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Abstract

Best Arm Identification (BAI) problems are progressively used for data-sensitive
applications, such as designing adaptive clinical trials, tuning hyper-parameters,
and conducting user studies to name a few. Motivated by the data privacy concerns
invoked by these applications, we study the problem of BAI with fixed confidence
under e-global Differential Privacy (DP). First, to quantify the cost of privacy, we
derive a lower bound on the sample complexity of any d-correct BAI algorithm
satisfying e-global DP. Our lower bound suggests the existence of two privacy
regimes depending on the privacy budget €. In the high-privacy regime (small
€), the hardness depends on a coupled effect of privacy and a novel information-
theoretic quantity, called the Total Variation Characteristic Time. In the low-privacy
regime (large €), the sample complexity lower bound reduces to the classical non-
private lower bound. Second, we propose AdaP-TT, an e-global DP variant of the
Top Two algorithm. AdaP-TT runs in arm-dependent adaptive episodes and adds
Laplace noise to ensure a good privacy-utility trade-off. We derive an asymptotic
upper bound on the sample complexity of AdaP-TT that matches with the lower
bound up to multiplicative constants in the high-privacy regime. Finally, we provide
an experimental analysis of AdaP-TT that validates our theoretical results.

1 Introduction

We study the stochastic multi-armed bandit problem [LS20], which allows us to reflect on fundamental
information-utility trade-offs involved in interactive sequential learning. Specifically, in a bandit prob-
lem, a learning agent is exposed to interact with & unknown probability distributions {v1, ..., vk}
with bounded expectations, referred as the reward distributions (or arms). v = {vy,... vk} is
called a bandit instance. At every step t > 0, the agent chooses to interact with one of the reward
distributions v 4, for an A; € [K], and obtains a sample (or reward) r; from it. The goal of the agent
can be of two types: (a) maximise the reward accumulated over time, or equivalently to minimise the
regret, and (b) to find the reward distribution (or arm) with highest expected reward. The first problem
is called the regret-minimisation problem [ACBFO02], while the second one is called the Best Arm
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Identification (BAI) problem [KCG16]. In this paper, we focus on the BAI problem, i.e. to compute

* A

argmax E [r] £ arg max . (BAI)
a€[K] T™Va a€[K]

a

With its advent in 1950s [Bec54, Bec58] and resurgence in last two decades [MT04, GGL12,
JMNB14, KCG16, DKM19], BAI has been extensively studied with different structural assump-
tions (Fixed-confidence: [JN14]; Fixed-budget: [CL16]; Non-stochastic: [JT16]; Best-of-both-
worlds: [AYBG™18]; Linear: [SLM14]). In this paper, we specifically investigate the Fixed Con-
fidence BAI problem, in brief FC-BALI, that yields a §-correct recommendation & € [K] satisfying
Pr(é # a*) < §. FC-BAI is increasingly deployed for different applications, such as clinical
trials [AKR21], hyper-parameter tuning [LJD*17], communication networks [LPJ22], online ad-
vertisement [CLK T 14], crowd-sourcing [ZCL14], user studies [LEHT22], and pandemic mitiga-
tion [LVR™19] to name a few. All of these applications often involve the sensitive and personal data
of users, which raises serious data privacy concerns [TBD*16], as illustrated in Example 1.

Example 1 (Adaptive dose finding trial). In a dose-finding trial, one physician decides K possi-
ble dose levels of a medicine based on preliminary studies (Typically, K € {3,...,10} in prac-
tice [AKR21]). At each step t, a patient is chosen from a local pool of volunteers and a dose level
a; € [K] is applied to the patient. Following that, the effectiveness of the dose on the patient, i.e.
ry € R is observed. The goal of the physician is to recommend after the trial, which dose level is
most effective on average, i.e. the dose level a* that maximises the expected reward. Here, every
application of a dose level and the patient’s reaction to it exposes information regarding the medical
conditions of the patient. Additionally, at each step t of an adaptive sequential trial, the physician
can use an FC-BAI algorithm that observes the previous history of dose levels {as}s< and their
effectiveness {rs}s<+ to decide on the next dose level a; to test. When releasing the experimental
findings of the trial to health authorities, the physician should thoroughly detail the experimental
protocol. This includes the dose allocated to each patient {as}s< and the final recommended dose
level a*. Thus, even if the sequence of reactions to doses {rs}s<y is kept secret, publishing the
sequence of chosen dose levels {a; }s<; and the final recommended dose level a* computed using
the history can leak information regarding patients involved in the trial.

This example demonstrates the need for privacy in best-arm identification. In this paper, we investigate
privacy-utility trade-offs for a privacy-preserving algorithm in FC-BAI. Specifically, we use the
celebrated Differential Privacy (DP) [DR14] as the framework to preserve data privacy. DP ensures
that an algorithm’s output is unaffected by changes in input by a single data point. By limiting
the amount of sensitive information that an adversary can deduce from the output, DP renders an
individual corresponding to a data point ‘indistinguishable’. A popular way to achieve DP is to
inject a calibrated amount of noise, from a Laplace [DR14] or Gaussian distribution [DRS22], into
the algorithm. The scale of the noise is set to be proportional to the algorithm’s sensitivity and
inversely proportional to the privacy budget €. Specifically, we study e-global DP, where users
trust the centralised decision-maker with access to the raw sensitive rewards. For example, in an
adaptive dose-finding trial, the patients trust the physician conducting the trial. Thus, at any time ¢,
she has access to all the true history {as, s }s<t, and it is her duty to design an algorithm such that
publishing {as}s<; and the recommended optimal dose a* obeys e-DP given the sensitive input, i.e.
the effectiveness of the dose levels on the patients {r; }s<;. We define the notion of e-global DP for
BAl rigorously in Section 2.

For different settings of bandits, the cost of e-global DP and optimal algorithm design techniques
are widely studied in the regret-minimization problem [MT15, TD16, SS19, SS18, NR18, BDT19,
AB22]. Recently, a problem-dependent lower bound on regret of stochastic multi-armed bandits with
e-global DP and an algorithm matching the regret lower bound is proposed by [AB22]. In contrast, DP
is meagerly studied in the FC-BAI problem of bandits [SS19, KNSS21]. Though efficient algorithm
design in FC-BALI literature is traditionally propelled by deriving tight lower bounds, we do not have
any explicit sample complexity lower bound for FC-BAI satisfying e-global DP. Here, by an ‘efficient’
algorithm, we refer to the FC-BAI algorithms that aim to minimise the expected number of samples
required (alternatively called, expected stopping time) to find a §-correct recommendation. Presently,
we know neither the minimal cost in terms of sample complexity for ensuring DP in FC-BAI, nor the
feasibility of efficient algorithm design to achieve the minimal cost.

Motivated by this gap in the literature, we aim to address two questions:



1. What is the fundamental hardness of ensuring Differential Privacy in the Best-Arm Identification
with fixed confidence problem (e-DP-FC-BAI) in terms of a lower bound on the sample complexity?

2. How to design an efficient e-DP-FC-BAI algorithm that achieves the lower bound order-optimally?

Our contributions. These questions have led to the following contributions:

1. Hardness as lower bounds: We commence our study by deriving the lower bound on sample
complexity (or expected stopping time) of any FC-BAI algorithm ensuring e-global DP, in brief
e-DP-FC-BAI (Section 3). In Theorem 2, we prove that the sample complexity of e-DP-FC-BAI
depends on the minimum of two information-theoretic quantities one that depends on privacy, and the
other that originates from the classical sample complexity of non-private FC-BAI [KCG16]. The term
dependent on privacy depends on the privacy budget €, and a novel information-theoretic quantity,
referred to as the Total Variation Characteristic Time T, Ty, depends on the Total Variation (TV)
distance between the reward distributions in the bandit problem and corresponding most confusing
instance. The lower bound also indicates that, in a similar spirit as the regret minimisation with
e-global DP [AB22], there are two regimes of hardness for e-DP-FC-BALI. For lower level of privacy
(i.e. higher €), the sample complexity of e-DP-FC-BALI is identical to that of the non-private FC-BAL.
But for higher level of privacy (i.e. lower ¢), the sample complexity depends on € and T77;.

2. Algorithm design: Following the lower bounds, we aim to design an efficient e-DP-FC-BAI
algorithm that simultaneously achieves the lower bound order-optimally and is computationally
efficient (Section 4). Due to the superior empirical performance and computational efficiency of Top
Two algorithms, we design an e-DP variant of Top Two algorithms, named AdaP-TT. Specifically,
we show two simple design techniques, i.e. adaptive episodes for each arm and Laplacian mechanism,
if properly used, lead to AdaP-TT from the non-private TTUCB [JD22]. We further derive an
asymptotic (as 4 — 0) upper bound on the sample complexity of AdaP-TT (Theorem 5). In the
high-privacy regime, the sample complexity upper bound of AdaP-TT coincides with the lower bound
up to multiplicative constants. Thus, it is an order-optimal e-DP-FC-BAI algorithm in this regime,
whereas the looseness in the low-privacy regime is as same as the looseness of the non-private Top
Two algorithm. In Section 5, we experimentally show that AdaP-TT is more sample efficient than
the existing e-DP-FC-BAI algorithm, i.e. DP-SE [SS19]. We also show that its sample complexity is
independent of the privacy budget in the low-privacy regime, as already indicated by the lower bound.

3. Technical tools: (a) To derive the lower bound, we provide an e-global DP version of the
transportation lemma [KK13] (Lemma 1), which we prove using a sequential coupling argument.
We also define and study the TV characteristic time (77y) quantifying the hardness of FC-BAI in
high privacy regimes (Proposition 1). (b) To design the algorithm, we propose a generic wrapper,
which adapts the existing FC-BAI algorithm to tackle DP-FC-BAI. It builds on two components: (i)
Adaptive episodes with per-arm doubling and forgetting, (ii) A private GLR stopping rule obtained
by plugging in private empirical means in the non-private GLR stopping rule used of FC-BAI with
Gaussian distributions. To use this proposed wrapper, one can choose among the numerous existing
sampling rules to tackle FC-BAL. In this work, we consider the Top Two algorithms since they have
good theoretical guarantees and empirical performance. To provide the sample complexity upper
bound, we study step-by-step the effects of doubling, forgetting, and adding noise on the performance
of the algorithm. Building on [JDB22], we provide a generic analysis of the class of Top Two
algorithms when combined with our wrapper.

1.1 Related works

Lower bound. Efficient algorithm design in BAI literature is propelled by the derivation of lower
bounds on sample complexity. [KCG16] derive the first lower bounds for classical fixed-confidence
BAI setting without privacy, which is further improved in [GK16] by introducing KL characteristic
time 7Ty, (Corollary 1). Motivated by this, we prove the first-known lower bound on sample complexity
for FC-BAI with e-global DP (Theorem 2). The proof employs a similar sequential coupling argument
as in the regret lower bound for bandits with e-global DP [SS18, AB22]. This similarity is also
reflected in the existence of two privacy regimes depending on the privacy budget €. And for both
lower bounds, the Total Variation (TV) appears to be the information-theoretic measure that captures
the hardness in the high privacy regime. Specifically, the TV characteristic time (17, Corollary 1)
serves as the BAI counterpart to the TV-distinguishability gap (ti,¢) in the problem-dependent regret
lower bound for bandits with e-global DP as in [AB22, Theorem 3].



Algorithms for BAI with fixed confidence (FC-BAI). The optimal sample complexity for the
non-private FC-BAI problem (i.e., T ) is well-understood [GK16], and algorithms are proposed with
the aim to achieve this lower bound. Early approaches involved Successive Elimination (SE) based
algorithms [EDMMMO06] with uniform sampling to find the optimal arm. Inspired by the success of
Upper Confidence Bound (UCB) algorithms in the regret setting, the Lower Upper Confidence Bound
(LUCB) algorithm was proposed [GGL12]. However, neither SE nor LUCB algorithms achieve
asymptotic optimality. The Track-and-Stop (TnS) algorithm introduced in [GK16] was the first to
asymptotically achieve the exact optimal sample complexity 7g; . TnS attains asymptotic optimality
by solving a plug-in estimate of the lower bound optimization problem at each step. The game-based
approach presented in [DKM19] relaxes this requirement by casting the optimization problem as an
unknown game and proposing sampling rules based on iterative strategies to estimate and converge
to its saddle point. Finally, the Top Two algorithms arose as an identification strategy based on the
praised Thompson Sampling algorithm for regret minimization [Rus16]. In recent years, numerous
variants have been analyzed and shown to be asymptotically near optimal [JDBT22]. At every step, a
Top Two sampling rule selects the next arm to sample from among two candidate arms, a leader and
a challenger. In addition to their great empirical performance, and easy implementation compared to
TnS and Game-based algorithms, the Top Two algorithms achieve near asymptotic optimality. In
Sec. 4, we derive an e-global DP version of a Top Two algorithm: AdaP-TT.

e-DP BAI algorithms. DP-SE [SS19] is an e-global DP version of the Successive Elimination
algorithm. Although the algorithm was proposed and analysed for the regret minimisation setting
in [SS19], it is possible to derive a sample complexity from the analysis in [SS19]. We compare
in-depth DP-SE and AdaP-TT, both theoretically (Section 4) and experimentally (Section 5). In
both aspects, our proposed algorithm AdaP-TT outperforms DP-SE. Another adaptation of DP-SE,
namely DP-SEQ, is proposed in [KNSS21] for the problem of privately finding the arm with the
highest quantile at a fixed level. But this is a different setting of interest than the present paper.
[RBCS23] also studies privacy for BAI under fixed confidence but with multiple agents. They propose
and analyse the sample complexity of DP-MASE, a multi-agent version of DP-SE. They show that
multi-agent collaboration leads to better sample complexity than independent agents, even under
privacy constraints. While the multi-agent setting with federated learning allows tackling large-scale
clinical trials taking place at several locations simultaneously, we study the single-agent setting,
which is relevant for many small-scale clinical trials (see Example 1).

2 Differential privacy and best arm identification

Background: Differential Privacy (DP). DP ensures protection of an individual’s sensitive infor-
mation when her data is used for analysis. A randomised algorithm satisfies DP if the output of the
algorithm stays almost the same, regardless of whether any single individual’s data is included in or
excluded from the input. This is achieved by adding controlled noise to the algorithm’s output.

Definition 1 ((¢, §)-DP [DR14]). A randomised algorithm A satisfies (e, §)-Differential Privacy (DP)
if for any two neighbouring datasets D and D’ that differ only in one entry, i.e. dpy,(D, D) =1,
and for all sets of output O C Range(.A),

Pr[A(D) € O] < e Pr[A(D') € O] + 4, (1)
where the probability space is over the coin flips of the mechanism A, and for some (€,0) €

RZ0 x R2Y, If § = 0, we say that A satisfies e-DP. A lower privacy budget € implies higher privacy.

The Laplace mechanism [DNPR10, DR14] ensures e-DP by injecting controlled random noise into
the output of the algorithm, which is sampled from a calibrated Laplace distribution (as specified in
Theorem 1). We use Lap(b) to denote the Laplace distribution with mean 0 and variance 2b%.

Theorem 1 (e-DP of Laplace mechanism (Theorem 3.6, [DR14])). Let us consider an algorithm

[ X — R with sensitivity s(f) = max |f(D) — f(D')|1. Here, ||-||, is the L,
D;D/ s.t |D_D/|Hanxtx1ixxg:1

norm on R%. If d noise samples {Ni}?zl are generated independently from Lap <@) then the
output injected with the noise, i.e. f(D)+ [N1,..., Ny|, satisfies e-DP.

Background: BAI with fixed confidence. Now, we describe the canonical best-arm identification
problem with fixed confidence (FC-BAI). BAl is a variant of pure exploration, where the goal is to



Algorithm 1 Sequential interaction between a BAI strategy and users

1: Input: A BAI strategy m = (S, Rec;);>1 and Users {u; };>1 represented by the table d
2: Output: A stopping time 7, a sequence of samples actions a” = (ay,...,a,) and a recommen-
dation a satisfying e-global DP

3: fort=1,... do
4: 7 recommends action a; ~ S¢(. | a1,71,...,at-1,7¢-1)
5: if a; = T then
6: Halt. Return 7 = ¢ and & ~ Recy(. | a1,71, ..., at—1,71—1)
7: else
8: us sends the sensitive reward r; £ gt,at tom
9: end if
10: end for

identify the optimal arm. In FC-BALI, the learner is provided with a confidence level 1 — § € (0,1) !
Learner aims to recommend an arm that is optimal with probability at least 1 — &, while using as few
samples as possible. To achieve this, the learner defines a FC-BAI strategy to interact with the bandit
instance v = {v, : a € [K]}. We denote the action played at step ¢ by a;, and the corresponding
observed reward by r; ~ v,,. H¢ = (a1,71,. .., as, 1) is the history of actions played and rewards
collected until time ¢. We augment the action set by a stopping action T, and write a; = T to denote
that the algorithm has stopped before step ¢. A FC-BAI strategy 7 is composed of

i. A pair of sampling and stopping rules (S; : ;1 — P([|1, K|]U{T})),-,. For an action a €
[K], S¢ (a | Hs_1) denotes the probability of playing action a given history H;_;. On the other
hand, S; (T | H;—1) is the probability of the algorithm halting given H;_;. For any history H;_1, a
consistent sampling and stopping rule S; satisfies S; (T | H;—1) = 1 if T has been played before ¢.
ii. A recommendation rule (Rec; : H; 1 — P([|1, K[])),»,- A recommendation rule dictates
Recy (a | Hi—1), i.e. the probability of returning action « as a guess for the best action given H;_;.

We denote by 7 the stopping time of the algorithm, i.e. the first step ¢ demonstrating a; = T. A
BALI strategy 7 is called d-correct for a class of bandit instances M, if for every instance v € M,
7 recommends the optimal action a*(v) = arg max, (k] Le With probability at least 1 — é, i.e.

B, (7 < 00,3 = a*(v)) > 1 — .

FC-BAI with e-global DP (¢-DP-FC-BAI). Now, we formally define e-global DP for FC-BAI, where
the BAI strategy (a.k.a. the centralised decision maker) is trusted with all the intermediate rewards.
We represent each user u; by the vector x; £ (@1, TeK) € R¥, where Ty,q Tepresents the

potential reward observed, if action a was recommended to user u;. Due to the bandit feedback,
only ry = x4, ~ Vg, is observed at step . We use an underline to denote any sequence. Thus, we
denote the sequence of sampled actions until 7" as a” = (a1, ..., ar). We further represent a set of
users {u;}/_, until T by the table of potential rewards d* £ {x;,...,x7} € (R¥)T. First, we
observe that d” is the sensitive input generated through interaction with the users, and (a”, @, T') is
the output of the BAI strategy. Hence, we define the probability that the BAI strategy 7 samples the
action sequence a”, recommends the action @, and halts at time 7', as

T
m(a”,a,T | d") £ Recryr (@ | Hr) St (T | He) [] Se(ar | Hior) 2

t=1
where 1" users under interaction are represented by the table of potential rewards d’

Thus, a BAI strategy satisfies e-global DP if the probability defined in Eq. (2) is similar when the
BALI strategy interacts with two neighbouring tables of rewards differing by a user (i.e. a row in d’).
Definition 2 (e-global DP for BAI). A BAI strategy satisfies e-global DP, if for all T > 1, all

neighbouring table of rewards d* and d’ T, i.e. dgam (dT, d T) =1, all sequences of sampled actions
a” € [K|T and recommended actions a € [K| we have that

md”,a,T|d") < en(d”,a,T|d").

'We remind not to confuse risk level § with the § of (¢, §)-DP. Hereafter, we consider e-global DP as the
privacy definition, and § always represents the risk (or probability of mistake) of the BAI strategy.



Definition 2 can be seen as a BAI counterpart of the e-global DP definition proposed in [AB22] for
regret minimization. We demonstrate the BAI strategy-Users interaction in Algorithm 1.

Remark 1. It is possible to consider that the output of a BAI strategy is only the final recommended
action 4, i.e. not publishing the intermediate actions . This gives a weaker definition of privacy
compared to Definition 2, since the latter defends against adversaries that may look inside the
execution of the BAI strategy, i.e. pan-privacy [DNP'10]. In addition, Definition 2 is needed in
practice. For example, in the case of dose-finding (Example 1), the experimental protocol, i.e. the
intermediate actions, needs to be published too.

The goal in e-DP-FC-BAI is to design a §-correct e-global DP algorithm, with 7 as small as possible.

3 Lower bound on sample complexity for FC-BAI with ¢-global DP

The central question that we address in this section is
How many additional samples a BAI strategy must select for ensuring e-global DP?

In response, we prove a lower bound on the sample complexity of any d-correct e-DP BAI strategy.
Our lower bound features problem-dependent characteristic times reminiscent of the FC-BAI setting.

Letv £ {v, : a € [K]} be abandit instance, consisting of K arms with finite means { /14 }oe (- Now,
we define the set of alternative instances as Alt(v) = {X : a*(\) # a*(v)}, i.e. the bandit instances
with a different optimal arm than v. For two probability distributions P, Q on the same measurable
space (2, F), the Total Variation (TV) distance is defined as TV (P || Q) £ sup 4 #{P(A) —Q(A)},

while the KL divergence (or relative entropy) is KL (P || Q) £ [log (g—g(w)) dP(w), when P <« Q,
and oo otherwise. We denote the probability simplex by ¥z = {w € [0,1]% : ZaKzl we = 1}.

First, we derive an e-global DP variant of the ‘transportation’ lemma, i.e. Lemma 1 in [KCG16].

Lemma 1 (Transportation lemma under e-global DP). Let § € (0, 1) and € > 0. Let v be a bandit
instance and A € Alt(v). For any 0-correct e-global DP BAI strategy, we have that

K
66> Eur [Na(7)] TV (va || Aa) > KI(1 - 6,6),
a=1

where k(1 — 6,6) = zlog & + (1-— x)logi:—z forz,y € (0,1).

Proof sketch. We use Sequential Karwa-Vadhan Lemma [AB22, Lemma 2] with a data-processing
inequality in the BAI canonical model. Extra care is needed to deal with the stopping times in the
coupling, compared to a fixed horizon T in regret minimization. The proof is deferred to Appendix B.

Leveraging Lemma 1, we derive a sample complexity lower bound for any e-DP-FC-BAI strategy.

Theorem 2 (Sample complexity lower bound for e-DP-FC-BAI). Let ¢ € (0,1) and € > 0. For any
d-correct e-global DP BAI strategy, we have that

Eu[7] = T* (vi€) log(1/3), 3)

where (T* (v;€))"' £ sup  inf min (Zle wWo KL (Vg || Aa) , 6€ 25:1 wa TV (vg || )\a)>.
wesx AEAlL (V)

Comments on the lower bound. Similar to the lower bound for the non-private BAI [GK16], the
lower bound of Theorem 2 is the value of a two-player zero-sum game between a MIN player and
MAX player. MIN plays an alternative instance A close to v in order to confuse MAX. The latter
plays an allocation w € Yk to explore the different arms, with the purpose of maximising the
divergence between v and the confusing instance A that MIN played. On top of the KL divergence
present in the non-private lower bound, our bound features the TV distance that appears naturally
when incorporating the e-global DP constraint. The proof is deferred to Appendix B. In order to
compare the lower bound of an e-global BAI strategy with the non-private lower bound of [GK16],
we relax Theorem 2 to further derive a simpler bound, as in Corollary 1.

Corollary 1. For any §-correct e-global DP BAI strategy, we have that

E,[r] > max <TI’§L(1/)7 61€va(1/)> log(1/34),

where (T (v)) " £ SUp,ex . infacaw) Zle wald(Va, Ny, and d is either KL or TV.

6



Proof. The proof is direct by observing that T* (v;€) > T (v) and T* (v5€) > £ Tk, (v). O

Comparison with the non-private lower bound. T is the characteristic time in the non-private
lower bound [GK16], and we refer to Section 2.2 of [GK16] for a detailed discussion on its properties.
The sample complexity lower bound suggests the existence of two hardness regimes depending on e,
Ty, and Tr. (1) Low-privacy regime: When € > Ty, /(6T (v)), the lower bound retrieves the

non-private lower bound, i.e. T (v), and thus, privacy can be achieved for free. (2) High-privacy
regime: When e < T, (v)/(6T%.(v)), the lower bound becomes T,/ (6¢) and e-global DP §-BAI
requires more samples than non-private ones.

In the following proposition, we characterise 17, for Bernoulli instances.

Proposition 1 (TV characteristic time for Bernoulli instances). Let v be a bandit instance, i.e. such
that v, = Bernoulli(ji) and piy > pio > -+ > pg. Let Ag 2 juy — g and Ay = ming21 Ag.

We have that K
. 1 1 1 K
Tiv(v) = A + A and A S A
min a:2 a min min

Proof sketch. The proof is direct by solving the optimisation problem defining 777+, and using that
TV (Bernoulli(p) || Bernoulli(g)) = |p — ¢|. We refer to Appendix B for details.

Comment. The aforementioned bound on TV characteristic time for Bernoulli instances is e-global
DP parallel of the KL-characteristic time bound 7§, (v) < Ef;l A;? [GKI16]. Using Pinsker’s
inequality, one can connect the TV and KL characteristic times by T, (v) > /2T, (v).

4 Algorithm design: Private Top Two with adaptive episodes (AdaP-TT)

In this section, we propose AdaP-TT, an e-global DP version of the TTUCB algorithm [JD22]. We
show that AdaP-TT satisfies e-global DP, is §-correct, and has an asymptotic sample complexity that
matches the high privacy lower bounds up to multiplicative constants.

TTUCB belongs to the family of Top Two algorithms [Rus16, SHM*20, JDB*22], which selects
at each time two arms called leader and challenger, and sample among them. After initialisation,
TTUCB uses a UCB-based leader and a Transportation Cost (TC) challenger, expressed by

~ . ,an B, — ﬂn a
B,, = argmax{fin,q + 1/6log(n)/Ny .}, and C, = argmin = ! .
e e " ez, /1/Nup, +1/Npa
Here, (fi,,, Ny,) are the empirical means and counts on the whole history. The theoretical motivation
behind the TC challenger comes from the theoretical lower bound in FC-BAI, which involves the
KL-characteristic time Ty, (pt) = minge (0,1) Ty, 5(#). For Gaussian distributions, we have

* —1 (:ua* - Ua)z
Wi p(p) ™ = Jmax  me—— - ISy
The maximiser of the above equation is denoted by wiy, 4 (p), and is further referred to as the
B-optimal allocation as it is unique. Let N7, denote the number of times arm b was pulled when a
was the leader, and L,, , denotes the number of times arm a was the leader. In order to select the next
arm to sample I,,, TTUCB relies on K tracking procedures, i.e. set I,, = B,, if Nf B, < BLpt1,B,,

else I,, = C,,. This ensures that maX,e K] n>K |Nﬁ_ya — BLy.q| < 1. Standing on this premise, we
now describe how we design an e-global DP extension of TTUCB.

and TﬁL,1/2(H) < 2T (1) ,

Private algorithm design. As illustrated in Algorithm 2, AdaP-TT relies on three ingredients:
adaptive episodes with doubling, forgetting, and adding calibrated Laplacian noise. (1) AdaP-TT
maintains K episodes, i.e. one per arm. The private empirical estimate of the mean of an arm is
only updated at the end of an episode, that means when the number of times that a particular arm
was played doubles (Line 5). (2) For each arm a, AdaP-TT forgets rewards from previous phases
of arm a, i.e. the private empirical estimate of arm a is only computed using the rewards collected
in the last phase of arm a (Line 8). This assures that the means of each arm are estimated using
a non-overlapping sequence of rewards. (3) Thanks to this doubling and forgetting, AdaP-TT is
e-global DP as soon as each empirical mean (Line 9) is made e-DP, and thus, avoiding any use
of privacy composition. This is achieved by adding Laplace noise. We formalise this intuition in
Lemma 2 of Appendix C.



Remark 2. The aforementioned generic wrapper can be used to construct a near-optimal differ-
entially private version of any existing FC-BAI algorithm that deploys a sampling rule with the
empirical means of rewards. In this work, we consider and rigorously analyse the Top Two algorithms
since they demonstrate both good theoretical guarantees and empirical performance.

Theorem 3 (Privacy analysis). For rewards in [0, 1], AdaP-TT satisfies e-global DP.

Proof sketch. A change in one user only affects the empirical mean calculated at one episode of
an arm, which is made private using the Laplace Mechanism and Lemma 2. Since the sampled
actions, recommended action, and stopping time are computed only using the private empirical means,
AdaP-TT satisfies e-global DP thanks to post-processing lemma. We refer to Appendix C for details.

Private GLR stopping rule. We consider the private GLR stopping rule based on the private means
and on the pulling counts from the last phase (Line 12), and recommend the arm with the highest
private mean (Line 11). Lemma 4 yields a threshold function ensuring that any sampling rule is
d-correct, when using the private GLR stopping rule.

Theorem 4 (d-correctness). Let § € (0,1), € > 0. Let s > 1 and ( be the Riemann ( function. Let
cx(ny,m,d) = 2Cq(log((K —1)¢(s)k*/8)/2) +21og(4+logn) 4+ 2log(4+log m) be the threshold
without privacy. Given any sampling rule, the following threshold

1 2KESC(s)\> 1 2KESC(s)\
Ce, k1 k2 (Tl, m, 5) = QCklkz (n7 m, 5/2) + @ IOg ((5 + W 10g T @

with the GLR stopping rule yields a §-correct algorithm for sub-Gaussian distributions. The function
Cq is defined in (15). It satisfies Cq(x) = x + In(z).

Remark. We observe that approximately cc x, k,(n,m,d) ~ 21og(1/8)+(1/n+1/m)log(1/8)? /€.

Proof sketch. Proving d-correctness of a GLR stopping rule is done by leveraging concentration
results. Specifically, we start by decomposing the failure probability P, (75 < 4+00,d # a*) into a
non-private and a private part using the basic property of P(X +Y > a+b) < P(X > a)+P(Y > b).
The two-factor in front of ¢y, i, originates from the looseness of this decomposition. To remove it, we
would need a tighter stopping threshold that jointly controls both the non-private and the private parts.
We conclude using concentration results from sub-Gaussian random variables for the non-private
part, and Laplace random variables for the private part.

Theorem 5 (Asymptotic upper bound on expected sample complexity). Let (§,3) € (0,1)? and

€ > 0. Combined with the private GLR stopping rule using threshold as in (4), AdaP-TT is §-correct
and satisfies that, for all ;i € RY such that mingzp |fta — o] > 0,

E,.[75] A2,
li 7<4T 1 14+ === .
S Togt1jg) = sk >( TV Re )

Proof sketch. We adapt the asymptotic proof of the TTUCB algorithm, which is based on the unified
analysis of Top Two algorithms from [JDBT22]. Below, we present high-level ideas of the proof and
specify the effect of different elements of AdaP-TT on the expected sample complexity.

Consequences of Theorem 5. (1) The non-private TTUCB algorithm [JD22] achieves a sample
complexity of Ti¢; 4 () for sub-Gaussian random variables. The proof relies on showing that the
empirical pulling counts are converging towards the S-optimal allocation wiy, 4 (p). (2) The effect
of doubling and forgetting is a multiplicative four-factor, i.e. 47%; B(“’)' The first two-factor is
due to forgetting since we throw away half of the samples. The second two-factor is due to doubling
since we have to wait for the end of an episode to evaluate the stopping condition. (3) The Laplace
noise only affects the empirical estimate of the mean. Since the Laplace noise has no bias and a
sub-exponential tail, the private means will still converge towards their true values. Therefore, the
empirical counts of AdaP-TT will also converge to wi, 4 (p) asymptotically. (4) While the Laplace
noise has little effect on the sampling rule itself, it changes drastically the dependency in log(1/4)
of the threshold used in the GLR stopping rule. The private threshold c. 1, , has an extra factor
O(log?(1/6)) compared to the non—private one c. Using the convergence towards wiy, 5(p), the

stopping condition is met as soon as e ( 5 < < 2log(1/6) + ‘“a" T 5(“) log?(1/4). Solving the

inequality for n concludes the proof Wh11e adding a multlphcatlve four—factor.



Algorithm 2 AdaP-TT. Private statistics are in red. Changes due to privacy are in blue.

I: Input: 3 € (0,1), risk d € (0,1), privacy budget e, thresholds c. x, x, : N? x (0,1) — RT
2: Output: Recommendation & and Stopping time 7 satisfying e-global DP

3: Inmitialization: Va € [K], pull arm a, set k, = 1, Ti(a) = K+ 1, L, = 0, N, o = 1,
n=K+1.

4: forn > K do

5: if there exists a € [K] such that N,, , > 2N7, (4),o then > Per-arm doubling

6: Change phase k, < kq + 1 for this arm a

7: Set Ty, (@) = nand N, .o = N1, (a),0 — N1y, _1(a)a > Pulls of a in its last phase

8: Set fig, .0 = Nk_ala ESQ‘IT(:)QI(&) X:1{Is; =a} > Empirical mean of a in its last phase

9: Set fik, 0 = fky,a + Yi,,o Where Yy o ~ Lap((e]\ﬁma)_l) > Make it private

10: end if

11: Set an, = arg maxXyeg [k, b > Arm with highest private mean
) . (Brg, an *ﬂkh,b)2 ~ ~ R

12: if e an ¥ 1/ Ny > 2¢c ko, ko (Nka in> Niy,b, 0) for all b # a,, then

13: return (a,,, n) > If GLR stopping condition is met, recommend the empirical best arm

14: end if

15: Set B, = arg max,¢ g {/ik, o + \/ ka/Ni, o+ ka/(€Nk, o)} > Private UCB leader
. - . Akp, Bn~Hkq.a .

16: Set €, = argmin, VUNe o N > Private TC challenger

17: Setl, = B, if N} < BLni1p,.else I, = Cy > Tracking

18: Pull I,, and observe X,, ~ vy,

19:  SetNnyi7, < Npg, +1, N2

i1, < Nf?n+1 and L,,+1,B, < Ln B, +1. Setn < n+1
20: end for

Discussion. For 8 = 1/2, it is well known that T¢%; | (k) < 273, (1) < 837, 4, A2 We
consider Bernoulli instances (0 < Apin < Apax < 1), where the gaps have the same order of
magnitude, i.e. Condition I: there exists a constant C' > 1 such that A,ax/Amin < C. For such
instances, there exists a universal constant ¢, such that

E
limsup”[m]) < ¢ max {TfQLyl/Q(u),Ce_l Z o A;l} .

Without privacy, i.e. € = 400, AdaP-TT yields a multiplicative eight-factor. On top of the four-factor
due to doubling and forgetting, another multiplicative two comes from 2cy, 1., in Equation (4).

Comparison to the lower bound. For Bernoulli bandits verifying Condition 1, the upper bound of
Theorem 5 matches the T7y, (pt)/€ lower bound of Corollary 1 up to constants in the high-privacy
regime, i.e. when € = T, () /T%. (1t). In the low-privacy regime, the upper bound reduces to
TﬁLJ /2 (p). In Appendix E.7, we discuss in-depth why this difference is necessary for private BAI
algorithms based on the GLR stopping rule, which poses an interesting open problem.

Comparison to DP-SE. DP-SE is a private version of the successive-elimination algorithm studied
in [SS19] for the regret minimisation setting. The algorithm samples active arms uniformly during
phases of geometrically increasing length. Based on the private confidence bounds, DP-SE eliminates
provably sub-optimal arms at the end of each phase. Due to its phased-elimination structure, DP-SE
can be easily converted into an e-DP-FC-BAI algorithm, where we stop once there is only one active
arm left. In particular, the proof of Theorem 4.3 of [SS19] shows that with high probability any sub-
optimal arm a # a* is sampled no more than O(A2 + (eA,)~1). From this result, it is straightforward
to extract a sample complexity upper bound for DP-SE, i.e. O(3_, - A2+ > atar (eAy)™h).
This shows that DP-SE too achieves (ignoring constants) the high-privacy lower bound T+, () /€ for
Bernoulli instances. However, due to its uniform sampling within the phases, DP-SE is less adaptive
than AdaP-TT. Inside a phase, DP-SE continues to sample arms that might already be known to be
bad, while AdaP-TT adapts its sampling rule based on the transportation costs that reflect the amount
of evidence collected in favour of the hypothesis that the leader is the best arm. Finally, AdaP-TT
has the advantage of being anytime, i.e. its sampling strategy does not depend on the risk §.
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Figure 1: Evolution of the stopping time 7 (mean + std. over 100 runs) of AdaP-TT, DP-SE, and
TTUCB with respect to the privacy budget ¢ for § = 1072 on Bernoulli instance p; (left) and o
(right). The shaded vertical line separates the two privacy regimes. AdaP-TT outperforms DP-SE.

5 Experimental analysis

We perform experiments to show that: (i) AdaP-TT has better empirical performance compared to
DP-SE, and (ii) the transition between high and low-privacy regimes is reflected empirically.

Experimental setup. We compare the performances of AdaP-UCB and DP-SE for FC-BAI in
different Bernoulli instances as in [SS19]. The first instance has means 11 = (0.95,0.9,0.9,0.9,0.5)
and the second instance has means po = (0.75,0.7,0.7,0.7,0.7). As a benchmark, we also compare
to the non-private TTUCB. We set the risk § = 10~2. We implement all the algorithms in Python
(version 3.8) and on an 8-core 64-bits Intel i5@1.6 GHz CPU. We run each algorithm 100 times, and
plot corresponding average and standard deviations of stopping times in Figure 1. We also test the
algorithms on other Bernoulli instances and report the results in Appendix F.

Result analysis. a. Efficiency in performance. AdaP-TT requires less samples than DP-SE to provide
a §-correct answer. In the high privacy regime, i.e. small ¢, AdaP-TT outperforms DP-SE in all the
instances tested. In the low privacy regimes, i.e. large €, both algorithms have similar performance
that in the worst case is four times the samples required of TTUCB, as shown theoretically.

b. Impact of privacy regimes. As indicated by the theoretical sample complexity lower bounds and
upper bounds, the experimental performance of AdaP-TT demonstrates two regimes: a high-privacy
regime (for ¢ < 0.2), where the stopping time of AdaP-TT depends on the privacy budget €, and a
low privacy regime (for € > 0.2), where the performance of AdaP-TT does not depend on e.

6 Conclusion and future works

We study FC-BAI with e-global DP. We derive a sample complexity lower bound that quantifies the
additional samples needed by a d-correct BAI strategy in order to ensure e-global DP. The lower
bound further suggests the existence of two privacy regimes. In the low-privacy regime, no additional
samples are needed, and privacy can be achieved for free. For the high-privacy regime, the lower
bound reduces to Q(e T4, ), and more samples are required. We also propose AdaP-TT, an e-global
DP variant of the Top Two algorithms, that runs in adaptive phases and adds Laplace noise. AdaP-TT
achieves the high privacy regime lower bound up to multiplicative constants.

The upper bound matches the lower bound by a multiplicative constant in the high privacy regime,
and is also loose in some instances in the low privacy regime, due to the mismatch between the
KL divergence of Bernoulli distributions and that of Gaussian. It would be an interesting technical
challenge to merge this gap. One possible direction to solve this issue is to use transportation costs
tailored to Bernoulli for both the Top Two Sampling and the stopping. Another interesting direction
would be to extend the proposed technique to other variants of pure DP, namely (e, §)-DP and Rényi-
DP [Mirl7], or other trust models, namely local DP [DJW13] and shuffle DP [Che21, GDD*21].
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A Outline

The appendices are organized as follows:

* The proof of our lower bound is detailed in Appendix B (Theorem 2).
* The proof of the privacy of AdaP-TT is done in Appendix C (Theorem 3).

* The AdaP-TT algorithm is presented in more details in Appendix D, and we show the
d-correctness of the non-private GLR stopping rule (Theorem 4).

* The asymptotic upper bound on the expected sample complexity of AdaP-TT is proven in
Appendix E (Theorem 5).

* Extended experiments are presented in Appendix F.

B Lower bounds on sample complexity

In this section, we provide the proofs for the sample complexity lower bounds. First, we present the
canonical model for BAI to introduce the relevant quantities. Then, we prove an e-global version of
the transportation lemma, i.e. Lemma 1. Using this lemma, we prove Theorem 2. Finally, we prove
the formula expressing the TV characteristic time for Bernoulli instances.

B.1 Canonical model for BAI

Let v £ {v, : a € [K]} be a bandit instance, consisting of K arms with finite means {/tq }ae(s)-
Now, we recall the interaction between a BAI strategy 7 and the bandit instance v in the Protocol 1.

The BAI strategy = halts at 7, samples a sequence of actions A", and recommends the action A. Let

P, be the probability distribution over the triplets (7, A™, A), when the BAI strategy 7 interacts
with the bandit instance v.

For a fixed T > 1, a sequence of actions a’ = (ay,...,ar) € [K]T and a recommendation a € [K],
we define the event E = {7 = T, A” = a”, A = a}. We have that

T
P, .(E) = / n(a”,a,T | ) [ ] dva, (r)dr,
7 rT=(ry,...,rr)ERT 4

t=1

where
T
m(a”,a,T | r") £ Recry (@ | Hr) Sraa (T | He) [ St (ar | Hizr)
t=1

and H; = (al,rl,...,at,n).

Remark on the bandit feedback. Let 7 be an e-DP BAI strategy. Let 7' > 1, a” € [K]T a sequence
sampled actions and @ € [K] a recommended actions. This time, let 77 = {ry,...,rr} € RT and

T € R” two neighbouring sequence of rewards, i.e. dyam(r?, ") 2 S A {r; # 7} = 1.
T

Consider the table of rewards ng consisting of concatenating r” colon-wise K times, i.e. dgi =71y
foralli € [K]andall ¢ € [T] . Define d’" similarly with respect to /" .
In this case, by definition of 7, dT and d’ T, it is direct that
(. a,T | r") ==n(a”,a,T | d")
and dyam (d7,d'") = 1.
Which means that

m(@”a, T |r7) < en(a”,a, T | ).

In other words, if 7 is e-pure DP for neighbouring table of rewards d”, then = is also e-pure DP for
neighbouring sequence of observed rewards ™.
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B.2 Transportation lemma under ¢-global DP: Proof of Lemma 1
Lemma 1 (Transportation lemma under e-global DP). Let d € (0,1) and € > 0. Let v be a bandit
instance and \ € Alt(v). For any d-correct e-global DP BAI strategy, we have that
GGZE” (D] TV (va || Aa) > KI(1 = 6,0),
where Kl(z,y) £ zlog £ + (1 —x) log =2 . Jorz,y € (0,1).
Proof. Step 1: Distinguishability due to j-correctness. Let 7 be a §-correct e-global DP BAI

strategy. Let v be a bandit instance and A € Alt(v).

Let P, . denote the probability distribution of (A, E, 7) when the BAI strategy 7 interacts with v.
For any alternative instance A € Alt(v), the data-processing inequality gives that

KL (Py x| Par) 2 Kl (Pur (A= a"(0)) ,Pas (A= a"(v)))
> kl(1 —6,9). Q)
where the second inequality is because 7 is d-correct i.e. P, (A = a*(u)) > 1— 6 and
Pxr» (ﬁ = a*(u)) < 4, and the monotonicity of the kl.

Step 2: Connecting KL and TV under e-global DP. On the other hand, by the definition of the KL,
we have that

P,.(T,A", A
KL(Pur [ Par) =E, 4+ dop, . [log <(A)>

PA,W (T7 ATv )

where

T
Pu’ﬂ,(T:T’AT:QT“A:&):/ ’R’(QT7a,T|£)deat(Tt).
reRT t—

Since T is e-global DP, using the sequential Karwa-Vadhan lemma [AB22, Lemma 2], we get that

—GeZN VIV (vg || Aa)

Which gives that
K
KL (P M||1PM)<661EM[ZN TV(ua|A)] (©6)
a=1
Combining Inequalities 5 and 6 concludes the proof. O

B.3 Lower bound on sample complexity: Proof of Theorem 2

Theorem 2 (Sample complexity lower bound for e-DP-FC-BAI). Let ¢ € (0,1) and € > 0. For any
d-correct e-global DP BAI strategy, we have that

E 7] > T* (v;€)log(1/30),

where (T* (v;€))"' 2 sup  inf min (Zle woKL (v || Aa) , 6€ Zle wo TV (g || )\a)>.
wes i AEALL(v)
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Proof. Let 7 be a d-correct e-global DP BAI strategy. Let v be a bandit instance and A € Alt(v).
Let E denote the expectation under P, , ie E £ Ey x.
By Lemma 1, we have that 6 >. | [N, (7)] TV (va || Xa) > KI(1 — 6, 6).

Lemma 1 from [KCG16] gives that Zle E [Ny (7)] KL (v, || Aa) = kI(1 = 4, 6).
Since these two inequalities hold for all A € Alt(v), we get

K K
kl(1-46,4) < 1nf HllIl ( Z TV (v || Aa) ,ZE )KL (vg || A )>
a=1 a=1
K K
@ : E[Na(r
< 7] Aeiﬁf mm< z:: TV (Va || Aa) ,azl Bl ElNa(n)] ), (Vo || A ))

(®) K K
< E[r] | su inf  min | 66 Y w,TV (Vg || Aa) s wo KL (v || A
- [ ] <w€§}( AEAIt(v) ( Z I ; [ )))

a=1

(a) is due to the fact that E[7] does not depend on A. (b) is obtained by noting that the vector
(wa)ae[K] 2 (M>a€[K] belongs to the simplex X .

Ey, [7]
The theorem follows by noting that for § € (0,1),kl(1 — 4,d) > log(1/36). O
B.4 TV characteristic time for Bernoulli instances: Proof of Proposition 1
Proposition 1 (TV characteristic time for Bernoulli instances). Let v be a bandit instance, i.e. such
that v, = Bernoulli(p,) and py > pp > -+ > pg. Let Ag 2 i1 — g and A,y = ming£1 Ag.
We have that

1 1 1 K
Tivv) = —+)  — and < Tiy(v) < —.

Proof. Step 1: Let v be a bandit instance, i.e. such that v, £ Bernoulli(,) and i > pp > -+ >
MK -

For the alternative bandit instance A, we refer to the mean of arm a as p,, i.e. A4 £ Bernoulli(pg).
By the definition of 77y, we have that

K

T e f TV (va || A
(TGiv@)™ = sup Aegﬁ(u)zw (Va || Aa)

(a)
sup min mf wl |1 — p1| + Wa [ta — pal
wWEX K a#l Aipg>

© sup minmin(w,w,)Aq
wWEX K a#l

© sup wi minmin(l,ﬁ)Aa

WEX a#l w1

(i) sup mina#l YGa (xa>

(z2,...,xx)ERT)E-1 l+ao+ - +aK ’

where g, (7,) = min(1,z,)A,.

Equality (a) is obtained due to the fact that Alt(v) = U, {A : pa > p1}, and for Bernoullis,
TV (va || Aa) = |tta — pal-

Equality (b) is true, since infx.p, >, w1 |1 — p1| + Wa |ta — pa| = min(wr,we)A,.
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Equality (c) holds true, since wy # 1 (if w; = 0, the value of the objective is 0).
Equality (d) is obtained by the change of variable z, = Zj—j
Step 2: Let (z2,...,2x) € (RT)E~1. By the definition of g,, we have that

Ja(xa) < x,A, and  gu(z,) < A,

This leads to the inequalities

min gq(z4) < ga(za) < A, and  min g, (z,) < Apin
a#l a#1l

Thus,
K . K .
. 1 1 _ MINg£1 Ga (xa) MiNg#£1 Ja (xa)
(12‘2?11 Ja (xa)> <Amin + ; Aa) B Amin N (;2 Aa
K
<1+ Z Ty .
a=2
This means that for every (zs,...,2x) € (RT)E-1,
ming21 go(z4) < 1
... = K
1 + T2 + + TK Almin + Za:Q Ala
Here, the upper bound is achievable for x}; = %, since gq(x)) = A forall a # 1.
This concludes that
1 W
-1
(Tivw) =V = (Itv(v)) = Amin + Z N
A T 2a=2 A, a=2 ¢

Step 3: The lower and upper bounds on (T (v)) follow from the fact that = > 0 for all a, and

A%l < ﬁferalla;«él.

Hence, we conclude the proof. O

B.5 On the total variation distance and the hardness of privacy

Our lower bound suggests that the hardness of the DP-FC-BAI problem is characterized by T/,
which is a total variation counterpart of the classic KL-based characteristic time 1%, in FC-
BAI [GK16]. The total variation distance appears to be the natural measure to quantify the hardness
of privacy in other settings such as regret minimization [AB22], Karwa-Vadhan lemma [KV17] and
Differentially Private Assouad, Fano, and Le Cam [ASZ21]. The high-level intuition is that: Pure DP
can be seen as a multiplicative stability constraint of e® when one data point changes. With group
privacy, if two datasets differ in dj,,,, points, then one incurs a factor e?rem €, Now, by sampling n
i.i.d points from a distribution P and n i.i.d points from a distribution ), the Karwa-Vadhan lemma
states that the incurred factor is e(*”V(P@) € This is proved by building a maximal coupling, which
is the coupling that minimizes the Hamming distance in expectation. In brief, the total variation natu-
rally appears in lower bounds since it is the quantity that characterises the hardness of the optimal
transport problem minimizing the hamming distance, i.e TV (P,Q) = inf x y)~(p,q) E(1x2y).
However, it is possible that the problem can be characterized by other f-divergences. Finally, one can
always go from TV to KL using Pinsker’s inequality, though that would always be less tight than the
TV-based lower bound.

On the relation between 777, and T ; A direct application of Pinsker’s inequality gives that
T% (v) > +/2T%  (v). For completeness, we present here the exact calculations:
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For every alternative mean parameter A and every arm a, using Pinkser’s inequality, we have that

drv (e, Aa) < 4/ %d kL (lta, Aa ). Therefore, for every allocation over arms w, we have

1 1
;wadTV(Mav )‘a) S ;wa\/QdKL(Maa )‘a) S \/2 ;wadKLOMM )\a) -

Taking the supremum over the simplex and the infimum over the set of alternative mean parameters
yields (T3, (v)) ™' < 1/ 5 (T5% ;. (v))~'. This concludes the proof.

C Privacy analysis

In this section, we prove that AdaP-TT satisfies e-DP. We first provide the privacy lemma that
justifies using doubling and forgetting in AdaP-TT. Using the privacy lemma and the post-processing
property of DP, we conclude the privacy analysis of AdaP-TT.

C.1 Privacy lemma for non-overlapping sequences

Lemma 2 (Privacy of non-overlapping sequence of empirical means). Let M be a mechanism that
takes a set as input and outputs the private empirical mean, i.e.

M({ri,...,rj})zﬁtz:;rﬂrmp ((J_Z)e> 7

Let{ < Tandty,...te,te41 bein[1,T] suchthatl =t1 < - <ty <tgy1—1=T.
Let’s define the following mechanism

14
G:{ri,rry = QM) ®)
i=1
In other words, G is the mechanism we get by applying M to the non-overlapping partition of the
sequence {ry,...,rr} according tot; < --- <ty < tps1, i.e.
1
r | 1231
|
rr e

where pi; ~ My,

Forry € [0,1], the mechanism G is e-DP.

Proof. LetrT £ (r1,...,rp) and r'T £ (r{,...,r}) be two neighbouring reward sequences in

[0,1]. This implies that 35 € [1, 7] such that r; # 7’ and V¢ # j, 1y = r}.
Let ¢’ be such that tp < j < tpr1q — 1, and follows the convention that tg = 1 and tg4 1 = T + 1.

Let 1 2 (p1,. .., jue) a fixed sequence of outcomes. Then,

PG =) P (MU 1)) = )
P(GrT)=pn) p (M({rte,7...,rtz,+l,1}) _ /w)

< e,

where the last inequality holds true because M satisfies e-DP following Theorem 1. O
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C.2 Privacy analysis of AdaP-TT: Proof of Theorem 3

Theorem 3 (Privacy analysis). For rewards in [0,1], AdaP-TT satisfies e-global DP.

Proof. LetT > 1. Letd” = {x,...,xy}andd”” = {d},...,d}} two neighbouring reward tables
in (RF)T. Let j € [1,7T] such that, for all t # j, d; = d}.

We also fix a sequence of sampled actions a” = {ai,...,ar} € [K]? and a recommended action
a€ K.

We refer to AdaP-TT BAI strategy by 7.
We want to show that: 7(a”,@,T | d7) < e‘n(a?,a,T | d"").

The main idea is that the change of reward in the j-th reward only affects the empirical mean
computed in one episode, which is made private using the Laplace Mechanism and Lemma 2.

Step 1. Sequential decomposition of the output probability

We observe that due to the sequential nature of the interaction, the output probability can be decom-

posed to a part that depends on gj 14 {x1,... JXj1 }, which is identical for both QT andd’ T and a

second conditional part on the history.

Specifically, we have that

T
m(a",a,T [d") £ Recryy (@ | Hr) Sria (T | Hr) H (a¢ | Hi-1)

£ dJ 1( )Pd(a>J,aT|aJ)

where

* as; S (@j41,...,a7)

« Pyoa(a) £ TT, Si(ar | Hia)

« Pilasj,a,T | a) £ Recrqr (@ | Hr) St (T | Hr) H;’F:j+1 St (ar | Hi—1)
Similarly

T us
w(a”,a,T|d") 2 Pgi(a))Pg(as;,a,T | o)

1 i
sinced” ' = /L,

Which means that ) .
m(a”,a,7|d") Pglas;a,T|al)

a1 |d") Pylas;,aT|al)

©))

Step 2. The adaptive episodes are the same, before step j

Let ¢ such that {, < j < ty41 when 7 interacts with QT. Let us call it ng( 7) £,
Similarly, let £’ such that t,» < j < t41 when 7 interacts with d/ Let us call it ¢ d,T( )2 0.

Since 1 dT( /) only depends on d’~*, which is identical for d” and d’ ", we have that Vi (g) =
d,T( j) with probability 1. -

We call ¢; the last time-step of the episode wdT( ),ie & = tww Gr+1 — L.

Step 3. Private sufficient statistics

Letr; = dt a,» be the reward corresponding to the action a; in the table d . Similarly, 7} 24 tTM for

a’
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100

Let us define L; £ Glry,re,

same episodes for d and d’. In other words, L; is the list of private empirical means computed on a
non-overlapping sequence of rewards before step &;.

y and L 2 g{rl v} where G is defined as in Eq. 8, using the

Using the forgetting structure of AdaP-TT, there exists a randomised mapping fd>£‘ such that
. . - J
Pi(|a)) = fa, oL;and Py(.|a) = fu . oL}

In other words, the interaction of m with d and d’ from step &; + 1 until 7" only depends on the
sufficient statistics L, which summarises what happened before ¢;, and the new inputs d, . , which

are the same for d and d’.

Step 4. Concluding with Lemma 2 and the post-processing lemma

Since rewards are in [0, 1], using Lemma 2, we have that G is e-DP.
Since Py (. | a’) is just a post-processing of the output of G, we have that
Pilasj,a,T|a)

— <
Prlasg.aT al) ~

and Eq. (9) concludes the proof. O

D AdaP-TT: A private Top Two algorithm with adaptive episodes

We propose a generic wrapper to adapt existing BAI algorithms to tackle private BAI (Appendix D.1).
Then, we show how to instantiate our wrapper with an instance of Top Two algorithm (Appendix D.2),
namely TTUCB [JD22].

D.1 Generic wrapper on existing BAI algorithms
We propose a generic wrapper to adapt existing BAI algorithms to tackle the e-DP-FC-BAI problem.

1. It uses adaptive episodes with doubling and forgetting (Appendix D.1.1). This builds on
the idea used to make the UCB algorithm private for regret minimisation [AB22].

2. It relies on a private GLR (generalised likelihood ratio) stopping rule (Appendix D.1.2).
The GLR stopping rule [GK16] is widely used in the BAI literature, since it ensures J-
correctness of the stopping rule regardless of the sampling rule.

For each arm a € [K], we maintain a phase at time n whose index will be denoted by k,, , € N. We
switch phase as soon as the number of times that the arm was played is doubled. We only evaluate
the stopping condition when we switch phase for an arm.

D.1.1 Adaptive episodes with doubling and forgetting

As initialisation, we start by pulling each arm once, and set k,, , =1, T1(a) = K +1and N, , = 1
for all a € [K]. In the following, we will consider n > K and we denote the global pulling count of
arm a before time n by N,, , = >_tejn—1) 1 (It = a). For each arm a € [K], the random stopping
time denoting the end of k£, — 1 and the beginning of phase k, > 1 is denoted by

Ty, (a) =inf {n € N| Npo >2N1, (@)} - (10)

At the beginning of phase k, for an arm a € [K], we update the empirical mean based on the
observations on arm a € [K] collected during this last phase, i.e.

Tka (a)fl

1
ﬂka,aé N Z Xs]l {Is:a} ’ (11)
ka,a S:Tka—l(a)

where the local pulling count pf arm a is denoted by Nkma = Nty (a).a — N1\, _1(a),a» MmeaNing it
is the number of collected samples during the phase k, — 1. To ensure privacy, we add a Laplace
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noise to define the private empirical mean, i.e.

1
[y a £ fikg,a + Yi,.a where Y .~ Lap ( = > . (12)

€Nka ,a
We emphasise that only the private version the estimator fiy, 4, 1.€. fig, q, 1S used by the algorithm
until the end of phase &, for arm a. Since (k;,q)qc|x] denotes the current phases at time n, our
algorithm relies on (fix,, . a» fika,a> Ny 0,0 Nnja)ac[K]-

Due to the doubling, the growth of the global and local pulling counts is exponential (Lemma 3).
Lemma 3. Forall a € [K] and all k € N such that E, [T}, (a)] < +oc, we have

NTk(a),a =251 and Nk,a =2k2

Proof. Leta € [K]. After initialisation, we have k = 1, T1(a) = K + 1 and Ny, (4),, = 1. Using
the definition of the adaptive phase switch (Equation (10)), it is direct to see that Nr,(,), = 2 and

Ns o = 1whenE,[Tz(a)] < +oc.
Now, we proceed by recurrence. Suppose that N7, (4., = 2k=1 and Nk,a =22 whenE, [T}, (a)] <
+oo. If E, [Tk+1(a)] < +oo, then it means that the phase k ends for arm « almost surely. Since

we sample only one arm at each round, at the beginning of phase k + 1 for arm a, we have
N7 1 (a)a = 2N1y (@), = 2" by using the definition of the adaptive phase switch (10). Then, we

have directly that Nk+1,a = NTk_H(a),a — NTk(a),a =2k _ gk=1 — gk—1, O

D.1.2 GLR stopping rule

Non-private GLR stopping rule with phases. Given a set of non-private threshold functions
(ck)kens such that ¢, : N x N x (0,1) — R, for all k£ € N, the non-private GLR stopping rule can
be evaluated at the beginning of each phase for each arm, namely

(fie, pap = [y b))’ B
P =inf{n € N|Vb#a\" > 20k ko, (Vg

n o 5 . n aNP7&NP7Nkn,bvb75)
1/Nk;n &praﬁp _|_ 1/N]gn=b’b n,an I n

13)

where NP = arg MaX, k] [k, a1 the non-private candidate answer until we switch phase again

(for any arm). We emphasise that this stopping condition is only evaluated at the beginning of each
phase for each arm since it involves quantities that are fixed until we switch phase again.

Lemma 4 gives non-private threshold functions ensuring that the non-private GLR stopping rule is
d-correct for all 0 € (0, 1), independently of the sampling rule.

Lemmad4. Let § € (0,1). Let s > 1 and ( be the Riemann  function. Given any sampling rule, the
non-private GLR stopping rule (Equation (13)) with non-private threshold functions

_ 21.s
ck(n,m,d) =2Cq (; log ((Kl?(s)k)) + 2log(4 + logn) + 2log(4 + logm) (14)

ensures §-correctness for 1-sub-Gaussian distributions. The function Cg is defined in Equation (15).
It satisfies Cq =~ x + log .

Proof. The non-private GLR stopping rule matches the one used for Gaussian bandits. Proving
d-correctness of a GLR stopping rule is done by leveraging concentration results. In particular, we
build upon Theorem 9 of [KK21], which is restated below.

Lemma 5. Consider sub-Gaussian bandits with means p € RX. Let S C [K] and x > 0.

<e*

— b

Nnk 2 x
P, |3n e N, E e — )% > 37 210g (4 + log (N, Sice (=
e 3 T ) > 3 2log (4108 (Vo) + ce (75)
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where Cq is defined in [KK21] as
Col) 2 min LGNV FT i a0 2 20 — 20 Tog(4\) + log ¢(22) — S log(1 — A).
A€l1/2,1] A 2
(15)

Here, C is the Riemann ¢ function and Cg(x) = x + log(z).

NP
n

nst ~ sl _ g (a0 + sl 00— 9
1/Nk”,&,a I 1/Nk",b,b et n,a,0 n,a,0 n,bs b

Using the non-private GLR stopping rule (13) with non-private threshold functions (¢ )ren and the
above manipulations, we obtain

Py (13" < 400,a # a*)

Leta = @, = argmax,c|g] ik, ., q- Standard manipulations yield that for all b # a

<P, |(3n €N, Ja#a*, a =argmaxfi, ,», Vb F# a,
be[K] '

inf {Nkn,a,a(ﬂkn,a,a — )% + Nioy b (e 0 — 9)2} > 2¢k, okns (Vi aras Vi b5 5))

y>x

n,asa)

<P, |3neN, Ja #a*, a=argmax iy,
(a) be[K]

Niy wa(fiky o = 1a)® + Niy et (ke ar = tar)® > 26k, ok oo (Vi o Vi oo ats 5)>

< P, (Ja # a*, Ika, kar) € N?,
(b)

Niwalfika,a — ta)® + Nisar (ke ar — Har)? > 26k s (Nka,mea*,a*,fs))

S Z IPV (Nka,a(ﬂka,a - NG)Q + Nka*,a* (ﬂka* ,a* — ,ua*)2
) atar (ko kox )EN2

—

> 2Ck, ko (Ny, a) Nka* a*s 5)) )

The inequality (a) is obtained with (b, z,y) = (a*, fta, ttq+ ). The inequality (b) drops the condition
a = arg maXycg) ik, b, hence we can restrict to (kq, kqx) € N? since it doesn’t depend on other
phase indices. The inequality (c) relies on a direct union bound. For all a # a* and all (k,, kq+) € N2,
the estimators fiy, o (resp. fix,. q~) are based solely on the observations collected for arm a (resp. arm
a*) between times n € {Ty,—1(a), -, Tk, (a) — 1} (resp. n € {Tj,, —1(a*), -+ , T, (a*) — 1})
with local counts Nkma (resp. Nka* .a+), 1.e. dropping past observations. Using Lemma 5 for all
a # a* and all (k,, k. ) € N2, we obtain

) 1 1
By(m < dooi=i< 0 Loy oy L5
K —=1¢(s) a#a* (kakax)EN2 (kakas)

O

Private GLR stopping rule with phases. Since we want to ensure privacy, the non-private GLR
stopping rule cannot be used since it relies on the empirical means fi,, , . Which are not private.
To alleviate this problem, we propose the private GLR stopping rule, which is based on the private
empirical means fig

n,a,@*
Given a set of private threshold functions (cs,khk2)(e7kl,k2)emXNQ, such that cc g, x, : N x N x

(0,1) — Ry for all (e, k1, k2) € R% x N2, the non-private GLR stopping rule is evaluated at the
beginning of each phase for each arm, namely

(B, o san — [k pb)? - -
7s =inf < n € N | Vb # ay,, R n > 2c P Nkna ,Ankan 71;,(5 R
{ M 1/Nkp aviin +1/Nigy 0 eman o (N %)

nLan >

(16)
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where d,, = arg max, (g fik, ,,a 1S the private candidate answer until we switch phase again (for
any arm). We emphasise that this stopping condition is only evaluated at the beginning of each phase
for each arm since it involves quantities that are fixed until we switch phase again.

Theorem 4 gives private threshold functions ensuring that the private GLR stopping rule is d-correct
forall 0 € (0,1) and all € € R, independently of the sampling rule.

Theorem 4 (0-correctness of the private GLR stopping rule). Let 6 € (0,1) and e € R%. Let s > 1
and (¢ be the Riemann ( function and non-private threshold function (ci)ken as in (14). Given any
sampling rule, the private GLR stopping rule (Equation (16)) with private threshold functions

1 2KESC(s)\® 1 2KkSC(s)\”
Ce ey ko (M, M, 0) = 204, 1, (M, M, 0/2) + e log (5 + e log — 17)

ensures d-correctness for 1-sub-Gaussian distributions.

Proof. Let e € R, Since Y ~ Lap ((eNknma)’l) we have that Ny, Yk, o.al ~ E(€) for

all € [K] and all n € N, where £(-) denotes the exponential distribution. Using concentration
results for exponential distribution, a direct union bound yields that

Yinaal 2 élog (W» <. (18)

n,a,® n,a,%

P (Eln €N, 3a € [K], Ny

n,a,a

]

Let us denote ¢k, x, (1, m, ) the threshold associated to the Laplace noise, i.e.

1 ka((s))Q 1 <Kk§§(s)>2 .

Ce key kn(Mym, &) = e log ( 5 + e log

o

Using the private GLR stopping rule (Equation (16)) with private threshold functions
(Cekr k) (e, k1 k)R, 2, similar manipulations as above yields

P, (15 < 4+o00,a # a*)
<P, (3 €N, 30 # 0" Noy ool aia = o+ Y a)® + N (b oo a0 = it + Vi e 00)?

> 4Ckn,akn,a* (Nkn,a,av Nkn,a* ,a* s 6/2) + 2é€7kn,awkn,a* (Nkn,a,av Nkn,a* ,a* 5/2))

< P, (3a # a*, I(kq, ko) € N?,
(@)

Niya(the.a — 11a)? + Niyoar (ke ar — ftas)* > 26k k0 (Nhooas Niyu as s 5/2))
1P, (an €N, Ja#a*, Ny, a2 ot Nip oo 0 V7

*
n,a* Q@

> EE,kn,a,kn,a* (Nkn,a,,aa Nkn,a* ,a* s 5/2)>

~ 1
<40/2+P <E|n €N, Ja € [K], Nk, ..alYk, ..al > —log (
(b) ' ' €
<4§/2446/2=6.
(e)
The inequality (a) uses that P(X +Y > a+b) <P(X > a)+P(Y > b) and (x —y)? < 222 + 232,
The inequality (c) leverages Lemma 4 and a direct inclusion of event. The inequality (c) deploys
Equation (18) to conclude.

2Kk;i(sﬁaé(S) ))

D.2 AdaP-TT: Instantiating our wrapper with a Top Two sampling rule

A blueprint of Top Two algorithm design. At time n > K, a Top Two sampling rule defines a
leader B,, and a challenger C,,. Then, it selects among them the next arm to sample /,,. Given a
proportion 8 € (0, 1) fixed beforehand, the choice of I,, € {B,,, C,,} should ensure that the leader is
sampled close to 3 of the times where it was chosen as leader. In early works on Top Two algorithms,
this choice is randomised. Following [JD22], we use K independent tracking procedures.
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We denote by Ny, = Ytepn—1) 1 (Bt = a, I; = Cy = b) the number of times the arm b was pulled
while the arm a was the leader, and by L,, , = > ten—1) 1 (Bt = a) the number of times arm a was
the leader. At time n > K, the next arm to be pulled I,, is defined as

I, =B, if N’y <PBLniip, .otherwise I, =Ch,. (19)
In other words, we sample the leader if we have not yet sampled it a fraction /3 of the times it was
leader. Those K independent tracking procedure satisfy the desired property (Lemma 6).
Lemma 6 (Lemma 2.2 in [JD22]). Foralln > K and all a € [K], we have

—1/2< N, = BLna <1.

n

To finish specifying a Top Two algorithm, we simply need to specify the choice of the
leader/challenger pair. Intuitively, a good choice of the leader/challenger pair should ensure (1)
sufficient exploration, (2) convergence of the leader towards the best arm o™, and (3) convergence of
the global pulling proportions to the 3-optimal allocation wky, (i), which is defined for Gaussian
distributions as

A2
wirg(p) £ argmax min ——2——.
’ WES K war =f 47" 1/5 + 1/wa

While we consider TTUCB algorithm [JD22] in AdaP-TT, we emphasise that other Top Two
algorithms could be used with the same type of guarantees. TTUCB is a Top Two algorithm which

combines a UCB-based leader and a Transportation Cost (TC) challenger. Its key novelty lies in the
use of K tracking procedures. Since it is deterministic, the analysis is less cumbersome.

Non-private leader/challenger pair. The non-private leader/challenger pair is inspired by the
TTUCB algorithm [JD22]. At time n > K, the non-private UCB leader is defined as

k’ﬂ a
BNP £ argmax { fik, .0+ 4[| =2 , (20)
GE[K] o kn,aaa

where \/ky o/ Nkn,a,a is a bonus to cope for the uncertainty which depends on the current phase
kyn o Later, we show that log(n)/k, , = ©(1) for all « € [K]. Hence, it has the same scaling as
the bonus used in standard UCB. Since it depends solely on the local counts (Nkn,ma)ae[ K] and the
empirical means (fix,, , a)ac[x] the non-private UCB leader is fixed until we switch phase again.

At time n > K, the non-private TC challenger is defined as

ok, e, BN~ [k osa
— 2D

CNP £ arg min .
a#BNP \/1/Nn,B§LP + 1/Nn,a

While it depends on the empirical means (i, ,.q)ac|k) that are fixed till we switch phase again, it
also depends on the global counts (N, 4 ).c[x]- Therefore, the non-private TC challenger is chosen
in an adaptive manner. This is the key to obtain guarantees on the expected sample complexity of the
non-private algorithm.

We derive upper bounds on the expected sample complexity of the non-private AdaP-TT algorithm
in the asymptotic regime of § — 0 (Theorem 6). In particular, it shows that the cost of doubling and
forgetting is multiplicative four-factor compared to the TTUCB algorithm, which achieves 77, 5 (1)
(see Theorem 2.3 in [JD22]). We defer its proof to Appendix E.8.

Theorem 6 (Asymptotic upper bound on expected sample complexity of non-private AdaP-TT). Let

(8, B) € (0,1)2. Combined with the non-private GLR stopping rule (Equation (13)) using non-private

threshold functions as in Equation (14), the non-private AdaP-TT algorithm is 6-correct and satisfies

that, for all 1-sub-Gaussian distributions v with means p € R¥ such that mingp |t — ts| > 0,
7]

E
limsup —40 < 4Ty 4(u)

50 log(1/0)
where Ty, 5(u) is the B-characteristic time for Gaussian distributions, such that

(Har — 1a)?

2T A '
KL,B(“’) weggl_i}j* =61/8+1/w,
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Private leader/challenger pair. Since we want to ensure privacy, the non-private leader/challenger
pair cannot be used since it relies on the empirical means fi,, , 4, which are not private. To alleviate
this problem, we propose a private leader/challenger pair which is based on the private empirical
means [ig

n,a,a*

At time n > K, the private UCB leader is defined as

kn a kn a
B, £ arg max [T — 4+ —— , (22)
a€[K] ’ Nkn,u.)a GNkn,a,a

where k, o/ (eN kn.a,a) 18 @ bonus to cope for the uncertainty due to the Laplace noise. It also depends
on the current phase £, , and has the same scaling as the private UCB indices. Likewise, the private
UCB leader is fixed until we switch phase again.

At time n > K, the private Transportation Cost (TC) challenger is defined as

C. 2 arg min ﬂkn,anBn - ﬁkn,cma
" a#B. /1/Nup, + /Ny

Likewise, the private TC challenger is chosen in an adaptive manner, which is key to obtain guarantees
on the expected sample complexity of the private algorithm.

(23)

We derive upper bounds on the expected sample complexity of the private AdaP-TT algorithm in the
asymptotic regime of § — 0 (Theorem 5). We defer its proof to Appendix E.

Theorem 5 (Asymptotic upper bound on expected sample complexity of AdaP-TT). Ler (6, ) €
(0,1)2. Combined with the non-private GLR stopping rule (Equation (13)) using non-private threshold
functions as in Equation (14), the non-private AdaP-TT algorithm is 6-correct and satisfies that, for
all bandit instances v with 1-sub-Gaussian distributions and means p € R¥ such that ming |tta —
tb| >0,

, Ey [76] AR
1 ——— < 4T} 1 14+ 2=
H;lj(l)lp 10g(1/5) = KL,8 (M) ( + + 2¢2 )

where Tiy 6(“) is the B-characteristic time for Gaussian distributions.

E Analysis of AdaP-TT: Proof of Theorem 5

Let g € (0,1),¢ € R?% , and v be a bandit instance consisting of K, 1-sub-Gaussian distributions
with distinct means g € R¥ | i.e. ming |tta — pp| > 0. For conciseness, we denote A, L Lar — Lhas
Apin 2 Ming£ex Ag, and Apax £ maxXg£a+ Ng.

For Gaussian distributions, the unique 3-optimal allocation wiy 5(p) = {wj , } is defined as

AQ
Wi £ argmax min ——%— . 24
KL,ﬂ(/J') wEEg,wa*=B atar 1/B+ 1/w, (24)
At equilibrium, we have equality of the transportation costs (see [JD22] for example), namely
A2
Va # a*, a = 2Ty, ()" (25)

1/ +1/wg,
Our proof follows the unified sample complexity analysis of Top Two algorithms from [JDB*22].

Let v > 0. We denote by T}, , the convergence time towards wj, which is a random variable

quantifies the number of samples required for the global empirical allocations N,,/(n — 1) to be
7y-close to wj; for any subsequent time, namely

N,
Tuﬁéinf{TZHVnZT, H l—wg

n —

< 7} . (26)

The rest of Appendix E is organised as follows. First, we prove that AdaP-TT ensures sufficient
exploration (Appendix E.2) Second, we prove that there is convergence towards the S-optimal
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allocation (Appendix E.3) in finite time. Finally, we conclude the proof of Theorem 5 (Appendix E.5).
In Appendix E.6, we compare our asymptotic upper bound with our asymptotic lower bound on the
expected sample complexity (Theorem 2). In Appendix E.7, we discuss the limitation of our result
and pose an open problem. Appendix E.8 will detail the slight modification that needs to be made in
order to obtain Theorem 6.

E.1 Technical results

Before delving into the proofs, we first recall some useful technical results extracted from the
literature.

Concentration results. In order to control the randomness of (fix, 4 )qc[x]. We Use a standard
concentration result on the empirical mean of sub-Gaussian random variables and on sub-exponential
observations (Lemma 7). Since Bernoulli distributions are 1/2-sub-Gaussian and the absolute value
of a Laplace is an exponential distribution, Lemma 7 applies to our setting.

Lemma 7. There exists a sub-Gaussian random variable W,, such that, almost surely,

10g(6 + Nka,a)

Va € [KLVkaENv |/:Lka,a_,ua| SWM

Nk’a ,a
There exists a sub-exponential random variable W, such that, almost surely,
1 k
Va € [K], Vka €N, |Vi, ol < w, loglet ka)
ka,a

In particular, any random variable which is polynomial in (W, W,,) has a finite expectation.

Proof. The first part is a known result, e.g. Appendix E.2 in [JDB"22]. Let us define

WA Niy.al Vi, al
.= sup sup —e——e
ac[K] kaeN log(e + kq)

By definition, we have that, almost surely,

1 ka
Va € (K], Vha €N, [Ve, ol < W, 08¢ FFa)

ka,a

Since N, k.i|Yi.i| ~ E(€), Lemma 72 in [J]DB*22] yields that W, is a sub-exponential random variable.
Since W, is sub-Gaussian and W, is a sub-exponential, any random variable which is polynomial in
(We, W,,) has a finite expectation. O

Inversion results. Lemma 8 gathers properties on the function W _1, which is used in the literature
to obtain concentration results.

Lemma 8 ([JDK23]). Let W_;(z) = —W_l(;e_’”)for all x > 1, where W_1 is the negative

branch of the Lambert W function. The function W _1 is increasing on (1, +00) and strictly concave
_ -1

on (1,400). In particular, Wl_l(a:) = (1 - % L (z)) forall x > 1. Then, forally > 1 and

x>1,

w — y<z-log(x).

L

S
A
)

Moreover, for all x > 1,

x +log(zr) < W_y(z) < z + log(z) +min{;, \/15} .

Lemma 9 is an inversion result to upper bound a time, which is implicitly defined. It is a direct
consequence of Lemma 8.

Lemma9. Let W _; defined in Lemma 8. Let A > 0, B > 0 such that B/A + log A > 1 and
C(A,B) =sup{z | z < Alogz + B} .
Then, C(A, B) < hy(A, B) with hy(z,y) = 2W _1 (y/z + log ).
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Proof. Since B/A +log A > 1, we have C'(A, B) > A, hence
C(A,B) =sup{z| z < Alog(z) + B} =sup{x > A| = < Alog(x) + B} .
Using Lemma 8 yields that
x> Alogr+ B <— %—log (%) > g +logA <= z>AW_; (i—!—logA) .
O

E.2 Sufficient exploration

The first step of in the generic analysis of Top Two algorithms [JDB*22] is to show that AdaP-TT
ensures sufficient exploration. The main idea is to show that, if there are still undersampled arms,
either the leader or the challenger will be among them. Therefore, after a long enough time, no arm
can still be undersampled. We emphasise that there are multiple ways to select the leader/challenger
pair in order to ensure sufficient exploration. Therefore, while we conduct the proof for AdaP-TT,
other choices of leader/challenger pair would yield similar results.

Given an arbitrary phase p € N, we define the sampled enough set, i.e. the arms having reached
phase p, and the arm with highest mean in this set (when not empty) as

SP ={a€[K]|Nyo>2"""} and af = argmax i, . 27
a€Sh

Since mingzp |t — ts| > 0, @y is unique.
Let p € N such that (p — 1)/4 € N. We define the highly and the mildly under-sampled sets as

UP 2 {a€[K]|Npo <22} and VP2 {a€[K]|N,,<23@" D/ (28)
They correspond to the arms having not reached phase (p — 1)/2 and phase 3(p — 1) /4, respectively.

Lemma 10 shows that, when the leader is sampled enough, it is the arm with highest true mean
among the sampled enough arms.

Lemma 10. Let SE and a, as in (27). There exists po with E, [exp(apo)] < 400 for all oo > 0 such
that if p > po, for all n such that S¥, # 0, B,, € SE, implies that B,, = a}, = argmax,¢ g» fir

n,a,a"

Proof. Let py to be specified later. Let p > pg. Let n € N such that SE # (), where S? and a}; as in
Equation (27). Let (k?n,a)ae[x] be the phases indices for all arms. Since V,, , > 2=l foralla € SP,

we have k,, , > pand N, , o > or—2 by using Lemma 3. Using Lemma 7, we obtain that
log(e 4 2P—2) log(e + p)
T o2 e ogp—2 0

log(e +2r~2) log(e + p)
2p—2 op—2

/Lkny,l;l,a;t& > ,ua; - VV/L

lilkn,a,7a < fa + Wp + W, Ya € Sﬁ \ {a:l}.

Here, we use that © — log(e + x)/x is decreasing.

Let Apin = ming - |tta — 1p]. By assumption on the considered instances, we know that Apin > 0.
Let p1 = [logy (X1 —€)] + 2 and po = [log,((X2 — e — 2)log2 + 1)] + 2 with

-2 —2

X1 =sup {x >1]|z< 64ZminW3 logx + e} < h1(64zminW5, e),

8 _ .
Xy = sup {x >1|z< @Amiane logz+e+2— 1/log2} < hl(SAmianE/logQ, 4),

where we used Lemma 9, and h, defined therein. Then, for all p € N such that p > max{pi, 22} +1
and all n € N such that S? # ), we have fig, . oz > Har — Amin/4and fig, ,.a < fla + Amin/4
forall a € S} \ {a};}, hence aj, = arg max,¢ g fik,, ,,a-

We have, for all « € Ry,

exp(apy) < e*(X1 —€)*/1°82  hence [, [exp(apy)] < +o0 ,
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where we used Lemma 7 and hq (2, €) ~z_ 400 2 10g 2 to obtain that exp(«p1 ) is at most polynomial
in W,,. Likewise, we obtain that E,, [exp(ap2)] < +oo forall a € Ry.

Let us define the UCB indices by Iy, . o = fik, ..o + \/ knia/ Ny wsa + kn,a/(eNk, . o). Using the
above, we have

log(e + 2r—2) log(e + p)
Ikn,a;‘L7a:,, Z /'La’; - W/J' 2p72 - € 2p72 ’
log(e + 2P—2) log(e + p) p p
P *
Va € Sn \ {a’n}7 Ikn,a7a < fa + WN 9p—2 + We 2p—2 + 2p—2 + e2p—2"’

where we used Lemma 3 and the fact that z — log(e + )/ and z — 2:2%2~% are decreasing function
forz > 2. Let p3 = [logy X3| + 2 and py = [logy X4] + 2 with

X3 = sup {m >1] x< 64Z;112n(10g2:6 + 2)} < h1(64z_2

min

Jlog2, 128A,2) |
win€ )
where we used Lemma 9, and h; defined therein. We highlight that (p3, p4) are deterministic values,
hence their expectation is finite. Then, for all p € N such that p > py = max{p1, pa, D35 ps}+1and
all n € N such that S? = (), we have Ik, e ar 2 Hax — Apmin/4 and I, < g + Apmin /2 for all

a € Sh\ {ay,}, hence aj, = B,, since we have B, = arg max,¢ g1 Ik

X4 =sup {x >1] z< 86*1Z;ﬁln(1og2 x4+ 2)} < hl(SE*IZ;iln/log 2, 16A

n,a,@

n,a,a*

Since we have E, [exp(apo)] < +oc for all & € R, this concludes the proof. O

Lemma 11 shows that the transportation costs between the sampled enough arms with largest
true means and the other sampled enough arms are increasing fast enough.

Lemma 11. Let S? and a}, are as in Equation (27). There exists py with E, [exp(ap;)] < 400 for
all « > 0 such that if p > p1, for all n such that SE # 0, for all b € SP \ {a}}, we have

Py, o at, = Fkp b

n

VYN s it + 1/ N

where C,, > 0 is a problem dependent constant.

> 210/20# ,

Proof. Let p; to be specified later. Let p > py. Let n € N such that SE # (), where S? and a7 as in
Equation (27). Let (k‘ma)ae[ K] be the phases indices for all arms. Since Ny, , > 2P~ foralla € SP,

we have k,, , > pand Ny, ., > 2P~2 by using Lemma 3. Let Ay, = ming |pq — s, which
satisfies Apin > 0 by assumption on the instance considered.

Using Lemma 7, for all b € S? \ {a} }, we obtain

logle +22) __log(e +p)
op—4 T e op—3
Let p3 = [logy((X35 —€)/4)] + 4 and ps = [logy((X2 — e — 3)log2 + 1)] + 3 with

X3 = sup {:1: >1]|z< 64Z;112HW3 logz + e} < h1(64z;i2nW3, e,

[k s sy, = Hky b = Amin — Wy

X, = sup {x >1| 2 <4A. W.logz +e+3— 1/10g2} < hy (48, W, 5),

where we used Lemma 9, and h; defined therein. Then, for all p € N such that p > p; =
max{ps,p2} + 1 and all n € N such that SE # (), we have, for all b € SE \ {a}},

Pokep o saz, = Pk b 2 Ampin/2 -
As in the proof of Lemma 10, we obtain that E,, [exp(ap;)] < +oo forall « € R
Then, for all b € SP \ {a}}, we have
[k, o saz, = Bk b
\/1/Nkn,a¢,a; +1/Ng, 00
where we used that min{NkM; Nkn,brb} > 2P=2, Setting C), = Appin/2°%/? yields the result. [

A,
/2 min
> ¥R
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Lemma 12 shows that the transportation costs between sampled enough arms and undersampled
arms are not increasing too fast.

Lemma 12. Let S? be as in Equation (27). For all p > 1 and all n such that SE # ()

Va € SP,Vb ¢ SP, Mf"’“’a _ uk”’i’b < 2P/2D,4+2W,,\/log(e + 2P=2)+-2W, log(e+p),
\/I/Nkn,,,,,a + 1/ Ny

where D, > 0 is a problem dependent constant and (W,,, W) are the random variables defined in
Lemma 7.

Proof. Let p > 1. Let n € N such that S% # (), where SE as in Equation (27). Let (ky q)ac[k]
be the phases indices for all arms. Since N, , > 2r—1 for all @ € SP, we have k, , > p and
Nkn,a’a > op—2 by using Lemma 3. Likewise, IV, , < 2r—1 for all a ¢ SP, we have k,, , < p and
Nkw,a < 2772, Let Apax = MiNgzp |fa — Hp|, which satisfies Ay,ax > 0 by assumption on the
instance considered. Using Lemma 7, for all « € S and b ¢ S?, we obtain

Pk ana = Fyy b < ~ _
- <A N b (Bt a0 = ke 1,0)

\/1/Nkn,a,,a +1/Ni, 0

= - log(e + k,,
<A/ Nk b (tta — ) +2Wy/log(e + Ni,, ,5) + QWEM

Nkn,bab

< 207N 4 2W,/log (e + 20-2) + 2W, log(e + p)

where we used that Nkn,b,b > 1, knp < p, Nkw,b <272 < N, . .and 2 — log(e + z)/x is
decreasing. Taking D, = A,ax/2 yields the result. O

Lemma 13 shows that the challenger is mildly undersampled if the leader is not mildly under-
sampled.

Lemma 13. Let VP be as in Equation (28). There exists p2 with Ey [exp(aps)] < +oo forall a > 0
such that if p > pa, for all n such that UE # 0, B, ¢ VP implies C,, € V.

Proof. Let py to be specified later. Let p > po. Let n € N such that U? # () and VP # [K], where
UP C VP are defined in Equation (28). In the following, we suppose that B,, ¢ V7.

Let (Kn,a)ac[x) be the phases indices for all arms. Let pg as in Lemma 10. Let b}, = arg maxgy» fib.
Then, for all p > 4pg/3 — 1/3 and all n such that B,, ¢ VP, Lemma 10 yields that B,, = b} =
arg max,gy» Pk o a

Let p; and C}, as in Lemma 11, and D,, as in Lemma 12. Then, for all p > 4max{po,p1}/3 —1/3
and all n such that B,, ¢ VP, we have B,, = b}, and

n?

:ukn,b; br T Mk, b

\/1/J§71c,“,;,17,*z + 1/Nkn,b,b

[k s b2 = Hle b

Vb ¢ VP, > 2@ H/80

vb e UP

o = S <2Wtb/Ap 4 2W#\/10g(e + 2(p+1)/2-2)
\/I/Nkn,b;mbﬁ + 1/Nkn,b7b

+2Welog(e + (p+1)/2),
where we used Lemmas 11 and 12. Let p3 = 16[log,(2D,,/C},)] + 1, then we have 27~ 1/16 > Du

for all p > p3. Let py = 8 [log, X4 + 25 and p5 = 32 [log, X5] + 7 where

W2
X4 =sup {x >1|z< =L log(e+ x8/9225/183/4)} ,
Ci

2W,
X5:sup{x>1|x§ o 10g(e+4+3210g2(x)/18)}.
m
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As in the proof of Lemma 10, using Lemma 7 yields that E,, [exp(ap4)] < 400 and E, [exp(aps)] <
+oo forall « € Ry Let po = max{ps, p4, p5, 4 max{po, p1}/3 — 1/3} 4+ 1. Then, we have shown
that for all p > po, for all n such that B,, ¢ VP, we have B,, = b and

N R L Fkey s bt = Hkep, b

min = = > max = =
bV \/1/Nkn%,b; +1/Ny, 5 €U \/1/Nkmb;,b; +1/Ne, 0

Mkmb; bk THE, 300

)

Therefore, by definition of the TC challenger C), = arg min, 4« , we obtain

1/1\71%,% bx /N, o

that C,, € VP. Otherwise, there would be a contradiction given that we assumed that U? # (). Given
all the condition exhibited above, it is direct to see that E, [exp(aps)] < +oo for all & > 0. This
concludes the proof. O

Lemma 14 shows that all the arms are sufficient explored for large enough n.
Lemma 14. There exists Ny with E,,[Ny] < 400 such that for all n > Ny and all a € [K],

log(n/K)

Npo > K d kna>
aZzVn/ an ’ 2log?2

Proof. Let py and p, as in Lemmas 10 and 13. Combining Lemmas 10 and 13 yields that, for all
p > p3 = max{pe,4po/3 — 1/3} and all n such that U? # 0, we have B,, € V}? or C,, € VP.
We have E, [2P2] < +oo. We have 2P~ > K23(=D/4 for all p > py = 4[log, K| + 1. Let
p > max{ps, pa}.

Suppose towards contradiction that U}, _, is not empty. Then, forany 1 <t < K 2P—1 UP and
VP are non empty as well. Using the pigeonhole principle, there exists some a € [K] such that
Nop—1,, > 23(P=D/4_ Thus, we have ]V;;,ll < K — 1. Our goal is to show that |V} | < K — 2.
A sufficient condition is that one arm in V), is pulled at least 23(P=1)/4 times between 2P~ and
2P — 1.

23(1);31)/4 + 3/(28). Using

Case 1. Suppose there exists a € V;Z,_l such that Lo» ¢ — Lop-1 4 >
Lemma 6, we obtain

Ngy o= Ngoor o > B(Lava — Loo-1 ) — 3/2 > 23@=D/4
hence a is sampled 2°(P—1)/4 times between 2P~ and 2P — 1.

Case 2. Suppose that for all a € VJ,_,, we have Lo» o — Lop-1 , < 23(P=1/4/3 4 3/(23). Then,

S R

aévfzppfl

Using Lemma 6, we obtain

Y. Nso=Nga ) =B Y (Lova = Lovra)| S 3(K —1)/2.
a¢V2pp71 a%‘/;;fl

Combining all the above, we obtain

> (Lava—Layra)— Y (N§o,—Ngi,)

a¢V;;_l a¢V22[’p_1
>(1-8) > (Lawa—Lyw-1,) = 3(K —1)/2
aév’zppfl

> (1- ) (271 = K (220707484 3/(28)) ) - 3(K — 1)/2 > K20~ D/4,
where the last inequality is obtained for p > ps with

ps=sup{peN|(1=5) (27— K (220745 +3/(28)) ) = 3(K —1)/2 < K27~V/4}.
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The LHS summation is exactly the number of times where an arm a ¢ V), _, was leader but wasn’t

sampled, hence
2P _1

S 1(Big Vo Ii=Cy) = K2/
t=op—1
For any 2P~! <t < 2P — 1, U/ is non-empty, hence we have B; ¢ Vo1 (hence By ¢ V) implies
Cy € VP C V,_,. Therefore, we have shown that

2P—1 2P —1
Nou(LevVh)= Y 1(Bi¢ Vi, I =C)> K20/t
t=2r—1 t=2r—1

Therefore, there is at least one arm in V2, _, that is sampled 23(P~1)/4 times between 27! and 2P — 1.

2r—1

In summary, we have shown |V},| < K — 2 for all p > pg = max{ps, p4, ps}. By induction, for
any 1 < k < K, we have |Vk’;p,l| < K — k, and finally U}, , = () for all p > ps. Defining
No = K2Ps~! we have E, [Ny] < 400 by using Lemmas 10 and 13 for p; = max{pa, 4po/3—1/3}

and p4 and ps are deterministic. For all n > Ny, we let 2P~ 1 = 7 - Then, by applying the above, we
have U%,.,, , = Uloe:(n/E)+1 4o empty, which shows that N,, , > /n/K for all a € [K]. Using

Lemma 3, we obtain that k,, , > log(gg/ g) + 1 for all @ € [K]. This concludes the proof. O

E.3 Convergence towards 3-optimal allocation

The second step of in the generic analysis of Top Two algorithms [JDB122] is to show that AdaP-TT
ensures convergence of its empirical proportions towards the S-optimal allocation. First, we show
that the leader coincides with the best arm. Hence, the tracking procedure will ensure that the
empirical proportion of time we sample it is exactly 5. Second, we show that a sub-optimal arm
whose empirical proportion overshoots its S-optimal allocation will not be sampled next as challenger.
Therefore, this “overshoots implies not sampled” mechanism will ensure the convergence towards
the S-optimal allocation. We emphasise that there are multiple ways to select the leader/challenger
pair in order to ensure convergence towards the 5-optimal allocation. Therefore, while we conduct
the proof for AdaP-TT, other choices of leader/challenger pair would yield similar results. Note that
our results heavily rely on having obtained sufficient exploration first.

Convergence for the best arm. Lemma 15 exhibits a random phase which ensures that the
leader and the candidate answer are equal to the best arm for large enough n.

Lemma 15. Ler Ny be as in Lemma 14. There exists Ny > Ny with E,[N1] < 400 such that, for
alln > Ny, we have a,, = B,, = a*.

Proof. Letk > 1 and (Ty(a))q.c[k] as in Equation (10). Suppose that I, [max,¢(x) Tk (a)] < 4o00.
Then, Lemma 3 yields that N7, (4, = 257! and Ny , = 2"~2. Using Lemma 7, we obtain that

) log(e 4 2k—2) log(e + k)
fik,ax = Pax — Wy ok—2 e k=2
. _ log e+ Qk_Q log e+ k
Va #a”, [ka < pa + Wy (2k—2 ) € Q(k—Q )

Let p; = [logy (X1 —€)] 4+ 2 and po = [logy(Xe — e — 1) + 2 with

Xy =sup{z>1|z<64A7 Wilogz +e} < hy(64A7 W, €),

Xy =sup{z>1| 2 <8A, W.logz+e+1} < h(8ALL W, e+1),

Xy >sup{z>1] z<8A_ | W.log(e+2+logz)} ,
where we used Lemma 9, and hy defined therein. Then, for all & € N¥ such that min, e[k ko >
po = max{py,p2} such that E, [max,c(x) Tk, (a)] < +00, we have jig o« > fiar — Amin/4 and
fika < fho + Amin/4 for all a # a*, hence a* = arg maX,¢ x| Ak,a- We have, forall o« € Ry,

exp(apy) < (X1 —€)*/1°82  hence E, [exp(apy)] < +o0 ,
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where we used Lemma 7 and hq (2, €) ~z_ 400 2 10g 2 to obtain that exp(ap1 ) is at most polynomial
in W,. Likewise, we obtain that E,, [exp(aps)] < +oo for all @ € R;. Therefore, we have
E, [exp(apo)] < +oo forall a € Ry.

Let us define the UCB indices by I, o = fix,q + q/k/N;w + k/(eNkya). Using the above, we have

log(e + 2k—2) log(e + k) k
Ik,a* 2 far — Wu ok—2 - We ok—2 k=2’
R log(e + 2k—2 log(e + k k
Va 7& a, Ik,@ S Ha + W/L % € 2(k—2 ) + 62k_2 .

Therefore, we have a* = arg mMaX, (k] Iy q forallk NX such that minge (k) ko > max{p1, p2}
such that E,, [max,ex] Tk, (a)] < +oo.

Let Ny as in Lemma 14. Using Lemma 14, we obtain that, for all n > Ny and all a € [K],
Ena > logy(n/K)/2 + 1. Therefore, we obtain min,c(x) kn,a > max{pi,p2} is implied by
n> N, = maX{K4"’aX{P17P2},N0}. Using the above, we conclude that E, [N;] < +oco and
a, = B, = a* foralln > Nj. O

Lemma 16 shows that that the pulling proportion of the best arm converges towards (3, provided
the phase defined in Lemma 15 is reached in finite time for all arms.

Lemma 16. Let v > 0, and Ny be as in Lemma 15. There exists a deterministic constant Cy > 1
such that, for alln > Cy Ny,
Nn,a*

n—1

—B’<v.

Proof. Let~y > 0. Let N; as in Lemma 15. Let M > Nj. Using Lemma 15, we obtain B,, = a* for
all n > M. Therefore, we obtain L, o« > n — M and > < M foralln > M. Using

Lemma 6 yields that

a#a* n a*

Ny ar | na* — BLy, 0«*| Ly a 1
) _ < ) ) _ N(l N
n—1 B’_ n—1 +5 n—1 +n71a¢a* e
1 2(M —1)
< <
S TPTaoT ST
where the last inequality is obtained by taking n > max{M, (1/2+28(M — 1))/~ + 1}. O

Convergence for the sub-optimal arms Lemma 17 exhibits a random phase which ensures that
if a sub-optimal arm overshoots its 5-optimal allocation then it cannot be selected as challenger
for large enough n.

Lemma 17. Let v > 0. Let N1 and Cy be as in Lemma 15 and 16. There exists No > Cy Ny with
E,[N2] < 400 such that, for all n > No,

Ja # a*,

faty = Cp#a.

Proof. Lety > 0and ¥ > 0. Let N7 as in Lemma 15 and Cj as in Lemma 16 for’y Letn > CyN;.

Let a # a* such that Yre > W5 q for all

b ¢ {a*,a}. Then, for all n > CoNy, we have

D - LTy I ey
b;éa* b#a*
which yields a contradiction for 4 < ~. Therefore, for all n > Cy N7, we have

N,

Jda # a*, oty = F¢{a"a}, nibl <wjhy
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Then, we have

1 +Nn,a*/Nn,b > 1+ (ﬁ _i)/wg,b
1+ Npa+/Nna — 1+(5+?)/(W2,a+7) '

In the following, we use Lemma 7 and similar manipulations as in the proof of Lemma 15. Therefore,
we obtain that, for all ¢ # a*,

~ - log(e + 2kn,ax 72) 1og(e + an,c—2)
/'l/kn,a,*va* - /'l/kn,mc - A(/| S WH \/ 2](:"_(1* —2 + 2’%7,,(:72
log(e + kn,o+)  log(e+ kn,c)
+We < i ar —2 ki c—2 :

Let p3 = [logy (X1 —e)] + 2 and py = [logy (X2 — e — 1)] + 2 with

Xg=sup{z>1|z< 1677_2W3 logz + e} < h1(1677_2W3, e,

X5 =sup {x >1| <4y 'W.logz +e+ 1} <hi (4 "W, e+1),

Xo>sup{z>1] z<4np 'W.log(e+2+logz)} ,
where we used Lemma 9, and h; defined therein. We have, for all & € R,

exp(aps) < e*(X5 —€)*/1°82  hence E, [exp(aps)] < +oo,

where we used Lemma 7 and by (x, €) ~,_, 1 2 1ogz to obtain that exp(aps) is at most polynomial
in W,,. Likewise, we obtain that E,, [exp(ap2)] < +oo forall o € Ry.
Using Lemma 14 (with CoN1 > N7 > Np), we obtain that, for all n > CyN; and all ¢ € [K],
kna > logy(n/K)/2 + 1. Therefore, we obtain min,c(x) kn,a > max{ps,p3} is implied by
n > Ny = max{K4maX{p37p2},C’0N1}. Using the above, we conclude that E,,[N2] < 400 and
MaXctas [k, 4o ar = fk,.o.c — De| < nforalln > Ny,

Then, for all n > N5, we have B,, = a* and

ﬂkn,a*7a* - lakn,aya 14 Nn,a* /qu,b > Aa —-"n 1+ (5 B ﬁ)/wé,b >1
fiky ursa* = Fik b \| 1+ Npar /Noa — Dp+n [ 14+ (B+9)/ (W, +7)

where the last inequality is obtained by taking 1 and # sufficiently small and by using Equation (25),
ie.

A, |1+ 5/“51, B
Ay 1+ ﬂ/wg’a -
Therefore, we have shown that B,, = a* and

[)’kn ax,a* T [)’kn,aaa ,[Lk-" a*,a* T Iakn,bvb
’ > : hence C, #a.
\/1/Nn,a* +1/Nn,a \/1/Nn,a* +1/Nn,b
This concludes the proof. O

Lemma 18 shows that that the pulling proportion of the best arm converges towards [ for large
enough n.

Lemma 18. Let vy > 0 and T}, ~ be as in Equation (26). Then, we have E, [T}, 5] < +o0.

Proof. Lety > 0and v > 0. Let Ny as in Lemma 17 for 7. Let M > N,. Using Lemmas 15, 16
and 17 for all n > M, we obtain that B,, = a*, Nn.ax [3‘ < & and

n—1

Nna ~
Jda # a*, - ’12w2’a+7 = C,#a.

For all a # a*, let us define ¢,, ,(¥) = max {t | M <t<mn, Npo/(n—1) <wj,+ i}. Since
Nio/(n—1) < Npo/(t — 1) fort < n, we have
Npa _ M—1 1 <
— <

1L =C =
n—1" n-—-1 n—lt;/[ (L 1=a)
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M — -
<
—n—1 n—lz]l<
t=M

~1 N, (a _
<M 1+ tn a(3), <M 1

+'}/7 It Ct:a>

N -
n—1 n—1 n—1+w5’a+’y'

The second inequality uses Lemma 17, and the two last inequalities use the definition of ¢, 4 ().

Using that 3, ¢ (] Tna — 2 ae[K] Wha = 1, we obtain
Noa .. M-—1 X o M-1
b;ﬁa b#a

Taking ¥ < v/(2(K — 1)) and n > max{M,2(K — 1)(M — 1)/~ + 1} yields that
Nn

o0

Let T}, ~ as in 26. Then, we showed that T}, , < max{M,2(K —1)(M — 1)/~ + 1}. Therefore, we
have

E, [Ty < By [max{M, 2(K — 1)(M — 1)/ +1}] < +o0,

which concludes the proof. O

E.4 Cost of doubling and forgetting

Compared to the generic analysis of Top Two algorithms [JDB122], for AdaP-TT, we need to
control the sample complexity cost of doubling and forgetting. Due to this reason, we have to pay a
multiplicative four-factor: one two-factor due to doubling, and another two-factor due to forgetting.
It is possible to show that this cost exists when adapting any “reasonable” BAI algorithm, meaning
for any BAI algorithm in which the empirical proportions are converging towards an allocation w
such that min, w, > 0. Those BAI algorithms are “reasonable” because the asymptotic lower bound
stipulates that all arms have to be sampled linearly in order to be near optimal.

Let w € Xk be any allocation over arms such that min, w, > 0. Let v > 0. We denote by T}, - (w)
the convergence time towards w, which is a random variable quantifying the number of samples
required for the global empirical allocations N, /(n — 1) to be y-close to w for any subsequent time,
namely

Tuﬁ(w)éinf{TZI |Vn > T, —w

< 7} : (29)

Lemma 19 shows that the phase switches of the arms happen in a round-robin fashion, which
means that an arm switches phase for a second time after all other arms first switch their own
phases.

Lemma 19. Let w € X such that min, w, > 0. Assume that there exists v, > 0 such that for
E, [T, ~(w)] < +ooforally € (0,7,), where T}, ,(w) is defined in Equation (29). Let 1) > 0. There
exists 7y, € (0,7v,) such that, for all v € (0,7,,), there exists N5 > T}, ., (w) with E,[N3] < 400
which satisfies

maX,e(x] Tk, . (@) — 1

Vn > N, <2+71.

minae[K] Tkn,a (a) -1

Proof. Letn > 0. Let 4, € (0,7,) such that 2max,¢(x](wa +7)/(wa — ) < 2 4 7, which is
possible since min, w, > 0. Let v € (0,7, ). By assumption, we have E, [T}, ,(w)] < +o00. Then,
forall n > T}, »(w),

Ny,
n—1

—w <.

o0

Let M > T, (w). Let use denote by kns = (kar,a)ac|x) the current phases for all arms a € [K] at
time M. Then, for all n > M and all a € [K], we have N,, o > (n — 1)(wq — 7). Therefore, taking
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n > max,e (k] 2844 (w, — ) 7! + 1, we obtain that N,, , > 2¥M. for all a € [K], hence we have
maxge(] Thyy . +1(a) < n. Since minge(x) Tk, , +1(a) > M, we have

NTkA4,a+1(a)’a

max
n—1

a€[K]

—Wwg| <.

Likewise, taking n > max,¢ (k] 2Faatl(y, — )71 + 1, we obtain that N,, , > 2kM.F! for all
a € [K], hence we have max,e(r] Thy o +2(@) < n. Let a1 = argminge(g) Thy, ,+2(a). By
definition and using Lemma 3, we have

QkM’alel = NTkM’al+2(a1),a1 < (TkM,al +2(a’1) - 1)(0]@1 + 7) ;

Va 7& ai, 2kM'a < NTkAl=a1+2(a1)ya < (TkM,al +2(a1) - 1)(wa + 7) .

Let az = argmax,¢ () Tk, . +2(a). By definition and using Lemma 3, we have

2kM,a2+1 = NT’CM,Q2+2(G‘2)’U‘2 > (TkM'a2+2(CL2) — 1)(0Ja2 - ’Y) 5
Therefore, combining the above yields

w¢12+’y<(

(Thps oy +2(a2) = 1) < (T, +2(a1) —1)2
Way — 7

TkM,aQ-l-Q(aQ) - 1)(2 + 77) 3

where the last inequality uses that v € (0,7,) and 7, € (0,7,) is such that 2 max,¢(x)(wa +
¥)/(wWa —7v) <24 1n. We take n > N3 = maxqe(k] Tk, . +2(a), hence we have k,, o > ks o + 2
for all a € [K]. Since E, [T}, 5(w)] < +o0 (i.e. arms are sampled linearly), it is direct to see that
E, [maxqex] Try, . +2(a)] < +oo. This concludes the proof. O

Note that 7}, - defined in 26 is such that T}, o = T}, »(wiy, 5) Where T, »(w) as in Equation (29).

Lemma 18 showed that E,, [T}, ,] < +oc for all v > 0. Therefore, the condition of Lemma 19 are
fulfilled by AdaP-TT.

E.5 Asymptotic expected sample complexity

The final step of the generic analysis of Top Two algorithms [JDB*22] is to invert the private GLR
stopping rule by leveraging the convergence of the empirical proportions towards the -optimal
allocation. Compared to the non-private GLR stopping rule, the private threshold in the private GLR
stopping rule involves an additive term in O(log(1/6)?). This difference is the largest price that we
pay to obtain a private BAI algorithm. We defer the reader to Appendix E.7 for a more detailed
discussion on it.

Asymptotically S5-optimal e-DP-FC-BAI algorithm. The inversion of the GLR stopping rule
by leveraging the convergence of the empirical proportions towards the (3-)optimal allocation is a
generic method used in the BAI literature. Provided this convergence is shown, it only depends on the
threshold that ensures d-correctness. More precisely, it only depends on its asymptotic dependence
in log(1/4). In addition to the multiplicative four-factor, the price of privacy for asymptotically
(B-optimal BAI algorithms when combined with the non-private GLR stopping rule is a problem

dependent multiplicative factor 1 + /1 + A2 .. /(2€?) (Lemma 20).

Lemma 20. Let (6, 3) € (0,1)2. Assume that there exists y,, > 0 such that for E, [T, ] < +oo for
all v € (0,v,), where T}, ., is defined in Equation (26). Combining the private GLR stopping rule
(Equation (16)) with private threshold (Equation (4)) yields a 6-correct algorithm which satisfies that,
Sor all v with mean p such that |a*(p)| = 1,

: Ey [7s] A7
1 — < AT 1 1+ =28
P loa(1/0) = w‘*‘)( Ve

Proof. Theorem 4 yields the J-correctness.
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Let a* be the unique best arm, i.e. a*(p) = {a*}. Let ¢ > 0. Using Equation (25) and the continuity
of

. (,U/a*(u) - /J/u,)2
,W) —  min
(pw) = min 53 JWar () + 1/ 1a)

Nn _ , *
‘n—l wﬂ

yields that there exists ¢ > 0 such that

_ = ¢ and maxee Ptk 01,0 = Hal < ¢
implies that

(ﬂkn,a*-&-l,a* B ﬂkn,,a+17a)2 > 2(1-¢)
(n=1)/Nna» + (0= 1)/Nua — Ty, 5(11)
n—1 n—-1 A2
N . + N < 7(1 + )Ty, (1) -

We choose such a y¢. Let v, > 0 be such that for E,, [T}, ,] < +oc forall v € (0,7,), where T}, -,
is defined in Equation (26). Let > 0. Let 7,, € (0, y,,) as in Lemma 19 for this 7. In the following,
let us consider v € (0, min{J,,v¢, /4, Amin/4}).

Ya # a*,

Let N3 > T, , with E,,[N3] < 400 as Lemma 19 for those (v, 7). Then, we have E, [T}, ] < 400

and
maxae[K] Tkn,a (a) —1

VT'LZN:;, <2+7]

mingex) Tk, (@) =1 ~
Since arms are sampled linearly, it is direct to construct Ny > N3 with E,,[N4] < +o0 such that, for
all n > Ny, we have max,e|x) MaXpe (&, o kn.o+1} |Fk,a — Ha| < 77, Therefore, we have G, = a*.

Letx € (0,1). Letn > Ny/k and (K, 4 )qe[x] be the current phases at time 7. Combining the above,
we have a,, = a* and
maxae[K] Tknya(a) -1

*
7&}[3

<+~ and

o0

max i, ,+1,a = Hal <7 <2+47.

a€[K] n—1

minge(g] Tk, . (a) — 1
Let a1 = argmin,¢ k) Tk, ,(a) and a2 = argmax,c(x) Tk, ,(a). Therefore, we obtain, for all
a # a*,
(ke gy 410 = Bk ot 10)® (e et e = kg ot1,0)”
1/Nkn,an+1,an + 1/Nkn‘a+1,a B 1/NTkma*(a*)ﬂ* + l/NTkn,a(a)va
(ﬂkn,a*+1,a* - ﬂkn,,a,+17a)2
- 1/NTkn,a1(a1)7a* + 1/NTkn,u1(al)’a

. 2(1-¢)
(afél[lgl Ty, .(a) — 1)m .

Y

Similarly, we can show that, for all a # a*,

N B 1 L1
Nkn,a* +1,a* Nk7r,a+17uf NTknﬂ* (a*),a* NTkn,a, (a),a

1 1

IN

NTkn,al (a1),a* NTK‘n,al (a1),a

! Bat )T ()
mine(re) Tr, (@) — 1 2 KL, g
1 A2

max 1 T* .
= Tinaey Th, (@) —1 2 (1+ Tk, (1)

IN

Let (ci)ren as in Equation (14). Using Lemma 3, we obtain, for all a # a*,

2¢(k,, o x 1) (ko t1) (N we 1,05 Ny o +1,056/2) < 8log(4 + (gg% kn,p —1)log2)

+4Cq <log(1/5)/2 + slog(grel[a}?] knp —1) +log(2(K — 1)C(s)2)/2>
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Likewise, we obtain, for all a € [K],

1 . s 2 s 2
g (Ml H VDN, Ly (2lhna 210
(S Nkn,,a+17a€2 5

2
<log(1/5) +s log(grel[s}?] knp+1)+ log(2KC(s)))

Nkn,a* +1,a* 62

2¢2 minbe[K] Tknb(b) -1

Let us denote by T]:;Jrl = MaXpe[K] Tkn‘b+1(b), T]::LJFQ = MaXpe|[K] Tk,17b+2(b), T,;Jrl =
minge x) Tk, ,+1(b), T}, = minye(x) Tk, ,(b). Let T be a time such that 7' > T,j;ﬂ > kT.

Using Lemmas 3 and 19, we have
(knp—1)log2 = log NTkmb(b)vb <log Tkn,b(b) <log Tl:; <logT, + log(2+7) .
Using the private GLR stopping rule (Equation (16)), we have

min {75, T} — kT < Z (T =T DL (s> T L))
TzT,jnzmT

(ﬂk «+1,a* — ,ak +1 a)2
< T, —TF )1 | 3a#a*, e ne
< Z (T 12— Ti 1) ( # e, v +1/Ne, o1

TzT,jn >kT

<2k it Lknatl (Ve oo 41,0 Ney w105 5))

—¢

———— < 8log(4 +log T, +log(2+n))
TﬁL,ﬁ(N) ko

< Y G- TEan (m; .

TzT,jnzﬁT
+4Cq (log(1/6)/2 + slog(2 + logy T, +10gy(2 + 1)) + log(2(K — 1)¢(s)?)/2)

Az (1+ 0Tk (1)
2¢2 T, —1

(log(1/8) + slog(2 + log, Ty, +1ogo(2+1)) + 10g(2KC(s)))2> ,

Let T¢(0) defined as the largest deterministic time such that the above condition is satisfied when
replacing )~ by (1—r)T. Let ks be the largest random vector of phases such that that T,:; 41 < T (0)

almost surely, hence T,;; 42 > T¢(0) almost surely. Then, using the above yields that 75 < T,;: 4o
almost surely, hence
T (%)

. Eu[TS] . EV[TI:_—i-Q] 2. EV[T]:_-&-J 27:

limsup ——— < limsup ——2"— < (2+47)° limsup ———2"— < (2+n)° limsup ———,
PP Tog(1/0) = TP Tog(1/e) = CTIRP Gogriz) = IR 1op174)

where the second inequality uses Lemma 19 twice, i.e. T,;ZH <@4+nT, ., <2+ 77)2T,:;+1,

and the last one used the definition of k; and that T, (§) is deterministic.

Since we are only interested in upper bounding lim sups_, %, we can safely drop the sec-

ond orders terms in 7" and log(1/d). This allows us to remove the terms in O(loglogT') and in

O(loglog(1/4)). Using that Ce(x) = = + O(log x), tedious manipulations yields that

) Te(6) < T ()
s—0 log(1/6) = 1-k

De(py€)

where

2 1+ ¢ A 1 \/ A2
_ 2 max < _ 2 max )
D¢(p,€) sup{m|x <1*Cx+1*C 22 [ ST-¢C L+4/1+(1-¢?) 92

The last inequality uses that 22 — 2bz — ¢ < 0 for all = € [0,b(1 + /1 + ¢/b2)). Therefore, we
have shown that

. Eu [7—6] TI);L,ﬁ(IJ’) 2 A%nax
s o) < A A a0 (” V 1+-¢ uez) :
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Letting x, 17 and ¢ goes to zero yields that

. E, [7'5] A2
1 — < ATY% 1 14+ =2 .
T og(1/a) = ThesW 1Y S
O

Concluding the proof of Theorem 5. Combining Lemmas 14, 18, 19 and 20 concludes the proof of
Theorem 5. We restrict the result to instances such that min, .z |ftq — s > 0 in order for Lemma 14
to hold. Note that this is an artifact of the asymptotic proof which could be alleviated with more
careful considerations.

Asymptotically optimal ¢-DP-FC-BAI algorithm. While Lemma 20 is derived for BAI algorithms
converging towards the S-optimal allocation wﬁh 6(“)’ it is direct to see that a similar inversion
results can be obtained for BAI algorithms that converge towards the unique optimal allocation
wit, () = {w*} defined as

il & g S @
At equilibrium, we have equality of the transportation costs (see [JD22] for example), namely
A2
Ya # a*, m = 2T% ()™t (31)

In addition to the multiplicative four-factor, the price of privacy for asymptotically optimal BAI algo-
rithms when combined with the non-private GLR stopping rule is a problem dependent multiplicative
factor 1 + /1 + A2, /(2€?) (Lemma 21). We omit the proof since it is the same as the one of
Lemma 20.

Lemma 21. Let § € (0,1) Assume that there exists ~,, > 0 such that for E, [T, (w*)] < +o0
forall vy € (0,7,), where T}, - (w) is defined in Equation (29) and w* is defined in Equation (30).
Combining the private GLR stopping rule (Equation (16)) with private threshold (Equation (4)) yields
a d-correct algorithm which satisfies that, for all v with mean p such that |a* ()| = 1,

. E, [7'5} A2,
lim sup —=-—- < 4T}, L4414+ 2= )
P loa(1/0) = KLW( TV Re

E.6 Connection to the lower bound

In this section, we compare the sample complexity lower bound of Corollary 1 with the sample
complexity upper bound of Theorem 5.

Simplification of the upper bound. The asymptotic expected sample complexity of AdaP-TT
(Theorem 5) is upper bounded by

. E, [7—6] A2
1 LY AT 1 1 4 —Rax
ISP fog(1/s) = TR (1L S0

A
< AT (H) (2+ max)
@ P V2e

where T, 5(p) is the B-characteristic time for Gaussian bandits, and (a) is due to the sub-additivity
of the square root.

For 3 =1/2, [Rus16] showed that Ty; , o(p) < 2Ty ().

On the other hand, [GK16] showed that H () < Tt (p) < 2H (), where H(p) = > aelK] 2A 2
with Aa* = Apin-
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Plugging these two inequalities in the upper bound of Theorem 5 with 5 = 1/2 gives that

A
li B ANLIrY o + 16H max
msup {78y S Kr,1/2(H) (k) e

Since we consider Bernoulli distributions, we know that 0 < Ain < Apax < 1. If we restrict
ourselves to instances such that all the gaps have the same order of magnitude (Condition 1): there
exists a constant C' > 1 such that A, < CAnin.

E, [75]

For such instances, we obtain

. ]Eu * C1Amin
lim sup By 7] < 8T%y, 1/2(p) + 16H ()

50 log(1/9) V2e
K
, c( 1 1
< 8Ty, 1/2(m) +16v2 (A : +ZA>
min —9 a

where the last inequality is due to H(p)Apin < 5 + 2522 2.

Finally using that a + b < 2max(a, b), we get that

. E,, [7'5] * ¢ L + 71
— = < cm I M
B log(1/0) = ax{ el (Ami" ZA“

a=2

for the universal constant ¢ = 45.26.

The lower bound for Bernoulli instances. For Bernoulli instances, Corollary 1 gives that the lower
bound of the expected sample complexity of any J-correct e-global DP BAI strategy is

K
E, |7, 1 1 1
i ——— > max< Tg(v), — +>y — .
5—0 IOg(l/d) { KL( ) Ge (Amin ; Aa) }
where we use Proposition 1 to replace T, (v) and T3, (v) is the characteristic time for Bernoulli
bandits.

Upper-lower bound discussion for the two privacy regimes. In the low privacy regime, our
upper bound retrieves T%L’l /2 (p) for Gaussian distributions. Since the rewards in the analysis are
supposed Bernoulli, the mismatch from exact optimality is coming from the mismatch between
the KL divergence of Bernoulli distributions and that of Gaussian, which is generally controllable
in most instances where the means are far from the borders, i.e. 0, and 1. This is in essence,
similar to the mismatch between UCB and KL-UCB in the regret-minimization literature (Chapter
10 in [LS20]). To overcome this mismatch, it is necessary to adapt the transportation costs to the
family of distributions considered. In our setting, this can be done by using the Bernoulli KL rather
than Gaussian KL in lines 12 and 16 of the algorithm. While the Top Two algorithms for Bernoulli
distributions have been studied in [JDB'22], the analysis is more involved. Therefore, it would
obfuscate where and how privacy is impacting the expected sample complexity.

In the high privacy regime, and for instances verifying Condition 1, our upper bound matches
the lower bound €' T%%,(v) up to a constant. Having matching upper and lower bounds only for
high privacy regimes is an interesting phenomenon that appears in different settings of differential
privacy literature, such as regret minimization [AB22], parameter estimation [CWZ21] and hidden
probabilistic graphical models [NKS19]. We speculate two facets of this phenomenon:

1. Explicit bounds in high and low privacy regimes: We have matching bounds only in the high or
low privacy regimes because the lower bounds are generally harder to explicit and understand in
transitional phases. Thus, it is harder to claim optimality in those phases.

2. Information-theoretic roots: There might be a more profound information-theoretic reason in
relation to [NKS19]. Indeed, there seems to be a link between the privacy budget € and the information
thresholds introduced in [NKS19]. Specifically, if the randomized mapping F in [3] satisfies DP,
then the noisy information threshold and noiseless information threshold can be similarly written
as a function of € and the total variation. Finding a rigorous link between these two quantities is an
interesting question to explore.
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E.7 Limitation and open problem

In the previous section (Appendix E.6), we argue that the upper and lower bounds match up to
multiplicative constants in both privacy regimes, provided we restrict ourselves to instances satisfying
Condition 1 (i.e. there exists C' > 1 such that A . < CAnin).

While this holds for numerous instances, it does not account for instances in which the gaps have
different orders of magnitude. One example would be the regime where A,;; — 0 while Ap,ax 1S
fixed, hence yielding 7% (1) — +oo.

In Appendix E.5 (see Lemma 20 and 21), we show that combining the private GLR stopping rule
(Equation (16)) with any BAI algorithms whose empirical proportions converge towards the S-optimal
allocation wiy, 4 (p) for Gaussian bandits will incur a problem dependent multiplicative cost

2

A
1 R —— s 32
+ + 2¢2 (32)

in addition to the multiplicative four-factor due to doubling and forgetting.

In order to have matching upper and lower bounds, we would need to have A, instead of A, in
Equation (32). Unfortunately, our results show that it is not possible when using the private GLR
stopping rule (Equation (16)) and a sampling rule that is tailored to asymptotic (/3-)optimality for
Gaussian bandits. Therefore, this impossibility result holds for a large class of BAI sampling rules
when adapting them to tackle private BAI by using the private GLR stopping rule (Equation (16)).

Origin of this limitation. The term A, appears due to the private stopping threshold that ensures
d-correctness of the private GLR stopping rule (Equation (16)).

For asymptotically (-)optimal algorithms, the additive term due to privacy in the threshold is of the
order

1 1 1 2 T, (1) Ai 2
5 (NM +Nn)a*>log(1/5) Rntoo — o 55 108(1/8)"

Therefore, the private GLR stopping rule (Equation (16)) will stop when, for all a # a*,
n

T (w)
A2

which yields the problem-dependent multiplicative cost 1 + 4/ 1 + =g

2e2

* 2
> 2log(1/6) + KLU By 52
n 2¢e

Open problem. This impossibility result is specific to the way we derive an e-DP version of the
GLR stopping rule. Therefore, a natural question is whether it is possible to derive a better private
GLR stopping rule to match the lower bound for all Bernoulli instances.

A two-phase algorithm. AdaP-TT tracks the non-private lower bound (i.e. T ;) as a non-private
algorithm would do, and the additional cost tracking that privately is shown to be 7., /€ (up to
constants for bandits verifying Condition 1), where the additional cost comes from the added Laplace
noise. Another approach would be to first perform a test to determine in which privacy regime the
policy resides, and then track (privately) the corresponding characteristic time. Such an algorithm
would empirically estimate both 17, and T, in the first phase. If the privacy budget € is bigger
than the empirical estimate of T, /T, then this means that we are in the low privacy regime
and the algorithm tracks (privately) the KL characteristic time in the second phase (as AdaP-TT
does). However, if the privacy budget € is smaller than the empirical estimate of T7%, /T% ;. , then
it is the high privacy regime and the algorithm tracks (privately) the TV characteristic time in the
second phase. For such a two-phase algorithm to achieve optimality, properly tuning the amount of
time spent in its first phase is a crucial step. Whether it is possible to analyze such an algorithm and
quantify the proper tuning (if it even exists) is an interesting direction for future work.

Non-asymptotic sample complexity of AdaP-TT. In the non-private FC-BAI literature (i.e. € =
+00), there is no tight lower bound in the non-asymptotic regime (i.e. for any value of §). This is
the main open problem in FC-BAI, and hence in DP-FC-BAI too. In the class of asymptotically (5-
)Joptimal algorithms, TTUCB [JD22] is one of the few to have non-asymptotic guarantees. Adapting
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the non-asymptotic analysis of [JD22] to the private AdaP-TT is an interesting direction for research.
We conjecture that such an adaptation is possible (up to technicalities) by adding concentration terms
linked to Laplace distribution and losing at least a multiplicative four-factor compared to TTUCB
due to doubling and forgetting.

E.8 Analysis of non-private AdaP-TT: Proof of Theorem 6

The proofs detailed in Appendices E.2 and E.3 can easily by adapted to provide guarantees on the
non-private AdaP-TT, which relies on the non-private leader/challenger defined in Equation (20) and
Equation (21).

The key difference between the non-private AdaP-TT and the private AdaP-TT lies in the definition
of the stopping threshold. While the private GLR stopping rule (Equation (16)) has an additive terms
in O(log(1/8)?/e) to cope for the uncertainty due to the Laplace noise, the non-private GLR stopping
rule (Equation (13)) scales simply as log(1/§). This has drastic consequences in terms of asymptotic
upper bound on the expected sample complexity.

It is direct to see that most manipulations from Appendix E.5 still holds for the non-private AdaP-TT.
Therefore, we use the notations and conditions defined therein. We show that the non-private GLR
stopping rule (Equation (13)) yields
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< Z (T o =T )L (15 > T )
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Let T¢(0) defined as the largest deterministic time such that the above condition is satisfied when
replacing 7)~ by (1—r)T. Let ks be the largest random vector of phases such that that T,j& 41 < T¢(6)

almost surely, hence T,j& 42 > T¢(0) almost surely. Then, using the above yields that 75 < T,j& 42
almost surely, hence

1¢(6)

. E, [7'6] . E, [TI:_JF2] 2 1. E, [TI:_+1} 2 1.
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First-order terms. Since we are only interested in upper bounding lim sup;_, %, we can
safely drop the second orders terms in 7" and log(1/d). This allows us to remove the terms in
O(loglogT) and in O(loglog(1/d)). Using that Co(z) = = + O(log x), tedious manipulations
yields that
T (6 T
lim sup <) < KL"g(H) .
50 log(1/6) = (1 = £)(1=()

Letting «, 17 and ( goes to zero yields that

E
lim sup —~ [75]

PO 4T .
50 log(1/6) — ks (1)
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F Extended experimental analysis

In this section, we perform additional experiments to compare AdaP-TT and DP-SE for FC-BAI. We
test the two algorithms in six bandit environments with Bernoulli distributions, as defined by [SS19],
namely

1 = (0.95,0.9,0.9,0.9,0.5), pe = (0.75,0.7,0.7,0.7,0.7),

us = (0,0.25,0.5,0.75, 1), pa = (0.75,0.625,0.5,0.375,0.25) },

us = (0.75,0.53125,0.375,0.28125,0.25), ue = (0.75,0.71875,0.625, 0.46875,0.25) }.
For each Bernoulli instance, we implement the algorithms with

¢ € {0.001, 0.005,0.01,0.05,0.1,0.2,0.3,0.4,0.5, 0.6, 0.7,0.8,0.9, 1, 10},

and a risk level § = 0.01. We verify empirically that the algorithms are §-correct by running each
algorithm 100 times. In Figure 2, we plot the evolution of the average stopping time and standard
deviation with respect to the privacy budget €. All the algorithms are implemented in Python (version
3.8) and are tested with an 8-core 64-bits Intel i5@1.6 GHz CPU.

All the experiments validate the same conclusions as the ones reached in Section 5, i.e.

1. AdaP-TT requires fewer samples to provide a §-correct answer,

2. there exists two privacy regimes, and in the low-privacy regime, the sample complexity is
independent of the privacy budget.
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Figure 2: Evolution of the stopping time 7 (mean =+ std. over 100 runs) of AdaP-TT, DP-SE, and
TTUCB with respect to the privacy budget ¢ for § = 1072 on different Bernoulli instances. The
shaded vertical line separates the two privacy regimes. AdaP-TT outperforms DP-SE.
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