples for incorrect labels within or outside the category
set as well as multiple objects. Furthermore, AutoCleansing can be implemented with any network
model and any augmentation method. Experimental results show that the proposed AutoCleans-
ing has better performance than previous studies on CIFAR-10, CIFAR-100, SVHN, and ImageNet
datasets. Additional topics for future investigation into AutoCleansing include applications to artifi-
cial label noise (Algan & Ulusoy, 2019), the use of other network models such as EfficientNet (Tan
& Le, 2019), and the use of recent augmentation methods such as adversarial AutoAugment (Zhang
et al., 2019a).
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A APPENDIX

A.1 PROOF OF THEOREM 1

Consider following loss function:

L(θ) = − 1

N

N∑
n=1

∑
i∈K

1 [yn = i] lnP (yn = i|xn, θ)

where 1[yn = i] is an indicator function equal to one when yn = i and zero otherwise. Let L (θ)
be the probability limit of the loss function L (θ). Consider that the sample has incorrect labels and
the outside of the category set is defined as definition 1. If the model is correctly constructed, by the
strong law of large numbers, as N→∞, L (θ) is as follows:

L (θ)
a.s.−→ L (θ) = −Ex∼p(X)

(∑
i∈K

[
Q
(
i |x,K∗, θ∗

)
· lnP (i |x,K, θ)

])

= −Ex∼p(X)

∑
î∈K

[∑
k∈K∗

[
π(i|k, x) · P

(
k |x,K∗, θ∗

)]
· lnP (i |x,K, θ)

]
.

The derivative of L (θ) is as follows:

∂L (θ)

∂θ
= −Ex∼p(X)

∑
i∈K

(∑
k∈K∗

[
π(i|k, x) · P (k |x,K∗, θ∗)

P (i |x,K, θ)

]
∂P (i |x,K, θ)

∂θ

)
If the distribution function is the softmax function (1), the derivative of L (θ) can be expressed as
follows:

∂L (θ)

∂θ
= −Ex∼p(X)

∑
i∈K


∑
j∈K

emj

emi
∑
j∈K∗

em
∗
j

∑
k∈K∗

[
π(i|k, x) · em

∗
k

] ∂P (i |x,K, θ)
∂θ


where m∗k = mk(x, θ∗) denotes the kth element of the output for the base model given the true pa-
rameter and the true category set. First, consider the case of no incorrect label, namely, π (i|i, x) = 1
for all i ∈ K and K = K∗. For this case, the derivative of L (θ) is equal to zero at the true parameter
θ = θ∗, as follows:

∂L (θ∗)

∂θ
= −Ex∼p(X)

∑
i∈K


∑
j∈K

em
∗
j∑

j∈K∗
em
∗
j

∂P (i |x,K, θ∗)
∂θ



= −Ex∼p(X)


∑
j∈K

em
∗
j∑

j∈K∗
em
∗
j

∂
∑
i∈K

P (i |x,K, θ∗)

∂θ

 = 0

Note that
∑
i∈K

P (i |x,K, θ∗) = 1. From the assumption of identification for the parameter, L (θ) 6=

L(θ∗) for all θ 6= θ∗. Thus, if there is no incorrect label and the model is constructed correctly,
the estimated parameter θ̂ using the minimum loss function is consistent as follows: θ̂ → θ∗ as
N →∞. This is a well-known property of consistency in the maximum likelihood estimator of the
logit model (Amemiya, 1985).

However, in general, the derivative of L (θ) is not always equal to zero at the true parameter value if
the sample has an incorrect label. If there are mislabeled samples, the estimated parameter θ̂ using
the minimum loss function may not converge to the true value.

Consider the estimation using the AutoCleansing model, cj (x,Θ) = mj(x, θ) + αj where Θ =
{θ, α}. The probability limit of the loss function for the AutoCleansing model is as follows:

LC (Θ) = −Ex∼p(X)

∑
i∈K

[∑
k∈K∗

[
π (i|k, x) · P

(
k |x,K∗, θ∗

)]
· lnPC (i |x,K,Θ)

]
.
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Assume that the probability distribution is a softmax function (2). Let θ+ be the set of the solution
to ∂LC/∂θ = 0. The derivative of LC (Θ) can be expressed as follows:

∂LC (Θ)

∂θ
= −Ex∼p(X)

∑
i∈K


∑
j∈K

emj+αj∑
j∈K∗

em
∗
j

∑
k∈K∗

[
π (i|k, x) · em∗k

]
emi+αj

∂PC (i |x,K,Θ)

∂θ



= −Ex∼p(X)

∑
i∈K


∑
j∈K

emj+αj∑
j∈K∗

em
∗
j

em
∗
i +α

∗
i

emi+αj

∂PC (i |x,K,Θ)

∂θ


where α∗i = ln

( ∑
k∈K∗

π (i|k, x) · em∗k
)
− m∗i . Thus, the derivative of LC (Θ) is equal to zero at

Θ∗ = {θ∗, α∗}. Namely, θ∗ ∈ θ+. 2

A.2 PROOF OF THEOREM 2

From the assumption, Q (f |x,K∗, θ∗) ≥ Q (t |x,K∗, θ∗). If the model is correctly constructed,
the output of the model for the true category is higher than that of the other category. Therefore,
m∗t ≥ m∗j , ∀j. For the general case, from Theorem 1, the difference between the sample-category-
specific constants of the false label and that of the true label is as follows:

α∗f − α∗t = ln

(∑
k∈K∗

π (f |k, x) · em
∗
k

)
−m∗f−

[
ln

(∑
k∈K∗

π (t|k, x) · em
∗
k

)
−m∗t

]

= ln

∑
k∈K∗

π (f |k, x) · em
∗
k∑

j∈K∗
e
m∗

j∑
k∈K∗

π (t|k, x) · em
∗
k∑

j∈K∗
e
m∗

j

−m∗f+m∗t

= ln
Q (f |x,K∗, θ∗)
Q (t |x,K∗, θ∗)

−m∗f+m∗t≥ 0.

For the symmetric case, π (t|k, x) =π (k|t, x) for all k Therefore, the sample-category-specific con-
stants of the true label are as follows:

α∗t = ln

(∑
k∈K∗

π (t|k, x) · em
∗
k

)
−m∗t= ln

(∑
k∈K∗

π (k|t, x) · em
∗
k

)
−m∗t

≤ ln

(∑
k∈K∗

π (k|t, x) · em
∗
t

)
−m∗t= 0.

For the single-symmetric case, π (j|j) = 1 ∀j 6= f, t. Therefore, the sample-category-specific con-
stants of category j 6= f, t are as follows:

α∗j = ln

(∑
k∈K∗

π (j|k, x) · em
∗
k

)
−m∗j= ln

(∑
k∈K∗

π (k|j, x) · em
∗
k

)
−m∗j = 0

2
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A.3 ADDITIONAL TABLES

Table 7: Hyperparameters for the Experiment. LR represents the learning rate, whereas WD rep-
resents the weight decay. Multi steps schedule decays the learning rate by 10-fold at epochs (150,
225) for CIFAR and (90, 180, 240) for ImageNet.

Dataset Model LR LR Schedule WD Batch Size Epoch

CIFAR-10 ResNet-32 0.1 multi steps 0.0001 256 300
CIFAR-10 Wide-ResNet-40-2 0.1 cosine 0.0002 128 200
CIFAR-10 Wide-ResNet-28-10 0.1 cosine 0.0005 128 200
CIFAR-10 Shake-Shake (26 2x32d) 0.01 cosine 0.001 128 1800
CIFAR-10 Shake-Shake (26 2x96d) 0.01 cosine 0.001 128 1800
CIFAR-10 Shake-Shake (26 2x112d) 0.01 cosine 0.001 128 1800
CIFAR-10 PyramidNet+ShakeDrop 0.05 cosine 5.00E-05 64 1800
CIFAR-100 ResNet-32 0.1 multi steps 0.0001 256 300
CIFAR-100 Wide-ResNet-28-10 0.1 cosine 0.0005 128 200
CIFAR-100 Shake-Shake (26 2x96d) 0.01 cosine 0.0025 128 1800
CIFAR-100 PyramidNet+ShakeDrop 0.025 cosine 0.0005 64 1800

SVHN Wide-ResNet-28-10 0.005 cosine 0.001 128 200
ImageNet Resnet-50 0.1 multi steps 0.0001 256 270

Table 8: AutoCleansing with the sample-category-specific constant (AC1) and the sample specific
constant (AC2). Averages of five runs are reported.

AA AC1+AA AC2+AA

CIFAR-10 Wide-ResNet-40-2 96.30 96.56 ±0.11 96.54 ±0.11
Wide-ResNet-28-10 97.32 97.53 ±0.08 97.48 ±0.06

CIFAR-100 Wide-ResNet-40-2 79.30 79.94 ±0.20 79.86 ±0.19
Wide-ResNet-28-10 82.91 84.07 ±0.18 84.12 ±0.17
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A.4 ALGORITHMS

Algorithm 1 AutoCleansing
Require: Initial parameter α ∈ RN×K of the sample-category specific constant. N : The
number of samples. K: The number of categories. B: The number of minibatches.
Learning:
for b = 1, . . . , B do

Sample a minibatch of x(b) from training data set X . Let d(b) be a vector of index of the
sampling such that x(b) = X[d(b)].
Compute gradient using the cleansing model for the minibatchC(x(b), θ, α) = M(x(b), θ)+
α(b), where α(b) = α[d(b)] ∈ RNb×K is the constant for the minibatch and Nb is the batch
size.
Update the parameter Θ = {θ, α}.

end for
Testing: Predict the category using the cleansed model M(x, θ̂) = C(x, θ̂, α̂)− α̂.

Algorithm 2 Detection of mislabeled samples using AutoCleansing
Require: α̂ ∈ RN×K : the sample-category specific constants of nth sample and kth category,
N : the number of samples, K: the number of categories, and τ : the percent of mislabeled
samples.
Require: Standardize α̂nk ← α̂nk −Mean{α̂n1, · · · , α̂nK} for all n = {1, · · · , N}.
Require: Set α̂Max

n = Max {α̂n1, · · · , α̂nK} and α̂Min
n = Min {α̂n1, · · · , α̂nK} for all n =

{1, · · · , N}.
Require: Set Lmiss = []: mislabeled list. Nmiss = τN/100: the number of mislabeled
samples.
while the size of Lmiss<Nmiss do

Find the sample index n such as α̂Max
n = Max(α̂Max). Delete α̂Max

n from α̂Max. Add the
sample index n to the mislabeled list Lmiss if n /∈ Lmiss.
if the size of Lmiss<Nmiss do

Find the sample index n such as α̂Min
n = Min(α̂Min). Delete α̂Min

n from α̂Min. Add
the sample index n to the mislabeled list Lmiss if n /∈ Lmiss

end if
end while
Return: the mislabeled list Lmiss.
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A.5 ADDITIONAL FIGURES

Dataset
Origianl

labels

Alternative

labels

ID

CIFAR-10 dog cat

38775 0.233 -0.227

CIFAR-10 cat dog

25684 0.274 -0.235

CIFAR-100 leopard tiger

10178 0.337 -0.300

CIFAR-100 tulip rose

7019 0.312 -0.240

CIFAR-100 cloud can

24900 0.334 -0.182

Image MaxRank MinRank

1.328% 0.038%

#5

#3

#4

0.072% 0.268%

0.020% 0.002%

0.020%

#1

#2

2.002% 0.028%

0.438%

�� �  

Figure 4: Example images of incorrect labels within category set and sample-category specific con-
stants α. MaxRank is the percentile rank of sorted α̂Max

n in descending order, and MinRank is sorted
α̂Min
n in ascending order. See text for more details.
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Dataset
Origianl

labels

Alternative

labels

ID

CIFAR-10 truck person

18310 0.332 -

CIFAR-100 lion giraffe

19011 0.335 -

CIFAR-100 plate cutlery

1578 0.335 -

CIFAR-100 cup glass

29783 0.338 -

CIFAR-100 motorcycle raincoat

48760 0.345 -

Image MaxRank MinRank

#10 0.002% 7.970%

#9 0.016% 43.730%

#8 0.054% 13.646%

#7 0.044% 39.838%

#6 0.002% 1.242%

�  �! �  

Figure 5: Example images of incorrect labels outside category set and sample-category specific
constants α.
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Dataset
Origianl

labels

Alternative

labels

ID

CIFAR-10 deer person

3879 0.317 -

CIFAR-100 plain sea

16305 0.332 -0.281

CIFAR-10 cat dog

9145 0.247 -0.212

CIFAR-100 bus road

33026 0.323 -0.231

CIFAR-100 house road

780 0.284 -0.218

MaxRank MinRank

0.450% 0.052%

#15 5.558% 0.088%

#14

0.112% 0.006%

#13 1.356% 0.060%

#12

#11 0.024% 0.734%

Image

�  �! �  

Figure 6: Example images of incorrect labels with multiple objects and sample-category specific
constants α.
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