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Abstract001

We introduce a set of training-free ABX-style002
discrimination tasks to evaluate how multilin-003
gual language models represent language iden-004
tity (form) and semantic content (meaning). In-005
spired from speech processing, these zero-shot006
tasks measure whether minimal differences in007
representation can be reliably detected. This008
offers a flexible and interpretable alternative to009
probing. Applied to XLM-R (Conneau et al.,010
2020a) across pretraining checkpoints and lay-011
ers, we find that language discrimination de-012
clines over training and becomes concentrated013
in lower layers, while meaning discrimination014
strengthens over time and stabilizes in deeper015
layers. We then explore probing tasks, show-016
ing some alignment between our metrics and017
linguistic learning performance. Our results018
position ABX tasks as a lightweight framework019
for analyzing the structure of multilingual rep-020
resentations.021

1 Introduction022

Multilingual Transformer models such as mBERT023

(Devlin et al., 2019) and XLM-R (Conneau et al.,024

2020a) have become essential tools for cross-025

lingual NLP. Trained on large concatenated cor-026

pora spanning dozens of languages, these models027

learn representations that support transfer across028

languages even in the absence of explicit cross-029

lingual supervision (Wu and Dredze, 2019; Con-030

neau et al., 2020b; Xue et al., 2021; Philippy et al.,031

2023, etc.). Despite their success, it remains un-032

clear how these models internally organize linguis-033

tic form and shared meaning. Prior work suggests034

that multilingual models encode both language-035

specific information (e.g., surface forms, word or-036

der) and language-agnostic features (e.g., semantic037

content), but the nature and interaction of these rep-038

resentations is not fully understood. These encod-039

ing choices shape generalization and transfer be-040

havior, including both positive effects (e.g., shared041

structure benefiting low-resource languages) and 042

negative ones, such as the curse of multilingual- 043

ity (Conneau et al., 2020a), where performance 044

degrades due to interference across languages. 045

Understanding how form and meaning are rep- 046

resented, and how this balance evolves during pre- 047

training, is essential to explain and improve cross- 048

lingual transfer. If a model strongly encodes lan- 049

guage identity, it may better avoid interference be- 050

tween closely related languages1. Conversely, if 051

it aligns meanings across languages, it may sup- 052

port more effective semantic generalization. To 053

explore this balance, we ask: How are languages 054

represented at the form level? How well do mod- 055

els encode shared meanings? And how do these 056

properties evolve across training? 057

Previous work has often relied on probing tasks 058

to investigate such questions. While useful, prob- 059

ing requires training classifiers on top of frozen 060

representations, and results are sensitive to probe 061

design and task setup (Belinkov, 2022; Hewitt and 062

Liang, 2019; Voita and Titov, 2020). This makes 063

it difficult to isolate what is truly encoded by the 064

model versus what is learnable with supervision. 065

We propose a zero-shot alternative: ABX-style 066

discrimination tasks that directly measure model 067

representation structure without additional train- 068

ing. Originating in speech processing (Schatz et al., 069

2013), ABX tasks evaluate whether a model reli- 070

ably discriminate minimal contrasts: given a triplet 071

(A, B, X), is X closer to A or B? By designing 072

minimal pairs that differ only in language or in 073

meaning, we isolate and quantify how well models 074

distinguishes these dimensions. Because they are 075

contrastive, zero-shot, and training-free, these met- 076

rics can be applied across languages, checkpoints, 077

and architectures with minimal adaptation. 078

1In fact, it was found that forcing some sort of separation
in multilingual models can help somewhat alleviate these neg-
ative interferences (Pfeiffer et al., 2022; Blevins et al., 2024;
Xu et al., 2024; Huang et al., 2024).
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Our contributions are as follows:079

1. We propose a training-free, ABX-style frame-080

work for analyzing multilingual representa-081

tions by contrasting minimal pairs. Our082

tasks are designed to isolate language iden-083

tity (form) and semantic content (meaning),084

offering a complementary alternative to tradi-085

tional probing methods.086

2. We apply this framework to XLM-R across087

36 languages and 630 language pairs, analyz-088

ing all pretraining checkpoints and layers. We089

show that language and meaning discrimina-090

tion evolve in parallel but are not mutually091

exclusive: different layers vary in the degree092

to which they encode each axis.093

3. We relate ABX discrimination scores to down-094

stream performance on POS tagging, NER,095

and NLI. We find that form-oriented tasks cor-096

relate more strongly with language discrim-097

ination, while NLI, a semantic task, shows098

no consistent relationship to either axis, high-099

lighting a disconnect between task perfor-100

mance and intrinsic representational structure.101

2 Related Work102

Multilingual language models are expected to sup-103

port cross-lingual generalization by encoding both104

language-specific form and shared semantic con-105

tent. However, existing evaluation methods typ-106

ically focus on one of these dimensions in isola-107

tion. This section reviews prior work on analyzing108

multilingual representations and highlight the need109

for a unified, training-free framework that jointly110

evaluates both language identity and meaning in a111

controlled, contrastive setting.112

2.1 Evaluating Form and Content in113

Multilingual Representations114

Multilingual pretrained language models aim to115

map diverse languages into a shared embedding116

space. This allows for zero-shot and cross-lingual117

transfer, but raises the question of how these118

models balance language-specific and language-119

agnostic features during training.120

Content-focused evaluations typically focus on121

cross-lingual alignment, using methods such as122

translation retrieval to measure whether semanti-123

cally equivalent inputs in different languages are124

mapped to nearby embeddings (Sundar et al., 2025;125

Pires et al., 2019; Libovickỳ et al., 2020; Hu et al.,126

2020). Models like LASER (Artetxe and Schwenk,127

2019) and LaBSE (Feng et al., 2022) are explicitly 128

trained to optimize such alignment. More recent 129

work introduces contrastive alignment scores such 130

as DALI (Ravisankar et al., 2025) to better capture 131

meaning equivalence. However, these approaches 132

abstract away from language identity and provide 133

little insight into how models handle surface-form 134

distinctions across languages. 135

Conversely, form-focused evaluations examine 136

how well a model encodes language identity. Clus- 137

tering analyses show that multilingual embeddings 138

often group by language or script, particularly in 139

lower layers (Libovickỳ et al., 2020; Choenni and 140

Shutova, 2022). Classifiers trained on frozen repre- 141

sentations can often identify input language with 142

high accuracy (Choenni and Shutova, 2022), but 143

this depends on probe training and may not reflect 144

the geometry of the representation space itself. 145

These two evaluation paradigms have remained 146

largely separate. To our knowledge, no existing 147

method allows for simultaneous, controlled evalu- 148

ation of both dimensions without relying on task- 149

specific training. As a result, we lack a unified 150

evaluation framework that can directly assess both 151

dimensions under comparable, controlled condi- 152

tions. 153

2.2 Training Dynamics and Linguistic 154

Emergence in Multilingual Models 155

Several studies have examined how multilingual 156

representations evolve during pretraining. Blevins 157

et al. (2022) tracked the emergence of linguistic 158

knowledge in XLM-R (Conneau et al., 2020a), 159

showing that different properties emerge at differ- 160

ent layers and stages, and that the best-performing 161

checkpoint varies across languages and tasks. 162

Other studies have shown that multilingual models 163

sometimes internally pivot through high-resource 164

languages like English when processing low- 165

resource inputs (Wendler et al., 2024; Schut et al., 166

2025), while other research suggests that these 167

models juggle both language-specific and language- 168

neutral features (Tang et al., 2024; Libovickỳ et al., 169

2020; Tanti et al., 2021) These works highlight 170

the complex interplay between form and content 171

in multilingual models and how this balance shifts 172

over time. However, they again mainly rely on task- 173

specific probes or downstream evaluations, which 174

do not offer a way to disentangle form and content 175

in a direct, unsupervised way. 176
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2.3 Prior Uses of ABX Evaluation177

The ABX framework offers a contrastive, classifier-178

free means of evaluating representational structure179

in a controlled, unsupervised setting. Originally180

developed in speech processing and psycholinguis-181

tics (Schatz et al., 2013, 2014; Schatz, 2016), ABX182

tests ask whether a test item X is more similar (in183

embedding space) to a reference item A or to an al-184

ternative B. By controlling the design of A, B, and185

X , ABX evaluations can isolate specific factors186

of interest (such as phoneme identity in speech)187

while holding others constant (e.g., speaker, con-188

text) (Versteegh et al., 2015; Dunbar et al., 2017;189

Hallap et al., 2022; Sicherman and Adi, 2023, etc.).190

ABX tasks have proven robust to variability from191

other categorical structures, enabling reliable mea-192

surement of the target factor even when other lin-193

guistic or speaker-related properties vary (Schatz,194

2016).195

While ABX has primarily been applied to196

phoneme discrimination, recent work has begun197

adapting it to the other tasks, testing models’ ability198

to discriminate between languages (Carbajal et al.,199

2016; de Seyssel and Dupoux, 2020; de Seyssel,200

2023), speakers (Thorburn et al., 2019; de Seyssel201

et al., 2022) and to evaluate syntactic or semantic202

distinctions (Algayres et al., 2022, 2023).203

Our work builds on this foundation by adapt-204

ing ABX discrimination to text-based multilingual205

models. We propose a set of zero-shot tasks that206

independently measure sensitivity to language iden-207

tity and semantic content using minimal contrast208

triplets. To our knowledge, this is the first uni-209

fied, training-free framework that systematically210

isolates and evaluates these two core dimensions211

of multilingual representation.212

3 Our ABX Discrimination Framework213

Understanding how multilingual models structure214

linguistic information in their internal representa-215

tions is key to explaining their interactions between216

different languages, and to a further extent their217

generalization behaviors. To directly assess the218

intrinsic structure of multilingual representations219

without relying on the pitfalls of extrinsic evalua-220

tion, we adapt the ABX discrimination paradigm,221

originally developed for evaluating speech embed-222

dings, to the text domain.223

In the original ABX framework (Schatz et al.,224

2013, 2014; Schatz, 2016), illustrated in Figure 1,225

three items (A, B, X) are presented, with A and B 226

belonging to different categories, and X matching 227

the category of either A or B. A model is suc- 228

cessful when X is closer (according to a distance 229

metric in embedding space) to the item that shares 230

its category. That is, for each triplet, a correct de- 231

cision is recorded when d(X,A) < d(X,B), with 232

X and A sharing the same category. The score for 233

a given triplet is computed as : 234

score(A,B,X) = 1[ d(X,A) < d(X,B) ] 235

where 1 denotes the indicator function. The over- 236

all ABX score is the average success rate across all 237

triplets. Importantly, control variables can be intro- 238

duced to eliminate bias from confounding factors. 239

In that case, both A and B share the same control 240

variable to ensure that the discrimination is based 241

solely on the variable of interest. 242

The ABX score reflects the proportion of cor- 243

rect decisions, with higher scores indicating better 244

discrimination. We apply this setup to sentence 245

embeddings extracted from XLM-R at various lay- 246

ers and checkpoints, where each sentence is repre- 247

sented by the mean-pooled embedding of its sub- 248

word tokens. Cosine similarity is used as the dis- 249

tance metric2. 250

We propose two ABX variants for studying mul- 251

tilingual language models: language discrimina- 252

tion (LD) and meaning discrimination (MD). Both 253

tasks leverage paired multilingual data and are con- 254

structed to isolate either language identity or seman- 255

tic content while controlling for the other. These 256

tasks enable zero-shot, training-free evaluation of 257

key representational properties in multilingual mod- 258

els. 259

We present both tasks below; see Appendix B 260

for further illustrations and examples. 261

Language Discrimination In the LD task, the 262

objective is to assess whether the model can dis- 263

tinguish between embedding representations from 264

different languages while controlling for meaning. 265

In other words, the focus is on determining whether 266

the form of the language is encoded in the rep- 267

resentations sufficiently to discriminate between 268

2We choose cosine as it is the standard metric in many
embedding-based evaluations, particularly in multilingual sen-
tence retrieval and alignment tasks (e.g., Ravisankar et al.,
2025; Sundar et al., 2025; Mohammadshahi et al., 2019). Co-
sine is well-suited to measuring relative orientation in high-
dimensional spaces and is less sensitive to differences in em-
bedding magnitude, which makes it particularly effective for
comparing representations across languages and layers.
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Figure 1: Illustration of the ABX discrimination task.
A and X share the target variable, whereas B differs.
Control variables may be included, with A and B shar-
ing the same control variable.

languages. Triplets are constructed as follows: X269

comes from language L1 and carries meaning M1;270

A, the target, is also from language L1 but con-271

veys a different meaning M2; and B, the distractor,272

is from another language L2 but shares the same273

meaning M2 as A, hence controlling for meaning274

(see Appendix B for an illustration). The task is275

considered successful if the model leads to the dis-276

tance between A and X to be smaller than that277

between B and X .278

Meaning Discrimination In the MD task, we279

test whether the model captures differences in280

meaning while holding language constant. The281

goal is to evaluate whether semantic content is282

encoded in the representations independently of283

surface form. Triplets are constructed such that A284

and X share the same meaning M1 but come from285

different languages (L1 and L2), while B is in the286

same language as A (L2) but conveys a different287

meaning M2. The model is considered successful288

if it places X closer to A than to B, indicating that289

it encodes semantic similarity across languages,290

beyond surface-level language identity.291

While LD primarily probes the presence of292

language-specific information, MD offers a more293

direct lens on semantic similarity. High MD scores,294

especially across languages, suggest that the model295

encodes meaning in a way that is at least partially296

language-agnostic. As such, MD may serve as a297

proxy for cross-lingual semantic alignment within298

the representation space. In fact, we show in Sec-299

tion 4.1 that a standard cross-lingual retrieval task,300

commonly used to assess such alignment, corre-301

lates highly with our MD task, supporting the idea302

that MD captures cross-lingual alignment3. We do303

3The high correlation does not imply they are identical.
Our ABX MD task targets the same underlying ability under
more controlled conditions. Instead of ranking many candi-

not perform a similar analysis for LD, as no exist- 304

ing metric captures the specific abilities assessed 305

by our language ABX task. 306

4 Discrimination dynamics in a 307

multilingual models 308

4.1 General Experimental setup 309

Model To study pretraining dynamics in a multi- 310

lingual setting, we use the base version of XLM-R 311

(Conneau et al., 2020a) (L = 12, H = 768, A = 312

12, 270M parameters), a widely used multilingual 313

masked language model. Specifically, we rely on 314

the checkpoints released by Blevins et al. (2022), 315

who retrained XLM-R from scratch in order to ex- 316

amine the evolution of language representations 317

during pretraining4. All evaluations and analyses 318

in this work are based on the representations from 319

these checkpoints. 320

ABX Languages and Dataset We construct 321

ABX triplets and perform evaluations using the 322

WMT24++ dataset (Deutsch et al., 2025), a multi- 323

lingual corpus of 55 languages with sentence-level 324

alignments across all language pairs. From this 325

corpus, we select 36 languages spanning a broad 326

range of families, scripts, and typological features 327

(see Appendix A for the complete list). This selec- 328

tion yields 630 unordered language pairs. Triplets 329

are sampled randomly from aligned sentence pairs, 330

ensuring that each triplet satisfies the relevant ABX 331

condition (form or meaning), and that the sample 332

size is sufficient to ensure broad and unbiased cov- 333

erage. For each evaluation mode and language 334

pair, we generate approximately 100,000 triplets. 335

Unless stated otherwise, we report discrimination 336

scores averaged across all layers. In most analy- 337

ses, we present scores separately by checkpoint to 338

track how discrimination abilities evolve during 339

training. In addition to language-pair scores, we 340

compute a global LD or MD score for each lan- 341

guage, defined as the average across all pairings 342

with the other 35 languages. These global metrics 343

offer a higher-level view of how well a language 344

is discriminated or semantically aligned within the 345

multilingual space. 346

Validation of ABX Metrics To validate our met- 347

rics, we perform two control analyses. First, we 348

dates, MD ABX uses contrastive triplets that isolate semantic
differences while tightly controlling for language .

4Details of the pretraining scheme can be found in Blevins
et al. (2022)
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confirm that both ABX scores return values at or349

near chance (0.5) under a "baseline" setup, where350

the variable of interest (language for LD, meaning351

for MD) is held constant across all three elements352

of the triplet. This serves as a sanity check to rule353

out bias in the construction of the triplets or evalu-354

ation procedure. Second, we compare MD scores355

at the final checkpoint with performance on a stan-356

dard cross-lingual retrieval task. Following the357

setup of Sundar et al. (2025), we compute, for each358

language pair (L1, L2), the top-1 accuracy of re-359

trieving the most semantically similar sentence in360

language L2 given a sentence in language L1. The361

retrieval pool consists of L2 candidates from the362

WMT24 dataset (and vice versa). While retrieval363

tasks typically rely on mean-pooled representations364

from the final layer, our ABX evaluations average365

scores across all layers. Despite this difference, we366

find a strong correlation between the two metrics367

(Pearson r = 0.77)5. This supports the validity of368

ABX as a proxy for semantic alignment. Impor-369

tantly, ABX goes further by explicitly controlling370

for surface form (in the case of MD), enabling a371

more fine-grained assessment of the model’s se-372

mantic representations.373

4.2 Experiments374

We begin by analyzing how the model’s ability to375

discriminate between language identity (form) and376

semantic meaning (content) evolves during training.377

Figures 2, 3, and 4 present complementary views378

of these dynamics across checkpoints and layers.379

Checkpoint-level evolution. Figure 2 shows the380

evolution of average LD and MD scores across381

checkpoints, aggregated over all language pairs.382

First of all, we can see that all scores are consis-383

tently above the 0.5 baseline, meaning that the384

model, at all checkpoints, can discriminate be-385

tween languages and meanings (cross-lingually)386

to some extent. LD score declines rapidly dur-387

ing early training steps and gradually recovers in388

later stages, while MD score steadily improves.389

This suggests that as training progresses, the model390

increasingly prioritizes semantic abstraction over391

explicit language-specific cues.392

We also observe a negative correlation between393

the two measures when considering all language394

pairs across checkpoints (Spearman’s ρ = −0.74,395

5When both use last-layer embeddings, r = 0.73; when
comparing last-layer retrieval to all-layer ABX, Pearson drops
to r = 0.53, but remains significant (p < 0.001).

Figure 2: Language and meaning ABX discrimination
scores across checkpoints (averaged over layers and all
language pairs). Baseline score is 0.5.

p < 0.001; Pearson’s r = −0.68, p < 0.001), 396

computed over individual (language pair × check- 397

point) points. We also ensure that this correlation 398

is not merely driven by training dynamics by exam- 399

ining the final checkpoint (step 150,000) in isola- 400

tion. The relationship remains strong (Spearman’s 401

ρ = −0.83, p < 0.001; Pearson’s r = −0.72, 402

p < 0.001), confirming that language pairs which 403

are more separable by form tend to exhibit lower 404

meaning preservation, even in the fully trained 405

model. 406

Layer-level patterns. To better understand how 407

these abilities are distributed within the model, Fig- 408

ure 3 plots discrimination scores across layers for 409

the final checkpoint. LD is strongest in the lower 410

layers and gradually decreases with depth, reach- 411

ing a plateau in the upper layers before rising again 412

in the final layer. In contrast, MD starts lower but 413

quickly rises and remains high in the upper layers, 414

but decreases slightly in the last layer. This pattern 415

suggests that earlier layers focus more on identi- 416

fying the language of the input, while later layers 417

capture its meaning more effectively. 418

We also find a significant negative correlation be- 419

tween language and meaning discrimination across 420

layers (Spearman’s ρ = −0.66, p < 0.001; Pear- 421

son’s r = −0.53, p < 0.001). This indicates that, 422

as representations evolve through the network, in- 423

creases in meaning discrimination are generally 424

accompanied by decreases in language separability. 425

However, the correlation coefficients are weaker 426

than those observed across language pairs, suggest- 427

ing that this trade-off is not strictly enforced at the 428

layer level. Instead, the model exhibits a more flex- 429

ible allocation of representational capacity across 430

form and meaning over its depth. 431
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Figure 3: Language and meaning ABX discrimination
scores across layers (averaged over all language pairs)
for the last checkpoint (step 150 000)

Joint checkpoint and layer dynamics. Figure 4432

presents ABX discrimination scores as a function433

of both checkpoint and layer. LD (left panel) is434

initially high across most layers but gradually be-435

comes concentrated in the lower layers and the436

output layer as training advances. In contrast, MD437

(right panel) improves steadily across all layers,438

especially in the deeper ones.439

Taken together, these patterns suggest that the440

model initially relies heavily on language-specific441

features but gradually shifts toward encoding more442

abstract, language-invariant semantic structures.443

Importantly, the two forms of discrimination are444

not strictly opposed at the layer level. While a trade-445

off exists, its moderate strength suggests that the446

model can support both language sensitivity and447

semantic alignment to some degree simultaneously.448

We provide an additional analysis in Ap-449

pendix D, showing how both discrimination scores450

vary across individual languages and training451

checkpoints.452

4.3 Discussion453

These findings support the view that pretraining454

leads to a progressive decoupling of surface form455

and semantic content. Early in training, language456

identity is clearly encoded across the model. As457

training proceeds, this information becomes in-458

creasingly concentrated in the lower layers, while459

deeper layers develop language-invariant semantic460

representations. This aligns with prior work sug-461

gesting that lower layers encode form-related prop-462

erties, while higher layers abstract away toward463

more conceptual information (Pires et al., 2019;464

Tenney et al., 2019). Notably, at convergence, sev-465

eral middle layers appear to support both types of466

discrimination to a moderate degree, suggesting 467

a partial overlap between structural and semantic 468

signals rather than strict exclusivity. 469

5 Correlation of ABX discrimination 470

metrics with linguistic learning 471

We then examine whether the model’s discrimina- 472

tion patterns relate to linguistic task performance, 473

focusing on monolingual probing and cross-lingual 474

transfer. 475

5.1 Experimental Setup 476

Following Blevins et al. (2022), we evaluate both 477

monolingual probing and cross-lingual transfer to 478

test how our ABX discrimination metrics relate to 479

linguistic generalization. We use part-of-speech 480

tagging (POS), named entity recognition (NER), 481

and natural language inference (NLI) as represen- 482

tative tasks. POS and NLI were used in the origi- 483

nal analysis; we additionally include NER, which 484

offers a complementary view of lexical-level infor- 485

mation and the form–content divide. These tasks 486

span different linguistic levels, from surface form 487

to sentence-level semantics. 488

All probes are trained independently per lan- 489

guage with early stopping on validation loss. We 490

run 6 iterations per setup with different random 491

seeds and report average results. Unless otherwise 492

specified, all experiments use the final XLM-R 493

checkpoint (step 150,000). 494

Part-of-Speech Tagging (POS) We use Univer- 495

sal Dependencies (UD) (Nivre et al., 2020). Mono- 496

lingual performance is evaluated on all 36 lan- 497

guages from our ABX setup, using standard UD 498

splits. For cross-lingual transfer, we follow Blevins 499

et al. (2022) and use the Parallel UD (PUD) subset 500

at test time, covering 18 languages (Appendix A). 501

Named Entity Recognition (NER) We use 502

WikiAnn (Rahimi et al., 2019), providing NER 503

labels in 36 languages. Monolingual evaluation 504

mirrors the POS setup. NER was not included in 505

prior analyses and serves as a new probe of lexical- 506

level representations. For cross-lingual transfer, we 507

use the same 18-language subset used in POS. 508

Natural Language Inference (NLI) For NLI, 509

we use XNLI (Conneau et al., 2018), a multilin- 510

gual extension of standard NLI benchmarks. We 511

evaluate both monolingual and cross-lingual per- 512

formance on the 13 XNLI languages that overlap 513

with our 36-language set. 514
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Figure 4: Evolution of ABX discrimination scores across model checkpoints and layers. Dark regions indicate
higher discrimination scores. (Left: LD; right: MD)

5.2 Discrimination Scores and Monolingual515

Linguistic Probing516

Following prior work (Blevins et al., 2022), we517

find the best checkpoint for probe accuracy varies518

across tasks and languages (see Appendix E)6.519

To assess whether language (LD) or meaning dis-520

crimination (MD) predict probing performance, we521

regress POS, NER, and NLI accuracy against each522

language’s global LD and MD scores, using both523

the final checkpoint (Last) and the mean across524

checkpoints (Avg.). For each setting, we fit a mul-525

tiple linear regression of the form:526

Accuracy ∼ β0 + β1 · LD + β2 · MD + ϵ527

Table 1 summarizes the results7. For POS, lan-528

guage discrimination is a robust negative predictor529

of accuracy, while meaning discrimination shows530

no significant effect. This suggests that languages531

which are more easily distinguishable from others532

(i.e., with higher LD scores) tend to perform worse533

on syntactic probing tasks, consistent with the idea534

that strong language-specific encoding may hin-535

der generalization of structural information across536

languages (see Appendix F for visualization).537

In contrast, neither LD nor MD significantly pre-538

dicts performance on NER or XNLI. These tasks539

may depend less consistently on cross-lingual struc-540

tural overlap than POS, which could explain the541

absence of LD as a predictor. While one might ex-542

pect MD to be predictive, especially for NLI which543

6We exclude checkpoint 450,000 from all analyses due to
a training instability, probably due to gradient clipping, that
affects both probing and discrimination metrics (see Figure 2).

7We also ensure that these effects are not driven by training
data size. Language-wise probing accuracy shows no signifi-
cant correlation with pretraining data quantities (taken from
Conneau et al. (2020a)).

Setting Task Ckpt R2 LD Coef (p) MD Coef (p)

Prob. POS Avg. 0.395 −2.34 (p < .01) −0.26 (n.s.)
Prob. POS Last 0.37 −1.78 (p < .01) −0.36 (n.s.)
Prob. NER Avg. 0.085 −0.578 (n.s.) −0.074 (n.s.)
Prob. NER Last 0.087 −0.584 (n.s.) −0.147 (n.s.)
Prob. NLI Avg 0.275 −0.07 (n.s.) −0.12 (n.s.)
Prob. NLI Last 0.224 −0.08 (n.s.) −0.14 (n.s.)

CL POS Last 0.324 −1.66 (p < .001) −0.07 (n.s.)
CL NER Last 0.146 −0.51 (p < .001) +0.06 (n.s.)
CL NLI Last 0.3009 −0.1 (n.s.) −0.015 (n.s.)

Table 1: Summary of linear regression results predicting
POS and NER accuracy from language discrimination
(LD) and meaning discrimination (MD) scores. Each
row corresponds to a probing (Prob.) or cross-lingual
(CL) evaluation setting.

is explicitly semantic in nature, both tasks may rely 544

on aspects of meaning not well captured by our 545

ABX-based definition of semantic alignment 546

We also explore whether ABX scores can guide 547

language-specific checkpoint selection, under the 548

hypothesis that lower language discrimination 549

might signal better generalization. We find that 550

LD-based ABX selection improves performance 551

for POS (see Appendix G for details). 552

5.3 Discrimination Scores and Cross-Lingual 553

Transfer 554

We evaluate cross-lingual transfer on POS, NER, 555

and NLI at the final checkpoint. As originally 556

found by Blevins et al. (2022), transfer accuracy 557

varies widely across source–target pairs (see Ap- 558

pendix H for detailed heatmaps). To test whether 559

ABX discrimination explains this variation, we fit 560

linear regression models predicting transfer accu- 561

racy from LD and MD scores between language 562

pairs (see Table 1). We find that LD is a significant 563

negative predictor for both POS and NER. Neither 564

LD nor MD is predictive of NLI performance. This 565
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supports the view that strong language-specific en-566

coding can hinder generalization across languages567

(see Appendix I for visualization). We also test568

whether ABX language discrimination can guide569

source language selection for transfer. While it570

does not consistently identify the single best source,571

it often selects competitive candidates and outper-572

forms random baselines (see Appendix J).573

5.4 Discussion574

A key finding is that language discrimination neg-575

atively correlates with POS performance in both576

monolingual and cross-lingual settings. For NER,577

LD is predictive only in the cross-lingual setting,578

suggesting that language-specific encoding affects579

transfer between languages but has less impact on580

within-language structure. Importantly, ABX dis-581

crimination scores’ interpretation differs slightly582

between settings. In monolingual probing, LD/MD583

scores are averaged across all language pairs per584

language, while cross-lingual transfer uses pair-585

specific scores for each source–target combination.586

This finer granularity may help capture transfer-587

specific effects, explaining why LD predicts cross-588

lingual NER but not monolingual performance: in-589

terference may depend more on the relationship590

between particular languages than on a language’s591

overall discriminability. Overall, these results sug-592

gest that when a language is highly discriminable593

from others, its representations may become more594

isolated, reducing structural sharing and hindering595

transfer. In the case of POS, this is especially appar-596

ent in monolingual probing, where high LD may597

reflect a failure to encode shared syntactic patterns.598

By contrast, MD does not significantly predict599

downstream accuracy in any task. While one might600

expect MD to relate to semantically oriented tasks601

like NLI, success there may depend on higher-level602

reasoning unaccounted for by our contrastive ABX603

metric. Prior work has also highlighted problem-604

atic annotation artifacts, not to mention hypothesis-605

only biases in the original SNLI dataset from which606

XNLI was developed, that limit its use for measur-607

ing semantic generalization (Poliak et al., 2018;608

Gururangan et al., 2018).609

6 Conclusion and Future Work610

This work introduces ABX-style discrimination611

metrics for testing how multilingual encoder mod-612

els discriminate language identity (form) and se-613

mantic content (meaning). Adapting ABX to614

text-based multilingual models, we provide a 615

lightweight, interpretable tool for analysing rep- 616

resentational structure. 617

Applied to XLM-R (Conneau et al., 2020a), 618

our analysis reveals consistent trends across train- 619

ing and depth: language discrimination decreases 620

and concentrates in lower layers, while meaning 621

discrimination increases and stabilizes in deeper 622

ones. This suggests a shift from form-sensitive 623

to meaning-oriented representations during train- 624

ing, without implying a strict trade-off. We also 625

examine how these metrics relate to downstream 626

performance. Higher language discrimination cor- 627

relates with lower accuracy on form-sensitive tasks 628

such as POS and NER, while meaning discrimina- 629

tion shows no consistent link, pointing to a possi- 630

ble disconnect between representational alignment 631

and task requirements. These findings position 632

ABX discrimination as a useful metric for analyz- 633

ing how multilingual models separate linguistic 634

form from content. They offer a new lens on the 635

evolving structure of multilingual representation 636

spaces and the balance between language-specific 637

and language-invariant information. These metrics 638

could also support practical use cases, such as adap- 639

tive checkpoint selection or lightweight diagnostics 640

in multilingual pipelines. 641

Future work can build on this in several direc- 642

tions. First, discrimination patterns could be related 643

to typological linguistic features, and it is worth 644

investigating how this typological differences can 645

influences form and content discrimination scores, 646

as previous work has found positive transfer when 647

pairing typologically similar languages (Wu and 648

Dredze, 2020). Second, while we evaluated tasks 649

spanning syntax and semantics (POS, NER, NLI), 650

deeper semantic tasks could better test the role of 651

meaning discrimination. Third, because ABX met- 652

rics are architecture-agnostic, they can be applied 653

to decoder-only LLMs, enabling cross-architecture 654

comparisons. Finally, while ABX does not directly 655

measure representational separation, high discrim- 656

ination may suggest that a language occupies a 657

distinct subspace. This raises a broader question: 658

how much language sensitivity (i.e., the ability to 659

discriminate languages) can a model have with- 660

out harming cross-lingual transfer, and how can 661

models balance this trade-off between promoting 662

representational sharing and avoiding interference? 663
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Limitations664

While our approach provides a detailed analysis665

of discrimination in multilingual models, it comes666

with a number of limitations that constrain its gen-667

erality and suggest directions for future research.668

Encoder architecture Our analysis focuses ex-669

clusively on encoder-only architectures, specifi-670

cally XLM-R. This choice is motivated by the fact671

that encoder models based on masked language672

modeling provide stable, structured, layer-wise rep-673

resentations, which are well suited to probing and674

contrastive analysis. While this makes them a natu-675

ral starting point for validating our ABX discrim-676

ination framework, it remains an open question677

whether similar dynamics hold for decoder-only or678

encoder–decoder models, which are trained using679

autoregressive or sequence-level objectives. Ex-680

tending our framework to such architectures is an681

important direction for future work.682

Discrimination vs Separation Although we dis-683

tinguish clearly between language and meaning684

discrimination, we do not explicitly quantify sep-685

aration in the representation space (e.g., via clus-686

tering structure, inter-class variance). Our results687

suggest that discrimination scores may indirectly688

reflect separation, but further work is needed to689

validate this link and to determine whether a model690

can be discriminative without being structurally691

partitioned.692

Task coverage Our evaluation focuses on POS693

tagging, NER, and NLI, which primarily target syn-694

tactic and sentence-level semantic understanding.695

While these tasks are widely used and informative,696

they may not capture deeper semantic, pragmatic,697

or discourse-level capabilities. As a result, the role698

of meaning discrimination in supporting more ab-699

stract or context-sensitive generalization remains700

an open question.701

Cross-linguistic generality vs. language-specific702

phenomena Finally, our analysis examines lan-703

guage and meaning discrimination broadly across704

multiple languages, but does not investigate the705

intricacies of specific languages or language fam-706

ilies. Languages exhibit unique structural prop-707

erties, morphological complexity, and semantic708

nuances that may be represented differently in709

multilingual models. Future work should explore710

language-specific discrimination patterns, partic-711

ularly for typologically diverse languages, to bet-712

ter understand how models encode both universal 713

and language-specific linguistic properties. This 714

would provide insights into representational trade- 715

offs that occur when accommodating multiple lan- 716

guages within a shared parameter space. 717
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A Languages Used in Evaluations985

Table 2 lists all languages selected for our different986

evaluations, including ABX discrimination tasks987

and probing tasks. The selection covers a wide988

range of language families, scripts, and typological989

characteristics.990

Code Language ABX POS NER NLI

mono. CL mono. CL mono. CL

ar Arabic ✓ ✓ ✓ ✓ ✓ ✓ ✓
bg Bulgarian ✓ ✓ ✓ ✓ ✓ ✓
ca Catalan ✓ ✓ ✓
cs Czech ✓ ✓ ✓ ✓ ✓
da Danish ✓ ✓ ✓
de German ✓ ✓ ✓ ✓ ✓ ✓ ✓
el Greek ✓ ✓ ✓ ✓ ✓ ✓
en English ✓ ✓ ✓ ✓ ✓ ✓ ✓
es Spanish ✓ ✓ ✓ ✓ ✓ ✓ ✓
et Estonian ✓ ✓ ✓
fa Persian ✓ ✓ ✓
fi Finnish ✓ ✓ ✓ ✓ ✓
fr French ✓ ✓ ✓ ✓ ✓ ✓ ✓
he Hebrew ✓ ✓ ✓
hi Hindi ✓ ✓ ✓ ✓ ✓ ✓ ✓
hr Croatian ✓ ✓ ✓
hu Hungarian ✓ ✓ ✓
is Icelandic ✓ ✓ ✓ ✓ ✓
it Italian ✓ ✓ ✓ ✓ ✓
ja Japanese ✓ ✓ ✓ ✓ ✓
ko Korean ✓ ✓ ✓ ✓ ✓
lv Latvian ✓ ✓ ✓
nl Dutch ✓ ✓ ✓
pl Polish ✓ ✓ ✓ ✓ ✓
pt Portuguese ✓ ✓ ✓ ✓ ✓
ro Romanian ✓ ✓ ✓
ru Russian ✓ ✓ ✓ ✓ ✓ ✓ ✓
sk Slovak ✓ ✓ ✓
sl Slovenian ✓ ✓ ✓
sr Serbian ✓ ✓ ✓
sv Swedish ✓ ✓ ✓ ✓ ✓
tr Turkish ✓ ✓ ✓ ✓ ✓ ✓ ✓
uk Ukrainian ✓ ✓ ✓
ur Urdu ✓ ✓ ✓ ✓ ✓ ✓
vi Vietnamese ✓ ✓ ✓ ✓ ✓
zh Chinese ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Languages and related ISO codes used in
discrimination evaluations (ABX), and probing tasks
(mono for monolingual probing and CL for cross-
lingual). A checkmark indicates the language is used in
that task/subset.

B Illustration of Language and Meaning991

ABX Setups992

Figure 5 illustrates our adaptation of the ABX993

discrimination paradigm for evaluating multilin-994

gual text representations. The figure depicts our995

two complementary evaluation setups: Language996

Discrimination (LD) and Meaning Discrimination997

(MD).998

In both setups, we follow a consistent structure999

where A and X share the variable of interest (the1000

property we want the model to discriminate), while1001

B and X share a control variable (the property 1002

we want to control for). Success is measured by 1003

whether the model places X closer to A than to B 1004

in the embedding space. 1005

For the Language Discrimination task (left 1006

panel), the variable of interest is language iden- 1007

tity, while meaning serves as the control variable. 1008

Specifically, A and X share the same language 1009

(L1) but express different meanings, while A and 1010

B share the same meaning but are expressed in 1011

different languages. When d(X,A) < d(X,B), 1012

the model successfully discriminates based on lan- 1013

guage identity despite semantic differences. 1014

An example is given below: 1015

• X: “The weather is nice today.” (English (L1), 1016

meaning M1) 1017

• A: “I need to buy groceries.” (English (L1), 1018

meaning M2) 1019

• B: “Je dois acheter des provisions.” (French 1020

(L2), meaning M2: “I need to buy groceries”) 1021

For the Meaning Discrimination task (right 1022

panel), the variable of interest is semantic content, 1023

while language identity serves as the control vari- 1024

able. Here, A and X share the same meaning (M1) 1025

but are expressed in different languages, while A 1026

and B share the same language (L2) but express 1027

different meanings. When d(X,A) < d(X,B), 1028

the model successfully discriminates based on se- 1029

mantic similarity across languages despite surface 1030

form differences. 1031

Here is an example for the MD task: 1032

• X: “The weather is nice today.” (English (L1), 1033

meaning M1) 1034

• A: “La météo est bonne aujourd’hui” (French 1035

(L2), meaning M1: “The weather is nice to- 1036

day”) 1037

• B: “Je dois acheter des provisions.” (French 1038

(L2), meaning M2: “I need to buy groceries”) 1039

This systematic approach allows us to isolate 1040

specific properties in multilingual representations 1041

by controlling for potential confounding factors. 1042

The ABX score for each task reflects the propor- 1043

tion of triplets where the model correctly places 1044

items sharing the variable of interest closer together 1045

than those sharing only the control variable, provid- 1046

ing a direct measure of how the model structures 1047

linguistic information along these dimensions. 1048
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(a) Language Discrimination

A
B
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language L1

meaning M1
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(b) Meaning Discrimination

Figure 5: Illustration of the Language Discrimination (left) and Meaning Discrimination (right) ABX tasks.

C Correlation Analysis Between1049

Language and Meaning Discrimination1050

in XLM-R1051

This appendix provides additional analysis on the1052

relationship between language discrimination (LD)1053

and meaning discrimination (MD) in our model.1054

We observe a strong overall negative correlation1055

between LD and MD across all language pairs and1056

checkpoints (Spearman’s ρ = −0.74, p < 0.001;1057

Pearson’s r = −0.68, p < 0.001), computed at the1058

(language pair × checkpoint) level. This suggests1059

that, throughout training, language pairs that are1060

more separable in form tend to be less effective in1061

preserving semantic structure.1062

To verify that this effect is not simply an artifact1063

of training progression, we examine the relation-1064

ship at the final checkpoint (step 150,000) alone.1065

The inverse correlation persists with even greater1066

magnitude (Spearman’s ρ = −0.83, p < 0.001;1067

Pearson’s r = −0.72, p < 0.001), confirming that1068

the tradeoff between language and meaning dis-1069

crimination remains pronounced even in the fully1070

trained model. Figure 6 visualizes this relationship:1071

the scatterplot reveals a clear monotonic trend, with1072

almost no high–high co-occurrence (i.e., no lan-1073

guage pairs simultaneously scoring high on both1074

MD and LD), which supports the interpretation of1075

a representational tradeoff.1076

We further analyze the dynamics of this rela-1077

tionship across training by computing correlation1078

coefficients at each checkpoint (Figure 7). Spear-1079

Figure 6: Scatterplot showing the relationship between
language discrimination (x-axis) and meaning discrim-
ination (y-axis) scores for all language pairs at check-
point 150,000 (last). Each point represents a language
pair.

man’s correlation remains consistently strong and 1080

statistically significant across all training stages, 1081

suggesting a stable monotonic inverse relationship. 1082

Pearson’s correlation, while also consistently nega- 1083

tive, varies in magnitude but remains significant as 1084

training progresses, indicating that the relationship 1085

is not only ordinal but approximately linear in later 1086

stages. 1087
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Figure 7: Evolution of Spearman (top) and Pearson
(bottom) correlation coefficients between language and
meaning discrimination scores across training check-
points. Statistically significant correlations (p < 0.05)
are highlighted.

D Discrimination scores across languages1088

and checkpoints1089

To examine how discrimination evolves at the in-1090

dividual language level, we present heatmaps of1091

language and meaning discrimination scores across1092

checkpoints (Figure 8). Scores are normalised per1093

language to highlight relative changes over time.1094

For language discrimination (left), we observe a1095

sharp decline during early training steps for most1096

languages, followed by a partial recovery. However,1097

the timing and extent of this rebound varies across1098

languages, suggesting that some retain language-1099

specific features more robustly. In contrast, mean-1100

ing discrimination (right) increases steadily for all1101

languages, but again at different rates, with cer-1102

tain languages benefiting earlier from semantically1103

structured representations. These differences may1104

reflect both linguistic factors and data resource dis-1105

parities. Additional views of final-layer behaviour1106

are included in Figure 9.1107

E Checkpoint-wise Probe Accuracy1108

Figure 10 shows per-language probe accuracy1109

across checkpoints for POS, NER and NLI high-1110

lighting the variability in when each language1111

reaches its peak performance. 1112

F Additional Probing Analyses 1113

Figure 11 shows the negative relationship between 1114

ABX language discrimination and POS accuracy 1115

across languages. Higher language discrimina- 1116

tion scores are associated with lower probing per- 1117

formance, consistent with the idea that strong 1118

language-specific encoding may limit generaliza- 1119

tion. 1120

G ABX-Guided Checkpoint Selection 1121

Given that language discrimination is a strong 1122

global predictor of probing accuracy for POS, 1123

we ask whether ABX scores can serve as 1124

lightweight, unsupervised heuristics for language- 1125

specific checkpoint selection. Specifically, we 1126

evaluate whether selecting, for each language, the 1127

checkpoint with minimal LD brings the model 1128

closer to its optimal performance, compared to us- 1129

ing the final checkpoint uniformly. 1130

We compare probing accuracy at the ABX- 1131

selected checkpoint to that at the final training step, 1132

measuring their respective distances from each lan- 1133

guage’s best-performing checkpoint. 1134

ABX-guided selection yields a closer match to 1135

the best checkpoint in 29 out of 36 languages, 1136

with a mean improvement of 0.034 ± 0.048, and a 1137

Wilcoxon signed-rank test confirming significance 1138

over choosing the final checkpoint (p < 0.001). 1139

This suggests that LD dynamics during training 1140

can inform language-specific model selection, par- 1141

ticularly when the final checkpoint is suboptimal. 1142

These patterns are visualised in Figure 13, which 1143

presents per-language deltas. For each language, 1144

we compute: 1145

∆ = Final − ABX 1146

where positive values indicate that ABX selection 1147

yields a checkpoint closer to the best-performing 1148

one. Bars are sorted by the absolute delta, high- 1149

lighting languages with the largest impact. 1150

H Cross-Lingual Transfer Accuracy 1151

Matrices 1152

Figure 14 shows the full cross-lingual probing re- 1153

sults for POS, NER, and XNLI at the final check- 1154

point. Each heatmap shows transfer accuracy from 1155

a source language (row) to a target language (col- 1156

umn). The highest-performing source language for 1157

each target is highlighted in yellow. 1158
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Figure 8: Heatmaps showing the evolution of language discrimination (left) and meaning discrimination (right)
(averaged across layers) across checkpoints. Scores are normalized per language to highlight the differences across
checkpoints (top row). We also provide the non-normalized scores (bottom row). Each heatmap’s row represents a
language, and each column a checkpoint step. Bright regions indicate high relative discrimination at that training
stage for the given language.

I Visualization of Language1159

Discrimination Effects on1160

Cross-Lingual Performance1161

Figure 15 illustrates the relationship between lan-1162

guage discrimination scores and cross-lingual trans-1163

fer accuracy for all source-target language pairs in1164

our experiments. For both POS tagging and NER1165

tasks, we observe a strong negative correlation:1166

language pairs with higher discrimination scores1167

(indicating more distinct linguistic forms) consis-1168

tently show lower transfer performance. This vi-1169

sualization reinforces our regression findings that1170

language discrimination acts as a significant nega-1171

tive predictor of cross-lingual transfer success.1172

The scatter plots reveal that when models encode1173

languages in ways that make their forms highly1174

distinguishable from each other, their ability to1175

transfer knowledge between those languages for1176

form-focused task as POS and NER diminishes.1177

Conversely, when language forms are less dis-1178

criminable (more shared or mixed representations),1179

cross-lingual transfer improves.1180

J ABX-Guided Source Language 1181

Selection 1182

Inspired by our earlier use of ABX scores to guide 1183

checkpoint selection (Section G), we investigate 1184

whether ABX language discrimination can also 1185

inform source language selection in cross-lingual 1186

transfer. Specifically, for each target language, we 1187

test whether the source language with the lowest 1188

ABX language discrimination score yields the high- 1189

est transfer performance. 1190

Exact Match and Top-k Accuracy We first com- 1191

pare, for each target language, the true best source 1192

(i.e., the one yielding the highest transfer accuracy) 1193

with the ABX-selected source (i.e., the one with 1194

minimal ABX LD). Exact matches occur in 2/18 1195

(POS) and 7/18 (NER) cases. When considering 1196

the top-3 sources, ABX guidance succeeds in 6/18 1197

(POS) and 12/18 (NER) cases, suggesting it often 1198

identifies competitive transfer candidates. 1199

Comparison to Random Selection Next, we 1200

evaluate how ABX-guided selection compares to 1201
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Figure 9: Heatmaps showing the evolution of language discrimination (left) and meaning discrimination (right) on
the last layer, across checkpoints. Scores are normalized per language to highlight the differences across checkpoints
(top row). We also provide the non-normalized scores (bottom row). Each heatmap’s row represents a language, and
each column a checkpoint step. Bright regions indicate high relative discrimination at that training stage for the
given language.

a naive random baseline. For each target, we com-1202

pare the transfer accuracy of the ABX-selected1203

source to that of 100 randomly sampled sources,1204

and compute the proportion of wins. The ABX-1205

guided source outperforms a random one in 73.0%1206

± 27.5% of trials for POS, and 84.8% ± 23.4% for1207

NER.1208

Figure 16 shows the full distribution of these per-1209

target win rates. Most values exceed 70–80%, and1210

very few fall below the 50% chance level, indicat-1211

ing that ABX LD offers a consistent and effective1212

heuristic for source selection.1213

Conclusion While ABX-guided source selection1214

does not always identify the single best trans-1215

fer source, it reliably outperforms random base-1216

lines. Compared to typological or lexical similarity1217

heuristics (which are often noisy or task-specific)1218

ABX LD offers a simple, data-driven alternative1219

for identifying effective source languages in cross-1220

lingual transfer.1221
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Figure 10: Checkpoint-wise probe accuracy across languages for POS (top left), NER (right), and NLI (bottom left)
normalized per language. Each row corresponds to a language, and red boxes mark the checkpoint at which that
language reaches peak accuracy for the probing task. Lighter regions mean higher accuracy scores.

Figure 11: Relationship between ABX-based Language
Discrimination scores and downstream probing POS
accuracy, averaged across checkpoints. Each point rep-
resents a single evaluation language. The x-axis shows
how well the model distinguishes that language from
others (higher = more discriminable), while the y-axis
shows its average performance on the downstream task.
Red lines indicate linear regression fits with shaded 95%
confidence intervals.
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Figure 12: POS

Figure 13: Difference in performance gap to the best checkpoint for each language, comparing ABX-selected
(lowest LD ABX) vs. final checkpoints for the POS task. Bars show the difference in delta (Final - ABX); positive
values indicate that the ABX-selected checkpoint is closer to the best-performing one (i.e., smaller gap to optimal
accuracy).

18



Figure 14: Cross-lingual probing accuracy at the final checkpoint for POS (top left), NER (top right), and XNLI
(bottom). Each cell shows accuracy of a probe trained on the source language (row) and evaluated on the target
(column). Best source for each target is highlighted in yellow.

Figure 15: Relationship between language discrimination scores and cross-lingual transfer accuracy for POS
tagging (left) and NER (right) across all source-target language pairs. Each point represents a language pair, with
the x-axis showing the language discrimination score and the y-axis showing transfer accuracy. The downward
trend demonstrates that higher language discrimination (more distinct language forms) is associated with lower
cross-lingual transfer performance for POS and NER.
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Figure 16: Distribution of ABX win rates across target languages for POS (blue) and NER (orange). Dashed lines
indicate average win rate per task. A value above 0.5 reflects better-than-random performance.
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