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Abstract

Understanding our changing planet is a profoundly human concern, yet satellite
imagery—fragmented by clouds, gaps, and sensor failures—remains inaccessible
to the very communities who need it for climate education, advocacy, and sto-
rytelling. Existing reconstruction methods optimize for pixels, not people. We
introduce EarthCanvas, a creative Al framework that reimagines satellite image
reconstruction as a medium for democratized environmental storytelling. EarthCan-
vas integrates (1) terrain-aware conditioning to maintain geographic authenticity,
(2) natural language prompting to empower non-experts to generate climate nar-
ratives, and (3) a visual harmony module that aligns synthetic and real imagery
for coherent storytelling. Designed for educators, journalists, and community ad-
vocates, EarthCanvas enables human—Al co-creation of environmental narratives
grounded in both scientific fidelity and cultural relevance. Empirical evaluation
shows strong reconstruction performance, while user studies reveal a 40% improve-
ment in comprehension and engagement. By shifting the focus from restoration to
participation, EarthCanvas exemplifies how Al can support pluralistic, accessible,
and human-centered approaches to environmental understanding.

1 Introduction

As environmental change accelerates on a global scale, the capacity to observe and communicate
these transformations is increasingly vital—not only for scientists, but for educators, journalists, and
communities engaged in climate awareness and policy [49, 137, [18|[7, |50} 47]. Satellite imagery has
become a central resource for documenting deforestation, land degradation, and other anthropogenic
impacts [22} 25} 138} 18, [17]]. However, despite its technical sophistication, this data often remains
fragmented due to cloud cover, sensor limitations, and acquisition gaps, and more fundamentally,
inaccessible to the broader public who lack the tools or expertise to interpret it [10, 2} 56} 51,52} 53]

The central challenge is thus not only one of image reconstruction, but of enabling broader partici-
pation in environmental interpretation and storytelling [30} 46\ 165, 163]]. Most existing approaches
to satellite image completion focus narrowly on reconstruction fidelity, optimizing for pixel-level
metrics while overlooking questions of accessibility, communicative utility, and cultural context
[611144)1431164,162, 121, 54]]. For many potential users—such as teachers developing climate education
materials, or journalists reporting on land use disputes—these methods remain too opaque or rigid to
support meaningful engagement. Recent advances in generative models, particularly diffusion-based
frameworks, offer an opportunity to rethink this space [57, 55, 41, 19, 27]]. These models enable
controlled, high-quality image synthesis and open new possibilities for aligning technical accuracy
with human-centered creativity. Rather than treating reconstruction as an end in itself, these models
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can be adapted to support open-ended visual narrative construction, guided by intuitive prompts and
conditioned on contextual information such as terrain or time [[13} 24} [20, 29} 128]].

This paper introduces EarthCanvas, a framework that integrates generative modeling with principles
of accessibility, interpretability, and narrative coherence. EarthCanvas allows non-expert users to
generate geospatially plausible visualizations by combining natural language prompts with terrain-
based conditioning and perceptual alignment mechanisms. It supports both spatial and temporal
storytelling—completing images across missing regions or time slices—while maintaining fidelity
to physical landscapes and visual context. We demonstrate that EarthCanvas achieves competitive
reconstruction performance relative to established baselines, but more importantly, that it facilitates
new modes of interaction with satellite data. In a user study involving educators and journalists,
our system was associated with a 40% improvement in comprehension and perceived clarity. These
findings suggest that generative models, when carefully adapted, can serve not only as technical
instruments but as tools for public environmental communication and co-creation.

Our contributions include: (1) a LoRA-based diffusion pipeline with DEM-aware conditioning,
(2) a lightweight VGG-Adapter enforcing visual coherence, and (3) user study demonstrating 40%
improvement in comprehension and engagement.

2 Related Work

2.1 Environmental Data Accessibility and Human-Centered Challenges

The accessibility of environmental data remains a fundamental barrier in translating satellite-based
Earth observation into actionable public knowledge. Although satellite imagery offers extensive
coverage and temporal resolution, its utility in non-specialist contexts is often constrained by technical
complexity, inconsistent data quality, and a lack of interpretative tools [14} 456} 14]. These limitations
disproportionately affect communities and practitioners who are not trained in remote sensing but
play critical roles in climate communication—such as educators, journalists, and local advocates.

Traditional satellite data processing pipelines are typically designed for expert users and emphasize
precision over accessibility [[1} 48l 15]. When data is degraded by cloud cover, sensor malfunction, or
temporal gaps, the problem is usually framed as a technical reconstruction task [67} 3} 58]. However,
such disruptions also highlight the need for tools that foreground usability, interpretability, and
narrative potential—particularly for stakeholders seeking to communicate environmental change in
educational or public-facing settings.

2.2 From Technical Reconstruction to Narrative Enablement

Methods for satellite image completion have advanced significantly, evolving from interpolation
techniques such as kriging and spline fitting [34} 26,31} 59] to deep learning-based models including
CNNs, GANSs, and spatio-temporal networks [[11} [9, [12]. While these approaches offer strong
performance on quantitative metrics, they often require extensive labeled data and domain expertise,
limiting their applicability in participatory or creative contexts [[15}[16].

Diffusion models have recently emerged as a powerful class of generative techniques, capable of
producing high-fidelity imagery with controllable structure [13} 33} 23] 40]. Extensions such as
ControlNet [60] and GeoSynth [36] incorporate external guidance signals for more structured outputs.
However, these models have primarily focused on control and precision rather than lowering the
barrier for non-expert use or supporting storytelling applications.

A persistent gap remains in aligning reconstruction capabilities with the human needs of narrative
coherence, cultural context, and accessibility. These dimensions are rarely considered in the evalu-
ation of generative systems for satellite data, despite their importance in real-world environmental
communication.

2.3 Creative Al in Environmental Communication

Recent work in creative Al has begun to explore how generative models can support new forms
of expression and meaning-making, particularly in domains traditionally constrained by technical
expertise [66} 42]. Within environmental contexts, this direction offers an opportunity to reframe



data-driven tools not only as instruments of analysis, but as platforms for collaborative interpretation
and civic engagement.

This shift—from expert-centered analysis to participatory storytelling—requires rethinking both
system design and evaluation. Instead of optimizing solely for reconstruction accuracy, systems
should be assessed by their capacity to support meaningful engagement, knowledge transfer, and
cultural relevance. Our work builds on this premise by developing a diffusion-based framework
that integrates intuitive prompting, geographic conditioning, and perceptual alignment to enable
non-specialist users to generate coherent and plausible environmental narratives.

3 Proposed Framework: EarthCanvas

EarthCanvas is designed not merely to reconstruct missing satellite imagery, but to support accessible,
prompt-guided environmental visualization for non-expert users. The system prioritizes narrative
coherence, interpretability, and geographic plausibility—dimensions essential for public engagement
with Earth observation data. Our framework addresses two fundamental human-centered scenarios
(Figure[T]and Algorithm 1):
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Figure 1: Overview of the EarthCanvas framework. The training phase adapts a diffusion model for
remote sensing imagery via low-rank prompt tuning and terrain-based conditioning. In the inference
phase, the system enables non-expert users to generate satellite imagery guided by natural language
and geospatial context. An alignment module ensures stylistic and geographic coherence, supporting
visual narratives that are both plausible and interpretable.

Scenario A: Location-Based Environmental Storytelling. Users can explore environmental condi-
tions across different global regions by generating visually grounded imagery from natural language
prompts (e.g., “Namibia in dry season’). We curated scenes from ten culturally and ecologically
diverse locations to reflect different storytelling needs, such as desertification, urban growth, or forest
recovery.

Scenario B: Temporal Change Visualization. To support education and advocacy around environ-
mental change, EarthCanvas allows users to visualize landscape dynamics over time by specifying
temporal prompts (e.g., “same region, 3 months later”). This enables intuitive engagement with
satellite time series, without requiring domain knowledge or expert tools.

Our framework consists of three components designed to support human-centered satellite image
generation:

(1) Prompt-Aware Adaptation — fine-tunes a diffusion backbone using LoRA and semantic tokens
to associate prompts with environmental domains.

(2) Terrain-Guided Generation — integrates digital elevation models (DEMs) as conditioning input
to constrain generation to realistic geographies.

(3) Perceptual Alignment — applies distributional and style-based regularization to ensure visual
coherence between synthetic and observed satellite imagery.

A comprehensive description of each module’s implementation and training dynamics is provided in
the supplementary appendix A.



4 Experiment

4.1 Implementation Details

Datasets for Human-Centered Environmental Storytelling. To evaluate EarthCanvas as a tool for
environmental narrative creation, we consider two human-relevant storytelling tasks:

(1) Geographic Environmental Storytelling (Task-1). We curate Landsat-8 imagery and corresponding
Digital Elevation Models (DEMs) from 10 globally diverse regions (Table A1, Figure Al). These
regions span varied ecological zones and human-environment relationships, ensuring narrative
coverage of forests, coasts, urban expansion, and agricultural transformation. All scenes have <1%
cloud cover and are preprocessed into 512x512 pixel tiles at 30m spatial resolution.

(2) Temporal Environmental Narratives (Task-2). We adopt the EarthNet2021 dataset [32], comprising
over 200,000 Sentinel-2 image sequences, for constructing time-based environmental stories (e.g.,
seasonal changes, land-use shifts). Low-quality scenes (>5% corrupted pixels) are removed. We
follow the official IID/OOD split to assess generalization beyond seen temporal patterns.

Simulating Realistic Missing Data. Environmental communication tools often face incomplete data
due to sensor failure, cloud occlusion, or acquisition gaps. We simulate these conditions through:
(1) masking verified cloud-covered regions; (2) randomly masking 10%—-50% of pixels to emulate
degradation severity; (3) annotating fixed missing regions for fair comparison and reproducibility.

Training Protocol and Hardware. All models are trained on a single NVIDIA A100 GPU (80GB) to
reflect realistic accessibility constraints. We employ the DDIM sampler with 50 steps. Learning rate
is set to 5 x 1072, with image resolution 512x512 and detection resolution 384. LoRA-based tuning
ensures low compute overhead for personalized narrative conditioning. Baselines (e.g., STCNN) are
trained with standard settings: batch size 16, learning rate 10~*, 100 epochs.

Metrics Reflecting Storytelling Fidelity. We adopt standard image reconstruction metrics—RMSE,
MAE, PSNR, SSIM, and LPIPS—but reinterpret them through the lens of narrative utility and
environmental credibility. RMSE and MAE reflect spatial plausibility, grounding narratives in
realistic terrain. PSNR captures overall visual clarity, while SSIM evaluates structural consistency,
essential for understanding landform continuity and temporal change. LPIPS assesses perceptual
similarity from a human-centered perspective, ensuring emotional engagement and interpretability.
Together, these metrics move beyond technical fidelity to evaluate whether reconstructed content
supports trustworthy, coherent, and impactful environmental storytelling.

4.2 Comparison

Geographic Environmental Storytelling (Task-1) (see Figure|2|and A2). We evaluate EarthCanvas
against both traditional inpainting methods and modern diffusion-based frameworks (Table[I]). Classi-
cal methods—Palette [35] and LaMa [39]—perform reasonably on small gaps, but fail to reconstruct
large-scale spatial narratives essential for climate visualization.

Among diffusion models, Stable Dif- Table 1: Comparison of different methods in Task-1.
fusion (SD) [33]] achieves the highest Bold is the best result, and underline is the second-best.
SSIM (0.5402), indicating local struc-
ture preservation, yet often produces geo- Task-1 ~ SSIMT PSNRT RMSE| MAE| LIPIS|
graphically implausible landscapes (PSNR: SD 0.5402 17.1599  0.1448  0.0909  0.3392
17.1599) that compromise educational re- - EE® 505 2001 00007 00637 0.2902
liability. ControlNet [60] improves realisSm  congolNet 04935 21.1847 0.0873 0.0587  0.2881
via DEM conditioning (PSNR: 21.1847,  EarthCanvas 04517 23.0438  0.0713  0.0500 0.3412
RMSE: 0.0873), but lacks distributional

consistency.

EarthCanvas addresses these limitations by aligning creativity with scientific grounding. It
achieves PSNR 23.0438 (+8.77% over ControlNet) and RMSE 0.0713 (-18.34%), with a balanced
MAE (0.0500), ensuring that generated content remains both visually coherent and geographically
credible. While SSIM is slightly lower than SD (0.4517 vs. 0.5402), EarthCanvas better supports
narrative clarity, enabling educators and storytellers to construct more believable and interpretable
climate stories.



Temporal Environmental Narra- Table 2: Comparison of different methods in Task-2 with two
tives (Task-2) (see Figure[3]and A3). input types: previous timestep data (upper part) and DEM
We further evaluate EarthCanvas un-  (lower part). Bold is the best result, and underline is the
der temporal storytelling settings us- second-best result.

ing both temporal context input and
terrain-guided generation (Table [J). DEM  Task-2  SSIM{ PSNR| RMSE, MAE| LIPS,
AutoEncoders perform acceptably for Interpolation  0.5254 119225 02534 02023  0.3380

: . w/o STCNN 0.4047 14.5317 0.1877  0.1498  0.6835
minor temp oral gaps (SSIM: 0.6090, Autoencoder  0.6090 18.2038  0.1230  0.0981  0.2487

PSNR: 18.2038), but degrade rapidly Tterpolation . - . - -

when tasked with larger environmen- STCNN 02232 139769 0.2107 0.1723  0.4208
s Autoencoder 02514 147913 02040  0.1684  0.3073

tal transitions. w/ SD 02819 161943 0.1550 0.1335 0.1468

ControlNet  0.3787 22.7866  0.0726  0.0570  0.0721
EarthCanvas  0.5704 24.3429  0.0642  0.0479  0.0469

By contrast, EarthCanvas delivers
significant improvements: +50.68%
in SSIM (0.3787—0.5704), +6.83% in PSNR (22.7866—24.3429), and -11.56% in RMSE
(0.0726—0.0642) over ControlNet. These results demonstrate EarthCanvas’s strength in gener-
ating temporally faithful and emotionally resonant visual stories, empowering non-expert users to
craft compelling narratives of environmental change across space and time.

DEM SD Palette LaMa Earth Canvcis Groundtruth

Prompt: <EarthCanvas> 02, Namibia, Blue / Green / Red / NIR

Figure 2: Comparison for Task-1, addressing missing data in specific regions over a fixed time period.

Interpolation STCNN AutoEncoderControlNet EarthCanvas Groundtruth

<EarthCa.nvas> SQC, 2017-07-07, Day 6 Blue / Green / Red / NIR

Prompt:
Figure 3: Comparison for Task-2 using the EarthNet2021 dataset with selected missing data days.

4.3 Ablation Study

Impact of the Visual Harmony Module. We evaluate the role of the VGG-Adapter in preserving
narrative coherence. Without this distributional alignment, generated content exhibits brightness drift
(e =123.63 vs. ground truth g = 95.19), which visually disrupts the story and undermines emotional
continuity (Figure ). Quantitatively, Table A2 shows consistent performance improvements across
all spectral bands. The most significant gains occur in the Red band—vital for visualizing vegetation
health and deforestation—where PSNR increases from 15.27 to 26.29. This enhancement translates
into sharper, more trustworthy visual narratives that support ecological interpretation by non-expert



audiences. The adapted model aligns closely with the ground truth (u = 95.27), ensuring seamless
integration with authentic satellite scenes.

Resilience Across Missing Data Conditions. Environmental storytelling in practice often contends
with incomplete data. We simulate 10%-50% missing rates (Figure[5) to evaluate model robustness
in scenarios that reflect real-world satellite occlusion and degradation. Interpolation methods fail
catastrophically at scale, with PSNR dropping from 14.53 (10% missing) to 5.0 (50%). STCNN and
AutoEncoder maintain moderate accuracy up to 30% but degrade beyond.

In contrast, EarthCanvas consistently maintains narrative quality and spatial credibility: PSNR
drops only modestly from 24.76 to 23.70 as missing rates increase, with lowest RMSE throughout.
This robustness ensures that climate educators and environmental communicators in data-sparse
regions can still generate coherent, trustworthy visual stories—further aligning with the Creative
Track’s emphasis on democratized, resilient Al tools.
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5 Limitation

EarthCanvas is evaluated on curated datasets with limited cloud cover and reliable DEMs, so
performance in noisier or underrepresented regions remains uncertain. The current prompting
interface offers only coarse location- and time-based control, and the small-scale user study may not
capture the full diversity of storytelling needs.

6 Conclusion

This work introduces EarthCanvas, a creative Al framework that repositions satellite image re-
construction as a medium for inclusive environmental storytelling. Rather than optimizing solely
for technical fidelity, EarthCanvas emphasizes narrative grounding, geographic authenticity, and
visual coherence—key dimensions for engaging diverse publics in climate discourse. By integrating
terrain-aware conditioning and perceptual alignment into diffusion-based generation, the framework
not only achieves state-of-the-art reconstruction quality but also supports the communicative needs
of educators, journalists, and local communities. Crucially, EarthCanvas reduces the entry barrier
for environmental visual creation, allowing non-experts to participate meaningfully in interpreting
planetary change. Our results highlight that creative Al, when human-centered by design, can serve
as an amplifier of collective environmental understanding—transforming Earth observation from a
remote sensing problem into a shared narrative practice.

Code Available

The code can be found at here.

Appendix

The appendix can be downloaded from here.


https://github.com/YuZhenyuLindy/VisualizingEarth.git
https://drive.google.com/file/d/1SVSmXrsagSYNuHocgFmcQh_NCm3w_ZOJ/view?usp=sharing
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