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Abstract

In this paper, we make the first attempt to align diffusion models for image in-
painting with human aesthetic standards via a reinforcement learning framework,
significantly improving the quality and visual appeal of inpainted images. Specifi-
cally, instead of directly measuring the divergence with paired images, we train
a reward model with the dataset we construct, consisting of nearly 51,000 im-
ages annotated with human preferences. Then, we adopt a reinforcement learning
process to fine-tune the distribution of a pre-trained diffusion model for image
inpainting in the direction of higher reward. Moreover, we theoretically deduce
the upper bound on the error of the reward model, which illustrates the potential
confidence of reward estimation throughout the reinforcement alignment process,
thereby facilitating accurate regularization. Extensive experiments on inpainting
comparison and downstream tasks, such as image extension and 3D reconstruction,
demonstrate the effectiveness of our approach, showing significant improvements
in the alignment of inpainted images with human preference compared with state-
of-the-art methods. This research not only advances the field of image inpainting
but also provides a framework for incorporating human preference into the iterative
refinement of generative models based on modeling reward accuracy, with broad
implications for the design of visually driven AI applications. Our code and dataset
are publicly available at https://prefpaint.github.io.

1 Introduction

Image inpainting, the process of filling in missing or damaged parts of images, is a critical task in
computer vision with applications ranging from photo restoration [1, 2] to content creation [3, 4].
Traditional approaches have leveraged various techniques, from simple interpolation [5–7] to complex
texture synthesis [8, 9], to achieve visually plausible results. The recent advent of deep learning,
particularly diffusion models, has revolutionized the field by enabling more coherent and contextually
appropriate inpaintings [3, 10–12]. Despite these advancements, a significant gap remains between
the technical success of these models and their alignment with human aesthetic preferences, which are
inherently subjective and intricate. As shown in Fig. 1, the existing stable diffusion-based inpainting
model tends to generate weird and discord reconstruction.

Human preference for visual content is influenced by complex and mutual factors, including but not
limited to personal background, experiences, and the context in which the content is viewed [13, 14].
This makes the task of aligning inpainting models with human preference particularly challenging, as
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Figure 1: Visual comparisons of the results by the diffusion-based image inpainting model named
“Runway", and the aligned model through the proposed method.

it requires the model not only to understand the content of the missing parts but also to predict and
adapt to the diverse tastes of its users.

Inspired by recent advancements in the reinforced alignment of large pre-trained models [15–19], we
propose to align diffusion models for image inpainting with human preference through reinforcement
learning. Specifically, our approach is grounded in the hypothesis that by incorporating human
feedback into the training loop, we can guide the model toward generating inpainted images that
are not only technically proficient but also visually appealing to users. Technically, we formulate
the boundary of each reward prediction in terms of the model’s alignment with human aesthetic
preferences, thereby leveraging the accuracy of the reward model to amplify the regularization strength
on more reliable samples. Extensive experiments validate that the proposed method can consistently
reconstruct visually pleasing inpainting results and greatly surpass state-of-the-art methods.

In summary, the main contributions of this paper lie in:
• we make the first attempt to align diffusion models for image inpainting with human preferences

by integrating human feedback through reinforcement learning;
• we theoretically deduce the accuracy bound of the reward model, modulating the refinement

process of the diffusion model for robustly improving both efficacy and efficiency; and
• we construct a dataset containing 51,000 inpainted images annotated with human preferences.

2 Related Work

Reinforcement Learning & Model Alignment. Reinforcement learning [20–22] is a paradigm of
machine learning where an agent learns to make decisions by taking actions in an environment to
maximize some notion of cumulative reward. The foundational theory of reinforcement learning is
rooted in the concepts of Markov decision processes [23], which provide a mathematical structure
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for modeling decision-making in environments with stochastic dynamics and rewards [24, 25]. With
the advent of deep learning, deep reinforcement learning [21, 26] has significantly expanded the
capabilities and applications of traditional reinforcement learning. The integration of neural networks
with reinforcement learning, exemplified by the Deep Q-Network [27, 28] algorithm, has enabled
the handling of high-dimensional state spaces, which were previously intractable. Subsequent
innovations, including policy gradient methods [29, 30] like Proximal Policy Optimization [31] and
actor-critic frameworks [32, 33] like Soft Actor-Critic [34], have further enhanced the efficiency and
stability of learning in complex environments.

The recent surge in popularity of large-scale models has significantly underscored the importance
of reinforcement learning in contemporary AI research and application [15, 16]. As these models,
including large language models [35, 36] and deep generative networks [37–39], become more
prevalent, reinforcement learning is increasingly employed to fine-tune, control, and optimize their
behaviors in complex, dynamic environments. This integration is particularly visible in areas such
as natural language processing, where reinforcement learning techniques are used to improve the
conversational abilities of chat-bots and virtual assistants, making them more adaptive and responsive
to user needs. [17–19] Moreover, in the realm of content recommendation and personalization,
reinforcement learning algorithms are instrumental in managing the balance between exploration of
new content and exploitation of known user preferences, significantly enhancing the user experience.
The growing intersection between large models and reinforcement learning not only pushes the
boundaries of what’s achievable in AI but also amplifies the need for sophisticated reinforcement
learning techniques that can operate at scale, adapt in real-time, and make decisions under uncertainty,
thereby marking a pivotal evolution in how intelligent systems are developed and deployed.

Diffusion Model. Diffusion models have recently emerged as a powerful class of generative
models [38–42], demonstrating remarkable success in generating high-quality, coherent images [43,
44]. These models work by gradually transforming a distribution of random noise into a distribution
of images, effectively ’diffusing’ the noise into structured patterns [45, 46]. In the context of image
inpainting, diffusion models offer a significant advantage by leveraging their generative capabilities
to predict and fill in missing parts of images in a way that is contextually and visually coherent with
the surrounding image content [47, 48].

Recent studies have showcased the potential of diffusion models in achieving state-of-the-art results
in image inpainting tasks, outperforming previous generative models like Generative Adversarial
Networks in terms of image quality and coherence [49, 50]. However, while these models excel
in technical performance, there remains a gap in their ability to cater to diverse human aesthetic
preferences. Most existing works focus on the objective quality of inpainting results, such as fidelity
to the original image and coherence of the generated content, with less attention given to subjective
satisfaction or preference alignment.

3 Proposed Method

Due to the random masking within the task of image inpainting, there may not be a definitive causal
relationship between the known and inpainted contents, which manifests as a one-to-many issue.
Consequently, stringent per-pixel regularization inherently results in unnatural reconstruction, which
significantly diverges from samples conforming to human preference. To this end, we propose a
reinforcement learning-based alignment process involving human preferences to fine-tune pre-trained
diffusion models for image inpainting, aiming to improve the visual quality of inpainted images
(Sec. 3.1). More importantly, we theoretically deduce the upper bound on the error of the reward
model (Sec. 3.2). Based on this deduction, we formulate a reward trustiness-aware alignment process
that is more efficient and effective (Sec. 3.3).

3.1 Reinforced Training of Diffusion Models for Image Inpainting

Diffusion models [38, 40] iteratively refine a randomly sampled standard Gaussian distributed noise,
resulting in a generated image. To adjust the distribution of diffusion models, we introduce human
feedback rewards to measure and regularize the distribution of model sampling outputs. To be specific,
instead of applying standard policy-gradient descent [51] that is hard to converge to high-quality
models, inspired by classical methods, e.g., TRPO/PPO [31, 52], which introduces a model trust
region to avoid potential model collapse during the training process, we achieve the reinforced
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training of a diffusion model as

∇θJ (x) = −
∫
Pθ′

∇θPθ(x)
Pθ′(x)

R(x) + κ∇θD(Pθ′ |Pθ), (1)

where R(·) represents the reward model, which quantifies the quality of diffusion samples; x is
the reconstructed sample; Pθ and Pθ′ represent the probabilistic functions of training and reference
models parameterized with θ and θ′, respectively; ∇θ calculates the derivative on θ; D(·|·) is the
divergence measurement of the given two distributions for regularizing the distribution shifting; the
hyperparameter κ balances the two terms. Inspired by recent work [53, 54], we take the same step to
measure the probability of each diffusion step via calculating the probability of perturbation noise,
e.g., the DDIM sampling algorithm [40],

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
+
√
1− αt−1 − σ2

t ϵ
(t)
θ (xt)︸ ︷︷ ︸

x̄t−1

+ σtϵt︸︷︷︸
x̃t−1

, (2)

where ϵ(t)θ (·) is the noise estimate diffusion network; t is the diffusion step; the scalar αt controls the
noise to signal ratio; and σtϵt represents a Gaussian noise to increase the sampling diversity. Thus, the
result of each reverse step consists of a deterministic component x̄t−1 and a probabilistic component
x̃t−1. Since xt−1 ∼ N (x̄t−1, σtI), we calculate the density of each step P = Φ

(
xt−1−x̄t−1

σt

)
to ap-

proximate the probability, where Φ(·) denotes the density function of standard Gaussian distribution.

3.2 Bounding Reward Model Error

Figure 2: Experimental plot of reward
prediction error vs. ∥z∥V−1 on the val-
idation set, where a dashed line is an
upper boundary of error, positively rela-
tive to ∥z∥V−1 .

The precision of the reward model R(·) assumes a pivotal
function within this learning framework as it directs the
optimization trajectory. In this section, we theoretically
derive its error upper bound, which can facilitate the re-
inforced training process in terms of both efficacy and
efficiency.

Denote by X = [x1,x2, · · · ,xN ] ∈ RN×D and y =
[y1, y2, · · · , yN ] ∈ RN×1 a set of N inpainted im-
ages of dimension D by diffusion models and correspond-
ing ground-truth reward values from human experts, re-
spectively. By dividing the reward model into two parts,
i.e., feature extractor F(·) and linear regression weights
ψ ∈ RD′×1, we thus can represent it as ⟨F(xt),ψ⟩,
where ⟨·, ·⟩ calculates the inner product of two vectors.
We can formulate the learning process of the last weights
as the result of the following optimization process:

ψ̂ = argmin
ψ

∥∥〈F(X),ψ
〉
− y

∥∥2
2
+ λ∥ψ∥22, (3)

where ∥ · ∥2 is the ℓ2 norm of a vector, λ > 0, and the second term is used for alleviating the
over-fitting phenomenon. Thus, we have

ψ̂ =(ZTZ+ λI)−1ZTy, (4)

ψ̂ −ψ∗ =(ZTZ+ λI)−1ZTζ − λ(ZTZ+ λI)−1ψ∗, (5)

where Z ∈ RN×D′
= F(X) is the set of embeddings of X. ψ∗ is the ideal weight with y = Zψ∗+ζ

and ζ a noise term between Zψ∗ and y. Then, the following term also holds:

zTψ̂ − zTψ∗ =zT(ZTZ+ λI)−1ZTζ − λzT(ZTZ+ λI)−1ψ∗, (6)

where z ∈ RD′×1 = F(x) is the reward embedding of a typical input sample. Based on Cauchy-
Schwarz inequality, there is

|zTψ̂ − zTψ∗| ≤ ∥z∥V−1(∥ZTζ∥V−1 + λ1/2∥ψ∗∥2), (7)
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Figure 3: Statistical characteristics of the dataset we constructed. (a) the score distribution of the
images across different selected datasets; (b) the comparison between the distribution of the average
score and score for details; (c) and (d) show the numbers of images with different mask ratios on the
outpainting and warping splits, respectively.

where V = ZTZ + λI and ∥z∥V−1 := ∥zTV−1∥2. Moreover, based on Theorem 2 of [55], for
δ > 0, we have 1− δ probability to make following inequality stands

∥ZTϵ∥V−1 ≤ B

√
2 log(

det(V)1/2det(λI)−1/2

δ
), (8)

where det(·) computes the determinant of the matrix, and B is a scalar. We have

|zTψ̂ − zTψ∗| ≤ ∥z∥V−1

(
B

√
2 log(

det(V)1/2det(λI)−1/2

δ
) + λ1/2∥ψ∗∥2

)
︸ ︷︷ ︸

Cbound

. (9)

Due to Cbound being constant after the training of the reward model, we can conclude that

sup
z∼p(z)

|zTψ̂ − zTψ∗| ∝ ∥z∥V−1 , (10)

where sup represents the upper bound. Such a theoretical bound is also experimentally verified in
Fig. 2.

3.3 Reward Trustiness-Aware Alignment Process

According to Eq. (10), it can be known that the error of the reward model is bounded by ∥z∥V−1 ,
there might be a relatively large error for those ∥z∥V−1 quite large. Thus, we further propose a
weighted regularization strategy to amplify the penalty strength of those samples in the high-trust
region. Specifically, we calculate the amplification factor as

γ = e−k∥z∥V−1+b, (11)

where the hyperparameters k = 0.05 and b = 0.7 are used for scaling the regularization strength. We
then define the overall gradient of the reward trustiness-aware alignment process as

∇θJ ′(x) = γ∇θJ (x), (12)

where J ′(x) is the weighted reward loss for sample x. For the updating of the reference model
θ′, we adopt [53] to update the model in each optimization step. Correctly amplifying the scaling
factor can both speed up the convergence speed and reconstruction effectiveness, as experimentally
validated in Sec. 5.2.

4 Human Preference-Centric Dataset for Reward

We first randomly selected 6,000, 4,000, 6,000, and 1,000 images with diverse content from
ADE20K [56, 57], ImageNet [58], KITTI [59], and Div2K [60, 61] datasets, respectively. We
then applied the operations described below to generate prompt images (i.e., incomplete images),
which were further fed into the diffusion model for image inpainting named Runway [62], produc-
ing inpainted images. To mitigate the potential bias of the reward model on different rewards, we
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Table 1: Quantitative comparisons of different methods. ⋆ indicates the small model (non SD-based);
“S” is the number of sampling times. For the calculation of WinRate, we first derive the best sample
of the compared method among S sampling times. Then, we calculate it as Tw

T , where Tw indicates
the number of compared samples that surpass the results of Runway (S = 1) and T is the total number
of prompts. “↑ (resp. ↓)" means the larger (resp. smaller), the better. We normalized the predicted
reward values with the dataset distribution. “Var” calculates the variance of different sampling times,
showing the consistency of generation quality. (See the Supplementary Material for more details.)

Prompt Methods Outpainting Prompts Warping Prompts

Metrics WinRate (%) ↑ Reward WinRate (%) ↑ Reward
S = 1 S = 3 S = 10 Mean↑ Var↓ S = 1 S = 3 S = 10 Mean↑ Var↓

Runway [62] – – 73.40 89.32 – – 0.07 – – 75.74 91.42 – – 0.06

SD v1.5 [63] 11.95 20.67 30.24 -0.43 0.05 11.38 21.22 32.85 -0.38 0.06
SD v2.1 [64] 10.73 18.51 26.82 -0.44 0.04 11.68 22.11 34.22 -0.36 0.06
SD xl [65] 14.56 22.58 31.09 -0.31 0.04 15.43 25.43 36.77 -0.26 0.05
SD xl ++ [66] 21.15 33.25 45.51 -0.13 0.05 18.66 30.53 43.07 -0.18 0.04
Compvis [67] 50.51 66.39 78.21 +0.03 0.03 47.35 65.08 78.01 -0.01 0.04
Kandinsky [68] 14.06 22.73 32.16 -0.37 0.04 11.38 19.46 29.20 -0.42 0.05
MAT ⋆ [69] 15.06 17.97 20.51 -0.40 0.01 7.17 9.97 12.96 -0.56 0.01
Palette ⋆ [41] 10.96 16.92 21.37 -0.38 0.02 13.41 20.18 27.37 -0.34 0.03

Ours 70.16 84.65 93.14 +0.38 0.01 72.38 87.10 93.85 +0.36 0.01

Model
Metric T2I CLIP BLIP Aes. CA IS Rank

[54] [70] [71] [72] [73] [74]

SDv1.5 -1.67 0.19 0.44 4.52 0.38 17.07 5.17

SDv2.1 -1.37 0.20 0.45 4.62 0.39 17.07 4.33

Kand. -3.49 0.18 0.39 5.19 0.39 17.06 5.33

SD xl ++ 0.63 0.21 0.46 4.77 0.40 18.95 3.17

Runway 3.16 0.22 0.48 4.61 0.43 20.30 2.33

Platte -1.76 0.22 0.46 4.08 0.37 16.24 5.33

Ours 4.49 0.23 0.49 4.55 0.45 23.71 1.67

Table 2: Comparison across metrics: higher
values are better for all metrics except "Rank".

Figure 4: WinRate comparison heat-map between
different methods.

repetitively generated from a given prompt image three distinct inpainted images. Consequently, we
obtained 51,000 inpainted images in total, which were scored by human experts following the criteria
described below.

Generation of Incomplete Images. We considered two distinctive image completion patterns:
inpainting and outpainting. For inpainting, we simulated warping holes on images by changing the
viewpoints, where we derived the depth of the scene using [75]. Following past practice [76], we
defined a camera sequence that forms a sampling grid with three columns for yaw and three rows for
pitch. The resulting nine views feature yaw angles within a ±0.3 range (i.e., a total range of 35◦) and
pitch angles within a ±0.15 range (i.e., a total range of 17◦). As the range of views increases, the
task of inpainting becomes progressively more challenging. For outpainting, we randomly masked
the boundary of the image through two types of random cropping methods: (1) square cropping,
where the size of the prompt ranges from 15% to 25% of the image size (512× 512) randomly; (2)
rectangular cropping, where the height of the prompt matches the image size, while the width is
randomly sampled between 35% and 40% of the image size. Each cropping method accounts for half
of the outpainting prompts.

Scoring Criteria. In the scoring process, we employed three criteria, i.e., (1) structural rationality
representing the rationality of the overall structure, whether illogical objects and structures are
generated; (2) feeling of local texture showing whether strange textures are generated that do not
conform to the characteristics of the object; and (3) overall feeling indicating the impression capturing
the overall feeling upon first glances at the image. The score value is in the range of 1 to 7, indicating
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Figure 5: Visual comparisons of our approach and SOTA methods. The prompted images of 5th and
7th rows are generated by boundary cropping, while the remaining rows by warping. All images
were generated with the same random seeds.
from the least to most favorable. The final score for reward model training is derived by averaging
those three scores using the weights of [0.15, 0.15, 0.7]. We refer readers to the Supplementary
Material for more details about dataset process and labeling scheme.

Statistical Characteristics of our Dataset. As illustrated in Fig. 3 (a), the score distribution of
images from different datasets is generally uniform. Meanwhile, from Fig. 3 (b), we can see that
the details and overall score are independent of each other, showing the correctness of the scoring
scheme and the necessity of each score. Finally, Figs. 3 (c) and (d) show the ratio of images with
different mask sizes, where it can be seen that the outpainting has a more uniform distribution than
warping based hole, which rely on depth map and may not have uniform distribution.

5 Experiments
Evaluation Metrics. We adopted seven metrics to measure the quality of inpainted images, i.e.,
the predicted reward value by our trained reward model , T2I reward [54], CLIP [70], BLIP [71],
Aesthetic (Aes.) [72], Classification Accuracy (CA) [73], and Inception Score (IS) [74]. Specifically,
T2I reward, CLIP, BLIP, and Aes. directly measure the consistency between the semantics of inpainted
images and the language summary of corresponding prompt images. While, CA and IS indicate the
quality of the generative model. Due to the fact that our inpainting reward directly measures the
reconstruction quality, we adopted it as the principle measurement of our experiment.

Implementation Details. We partitioned the dataset in Sec. 4 into training, validation and testing
sets, containing 12,000, 3,000 and 2,000 prompts (with 36,000, 9,000 and 6,000 images), respec-
tively. The reinforcement fine-tuning dataset contains the prompts from the original reward training
dataset. We employed the pre-trained CLIP (ViT-B) checkpoint as the backbone of our reward
model R(·) with the final MLP channel equal to 256. We utilized a cosine schedule to adjust
the learning rate. Notably, we achieved optimal preference accuracy by fixing 70% of the layers
with a learning rate of 1e − 5 and a batch size of 5. We trained the reward model with four
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Table 3: Left: Ablation studies on amplification factors, where "static" refers to employing a constant
factor to replace γ in Eq. (12). The column "Factor" indicates an average magnitude of amplification
strength, i.e., Ez∼p(z)(γ). For our method, we coordinate the value of k in Eq. (11) to change the
E(γ) shown in the Table. "Acl." signifies acceleration, calculated by Tb

Tm
− 1 with Tb and Tm being

the convergence iterations of baseline and compared methods, respectively. For all metrics, the larger,
the better. Right: Performance of the reward model trained with two manners based on pre-trained
CLIP [70] with various fix rates (FRs). “Acc” and “Var” stand for the accuracy and variance of the
reward estimation, respectively. “Bd.” is the ratio of data below the same upper boundary. (The
underlined settings are selected.)

RL Amp. Factor WinRate Reward Acl.

a) × - - - - 50.00% 0.00 - -

b) ✓ × 1.0 69.57% +0.36 00.00%
c) ✓ Static 1.4 65.95% +0.34 +84.28%
d) ✓ Static 1.6 65.11% +0.35 +203.53 %
e) ✓ Ours 1.4 71.27% +0.37 +106.40%
f) ✓ Ours 1.6 70.47% +0.36 +102.83%

Training Classification-driven Regression-driven

Width MLP-128 MLP-256 MLP-128 MLP-256

Metrics ↑ Acc. Var. Acc. Var. Acc. Var. Bd. Acc. Var. Bd.

FR. = 0.3 73.49 0.24 74.29 0.18 74.68 0.41 92.1 74.88 0.38 93.2
FR = 0.5 74.73 0.25 75.32 0.26 74.78 0.44 92.3 75.32 0.44 94.4
FR = 0.7 74.89 0.28 74.53 0.25 75.91 0.46 85.0 75.94 0.45 97.3
FR = 0.9 74.09 0.16 72.76 0.14 74.73 0.41 78.8 74.83 0.40 98.0

Table 4: Performance under various param-
eterizations of amplification factor γ, where
f = ∥z∥V−1 . (The underlined settings are se-
lected.)

Amplification factor (γ) k b WinRate↑ Reward↑

e−kf+b 0.050 0.70 71.27% 0.37
e−kf+b 0.065 0.90 70.47% 0.36

e−kf + b1/f + b2 0.100 {0.10, 0.85} 70.07% 0.37

e−kf + b1/f + b2 0.120 {0.80, 0.85} 69.95% 0.36

−kf + b 1.900 0.06 60.28% 0.28

b – 1.43 65.95% 0.34

NVIDIA GeForce RTX 3090 GPUs, each equipped
with 20GB of memory. With the trained re-
ward model, we subsequently fine-tuned the latest
diffusion-based image inpainting model, namely
Runway [62], on four 40GB NVIDIA GeForce RTX
A6000 GPUs as our PrefPaint. During fine-tuning,
we employed half-precision computations with a
learning rate of 2e− 6, and a batch size of 16.

5.1 Results of Image Inpainting
We compared our PrefPaint with SOTA methods
both quantitatively and qualitatively to demonstrate
the advantage of our method. We compared the
WinRate and Reward under various sampling steps in Table 1 and Fig. 4, where it can be seen that
our method actually greatly improves the probability of high-quality human-preferred samples, since
with a single inference step, our method achieves more than a 70% WinRate, which is similar to the
baseline model (Runway) with S = 3. The higher reward value and lower variance also indicate
that our method can consistently generate high-quality samples. Comparisons with other metrics in
Table 2 further support the superiority of the proposed method. In addition, we visually compared the
inpainted images by different methods in Fig. 5, where it can be seen that our method can generate
more meaningful and reasonable content, which is consistent with the style of the prompt region. We
refer readers to the Supplementary Material for more details about more comparison results.

Finally, we have also carried out a user study to evaluate our superiority. We have randomly selected
about 130 groups of results and conducted a user study involving 10 users. The WinRate map, as
depicted in Fig. 11, demonstrates that our reward scoring is highly accurate and capable of assessing
the results of inpainting under criteria based on human preference. We also present some examples
scored by our reward model in Fig. 8 to illustrate the scoring criteria system.

5.2 Ablation Study

Reward Trustiness-Aware Scheme. We validated the advantages of our reward trustiness-aware
training scheme. As shown on the left side of Table 3 b) and e), we can see that this scheme improves
the reward by 1.7% and accelerates the algorithm efficiency of 106.40%. Although a constant
amplification, such as c) and d) in Table 3, can expedite the training process even faster than the
proposed method, it compromises model accuracy, as evidenced by the reduced WinRate and Reward.
This demonstrates the necessity and efficacy of adaptively managing the sampled trajectory and
underscores the superiority of the proposed method.

Training Manner of Reward Model. We investigated two types of strategies to train the reward
model R(·) i.e., classification-driven and regression-driven. Specifically, the former classifies the
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Figure 6: Results of image FOV enlargement by our method on two scenes (a) and (b), where the
prompt region (the given image) is delineated by the central area between white dashed lines.

Figure 7: Novel view synthesis on KITTI dataset of 6 scenes from (a) to (f). For each scene, we
give the "Prompt", which is warped from the "Given View", with the white regions referring to
holes/missing regions. "Result" is our in-painting result from "Prompt". Note that for the synthesized
novel view, there is no ground-truth available.

discrete scores of annotated reward samples, while the latter directly makes a regression on the scores.
As listed on the right side of Table 3, it can be seen that the regression-driven training generally
outperforms the classification-driven one on reward accuracy. Moreover, the larger variances from the
regression-driven training show the strong discriminative ability. Based on accuracy and boundary
performance, we finally selected a fixed rate of 0.7 and MLP-256 with the regression-driven training
manner as the configuration of our reward model.

Parameterize amplification factor γ. To parameterize the amplification factor in Eq. (10), we
investigated various functions to parameterize as shown in Table 4. The experimental results indicate
that the exponential function provides the best regularization effect. In contrast, the linear function
and static constant do not fully exploit the regularization effect of the reward upper boundary.

5.3 Further analysis

Reward errors distribution. We make statistics of reward estimation errors, and the results are
shown in Fig. 9. Although the proportion of very large error samples is not large, the incremental
performance of our method lies in a more suitable choice of amplification function, as evidenced by
Table 4.

Necessity of Our dataset. Although existing metrics such as BERT Score [77] provide a general
measure of quality, we emphasize that our dataset is specifically tailored for the task of image
inpainting, where human-labeled scores are both essential and more precise. To substantiate this
claim, we conduct a comparison between the BERT score and our dataset’s score, as illustrated
in Fig. 10. The results reveal a significant divergence between human judgments and BERT’s
preferences, underscoring the necessity and superior accuracy of the proposed dataset for this specific
task.
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Figure 8: Visualization of various image in-painting results and associated rewards from our model.
Our model effectively evaluates in-painting reconstructions based on human preference.

Figure 9: Reward error distri-
butions of the proposed reward
model. The distribution of re-
ward error percentages is de-
picted on the y-axis to the right.

Figure 10: Plot of GT reward by our
dataset (x-axis) and the Bert Score
(y-axis) on the validation set, where
each point indicates a sample. The
darker indacated the larger error.

Figure 11: WinRate heat-map
of user study. The winrate at
specific locations shows the ra-
tio of superior top methods to
those at the bottom.

5.4 Applications of Image FOV Enlargement and Novel View Synthesis
We also applied our approach to two additional tasks: (1) image field of view (FOV) enlargement,
where we iteratively extended the boundaries of a typical image strip in the horizontal direction to
create a wider FOV image; and (2) novel view synthesis, where we warped a given image using the
predicted depth image through the method in [75] to generate a novel viewpoint and subsequently
applied diffusion models to fill the holes/missing regions of the Warped view. As depicted in Fig. 6
(a)-a oil painting and (b)-a realistic photography, our method yields natural and visually pleasing
results that can be seamlessly integrated with the prompt regions. As illustrated in Figs. 7, our method
can generate more reasonable novel views and a visually appealing reconstruction. We refer readers
to the Supplementary Material for more details about more application visual demonstrations.

6 Conclusion and Discussion
We have presented PrefPaint, an innovative scheme that leverages the principles of the linear bandit
theorem to align diffusion models for image inpainting with human preferences iteratively. By
integrating human feedback directly into the training loop, we have established a dynamic framework
that not only respects the subjective nature of visual aesthetics but also continuously adapts to the
evolving preferences of users. We conducted extensive experiments to demonstrate the necessity
for alignment in the task of image inpainting and the significant superiority of PrefPaint both
quantitatively and qualitatively. We believe that our method, along with the newly constructed dataset,
has the potential to bring significant benefits to the development of visually driven AI applications.

PrefPaint aligns with a distribution that corresponds to the preferences of a specific group. However, it
is important to recognize that individual preferences for image styles vary. Therefore, after achieving
alignment with the general preferences of a group, it is advisable to develop personalized rewards
and a corresponding reinforced alignment model to ensure complete alignment with the preferences
of each user. Recently, the implementation of a reward-free alignment process, as discussed in [16],
has gained popularity. Consequently, exploring reward model-free training methods for alignment
in diffusion-based models represents a promising avenue for future research. Furthermore, there is
an opportunity to explore the potential applications of our in-painting algorithm for additional 3D
reconstruction tasks.
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A Dataset Details

In this section, we visualize our labeling platform and the corresponding labeling scheme.

A.1 Labeling Scheme

The reward score contains the following 3 terms:

Structural Rationality. It measures the correctness of the model understanding of image content.
Score (0-2): Failure generation, e.g. strange and weird objects; random patterns completed; inap-
propriate strings; abrupt bar completions. Objects are generated but obviously do not belong to the
scene, e.g. There are shelves unique to homes on the side of the highway; there is a marble floor
blocking the front of the washing machine. Score (3-5):The understanding of the scene is roughly
correct, e.g. the inpainted sky next to the sky pattern; the sea behind the beach. Score (6-7): The
overall structure of the generated scene is reasonable and do not seem to be any major problems. To
illustrate the scoring scheme, we show some examples and corresponding reasons in Table A-1.

Table A-1: Illustration of different scoring examples on structural rationality.
Prompt with Reconstruction Prompt with Reconstruction

Score: 0. Reason: there should be no mar-
ble in front of the washing machine. Wrong
semantics and wrong understanding of the
scene.

Score: 1. Reason: the appearance of racks
on the highway is unreasonable, semantically
incorrect, and misunderstanding of the scene.

Score: 3. Reason: the model understands
that this is a volleyball match and try to com-
plete relevant people.

Score: 4. Reason: Although the quality of
the details generated here is not rated high,
the model understands that the scene is on the
beach, and the overall structure is rated.

Score: 6. Reason: although there are some
flaws, I understand the content of the highway
scene and complete the relevant content.

Score: 7. Reason: Understand the scenario
and correctly add relevant content.

Feeling of Local Texture. It measures whether the texture of the object is correct and consistent with
objective facts. Score (0-2): Failure generation (e.g. strange and weird objects; random patterns
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completed; inappropriate strings; abrupt bar completions). The generated objects do not conform
to objective facts (e.g. a dog has two heads; a person without an upper body). The texture of the
generated objects is very poor (e.g. two car bodies stuck together; poor quality sky). Score (3-5):
The generated objects are generally reasonable (e.g. a complete leopard, but with very long legs; a
complete corn, but the corn kernels are strange; there are flaws in the complete object;). The generated
texture is not obtrusive but will have flaws if you zoom in. Score (6-7): Details are complete and
reasonable. We also show some examples and corresponding reason in Table A-2.

Table A-2: Illustration of different scoring examples on the feeling of local texture.
Prompt with Reconstruction Prompt with Reconstruction

Score: 0. Reason: it can be seen that the
model understands the scene correctly and
wants to add a dog, but the quality is not high
and does not conform to the objective facts.

Score: 1. Reason: it wants to generate people
but the generation quality is not high.

Score: 4. Reason: The completion is gener-
ally reasonable.

Score: 4. Reason: The completion is gener-
ally reasonable.

Score: 6. Reason: it wants to patch up the
leopard but the legs is not consistent with
common sense, but it can also be seen that it
is a complete leopard.

Score: 7. Reason: The completion quality is
good. good.

Overall Feeling. The overall feeling given by the picture, whether it is reasonable and consistent
with the objective facts. We directly show some examples and corresponding reasons in Table A-3.

A.2 Labeling Platform

The visual demonstration of labeling platform is shown in Fig. A-1. In the right-side, we aggregate
three reconstruction results with the prompt images. The labeling is annotated in the left-side, where
for each image, people need to label 3 scores by aforementioned 3 different criteria, ranging from 0
to 7.
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Table A-3: Illustration of different scoring examples on the overall feeling.
Prompt with Reconstruction (from left to right are Recon-1, 2, 3 and the prompt )

Score: 3, 2, 6. Reason: The quality of Recon-3 is significantly better than Recon-1, and
there are no obvious flaws, so it has the highest score of 6.

Score: 5, 3, 1. Reason: Recon-1 is the most reasonable, but the steel basin structure is a
bit strange. Recon-2 may want to make up for the melon seeds. The details are quite good
but the scenes are relatively rare. Recon-3 is very strange.

Score: 1, 1, 4. Reason: The overall structure of Recon-1 is wrong, and the quality of the
corn heads in Recon-2 is relatively poor, and it looks like there is glue stuck on it. Recon-3
has a reasonable structure, but the proportion of the head is relatively large, and the grains
of the corn head are strange, so the score of only 4 is not very high.

Score: 1, 7, 2. Reason: The shape of the car on the right side of Recon-1 is too weird and
affects the look and feel. Recon-2 is of very good quality and very natural. The house on
the right side of Recon-3 has a poorer perspective.

Score: 0, 4, 1. Reason: Recon-1 was randomly generated, Recon-3 tried to generate a
traffic light, but failed. Similar branches in Recon-2 don’t look so inconsistent.
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Figure A-1: Labeling platform demonstration. In each group, from top left to bottom right, are
reconstruction 1, 2, 3 and the prompt image.

A.3 License

The license of the proposed dataset is CC BY-NC 4.0, which allows creators to share their work with
others while retaining certain rights but gives a restriction on commercial use.
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B More Application Visual Demonstrations

To further verify the effectiveness of the proposed method, this section further visualizes more scenes
for the application of the proposed method (as demonstrated in Sec.5.4).

B.1 Application of Image FOV Enlargement

For the task of Image FOV Enlargement, the results are shown in Fig. B-2. We randomly select some
picture from Internet and apply center crop on those pictures. We can see that no matter the style of
prompt image, e.g., nature photography, oil painting or Chinese painting, the proposed method can
consistently generate meaningful and visually pleasing results, which demonstrates the superority of
the proposed method.

Figure B-2: Application of FOV enlargement, where we visualize 9 scenes from (a) to (i) with
corresponding prompt cropped image and enlarged result.

B.2 Application of Novel View Synthesis

We also visualize more novel view synthesis examples on the KITTI and DIV2K datasets in Figs. B-3
and B-4. The warping-induced inpainting hole is much more irregular than the FOV Enlargement,
which makes the task more challenging. However, the proposed method successfully filled up the
missing region. The resulting high-quality reconstructions verify the superiority of the proposed
method.
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Figure B-3: Application of novel view synthesis on KITTI dataset, where we visualize 8 scenes from
(a) to (h) with corresponding prompt warped image, given view and reconstruction result.

Figure B-4: Application of novel view synthesis on DIV2K dataset, where we visualize 8 scenes
from (a) to (h) with corresponding prompt warped image, given view and reconstruction result.

C Reward Scoring Statistics & Reward Normalization Configuration

C.1 Score Distribution across Different Categories

We count the ratio of prompt with different semantic class in Fig. C-5. Most methods, including
SOTA diffusion-based methods, e.g., stable diffusion or Runway, have a large ratio of samples with
negative rewards. However, the proposed method achieves the most positive rewards, as shown in the
last figure, which validates the necessity and effectiveness of applying such an alignment task to the
diffusion in-painting model.
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Figure C-5: Detailed score statistics of the proposed dataset.

C.2 Normalization Factors

To facilitate the training of reward model, we normalize the score with s−mean
var , where s is raw score

data. To remove the data bias for training the reward model, the normalization factors are calculated
within different datasets and inpainting patterns. We show the resulting factors in Table C-4. The
relatively balanced factors indicate that our labels do not have large biases on different datasets or
inpainting pattern.

Dataset ADE20K KITTI ImageNet Div2K
Warping Outpainting Warping Outpainting Warping Outpainting Warping Outpainting

Mean 3.46 3.12 3.02 2.87 2.85 2.50 2.99 2.34
Variance 2.77 4.42 3.04 2.69 3.03 3.08 3.26 3.60

Table C-4: The normalization factor of score to facilitate for reward model training.

D More Visualizations

D.1 More Visualizations of Comparisons

In this section, we visually compare the reconstruction results of different methods. As shown in
Figs. D-6 and D-7. The comparison of different methods in Figs. D-6 and D-7 indicate that the
proposed method could generate high-quality reconstruction compared with other SOTA methods.
Notably, the results from our approach show improved clarity and detail retention, which are essential
for practical applications.
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Prompts Compvis Kandinsky Palette Runway SD xl++ SD v2.1 Ours

Figure D-6: Qualitative comparison between the proposed method and other SOTA methods.
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Prompts Compvis Kandinsky Palette Runway SD xl++ SD v2.1 Ours

Figure D-7: Qualitative comparison between the proposed method and other SOTA methods.
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D.2 More Visualizations of Multiple Sampling

To verify the robustness and consistency of the inpainting model after alignment with our method.
We run 5 times with different random seeds on the same prompt to derive different reconstruction
results. The results shown in Fig. D-8 demonstrate the stability of the proposed method. We can see
the proposed method generate high-quality and visually pleasing results under different conditions.

Figure D-8: Qualitative comparison of different sampling times of the proposed method.

E More experimental results

E.1 Comparisons with Additional inpainting Methods

We have experimentally compared with some inpainting Methods, i.e., PowerPaint [78], Brush-
Net [79] and Hdpaint [80] . For all these methods, we assessed performance using their publicly
released models. As shown in the Table E-1 and Table E-2, our method significantly outperforms all
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the compared methods, particularly in perceptual metrics such as T2I and our Reward score. Besides,
BrushNet employs roughly twice the number of parameters as our model, and HdPaint requires 15
times more computational time (experimented on NVIDIA GeForce RTX A6000 GPUs), making it
impractical for real-world applications.

Table E-1: Comparison across metrics: higher values are better for all metrics except "# Param".

Metrics T2I BLIP CLIP CA(Incep.) Reward # Param(M) Infer. Time(s)

PowerPaint(v-1) -4.44 0.46 0.21 0.42 -0.057 819.72 5
PowerPaint(v-BrushNet) -3.84 0.46 0.20 0.42 -0.036 1409.88 16

BrushNet 1.26 0.46 0.22 0.43 0.137 1409.86 16
HdPaint -4.57 0.47 0.21 0.44 -0.059 451.47 60

PrefPaint(Ours) 11.60 0.49 0.23 0.45 0.374 819.72 5

Table E-2: Quantitative comparisons of different methods. “S” is the number of sampling times.
For the calculation of WinRate, we first derive the best sample of the compared method among S
sampling times.

WinRate↑ (v.s. Runway) S=1 S=2 S=3

PowerPaint(v-1) 27.06% 39.92% 47.38%
PowerPaint(v-BrushNet) 29.86% 43.12% 52.01%

BrushNet 49.49% 62.83% 69.22%
HdPaint(ds8-inp) 33.37% 43.41% 49.03%
PrefPaint(Ours) 71.27% 85.88% 93.50%

E.2 Comparisons with other reinforcement learning methods.

we have experimentally compared our method with some other reinforcement learning methods in
Table E-3. Specifically, we simply summarize the implementation of each method. Human Preference
Score [13] learns a negative prompt to map the diffusion process to low-quality samples. Then, in the
inference process, the negative sample is utilized in the classifier-free guidance (CFG) to push the
generation trajectory away from low-quality samples. ImageReward [54] trains a reward model and
then applies the reward model as a loss metric to end-to-end optimize the diffusion model accompanied
by a reconstruction loss. We also conduct the ablation study on reward training strategy in Table
3 in our paper. Our method employs a regression-driven training strategy, while ImageReward
a classification-drive strategy. DPOK [81] simultaneously optimizes the whole trajectory of a
reverse diffusion process and utilizes the KL divergence to panel the regularization, avoiding a large
distribution shift. D3PO [82] adopts the RL strategy from direct performance optimization (DPOK),
directly optimizes the model on the reward labeling data to minimize the probability of low-quality
samples and increase the probability of high-quality samples.

E.3 Compared with SD xl ++

Currently, their is also a kind of diffusion-inpainting network like SD xl ++ [66], which requires a
complete image to redraw the mask region and can generate a visually pleasing result. However,
their performance would be dramatically reduced without the complete image. To validate the
characteristics of SD xl ++, we carry out experiments to examine its performance.
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Table E-3: Quantity evaluations of different reinforcement learning methods.

Methods WinRate T2I Reward CLIP BLIP CA

Human Preference Score 58.03% -16.67 0.26 0.20 0.47 0.40
ImageReward 65.10% 13.12 0.29 0.22 0.48 0.44

DPOK (KL weight=0.1) 64.59% 11.43 0.32 0.21 0.48 0.43
DPOK (KL weight=1.0) 62.67% 9.36 0.30 0.21 0.48 0.43

D3PO 59.74% -19.20 0.26 0.21 0.46 0.41
PrefPaint 71.27% 21.53 0.37 0.23 0.49 0.45

Table E-4: Alignment evaluation across various generative methods, where ⋆ represents the small
model (non SD-based); “S” refers to the number of sampling times. For comparing the WinRate,
the best inpainting results are selected through multiple sampling and compared with the Runway
Inpainting model with only 1 sampling. “↑ (resp. ↓)" means the larger (resp. smaller), the better. The
WinRate is calculated against Runway [62].

Prompt Methods Outpainting Prompts Warping Prompts

Metrics
WinRate Rewards WinRate Rewards

(%) ↑ Mean↑ (%) ↑ Mean↑

SD v1.5 w/ xl ++ 21.15 -0.13 18.66 -0.18
SD v2.1 w/ xl ++ 26.07 -0.07 22.26 -0.12

Kandinsky w/ xl ++ 17.09 -0.29 12.04 -0.37
MAT ⋆ w/ xl ++ 19.12 -0.34 8.58 -0.56

Palette ⋆ w/ xl ++ 27.99 -0.07 25.82 -0.09
Runway w/ xl ++ 56.94 +0.03 45.71 +0.02

Ours 70.16 +0.38 72.38 +0.36

F Details & Reward

F.1 Training Curve

We present training curves of various methods for comparison. The curves for ’1.4BaseLine’ and
’1.4Boundary’ (Ours) demonstrate our modification’s acceleration, reaching 0.35 rewards first. Our
approach converges with the fewest training iterations.

Figure F-1: Training curves of different experimental setups.
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F.2 Details between Eq. 4-5

According to the [55], we derive a similar process for the linear reward regression on feature space,
where Z denotes the latent of an image.

ψ̂ =(ZTZ+ λI)−1ZTY (13)

=(ZTZ+ λI)−1ZT (Zψ∗ + ζ) (14)

=(ZTZ+ λI)−1[(ZTZ+ λI− λI)ψ∗ + ZT ζ] (15)

=ψ∗ − λ(ZTZ+ λI)−1ψ∗ + (ZTZ+ λI)−1ζ (16)

ψ̂ −ψ∗ =(ZTZ+ λI)−1ZT ζ − λ(ZTZ+ λI)−1ψ∗, (17)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The authors correctly summarized the contribution in the abstract and intro-
duction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The authors have discussed the limitations in the section of the conclusion and
discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

31



Answer: [NA]

Justification: No theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailedly illustrated our implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have given the example data and code for supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have given the implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: N.A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follows the instructions for preparing the paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: N.A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: N.A.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the utilized papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have discussed the new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have given the instructions in the appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N.A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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