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ABSTRACT

Many applications of reinforcement learning (RL) optimize a long-term reward
subject to risk, safety, budget, diversity or other constraints. Though constrained
RL problem has been studied to incorporate various constraints, existing methods
either tie to specific families of RL algorithms or require storing infinitely many
individual policies found by an RL oracle to approach a feasible solution. In this
paper, we present a novel reduction approach for constrained RL problem that
ensures convergence when using any off-the-shelf RL algorithm to construct an
RL oracle yet requires storing at most constantly many policies. The key idea is
to reduce the constrained RL problem to a distance minimization problem, and a
novel variant of Frank-Wolfe algorithm is proposed for this task. Throughout the
learning process, our method maintains at most constantly many individual poli-
cies, where the constant is shown to be worst-case optimal to ensure convergence
of any RL oracle. Our method comes with rigorous convergence and complex-
ity analysis, and does not introduce any extra hyper-parameter. Experiments on a
grid-world navigation task demonstrate the efficiency of our method.

1 INTRODUCTION

Contemporary approaches in reinforcement learning (RL) largely focus on optimizing the behavior
of an agent against a single reward function. RL algorithms like value function methods (Zou
et al., 2019; Zheng et al., 2018) or policy optimization methods (Chen et al., 2019; Zhao et al.,
2017) are widely used in real-world tasks. This can be sufficient for simple tasks. However, for
complicated applications, designing a reward function that implicitly defines the desired behavior
can be challenging. For instance, applications concerning risk (Geibel & Wysotzki, 2005; Chow &
Ghavamzadeh, 2014; Chow et al., 2017), safety (Chow et al., 2018) or budget (Boutilier & Lu, 2016;
Xiao et al., 2019) are naturally modelled by augmenting the RL problem with orthant constraints.
Exploration suggestions, such as to visit all states as evenly as possible, can be modelled by using a
vector to measure the behavior of the agent, and to find a policy whose measurement vector lies in a
convex set (Miryoosefi et al., 2019).

To solve RL problem under constraints, existing methods either ensure convergence only on a spe-
cific family of RL algorithms, or treat the underlying RL algorithms as a black box oracle to find in-
dividual policy, and look for mixed policy that randomizes among these individual policies. Though
the second group of methods has the advantage of working with arbitrary RL algorithms that best
suit the underlying problem, existing methods have practically infeasible memory requirement. To
get an ε-approximate solution, they require storing O(1/ε) individual policies, and an exact solu-
tion requires storing infinitely many policies. This limits the prevalence of such methods, especially
when the individual policy uses deep neural networks.

In this paper, we propose a novel reduction approach for the general convex constrained RL (C2RL)
problem. Our approach has the advantage of the second group of methods, yet requires storing at
most constantly many policies. For a vector-valued Markov Decision Process (MDP) and any given
target convex set, our method finds a mixed policy whose measurement vector lies in the target
convex set, using any off-the-shelf RL algorithm that optimizes a scalar reward as a RL oracle. To
do so, the C2RL problem is reduced to a distance minimization problem between a polytope and
a convex set, and a novel variant of Frank-Wolfe type algorithm is proposed to solve this distance
minimization problem. To find an ε-approximate solution in an m-dimensional vector-valued MDP,
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Table 1: Comparison with previous approaches. To find an ε-approximate solution, time complexity
under orthant or convex constraints is compared using the numbers of RL oracle calls. The memory
requirement is measured by the number of individual policies stored for an ε-approximate solution.

Method Orthant
constraint

Convex
constraint

Converge
for any

RL algo.

No extra
hyper-

parameter

Memory
requirement

Tessler et al. (2018) To a fixed point 7 7 7 1
Le et al. (2019) O(1/ε) 7 3 7 O(1/ε)
Miryoosefi et al. (2019) O(1/ε) O(1/ε) 3 7 O(1/ε)
C2RL (this paper) O(1/ε) O(1/ε) 3 3 ≤ m+ 1

our method only stores at most m + 1 policies, which improves from infinitely many O(1/ε) (Le
et al., 2019; Miryoosefi et al., 2019) to a constant. We also show this m + 1 constant is worst-
case optimal to ensure convergence of RL algorithms using deterministic policies. Moreover, our
method introduces no extra hyper-parameter, which is favorable for practical usage. A preliminary
experimental comparison demonstrates the performance of the proposed method and the sparsity of
the policy found.

2 RELATED WORK

For high dimensional constrained RL, one line of approaches incorporates the constraint as a penalty
signal into the reward function, and makes updates in a multiple time-scale scheme (Tessler et al.,
2018; Chow & Ghavamzadeh, 2014). When used with policy gradient or actor-critic algorithms
(Sutton & Barto, 2018), this penalty signal guides the policy to converge to a constraint satisfying
one (Paternain et al., 2019; Chow et al., 2017). However, the convergence guarantee requires the RL
algorithm can find a single policy that satisfies the constraint, hence ruling out methods that search
for deterministic policies, such as Deep Q-Networks (DQN) (Mnih et al., 2013), Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015) and their variants (Van Hasselt et al., 2015; Wang
et al., 2016; Fujimoto et al., 2018; Barth-Maron et al., 2018).

Another line of approaches uses a game-theoretic framework, and does not tie to specific families
of RL algorithm. The constrained problem is relaxed to a zero-sum game, whose equilibrium is
solved by online learning (Agarwal et al., 2018). The game is played repeatedly, each time any
RL algorithm can be used to find a best response policy to play against a no-regret online learner.
The mixed policy that uniformly distributed among all played policies can be shown to converge to
an optimal policy of the constrained problem (Freund & Schapire, 1999; Abernethy et al., 2011).
Taking this approach, Le et al. (2019) uses Lagrangian relaxation to solve the orthant constraint case,
and Miryoosefi et al. (2019) uses conic duality to solve the convex constraint case. However, since
the convergence is established by the no-regret property, the policy found by these methods requires
randomization among policies found during the learning process, which limits their prevalence.

Different from the game-theoretic approaches, we reduce the C2RL to a distance minimization prob-
lem and propose a novel variant of Frank-Wolfe (FW) algorithm to solve it. Our result builds on
recent finding that the standard FW algorithm emerges as computing the equilibrium of a special
convex-convave zero sum game (Abernethy & Wang, 2017). This connects our approach with pre-
vious approaches from game-theoretic framework (Agarwal et al., 2018; Le et al., 2019; Miryoosefi
et al., 2019). The main advantage of our reduction approach is that the convergence of FW algorithm
does not rely on the no-regret property of an online learner. Hence there is no need to introduce extra
hyper-parameters, such as learning rate of the online learner, and intuitively, we can eliminate un-
necessary policies to achieve better sparsity. To do so, we extend Wolfe’s method for minimum norm
point problem (Wolfe, 1976) to solve our distance minimization problem. Throughout the learning
process, we maintain an active policy set, and constantly eliminate policies whose measurement
vector are affinely dependent of others. Unlike norm function in Wolfe’s method, our objective
function is not strongly convex. Hence we cannot achieve the linear convergence of Wolfe’s method
as shown in Lacoste-Julien & Jaggi (2015). Instead, we analyze the complexity of our method based
on techniques from Chakrabarty et al. (2014). A theoretical comparison between our method and
various approaches in constrained RL is provided in Table 1.
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3 PRELIMINARIES

A vector-valued Markov decision process can be identified by a tuple {S,A, β, P, c}, where S is a
set of states,A is the set of actions and β is the initial state distribution. At the start of each episode,
an initial state s0 is drawn following the distribution β. Then, at each step t = 0, 1, . . . , the agent
observes a state st ∈ S and makes a decision to take an action at. After at is chosen, at the next
observation the state evolves to state st+1 ∈ S with probability P (st+1|st, at). However, instead
of a scalar reward, in our setting, the agent receives an m-dimensional vector ct ∈ Rm that may
implicitly contain measurements of reward, risk or violation of other constraints. The episode ends
after a certain number of steps, called the horizon, or when a terminate state is reached.

Actions are typically selected according to a policy π, where π(s) is a distribution over actions for
any s ∈ S . Policies that take a single action for any state are deterministic policies, and can be
identified by the mapping π : S 7→ A. The set of all deterministic policies is denoted by Π. For
a discount factor γ ∈ [0, 1), the discounted long-term measurement vector of a policy π ∈ Π is
defined as

c(π) := E(

T∑
t=0

γtct(st, π(st))), (1)

where the expectation is over trajectories generated by the described random process.

Unlike unconstrained setting, for a constrained RL problem, it is possible that all feasible policies
are non-deterministic (see Appendix D for an example). This limits the usage of RL algorithms that
search for deterministic policies in the setting of constrained RL problem.

One workaround is to use mixed policies. For a set of policies U , a mixed policy is a distribution
over U , and the set of all mixed policies over U is denoted by ∆(U). To execute a mixed policy
µ ∈ ∆(U), we first select a policy π ∈ U according to π ∼ µ(π), and then execute π for the
entire episode. Altman (1999) shows that any c(·) achievable can be achieved by some mixed
deterministic policies µ ∈ ∆(Π). Therefore, though an off-shelves RL algorithm may not converge
to any constraint-satisfying policy, it can be used as a subroutine to find individual policies (possibly
deterministic), and a randomization among these policies can converge to a feasible policy. The
discounted long-term measurement vector of a mixed policy µ ∈ ∆(Π) is defined similarly

c(µ) := Eπ∼µ(c(π)) =
∑
π∈Π

µ(π)c(π). (2)

For a mixed policy µ ∈ ∆(U), its active set is defined to be the set of policies with non-zero weights
A := {π ∈ U|µ(π) > 0}. The memory requirement of storing µ, is then proportional to the size of
its active set. Since a mixed policy can be interpreted as a convex combination of policies in its active
set, in the following, the term sparsity of a mixed policy refers to the sparsity of this combination.

Our learning problem, the convex constrained reinforcement learning (C2RL), is to find a policy
whose expected long-term measurement vector lies in a given convex set; i.e., for a given convex
target set C ⊂ Rm, our target is to

find µ∗ such that c(µ∗) ∈ Ω (C2RL). (3)
Any policy µ∗ that satisfies c(µ∗) ∈ Ω is called a feasible policy, and a C2RL problem is feasible if
there exists some feasible policies. In the following, we assume the C2RL problem is feasible.

4 APPROACH, ALGORITHM AND ANALYSIS

We now show how the C2RL (3) can be reduced to a distance minimization problem (7) between a
polytope and a convex set. A novel variant of Frank-Wolfe-type algorithm is then proposed to solve
the distance minimization problem, followed by theoretic analysis about convergence and sparsity
of the proposed method.

4.1 REDUCE C2RL TO A DISTANCE MINIMIZATION PROBLEM

Let ||·|| denote the Euclidean norm. For a convex set Ω ∈ Rm, let ProjΩ(x) ∈ arg miny∈Ω ||x−y||
be the projection operator, and dist2(x,Ω) := 1

2 ||x−ProjΩ(x)||2 be half of the squared Euclidean
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distance function. Then we consider the problem to find a policy whose measurement vector is
closest to the target convex set,

arg min
µ∈∆(Π)

dist2(c(µ),Ω). (4)

A policy µ∗ ∈ ∆(Π) is defined to be an optimal solution if it minimizes (4). Otherwise, the approx-
imation error of µ ∈ ∆(Π) is defined as

err(µ) := dist2(c(µ),Ω)− dist2(c(µ∗),Ω) (Approximation Error) (5)

where µ∗ is an optimal solution, and a policy is defined to be an ε-approximate solution if its ap-
proximation error is no larger than ε.

When C2RL (3) is feasible, the equivalence of being optimal to (4) and being feasible to C2RL
can be easily established. Since a feasible policy of C2RL problem lies inside Ω, it minimizes the
non-negative dist2 function, and hence is optimal to (4). Vice versa, any optimal solution to (4)
lies inside Ω and is a feasible solution to C2RL.

From a geometric perspective, let c(Π) := {c(π)|π ∈ Π} be the set of all values achievable by
deterministic policies. If the MDP has finite states and actions (though may be extremely large),
then Π is finite as well, and hence c(Π) contains finitely many points in Rm. Then the set of values
achievable by mixed deterministic policies

c(∆(Π)) := {c(µ)|µ ∈ ∆(Π)} = {
∑
π

µ(π)c(π) |
∑
π

µ(π) = 1, µ(π) ≥ 0} ⊂ Rm (6)

is the convex hull of c(Π); i.e., c(∆(Π)) is a m-dimension polytope whose vertices are c(Π).
Therefore finding a policy whose value is closest to the target convex set (4) is equivalent to find a
point in the polytope c(∆(Π)) that is closest to the convex set Ω

arg min
c(µ)∈c(∆(Π))

dist2(c(µ),Ω) (Distance minimization problem). (7)

To solve this constrained optimization problem, it might be tempting to consider projection methods.
However, constructing a projection operator for c(∆(Π)) is non-trivial. For any given measurement
vector, it is obscure how to modify a general RL algorithm to update the parameters such that the
discounted expected measurement vector is closest to the given value. Therefore, projection-free
methods are preferable for this task.

Frank-Wolfe (FW) algorithm does not require any projection operation, instead it uses a linear mini-
mizer oracle. Intuitively, finding a linear minimizer is similar to the reward maximization process of
what a general RL algorithm does. In section 4.3, we formalize this idea. We show that after simple
modifications, any RL algorithm that maximizes a scalar reward can be used to construct such a
linear minimizer oracle. Before getting into details of the construction process, we discuss FW-type
algorithms over polytope and its applications in the distance minimization problem (7).

4.2 DISTANCE MINIMIZATION BY FRANK-WOLFE-TYPE ALGORITHMS

The Frank-Wolfe algorithm (FW) is a first-order method to minimize a convex function f : P 7→ R
over a compact and convex set P , with only access to a linear minimizer oracle. When the feasible
set is a polytope P := conv({s1, s2, . . . , sn}) ⊂ Rm defined as the convex hull of finitely many
points, FW-type algorithms are discussed by Lacoste-Julien & Jaggi (2015) to optimize

min
x∈P

f(x) using Oracle(v) := arg min
s∈{s1,...,sn}

sTv. (8)

The standard FW (Algorithm 2 in Appendix A.1) consists of making repeated calls to the linear
minimizer oracle to find an improving point s, followed by a convex averaging step of the current
iterate xt−1 and the oracle’s output s.

If we have already constructed a RL oracle(λ) that outputs a policy π ∈ arg minπ∈Π λ
T c(π)

together with its measurement vector c(π), then the distance minimizing problem (7) can be solved
with standard FW by using

π, c(π)← RL oracle(∇dist2(xt−1,Ω)) = RL oracle(xt−1 − ProjΩ(xt−1)) (9)
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Algorithm 1 Convex Constrained Reinforcement Learning (C2RL)
Input. RL Oracle constructed by any RL algorithm, projection operator to target set ProjΩ.
Initialize. Random policy π, value x = c(π), active sets Sp := [π],Sc := [x] and weight λ = [1].
Output. Mixed policy µ and its value c(µ) s.t. c(µ) minimizes the distance to the target set Ω.

1: while true do // Major cycle
2: ω ← ProjΩ(x)
3: π, c(π)← RL Oracle(x− ω) // Potential improving point
4: if (x− ω)T (x− c(π)) ≤ ε then break
5: if Sc ∪ {c(π)} is affinely independent then Sc ← Sc ∪ {c(π)},Sp ← Sp ∪ {π}
6: while true do // Minor cycle
7: y,α← AffineMinimizer(Sc,ω) // y = arg mins∈aff(Sc) ||s− ω||2
8: if αs > 0 for all s then break // y ∈ conv(Sc)
9: // If y /∈ conv(Sc), then update y to the intersection of conv(Sc) and segment joining x

and y. Then remove points in Sc unnecessary for describing y.
10: θ ← mini:αi≤0

λi

λi−αi
// Recall λ satisfies x =

∑
s∈Sc λss

11: y ← θy + (1− θ)x, λi = θαi + (1− θ)λi
12: Sc ← {c(πi)|c(πi) ∈ Sc and λi > 0},Sp ← {πi|πi ∈ Sp and λi > 0}
13: end while
14: Update µ←

∑
π∈Sp λππ, x← y, λ← α.

15: end while
16: return µ, c(µ)← x

to find an improving policy and its measurement vector. For ηt := 2
t+2 , the convex averaging steps

µt ← (1− ηt)µt−1 + ηtπ, xt ← (1− ηt)xt−1 + ηtc(π), (10)
then maintain the mixed policy, and the corresponding measurement vector, respectively.

However, after T rounds of iteration, the µt found has an active set containing up to T individual
polices, and is not sparse enough. If neural networks are used to parameterize the policy, that
requires storing T copies of parameters for the individual network, which is unaffordable for large-
scale usage.

To find even more sparse policies, we turn to variants of FW-type algorithms. In particular, Wolfe’s
method for minimum norm point in a polytope (Wolfe, 1976; De Loera et al., 2018). In Wolfe’s
method (Algorithm 3 in Appendix A.2), the loop in FW is called a major cycle, and the convex
averaging step is replaced by a weight optimization process, called minor cycle. Wolfe’s method
maintains an active set S, and the current point can be represented by a sparse combination of
points in the active set. The minor cycles maintain S to be an affinely independent set such that
the affine minimizer is inside St, which Wolfe calls corrals. Recall an affine minimizer is defined
as arg mins∈aff(S) ||s||2, where aff(S) := {y|y =

∑
z∈S α

T
zx,

∑
z∈S αz = 1} is the affine hull

formed by S. Since the active set is affinely independent, the number of active atoms is at most
m + 1 at any time. Wolfe’s method is shown to strictly decrease the approximation error between
two major cycles.

4.3 OUR MAIN ALGORITHM

The main obstacle to apply Wolfe’s method to our distance minimization problem (7) is that the
objective function in Wolfe’s method is the norm function. However, in our problem, the objective
function is the distance function to a convex set. Unlike the norm function, the distance function
to a convex set is not strongly convex and affine minimizer is ill-defined with respect to a convex
set. To tackle these problems, we modify the Wolfe’s method. At the core of our new variant of FW
algorithm, we add a projection step to Wolfe’s method.

Projection Step In each major cycle, we minimize the distance to a projected pointω := ProjΩ(x).
Intuitively, since the distance to the convex set is upper bounded by the distance to this projected
point ω, if the distance to ω converges, so does the distance to the target convex set.

Formally, for a set of points S ⊂ Rm, and a point x ∈ Rm, we extend the definition of an affine
minimizer to define affine minimizer with respect to x as arg mins∈aff(S) ||s − x||2. For x being
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the affine minimizer of S with respect to ω, the extended affine minimizer property gives

Given ω,∀v ∈ aff(S), (v − x)T (x− ω) = 0 (Extended affine minimizer property) (11)

Similar to Wolfe’s method, our C2RL method (Algo. 1) contains an outer loop (called major cycle)
to find improving policies and their measurement vectors, and an inner loop (called minor cycle)
to maintain the affinely independent property of the active set Sc. At the start of each major cycle
step, the Sc is an affinely independent set. Then, the RL oracle (defined in (15)) finds a potential
improving policy π ∈ U , and its long-term measurement vector c(π). If the c(π) does not get
strictly closer to the ω := Proj(x), then we are done, and x is the optimal value. Otherwise, the
c(π) is added into the active set, and the minor cycle is run to eliminate policies whose measurement
vectors are affinely dependent.

Line 6 to line 13 contains the minor cycle, which is the same as the original Wolfe’s method (except
in line 6, we find affine minimizer with respect to ω). The elimination is executed as a series of
affine projections. The minor cycle terminates if active set Sc is affinely independent. Though the
interleaving of major and minor cycles oscillate the size of active set Sc, the minor cycles keep |Sc|
an affinely independent set, and is terminated whenever Sc contains a single element. Therefore at
the start of any major cycle, the size of the active set satisfies |Sc| ∈ [0,m + 1]. More background
about the minor cycle in Wolfe’s method is provided in Appendix A.2.

Construction of RL Oracle The construction of our RL oracle can use any off-the-shelf RL algo-
rithm that maximizes a scalar reward. For any given λ ∈ Rm, we define any algorithm that finds a
policy minimizing the linear function λT c(·) as a RL oracle, that is

RL oraclep(λ) ∈ arg min
π∈Π

λT c(π). (12)

Recall that standard RL algorithm receives a scalar reward after each state transition, instead of the
long-term measurement vector c(π) ∈ Rm. We then use the following linear property to reformulate
the right hand side of (12) to a standard RL problem

arg min
π∈Π

λT c(π) = arg min
π∈Π

λTE(

T∑
t=0

γtct) = − arg max
π∈Π

E(

T∑
t=0

γt(−λT ct)). (13)

This shows that if we consider the Markov decision process with the same state, action, and transi-
tion probability, and construct a scalar reward r := (−λT ct), then any policy that maximizes the
expected r is a linear minimizer of (12). Therefore any RL algorithm that best suits the underlying
problems can be used to construct a RL oracle.

Certifying constraint satisfaction amounts to evaluate the measurement vector of the current policy.
This is handy in online settings, where simulations can be used to evaluate the measurement vector
of the policy directly. Otherwise, in batch settings, various off-policy evaluation methods, such as
importance sampling (Precup, 2000; Precup et al., 2001) or doubly robust (Jiang & Li, 2016; Dudı́k
et al., 2011), can be used to evaluate the policy.

RL oraclec(λ) := c(arg min
π∈Π

λT c(π)) = arg min
c(π),π∈Π

λT c(π). (14)

To simplify notation, we assume a RL Oracle returns a policy as well as its measurement vector

RL Oracle(λ) := π, c(π) = RL oraclep(λ), RL oraclec(λ) (15)

Finding Extended Affine Minimizer The process AffineMinimizer(S,x) returns the (y,α) the
affine minimizer of S with respect to x where y is the affine minimizer and α := {αs|∀s ∈
Sc} is the set of coefficient expressing y as an affine combination of points in S, that is y =∑

s∈Sc αss, where αs is the weight associated with s. The process AffineMinimizer(S,x) can
be straightforwardly implemented using linear algebra. Wolfe (1976) also provides a more efficient
implementation that uses a triangular array representation of the active set.

4.4 CONVERGENCE AND SPARSITY

In this section, we analyze the convergence and complexity of the proposed C2RL method (Algo. 1).
We first show that approximation error of C2RL strictly decreases between any two major cycle steps
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and it converges in O(1/t) rate. Then we show our method ensures convergence of arbitrary RL
algorithm, including those searching for deterministic policies. Moreover, concerning the memory
complexity, we show that maintaining an active policy set ofm+1 is worst case optimal to ensure the
convergence of arbitrary RL algorithm. Therefore, the proposed C2RL indeed achieves the optimal
sparsity for the found policy, making it favorable for large-scale usage.

The main difference between the convergence analysis of C2RL and Wolfe’s method is the addition
of the projection step. Intuitively, at each major step, if we are making a significant progress toward
the projected point, then the distance to the convex set is decreased by at least the same amount.

Time Complexity. In our analysis, we consider the approximation error as defined in (5). We use
superscript t to denote the variable in t-th major cycle before executing any minor cycle. To simplify
notions, we let xt := c(µt) and st := c(πt). When discussing one step with t fixed, let yi denote
the affine minimizer found in i-th minor cycle (line 6 of Algo. 1). We first show that the C2RL
method strictly reduces approximation error between two calls of the RL oracle.

Theorem 4.1 (Approximation Error Strictly Decreases). For any non-terminal step t, we have
err(µt+1) < err(µt). That is, the measurement vector of µt found by the C2RL method gets
strictly closer to the convex set Ω after major cycle step.

The proof is provided in Appendix B. The idea is to consider the distance between xt and ωt.
When the major cycle has no minor cycle, the non-terminal condition and the affine minimizer
property implies dist2(xt+1,ωt) < dist2(xt,ωt). Otherwise we show that the first minor cycle
strictly reduces the dist2(xt,ωt) by moving along the segment joining x and y, and the subsequent
minor cycle cannot increase it. Since ωt ∈ Ω, we conclude err(xt+1) ≤ dist2(xt+1, ωt) <
dist2(xt, ωt) = err(xt), and the approximation error strictly decreases.

Given the approximation error strictly decreases, Wolfe’s method for minimum norm point can be
shown to terminate finitely (Wolfe, 1976). However, this finitely terminating property does not hold
for our algorithm. Since a changed ωt may yield a lower distance to the same active set Stc, the
active set may stay unchanged across major cycles (see Figure 2 Middle for an example). Therefore
we establish the convergence of the C2RL method by the following theorem.

Theorem 4.2 (Convergence in Approximation Error). For t ≥ 1, the mixed policy µt found by the
C2RL method satisfies

err(µt) ≤ 16Q2/(t+ 2), (16)

where Q := maxµ∈∆(U) ||c(µ)|| is the maximum norm of a measurement vector.

The proof is provided in Appendix C, which relies on the following two lemmas. We briefly discuss
the main idea here. Define major cycle steps with at most one minor cycle as ”non-drop step” and
major cycle steps with more than one minor cycles as ”drop steps”. We show that in each non-drop
step, Algorithm 1 is guaranteed to make enough progress in the following lemma.

Lemma 4.3. For a non-drop step in C2RL method, we have err(µt)−err(µt+1) ≥ err2(µt)/8Q2.

Though this does not hold for drop steps, we can bound the frequency of drop steps by the following.

Lemma 4.4. After t major cycle steps of C2RL method, the number of drop steps is less than t/2.

Since the approximation error strictly decreases (Thm. 4.1), and in more than half of the major
cycles steps, the C2RL method makes significantly progress. The Thm. (4.2) can then be proved
using an induction argument (Appendix C).

Convergence with Arbitrary RL Algo. The convergence of the C2RL method when used with
RL algorithms that search for deterministic policies, such as DQN, DDPG and variants, is indeed
straightforward. In (8), though each time the oracle yields a vertex, the FW-type algorithms indeed
optimize over the polytope formed by these vertices. Then since citetaltman1999constrained shows
that any c(·) achievable can be achieved by some mixed deterministic policies, we conclude that if
the underlying problem is feasible, then our C2RL method is able to find a feasible policy.

Memory Complexity We then discuss the sparsity of mixed policy for constrained RL problem. We
give a constructive proof in Appendix D to show that to ensure convergence for RL algorithms that
search for deterministic policies, storing m+ 1 policies is required in the worst case.
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Figure 1: Left: The Risky Mars Rover environment. The agent is required to navigate from the
starting point to reach the goal point without staying long (0.5 steps in expectation) in the risky area
(cross-hatching region). Middle, Right. Example of an optimal mixed policy found by C2RL in a
single run. After 10k samples, C2RL finds a mixed policy that randomizes among two policies with
weight 0.49 and 0.51. The visitation probabilities of the two policies are plotted.

Theorem 4.5 (Memory Complexity Bound). For an constrained RL problem with m-dimensional
measurement vector, in the worst case, a mixed policy needs to randomize among m+ 1 individual
policies to ensure convergence of RL oracles that search for deterministic policies.

Since the minor cycles in the C2RL method eliminate policies with affinely dependent measurement
vectors, after the termination of minor cycles, the size of the active set is at most m+ 1. That is, the
policy found by the C2RL method requires randomization among no more than m + 1 individual
policies. Therefore the proposed C2RL indeed achieves the optimal sparsity in the worst case,
making it favorable for large-scale usage.
Corollary 4.5.1. The C2RL method that randomizes among at most m + 1 policies is worst-case
optimal to ensure convergence of any RL oracle.

5 EXPERIMENTS

We evaluate the performance of C2RL in a grid-world navigation task (Fig. 1), and demonstrate its
ability to efficiently find sparse policy. In this Risky Mars Rover environment, the agent is required
to navigate from the starting point to the goal point, by moving to one of the four neighborhood cells
at each step. The episodes terminate when the goal point is reached or after 300 steps. To enforce
robustness, we add a risky area to indicate the dangerous states. The agent receives a measurement
vector to indicate the steps it takes (0.1 for every step), and whether it stays in the risky area (0.1 for
every risky step, and 0 otherwise), with discount factor γ = 0.99. We constrain the agent to reach
the goal point with expected cumulative steps measure within 1.1 and the expected cumulative risky
steps within 0.05. Note that by design, the shortest path from the starting point to the goal point
does not satisfy the constraint. This is common in practice, as robustness typically evolves trade-off
between the reward and the constraint satisfaction.

The proposed C2RL method is compared with approachability-based policy optimization (Ap-
proPO) (Miryoosefi et al., 2019) and with reward constrained policy optimization (RCPO) (Tessler
et al., 2018). ApproPO solves the same convex constrained RL problem by using an RL oracle
to play against a no-regret online learner (Hazan et al., 2008; Zinkevich, 2003). Since ApproPO
and C2RL both use a RL oracle, ApproPO is a natural baseline to be compared with our method.
Besides, we also compare with RCPO, which takes a Lagrangian approach to incorporate the con-
straints as a penalty signal into the reward. Using an advantage actor critic (A2C) Mnih et al. (2016),
RCPO has been shown to converge to a fixed point. For a fair comparison, C2RL and ApproPO uses
an A2C agent as the RL oracle, with the same hyperparameter as used in RCPO. The approximation
errors are compared after training for the same number of samples.

Note that the C2RL method does not introduce any extra hyper-parameter. For ApproPO and RCPO,
they require extra hyper-parameter for the initialization and learning rate of a variable equivalent to
our λ in the outer loop. This is because our approach does not rely on the online learning framework,
and therefore there is no need to tune the initialization and learning rate for our λ and ease the usage.

We first showcase the consequences of our theoretical results using an optimal RL oracle. For any
x ∈ Rm, an optimal policy can be easily found via Dijkstra’s algorithm. If multiple optimal paths
exist, one is randomly picked to form a deterministic policy.

8



Under review as a conference paper at ICLR 2021

7DUJHW�FRQYH[�VHW

c(⇧⇧)
c(��(⇧⇧))

Figure 2: Left: Visualization of the distance minimization problem (7) in R2, where the number
of steps and the number of steps in risky zone are measured. The green hatched region is the
polytope formed by values achievable by mixed deterministic policies c(∆(Π)), and the red hatched
region is the target set. Middle: Using an optimal RL oracle, 10 paths are sampled to showcase the
convergence property of C2RL and ApproPO, where each cross on the dashed line corresponds to a
call to the oracle. Right: If we zoom in, ApproPO suffers from the zig-zagging problem.

Figure 3: Left: Time complexity measured by number of calling an optimal RL oracle. Middle,
Right: Using A2C to approximate an RL oracle, time complexity measured by thousands of samples
and memory complexity measured by the number of policies stored are compared.

Using this as an optimal RL oracle, the convergence property of C2RL and ApproPo are compared.
Figure 2 Middle shows the value of policies c(µt) found after each call to the oracle. In Figure 2
Right, when approaching the boundary of the feasible set, the iterations of approachability-based
methods start to zigzag. Since C2RL contains a minor cycle to re-optimize the weights among
the active set, C2RL progresses quickly to reach the exact optimal solution. In Figure 3 Left, the
approximation error is shown for 300 calls of the optimal RL oracle.

We then compare C2RL, ApproPO and RCPO using the same A2C agent (details of the model
structures and hyper-parameters are provided in Appendix E). We run each algorithm for 50 times,
and each run for a maximum of 100 thousands of samples. The mean and standard deviation of the
results are presented in Figure 3. The original paper of ApproPO suggests using a cache to save
memory, and the memory requirement of this variant is also presented. Figure 3 demonstrates that
C2RL converges to an optimal policy faster than previous methods, and a sparse combination of
individual policies is maintained throughout the iteration process.

6 CONCLUSION

In this paper, we introduce C2RL, an algorithm to solve RL problems under orthant or convex
constraints. Our method reduces the constrained RL problem to a distance minimization problem,
and a novel variant of Frank-Wolfe type algorithm is proposed to solve this. Our method comes
with rigorous theoretical guarantees and does not introduce any extra hyper-parameter. To find
an ε-approximation solution, C2RL takes O(1/ε) calls of any RL oracle and ensures convergence
to work with arbitrary RL algorithm. Moreover, C2RL strictly reduces the approximation error
between consecutive calls of RL oracle, and form-dimensional constraints, the memory requirement
is reduced from storing infinitely many policies (O(1/ε)) to storing at most constantly many (m+1)
polices. We further show that the constant is worst-case optimal to ensure the convergence for RL
algorithms that search for deterministic policies. Experimentally, we demonstrate that the proposed
C2RL method finds sparse solution efficiently, and outperforms previous methods.
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A MORE ON FRANK-WOLFE-TYPE ALGORITHMS

A.1 STANDARD FRANK-WOLFE ALGORITHM

Algorithm 2 Frank-Wolfe algorithm (Frank et al., 1956)
Input: obj. f : Y 7→ R, oracle O(·), init. x0 ∈ Y

1: for t=1, 2, 3 . . . , T do
2: s← Oracle(∇f(xt−1)) = arg mins∈{s1,...,sn} s

T∇f(xt−1)

3: xt ← (1− ηt)xt−1 + ηts , for ηt := 2
t+2

4: end for
5: return xT

For a convex function f : X 7→ R the Frank-Wolfe algorithm (FW) solves the constrained opti-
mization problem over a compact and convex set X . The standard FW is known to have a sublinear
convergence rate, and various methods are proposed to improve the performance. For example,
when the underlying feasible set is a polytope, and the objective function is strongly convex, multi-
ple variants, such as away-step FW (Wolfe, 1970; Jaggi, 2013), pairwise FW (Mitchell et al., 1974),
and Wolfe’s method (Wolfe, 1976) are shown to enjoy linear convergence rate. Linear convergence
under other conditions is also studied (Beck & Shtern, 2017; Garber & Hazan, 2013a;b).

A.2 WOLFE’S METHOD FOR MINIMUM NORM POINT

Algorithm 3 Wolfe’s Method for Minimum Norm Point
Initialize x ∈ P , active set S = [x] and weight λ = [1].
Output: x ∈ P that has the minimum Euclidean norm.

1: while true do // Major cycle
2: s← Oracle(x) // Potential improving point
3: if ||x||2 ≤ xTs+ ε then break
4: S ← S ∪ {s}
5: while true do // Minor cycle
6: y,α← AffineMinimizer(S) // y = arg mins∈aff(S) ||s||2
7: if αs > 0 for all s then break // y ∈ conv(S)
8: // If y /∈ conv(S), then update y to the intersection of conv(S) and segment joining x and

y. Then remove points in S unnecessary for describing y.
9: θ ← mini:αi≤0

λi

λi−αi
// Recall λ satisfies x =

∑
s∈S λss

10: y ← θy + (1− θ)x, λi = θαi + (1− θ)λi
11: S ← {si|si ∈ S and λi > 0}
12: end while
13: Update x = y and λ = α.
14: end while
15: return x

Wolfe’s method is an iterative algorithm for finding the point with minimum Euclidean norm in a
polytope, which is defined as the convex hull of a set of finitely many points.

The Wolfe’s method consists of a finite number of major cycles, each of which consists of a finite
number of minor cycles. At the start of each major cycle, let H(x) := {yTx = xx} be the
hyperplane defined by x. If H(x) separates the polytope from the origin, then the major cycle is
terminated. Otherwise, it invokes an oracle to find any point on the near side of the hyperplane. The
point is then added into the active set S, and starts a minor cycle.

In a minor cycle, let y be the point of smallest norm in of the affine hull aff(S). If y is in the
relative interior of the convex hull conv(S), then x is updated to y and the minor cycle is terminated.
Otherwise, y is updated to the nearest point to y on the line segment conv(S) ∩ [x,y]. Thus y is
updated to a boundary point of conv(S), and any point that is not on the face of conv(S) in which
y lies is deleted. The minor cycles are executed repeatedly until S becomes a corral, that is, a set
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whose affine minimizer lies inside its convex hull. Since a set of one point is always a corral, the
minor cycles is terminated after a finite number of runs.

B PROOF OF THEOREM 4.1

Theorem 4.1 (Approximation Error Strictly Decreases). For any non-terminal step t, we have
err(µt+1) < err(µt). That is, the measurement vector of µt found by the C2RL method gets
strictly closer to the convex set Ω after major cycle step.

Proof. If the current step is a major cycle with no minor cycle, then xt+1 is the affine minimizer of
aff(S ∪ {st}) with respect to ωt. Then the affine minimizer property implies (st − xt+1)(xt+1 −
ωt) = 0. Since iteration does not terminate at step t, we have (xt − ωt)T (xt − st) > 0, and
therefore xt+1 not equal to xt. Then xt+1 is the unique affine minimizer implies fΩ(xt+1) =
minω∈Ω ||xt+1 − ω||2 ≤ ||xt+1 − ωt||2 < ||xt − ωt||2 = fΩ(xt).

Otherwise the current step contains one or more minor cycles. In this case, we show that the first
minor cycle strictly reduces the approximation error, and the (possibly) following minor cycles
cannot increase it. For the first minor cycle, the affine minimizer y0 of aff(S ∪ {st}) with respect
to ωt is outside conv(S ∪ {st}). Let z = θy0 + (1 − θ)xt be the intersection of conv(S ∪ {st})
and segment joining x and y. Let V0 := St and Vi denote the active set after the i-th minor cycle.
Then since y1 is the affine minimizer of V1 with respect to ωt, we have

||z − ωt|| = ||θy0 + (1− θ)xt − ωt|| ≤ θ||y0 − ωt||+ (1− θ)||xt − ωt|| < ||xt − ωt||, (17)

where the second step uses the triangle inequality and the last step follows since the segment xty0

intersects the interior of conv(S∪{st}), and the distance to ωt strictly decreases along this segment.
Therefore the point z found by first minor cycle satisfies

fΩ(z) = min
ω∈Ω
||z − ω||2 ≤ ||z − ωt||2 < ||xt − ωt|| = fΩ(xt). (18)

Hence h(y1) < h(xt), and the first minor cycle strictly decreases the approximation error. By a
similar argument, in subsequent minor cycles the approximation error cannot be increased. However,
after the first minor cycle, the iterating point may already at the intersection point and the strict
inequality in last step of Eq. 17 need to be replaced by non-strict inequality.

Therefore any major cycle either finds an improving point and continue, or enters minor cycles where
the first minor cycle finds an improving point, and the subsequent minor cycles does not increase
the distance. Adding both side of fΩ(xt+1) < fΩ(xt) by fΩ(x∗) and we have the approximation
error h(xt+1) < h(xt) strictly decreases.

C PROOF OF THEOREM 4.2

We first prove the Theorem 4.2, using Lemma 4.3 and Lemma 4.4. Then we present the proof of the
lemmas.

Theorem 4.2 (Convergence in Approximation Error). For t ≥ 1, the mixed policy µt found by the
C2RL method satisfies

err(µt) ≤ 16Q2/(t+ 2). (19)

where Q := maxµ∈∆(U) ||c(µ)|| is the maximum norm of a measurement vector.

Proof. Since Lemma 4.4 shows that drop steps are no more than half of total major cycle steps, and
Theorem 4.1 guarantees these drop steps reducing the approximation error, we can safely skip these
step, and re-index the step numbers to include non-drop steps only using k.
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For these non-drop steps, we claim that err(µk) ≤ 8Q2/(k + 1). Using Lemma 4.3, we prove the
convergence rate using induction. We first bound the error of any err(µk). For any k ≥ 1

err(µk) = dist2(c(µk),Ω)− dist2(c(µ∗),Ω) (20)

= 1/2||c(µk)− ProjΩ(c(µk))||2 − 1/2||c(µ∗)− ProjΩ(c(µ∗))||2 (21)

≤ 1/2(||c(µk)||2 + ||ProjΩ(c(µk))||2 − ||c(µ∗)||2 − ||ProjΩ(c(µ∗))||2) (22)

≤ ||c(µk)||2 − ||c(µ∗)||2 (23)

≤ ||c(µk)||2 (24)

≤ Q2, (25)

where Eq. 21 uses the definition of our squared Euclidean distance function. Eq. 22 follows from
triangle inequality, and Eq. 23 is by the contractive property of the Euclidean distance.

When k = 1, the Eq. 25 established the based case. Now for k ≥ 1, assume that err(µk) ≤
8Q2/(k + 1) for k ≥ 1, then Lemma 4.3 gives err(µk+1) ≤ err(µk) − err2(µk)/8Q2. Since
the quadratic function of the right hand side is monotonically increasing on (−∞, 4Q2], using the
inductive hypothesis

err(µk+1) ≤ err(µk)− err2(µk)/8Q2 ≤ 8Q2/(k + 1)− 8Q2/(k + 1)2 ≤ Q2/(k + 2) (26)

Since for t steps of major cycle steps, the number of non-drop steps k > t/2, we conclude that
err(µt) ≤ 16Q2/(t+ 2).

Then we prove the lemmas.

Lemma 4.3. For a non-drop step, we have err(µt)− err(µt+1) ≥ err2(µt)/8Q2.

Proof. The non-drop step contains either no minor cycle or one minor cycle. We first consider the
no minor cycle case.

If a major cycle contains no minor cycle, then xt+1 is the affine minimizer of the S ∪ {st}.

err(µt)− err(µt+1) = dist2(xt,Ω)− dist2(xt+1,Ω) (27)

= 1/2(||xt − ωt||2 −min
ω∈Ω
||xt+1 − ω||2) (28)

≥ 1/2(||xt − ωt||2 − ||xt+1 − ωt||2) (29)

= 1/2(||xt − ωt||2 + ||xt+1 − ωt||2 − 2||xt+1 − ωt||2) (30)

= 1/2(||xt − ωt||2 + ||xt+1 − ωt||2 − 2(xt − ωt)T (xt+1 − ωt)) (31)

= 1/2(||xt − xt+1||2), (32)

where the equation (31) follows from the affine minimizer property Eq. (11). For ||xt − xt+1|| in
the last equation, and ∀q ∈ aff(S ∪ {st}), we have

||xt − xt+1|| ≥ ||xt − xt+1|| ||x
t||+ ||q||

2Q
( Definition of Q) (33)

≥ ||xt − xt+1|| ||x
t − q||
2Q

( Triangle inequality) (34)

≥ 1

2Q
(xt − xt+1)(xt − q) ( Cauchy-Schwarz inequality) (35)

=
1

2Q
(xt − ωt)(xt − q) ( Affine minimizer property). (36)

Then it suffices to show that (xt − ωt)(xt − q) ≥ err(µt).
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Since Ω is a convex set, the squared Euclidean distance function dist2(x,Ω) is convex for x, which
implies

dist2(xt,Ω) + (q − xt)∇dist2(xt,Ω) ≤ dist2(q,Ω). (37)

Putting in∇dist2(xt,Ω) = (xt−ProjΩ(xt)) = (xt−ωt), we get (xt−ωt)(xt−q) ≥ err(µt),
which together with Eq. 32 and Eq. 36 concludes that for non-drop step with no minor cycles, we
have err(µt)− err(µt+1) ≥ err2(µt)/8Q2.

For non-drop step with one minor cycle, we use the Theorem 6 of (Chakrabarty et al., 2014). By a
linear translation of adding all points with −ωt, it gives

||xt − ωt||2 − ||xt+1 − ωt||2 ≥ ((xt − ωt)(xt − q))2/8Q2. (38)

Then applying the same argument as Eq. 37, and we finished our proof.

Lemma 4.4. After t major cycle steps of C2RL method, the number of drop steps is less than t/2.

Proof. Recall that at the termination of a minor cycle, the size of the active set |Sc| ∈ [1,m]. Since
in each major cycle steps, the size of active set St increases by one, and each drop step reduces the
size of St by at least one, the number of drop steps is always less than half of total number of the
major cycle steps.

D PROOF OF THEOREM 4.5

Theorem 4.5 (Memory Complexity Bound). For an constrained RL problem with m-dimensional
measurement vector, in the worst case, a mixed policy needs to randomize among m+ 1 individual
policies to ensure convergence of RL oracles that search for deterministic policies.

Proof. We give a constructive proof. Consider a m-dimensional vector-valued MDP with a sin-
gle state, m + 1 actions, and c(ai) := ei is the unit vector of i-th dimension for i ∈ [1,m], and
c(am+1) := 0, and the episode terminates after 1 steps. The constrained RL problem is to find a
policy whose measurement vector lies in the convex set of a single point {1/2m}. By linear pro-
gramming, it is clear that the only feasible mixed deterministic policy is to select am+1 with 1/2
probability, and the rest m actions with 1/2m probability; i.e. the unique feasible policy to this
problem has an active set containing m + 1 deterministic policies. Therefore any method random-
ize among less than m + 1 individual policies does not ensure convergence when used with RL
algorithms searching for deterministic policies.

E ADDITIONAL EXPERIMENT DETAILS

All the methods use the same A2C agent. The input is the one-hot encoded current position index.
The A2C is the standard fully connected multi-layer perceptron with ReLU activation function. The
actor and critic share the internal representation and have their only final layer. Both actor and critic
networks use Adam optimizer with learning rate set to 1e−2. The network is as follows

Actor Critic
Input layer One-hot encoded state index (dim=54)

Hidden layer Linear(in=54, out=128, act=”relu”)
Output layer Linear(in=128, out=4, act=”relu”) Linear(in=128, out=1, act=”relu”)
Output name Action score State value

For ApproPO, the constant κ for projection convex set to convex cone is set to be 20. The θ is
initialized to 0. Following the original paper.

For RCPO, the learning rate of its λ is set to 2.5e−5, and its λ is initialized to 0 and updated by
online gradient descent with learning rate set to 1, as used by the original paper.

The proposed C2RL introduces no extra hyper-parameters, and has nothing to report.
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