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ABSTRACT

Monocular 3D human pose estimation is a key problem in computer vision. Ex-
isting joint position-based methods often suffer from the issues of accurate bone
length prediction and rotation ambiguities when joints are collinear. Joint rotation-
based methods can avoid the bone length issue but encounter discontinuities when
predicting body’s self-rotation angles, limiting their applicability. In this work, we
theoretically analyze the root cause of the discontinuity and propose a conditional
Euler angle-based estimation method. Our approach projects the continuous body
self-rotation angle in a high-dimensional space into a two-dimensional space and
divides the angle into discrete angle intervals. A classification network learns the
prior information about the body’s orientations in these discrete angle intervals.
Then, the orientation conditions are used as inputs to improve the prediction of
the Euler angle. Experiments across diverse models, including CNNs, GCNs, and
Transformers, demonstrate that our method produces continuous self-rotation pre-
diction. It effectively resolves the discontinuity problem of Euler angles and forms
a plug-and-play module for efficient model transfer.

1 INTRODUCTION

Monocular 3D human pose estimation (HPE) is a prominent research direction in computer vision
with wide applications in virtual reality, augmented reality, avatar generation, and metaverse tech-
nologies(Yang et al., 2022; Anvari et al., 2023; Lu et al., 2024; Li et al., 2025). By leveraging
RGB or RGB-D images and video sequences, monocular 3D human pose estimation can reconstruct
the skeletal joint positions and motion in 3D space, which serves as a crucial bridge between the
physical and digital worlds.

Current research can be broadly categorized into joint position-based and joint rotation-based meth-
ods. Joint position-based methods estimate the 3D coordinates of human joints in the world coordi-
nate system to reconstruct the skeleton and motion (Zheng et al., 2023; 2021; Cai et al., 2019; Cheng
et al., 2020). However, joint position-based methods face two main challenges: (1) the skeletal bone
lengths often appear inconsistent, making it difficult to accurately recover joint locations. To alle-
viate this issue, several studies constrain bone lengths within a plausible range to improve accuracy
(Chen et al., 2022; Kang et al., 2023). (2) These methods also struggle to infer self-rotation when
joints are collinear. Fisch & Clark (2021) proposed virtual markers to approximate rotations along
the bone axes, however, their approach remains limited by image resolution and the lack of texture
information.

Joint rotation-based methods can avoid the bone length inconsistency issue (Jiang et al., 2022).
However, they suffer from discontinuities caused in rotation angles by wrap-around (Pavllo et al.,
2018; Zhou et al., 2019; Pepe et al., 2024). For example, after a full rotation, the angle abruptly
resets to zero and leads to discontinuous predictions of self-rotation. Such wrap-around signals
are difficult for neural networks to model, restricting the applicability of rotation-based methods.
Common rotation representations include Euler angles (Diebel, 2006), quaternions (Pavllo et al.,
2018), 6D rotation (Zhou et al., 2019), and axis-angle (Loper et al., 2015) formats. Among them,
Euler angles are more intuitive and parameter-efficient compared to other forms.

In this paper, we focus on Euler angle-based pose estimation and analyze the underlying cause of
discontinuities in self-rotation prediction. While the body’s self-rotation is continuous in 3D space,
its representation with Euler angles exhibits discontinuous jumps in the prediction. To address
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this problem, we propose a conditional Euler angle-based method, in which the rotation space is
projected onto a 2D plane and the angle is divided into discrete angle intervals. Using this prior
interval information, we can predict continuous self-rotation. Furthermore, we design it as a plug-
and-play module that can be integrated into current 3D pose estimation frameworks, including Pavllo
et al. (2019); Zheng et al. (2021); Zhao et al. (2023; 2019); Liu et al. (2020b;a).

Our contributions are summarized as follows:

• We provide a theoretical analysis of the wrap-around problem in Euler angle-based repre-
sentations and model it using a 3D helix. Through spatial projection, we transform contin-
uous 3D rotation into a learnable 2D representation.

• We introduce a conditional Euler angle learning method that incorporates prior orientation
information. By combining orientation with 2D joint inputs, our method enables continu-
ous prediction and supports plug-and-play integration for existing models.

• We demonstrate efficient transfer from position-based models to rotation-based ones. Our
method allows the current models to transfer from joint position to joint rotation represen-
tations, enhancing the completeness of 3D pose estimation.

The remainder of this paper is organized as follows: Section 2 reviews related works on joint
position-based and joint rotation-based methods. Section 3 presents the theoretical foundation of
our method and introduces conditional Euler angles for predicting continuous rotation. Section 4
presents experimental setup and results, followed by a discussion that evaluates the proposed method
across a range of pose estimation models.

2 RELATED WORK

Joint position-based estimation. (1) CNN-based methods. Pavllo et al. (2019) extended the tem-
poral receptive field through multi-layer dilated convolutions with residual connections, thereby
enhancing temporal correlations in pose sequences. Chen et al. (2021) further decoupled the task
into bone length and joint direction learning to improve consistency in bone length prediction. Chen
et al. (2022) leveraged bone length invariance constraints to refine 3D pose regression. To resolve
rotation ambiguities in joint position representations, Fisch & Clark (2021) introduced virtual mark-
ers to model joint roll rotations. (2) GCN-based methods. Zhao et al. (2019) incorporated prior
semantic information among joints to improve spatial feature modeling. Yu et al. (2023) captured
global correlations via adaptive graph convolutions and refined local features through independent
connection layers. Ci et al. (2019) designed a Local Connection Network (LCN) to strengthen
the modeling of local spatial dependencies. (3) Transformer-based methods. Zheng et al. (2021)
demonstrate the effectiveness of a pure Transformer architecture for 3D human pose estimation. Li
et al. (2022) learned spatio-temporal information via multi-hypothesis generation and feature fu-
sion. Zhang et al. (2022) achieved multi-level spatio-temporal separation and fusion by alternately
stacking spatial and temporal Transformer blocks. Kang et al. (2023) proposed a dual-chain design
(local-to-global and global-to-local) to fully capture complex multi-level dependencies among hu-
man joints. Shuai et al. (2023) adaptively fused multi-view and temporal features to handle varying
views and video lengths without camera calibration. In summary, research on joint position-based
estimation primarily focuses on temporal modeling, spatial structure constraints, and capturing both
global and local dependencies. Different networks architectures (CNNs, GCNs, Transformers) have
continuously improved the representation of spatio-temporal dependencies among joints. Some
works attempt to alleviate issues, such as inconsistent bone lengths and missing self-rotation, but
these challenges remain largely unsolved.

Joint rotation-based estimation. Akhter & Black (2015) investigated the rotation limits of hu-
man joints under specific poses and introduced limit-value constraints. Building on this, Yang et al.
(2023) incorporated human pose priors via learnable rotation tokens to constrain estimated angles
within plausible ranges. To mitigate error accumulation along kinematic chains, Pavllo et al. (2018)
employed recurrent neural networks to estimate joint rotations and introduced a differentiable for-
ward kinematics loss to mitigate accumulated errors. However, joint rotation representations suffer
from discontinuities. Several strategies have been proposed to solve the problem. Burgermeister &
Curio (2022) adopted spherical coordinates, with the polar angle represents pitch and the azimuth
angle represents horizontal orientation. Li et al. (2021) decomposed rotations into twist and swing
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components, estimated respectively via numerical computation and neural prediction. Zhou et al.
(2019) proposed the 6D rotation representation and Banik et al. (2024) further utilized 2D rota-
tion information from 2D keypoints to assist 3D rotation estimation. In summary, discontinuities in
rotation-based representations are typically addressed in two ways: (1) Reducing rotational degrees
of freedom using adopting 2D angle representations, which avoids discontinuities but sacrifices one
degree of freedom, limiting the ability to represent complex rotations; (2) Employing continuous
representations, which preserve full rotational information but increase parameter complexity and
may introduce errors.

3 METHOD

3.1 THESIS ANALYSIS

To regress the sequence of human pose, we aim to learn a continues function for the body rotation:

θ = fw(x) (1)

Here, θ lies on a helix, with body rotation defined over [0, +∞). The ground-truth value typically
falls within [θ, 2n ∗ 180], where n denotes the number of full rotations. However, from a single
image, fw(x) can only predict from 0° to 360°, since the total number of full rotations cannot be
inferred without prior information.

θ ∈[0, n*360]

n=1

n=2

n=3

o

θ

-

-

y

x

[0, 180]

[-180, 0]

gap

Figure 1: The body rotation of the human pose follows a helical trajectory.

As shown in Figure 1, there is a gap between each round in a helix. The network predicts the
continuous rotation value, which can causes the issues of wrap-around at the gap. By projecting the
helix into 2D Cartesian coordinates, the regression interval from [0, 2n ∗ 180) is mapped to [0, 360).
After shifting 180°, the range can be divided into two intervals: [-180, 0), where y is negative, and
[0, 180), where y is positive. To generalize the formula, Eq. (1) can be rewritten as below:

θ = fw(x, y) (2)

This modification allows the network to learn continuous rotations within [0, 360) by incorporating
an additional feature that indicates the sign of y.

3.2 CONDITIONAL POSE ESTIMATION

The overall framework of conditional Euler angle-based pose estimation is illustrated in Figure 2.
Our method consists of three components: (1) Condition inference: Given the input 2D keypoints,
the model infers the horizontal rotation interval of the body’s orientation and generates a correspond-
ing condition label. (2) Conditional Euler angle-based pose estimation: The inferred condition is
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fused with the original 2D keypoints to construct an augmented keypoints representation. The aug-
mented keypoints are then fed into existing pose estimation networks in a plug-and-play manner,
enabling Euler angle-based human pose regression. (3) Neural Networks: The method is compat-
ible with all existing network architectures for 3D human pose estimation, including those models
based on CNN, GCN, and Transformer.
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Figure 2: The overall framework of conditional Euler angle-based human pose estimation.

3.2.1 LEARNING CONDITION

In rotation-based methods, the overall body rotation is determined by the horizontal rotation of
the root joint. The horizontal rotation angle can increase continuously and span multiple cycles.
Therefore, it is difficult to estimate the exact number of full rotations using only a limited set of
frames.

3D Poses
Rotation 

Projection
Image Condtions

(a)
0°

45°

90°

135°

180°

-135°

-90°

-45°

-180°

-

(b)

Figure 3: (a): Rotation Conditions. The horizontal Euler angle is divided into two intervals based
on the body’s orientation. (b) Angular intervals corresponding to the conditional Euler angles. The
green interval spans [0, 180], while the red interval covers [-180, 0].

As illustrated in Figure 3(b), we implement a conditional Euler angle learning method by projecting
the root joint’s angle onto the 2D plane, allowing the angle can be divided into two intervals accord-
ing to the body’s orientation. In Figure 3(b), we present the condition results of different human
body orientations. For representing the self-rotation of each pose in the camera view, the projected
angle in the world coordinate system is denoted as ϕ ∈[−180, 180] . Based on the interval of ϕ, a
conditional label y is assigned as follows:

y =

{
1, ϕ ≥ 0

0, ϕ < 0
(3)

When the body faces the right side of the camera, the projected angle lies in [0, 180], the conditional
label y is set to 1. When the body faces the left side, the projected angle lies in [−180, 0], and y is
set to 0. This conditional definition provides an explicit constraint that helps mitigate discontinuities
in rotation prediction. A classifier is employed to infer the body’s orientation condition. Given the
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input 2D keypoints (u,v), the classifier predicts the current condition y, as illustrated in Eq. (4) and
Figure 4, where the 2D keypoints are processed to get the corresponding orientation condition.

y = classifier(u, v) (4)

Classifier

1 0

Conditions

2D Keypoints

Figure 4: The classifier infers the body’s orientation condition from the 2D keypoints.

3.2.2 CONDITION FUSION

As described in Eq. (2), the condition scalar c is fused with the 2D keypoints. For a sequence of
N frames, the condition scalar c ∈ RN×1 is replicated along the joint dimension to obtain cJ ∈
RN×J×1. Then concatenation operation combines cJ with the original 2D keypoints P along the
feature dimension to form the extended input Pex ∈ RN×J×3, as shown in Eq. (5).

Pex = concat(P, cJ) ∈ RN×J×3 (5)

For each joint in each frame, the condition value is appended to the corresponding 2D keypoint
coordinates, forming an extended feature vector of dimension 3 per joint. In Figure 5(b), It can be
seen that the 2D keypoints are projected onto the plane of y = 1 or the plane of y = 0 according to
the inferred conditions. Thereby, by embedding discontinuous signals of Euler angles at the input,
this method substantially enhances the model’s capability to learn and predict Euler angle outputs
continuously.

Classifier

Duplicate J 

Times

Concat

J

2

J

1

J

3

(a)

Images
2D 

Keypoints
3D Augmented 

Keypoints
Conditions

(b)

Figure 5: Schematic diagram of conditional Euler angles. (a) 2D keypoints and conditional infor-
mation are concatenated to form dimensionally augmented 3D keypoints. (b) The condition label
maps the 2D keypoints onto different planes. The 2D keypoints lie in either the y = 0 plane (green
rectangular box) or the y = 1 plane (red rectangular box).

3.2.3 LOSS FUNCTION

For rotation-based pose estimation, we adopt the Mean Per Joint Angular Sepration Error (MPJAE)
as the loss function, as defined in Eq. (6).
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MPJASE =
1

N × J

N∑
i=1

J∑
j=1

∥ei,j − êi,j∥1 (6)

Eq. (6) quantifies the average L1 distance between the predicted Euler angle êi,j and the ground-truth
Euler angle ei,j across all joints j and frames i, each angle contains (α, β, γ) three scales, where
N denotes the number of frames and J denotes the number of joints. This metric thus measures the
rotational discrepancy between prediction and ground truth.

4 EXPERIMENTAL RESULTS AND DISCUSSION

To validate the effectiveness of the proposed method, we examined its performance on our dataset.
Since existing public datasets do not provide Euler angle annotations, we collected our own dataset,
with details presented in the appendix A. The experiments consist of two parts: (1) evaluating the
performance of different classifiers for condition inference; (2) embedding angle conditions into
existing 3D pose estimation models to assess their ability to handle rotational discontinuities.

4.1 CLASSIFIER STUDY

The condition inference is performed based on 2D keypoints obtained using the Detectron2 2D
pose estimation framework. To incorporate temporal information, the input is represented as a
sequence of N frames, each containing J joints, resulting in P ∈ RN×J×2. For optimization,
cross-entropy loss is employed to guide the network in discriminating condition labels. Ground-
truth body orientations are manually annotated, with positive values assigned to instances facing left
and negative values to those facing right.

We compare ResNet and a softmax classifier for condition inference. As shown in Table 1, both
classifiers achieve over 98% accuracy on the test set and demonstrate a stable discrimination for
the body orientations. While their accuracies are comparable, the Softmax classifier offers faster
inference speed.

Table 1: Performance of two classifiers on conditional inference tasks

Classifier Accuracy Speed(frame/s)
ResNet18 98.3% 96212
Softmax 98.1% 608364

As shown in Table 1, the ResNe18 network achieves 98.3% accuracy at a speed of 96,212 frames/s,
whereas the softmax classifier achieves 98.1% accuracy at a speed of 608,364 frames/s. However,
the two classifiers exhibit different patterns in misclassification.

Figure 6 illustrates examples where the ResNet18 network and the Softmax classifier predict cor-
rectly, and both fail. In Figure 6(a), frames correctly classified by ResNet18 predominantly corre-
spond to standing actions, whereas frames correctly classified by Softmax classifier mostly corre-
spond to sitting or squatting actions as shown in Figure 6(b). In Figure 6(c) the misclassified by
both classifiers typically involve heavily occluded actions. These observations indicate that the clas-
sifiers differ across action types and both struggle under conditions of extreme occlusion. Here, the
Resnet18 network was used for further study.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Image

Groundtruth
Resnet

Softmax
(a) ResNet True

Image

Groundtruth
Resnet

Softmax
(b) Softmax True

Image

Groundtruth
Resnet

Softmax
(c) Both Incorrect

Figure 6: Comparison of classifier predictions. (a) Frames correctly classified only by the ResNet18
network. (b) Frames correctly classified only by the softmax classifier. (c) Frames misclassified by
both classifiers. Colored circles indicate the prediction results, green means true, while red means
false.

4.2 EXPERIMENTAL VALIDATION ON MULTIPLE BASELINES

To further verify the effectiveness of our method, we applied it to six representative 3D human
pose estimation methods: Pavllo et al. (2019), Zhao et al. (2019), Liu et al. (2020b), Zheng et al.
(2021),Zhao et al. (2023), and Liu et al. (2020a). All methods share identical preprocessing steps,
input-output format, and training strategy, and adopt the same loss function (MPJASE) for compara-
bility. Each model was trained on the same training set and evaluated on the same test set. Detailed
settings are provided in Appendix C.

Table 2: Quantitative comparison of MPJASE between the vanilla (before) and ours (after) on our
angle Dataset.

Methods Walk Sit Run Jump Squat Torso Arm Leg Avg

Pavllo et al. (2019) 5.73/5.16 8.00/7.32 5.99/5.50 6.50/5.44 5.46/5.28 6.47/6.31 6.00/5.81 7.26/6.61 6.40/5.95
Zhao et al. (2019) 10.32/8.59 11.25/10.77 10.84/8.69 11.13/9.20 10.37/9.20 11.34/9.90 10.27/8.54 10.96/9.78 10.81/9.33
Zheng et al. (2021) 6.90/5.15 8.49/7.41 7.77/5.32 7.05/5.18 5.81/5.60 8.07/6.58 6.31/6.13 8.61/7.10 7.38/6.06
Zhao et al. (2023) 9.19/5.90 11.44/8.38 9.72/5.62 8.23/6.35 6.77/6.75 9.01/7.47 7.52/6.96 9.65/7.79 8.90/6.90
Liu et al. (2020b) 5.88/5.65 7.87/7.80 5.61/5.57 6.13/6.01 6.12/6.10 7.13/7.06 6.36/6.10 7.58/7.35 6.6/6.40
Liu et al. (2020a) 7.05/5.58 8.02/7.77 6.62/5.22 8.42/6.10 6.19/6.11 8.22/7.24 6.75/6.33 9.34/7.31 7.60/6.50

Table 2 presents the MPJASE results across different action categories before and after incorporating
our method. Pavllo et al. (2019) achieves an average reduction of 0.5°, with notable improvements
on Jump (1.06°). Zhao et al. (2019) despite having the highest overall error, also benefits signifi-
cantly with an average decrease of 1.48°. Zheng et al. (2021) shows pronounced gains on dynamic
actions, particularly Walk (1.75°) and Run (2.45°). Zhao et al. (2023) achieves the largest improve-
ment of 2.04°.Liu et al. (2020b) achieves a moderate improvement (average 0.11°) while still main-
taining consistent gains. Liu et al. (2020a) exhibits more evident improvements on Walk (1.47°) and
Jump (2.32°). Actions such as Walk, Jump, and Run show the most significant reductions of 1.77°,
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1.52°, and 1.51°, respectively, indicating that our method is particularly effective for multi-cycle ro-
tations. In contrast, Squat and Torso, which primarily involve static or localized movements, exhibit
relatively smaller improvements of 0.28° and 0.53°. These results demonstrate that our method is
especially advantageous in handling dynamic body’s rotations, without any degradation in perfor-
mance.

vanilla

ours

Pavllo et al. (2019) Zhao et al. (2019) Liu et al. (2020b)

vanilla

ours

Liu et al. (2020a) Zheng et al. (2021) Zhao et al. (2023)
(a) Qualitative comparison of vanilla and ours in Run action

vanilla

ours

Pavllo et al. (2019) Zhao et al. (2019) Liu et al. (2020b)

vanilla

ours

Liu et al. (2020a) Zheng et al. (2021) Zhao et al. (2023)
(b) Qualitative comparison of vanilla and ours in Walk action

Figure 7: Qualitative comparison of vanilla and ours across different methods for Run and Walk
actions.

We further analyze the performance of different methods at rotational discontinuities. Figure 7
shows consecutive frames of Run and Walk actions during abrupt rotation changes. In the Run ac-
tion (Figure 7(a)), Pavllo et al. (2019) and Liu et al. (2020a) exhibit sharp rotational jumps without
smooth transitions, while Zheng et al. (2021) shows over- or under-rotation across several frames.
Liu et al. (2020b) and Zhao et al. (2023) generally produce smoother transitions but still have frame-
level errors, whereas Zhao et al. (2019) causes unnatural body tilting. In the Walk action (Figure
7(b)), Pavllo et al. (2019); Liu et al. (2020b); Zheng et al. (2021); Zhao et al. (2023); Liu et al.
(2020a) display directional errors in some frames, with Zhao et al. (2019) again exhibiting tilting.
These observations highlight the limitations of Euler-angle representations, which often yield dis-
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continuous predictions at interval boundaries. By incorporating conditional estimation, both actions
achieve smooth and coherent transitions across all six methods, demonstrating the effectiveness and
generality of our approach.

(a) vanilla (b) ours (c) vanilla (d) ours

Pavllo et al. (2019) Zhao et al. (2019)

(e) vanilla (f) ours (g) vanilla (h) ours

Liu et al. (2020b) Liu et al. (2020a)

(i) vanilla (j) ours (k) vanilla (l) ours

Zheng et al. (2021) Zhao et al. (2023)

Figure 8: Comparison of horizontal rotation angles. The yellow region indicates the angle range
from −180° to 180°. Pavllo et al. (2019); Zheng et al. (2021); Zhao et al. (2023); Liu et al. (2020a)
fail to capture the step changes, Zhao et al. (2019); Liu et al. (2020b) exhibit oscillations. With our
method, all models produce continuous rotations.

To further validate the effectiveness of our method, Figure 8 illustrates the curves of horizontal
rotation angle curves over frames for different approaches. The results reveal a typical periodic
wrap-around phenomenon. Without conditional estimation, the predicted curves fail to correctly
follow the ground truth at step changes. Specifically, Pavllo et al. (2019); Zheng et al. (2021); Zhao
et al. (2023); Liu et al. (2020a) exhibit strong fluctuations around the discontinuities, indicating dif-
ficulty in modeling rotational step changes. Zhao et al. (2019); Liu et al. (2020b) produce curves
closer to the ground truth, but their step transitions occur a few frames earlier, resulting in inaccurate
pose predictions. After applying our method, the predictions accurately reconstruct the step transi-
tions. These results confirm that the proposed conditional method effectively address the challenge
of managing discontinuous in Euler angle-based pose estimation.

5 CONCLUSION

This paper presented a conditional Euler angle-based method for 3D human pose estimation, ad-
dressing the discontinuity problem of wrap-around in body self-rotation angle prediction. By lever-
aging human orientation priors, the method projects the self-rotation space of the human body onto
a conditional plane, which can be seamlessly integrates into existing 3D human pose estimation
frameworks in a plug-and-play manner. Experiments demonstrate significant performance gains
across current CNN-, GCN-, and Transformer-based models. Our study demonstrates that explicitly
modeling conditional information can effectively enhance the prediction continuity in rotation rep-
resentation and the generalization of human pose estimation. Future work will extend the method to
parametric human body models and explore novel neural network structures to improve the predic-
tion accuracy, Overall, incorporating orientation priors enables Euler rotation angles to be learned
reliably, effectively resolving the wrap-around problem.
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A DATASET

In this study, we constructed a human action dataset represented by 3D Euler angle sequences.
Several participants were enrolled and performed motions after training within a calibrated capture
space of 5m×3.2m×2.5m. High-precision body motion was captured using an OptiTrack system,
with synchronized video sequences were recorded with an Orbbec Femto Bolt camera. Each subject
was equipped with 41 reflective markers, the trajectories of which were subsequently converted into
Euler angle rotations for 17 body joints.

The dataset covers a diverse set of actions, including Walk, Sit, Run, Jump, Squat, Torso, Arm, and
Leg, spanning extreme rotational angles across all joints. Human poses are represented by Euler
angle rotations of 17 joints together with a 3D displacement vector of the root joint. During data
acquisition, the optical axis of the camera was aligned with the −z direction of the motion capture
coordinate system, ensuring that horizontal body rotations are accurately projected onto the imaging
plane. Examples of captured actions are illustrated in Figure 9, while the motion capture setup and
equipment are shown in Figure 10. The number of frames per action is summarized in Table 3.

Table 3: Frame distributions of the training and test sets.

Walk Sit Run Jump Squat Torso Arm Leg Sports Sum
Training set 13993 17843 2168 5253 2613 11027 26031 12246 20151 117325
Test set 1229 1963 1040 988 275 959 2429 1112 22924 32219

Figure 9: Examples of actions in our datase

(a) OptiTrack Motion capture system (b) Orbbec Femto Bolt Camera

Figure 10: The motion capture system and camera for our dataset collection

B INFERENCE VIDEOS

We present several inference results on out-of-dataset videos. As illustrated in Figure 11, the
classifier-inferred conditional information is applied to the framework from Pavllo et al. (2019).
Without the conditional information, noticeable discontinuities or reversed rotations appear in the
joint rotation sequences (highlighted by red boxes). Incorporating conditional inference effectively
corrects these discontinuities. These results demonstrate the ability of the classifier to directly ad-
dress discontinuity issues in pose estimation.
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(a) Walk action
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Figure 11: Results based on classifier-inferred conditions.
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C TRAINING DETAILS

To accommodate training with Euler angle rotation-based human pose dataset, we applied uniform
preprocessing to all methods.: (1) Preprocessing operations originally designed for position learning
were replaced with angle-based preprocessing to match the Euler angle representation. (2) The input
channel dimensions of the networks were adjusted. The original networks were designed for 2D joint
inputs; additional channels were added to incorporate the conditional Euler angle priors.(3)The loss
functions were modified by replacing the original MPJPE with MPJASE for all methods, providing
a more appropriate metric for Euler angle errors.

All baseline methods are implemented with their official default configurations or the authors’ rec-
ommended setups, while our proposed module is integrated into each of them for evaluation. To
ensure fairness, we follow the original training protocols as closely as possible and only make min-
imal adjustments where necessary. Specifically, Pavllo et al. (2019) is trained with five layers of
dilated convolutions (kernel size 3) and a batch size of 1024, without strided convolutions, causal
convolutions, or semi-supervised learning, for a total of 60 epochs. Zheng et al. (2021) is trained
with f = 81 using its default settings until convergence, and Zhao et al. (2023) adopts f = 27
with similar hyperparameters and a comparable training schedule. Liu et al. (2020b) is trained for
40 epochs using its default configuration. Liu et al. (2020a) is trained with a batch size of 128 and
default architectural parameters for a moderate number of epochs to ensure stable convergence.Zhao
et al. (2019) is trained with the non-local module enabled for 90 epochs to capture spatiotemporal
dependencies. For all methods, the initial learning rate is set to 0.001 and decayed by a factor of
0.95 per epoch, consistent with the respective default schedules.

Table 4: Training configurations for all 3D human pose estimation methods.

Method Core Settings Batch Size Epochs Special Modules
Pavllo et al. (2019) arc = 3, 3, 3, 3, 3 1024 60 –
Zheng et al. (2021) f = 81 default 70 –
Zhao et al. (2023) f = 27 default 70 –
Liu et al. (2020b) default default 40 –
Liu et al. (2020a) arc = 3, 3, 3 128 60 –
Zhao et al. (2019) default default 90 non-local module
*Note: All methods use initial learning rate lr = 0.001 with decay factor 0.95 per epoch.
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