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ABSTRACT

The LLM-as-a-judge paradigm is widely used in both evaluating free-text model
responses and reward modeling for model alignment and finetuning. Recently,
finetuning judges with judge-specific data has emerged as an often preferred
choice over directly prompting frontier models as judges, as the former achieves
better performance with smaller model sizes while being more robust to common
biases. However, the standard evaluation ignores several practical concerns of
finetuned judges regarding their real world deployment. In this paper, we identify
and formalize three aspects that affect the shelf life of these judges: future-proofing
and backward-compatibility — how well judges finetuned on responses by today’s
generator models perform on responses by future models or past models, as well
as question generalization — how well judges generalize to unseen questions at
test time. We study these three aspects under a unified framework with varying
train and test distributions in two reasoning datasets, three SFT- and DPO-based
fine-tuning algorithms, and three different backbone models. Experiments suggest
that future-proofing is challenging for most models, while backward-compatibility
is relatively easy, with DPO-trained models consistently improving performance.
We further find that continual learning provides a more balanced adaptation to
shifts between older and newer response distributions than training solely on
stronger or weaker responses. Moreover, all models observe certain degrees of
performance degradation when moving from questions seen during training to
unseen ones, showing that current judges do not fully generalize to unseen ques-
tions. These findings provide insights into practical considerations for developing
and deploying judge models in the face of ever-changing generators.

1 INTRODUCTION

Automatic evaluators have become a central part of the large language model (LLM) development
cycle. They serve both as reward models during training (Stiennon et al.,2020; Ouyang et al., 2022
Yuan et al., [2024) and as verifiers in inference-time compute scaling (Zhou et al., 2025} Kim et al.,
2025} |Singhi et al.| 2025). In the LLM-as-judge paradigm, a generative language model evaluates
the outputs of other models for a given input question, providing a scalable approach to automatic
evaluation. Past work on LLM-as-judges began with zero-shot prompting of capable LLMs (Liu
et al.; 2023; Dubois et al., |2023). However, such judges have been shown to be prone to various
biases, such as stylistic bias (Zeng et al.,|2024; Raina et al., [2024), length bias (Zheng et al., |2023}
Zeng et al., 2024), and positional bias (Wang et al., [2023} [Pezeshkpour & Hruschkal [2024). As a
result, recent efforts have finetuned specialized evaluators |Li et al.| (2024b); [Kim et al.| (20244); |Vu
et al.| (2024), which have been shown to be more robust to common forms of bias (Zhu et al., 2025}
'Wang et al.| 2024a; [Park et al., 2024a) while matching the performance of larger prompted models.

Although recent advances in judge model finetuning have largely focused on developing training
methodology [Chen et al.| (2025aic), little attention has been devoted to understanding how these
models behave as a function of their training inputs. In this work, we investigate this gap by asking
three key questions: First, can judge models trained on fixed datasets of input questions, model
responses, and ground-truth verdicts accurately evaluate the responses of newer models, i.e., are
judges future-proof? Second, if we train a judge on up-to-date responses from newer models, can it
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Figure 1: High-level overview of our setup for studying Future-Proofing, Backward-Compatibility,
and Question Generalization through the lens of generalization and robustness to input distribution
shifts. Q and R represent questions and responses, respectively, with responses generated by the
shown generator models (Gemma?2, Qwen2, Gemma3, Qwen2.5). Future-Proofing evaluates how
well judges trained on responses from weaker, older generators (green: Gemma2, Qwen2) assess
responses from stronger, newer generators (yellow: Gemma3, Qwen2.5). Backward-Compatibility
examines the reverse direction. Question Generalization measures performance on in-distribution
questions and corresponding responses that were both not included (dashed Q and R) in the training.

reliably evaluate responses from older models, i.e., is the trained judge hackward-compatible? Third,
fixing the response generating models, how reliably can judges assess questions that differ from
those seen during training, i.e., do they generalize to new questions? We examine these questions,
as illustrated in Figure [I] through the lens of generalization and robustness, aiming to understand
the shelf life of trained judges.

In this work, we propose a dual-distribution formulation of automatic evaluation. Concretely, we
model the judge’s input as comprising elements drawn from two distinct distributions: the question
distribution, which characterizes the input questions to be evaluated, and the response distribution,
which characterizes the responses to be judged. We study the performance of trained judges when
responses are drawn from relatively weak and strong generators, henceforth referred to as weak
responses and strong responses. We also examine how well trained judges evaluate questions that are
(1) seen during training but paired with new responses, and (2) completely unseen during training.
By focusing on weak and strong generators and novel questions, we gain insights into the shelf life
of trained judge models through four practical questions:

* Future-proofing. Given a judge trained on responses from older (“weak’’) models, how accurately
can it evaluate responses from newer (‘“‘strong””) models? If the goal is to evaluate strong responses,
how much benefit do practitioners gain by training on strong responses rather than weak ones?

* Backward-compatibility. Given a judge trained on responses from newer (‘“strong”) models, can
it reliably assess responses from older (“weak’”) models? If the goal is to evaluate weak responses,
does training a judge on strong responses provide any benefit?

* Continual learning. Compared to judges trained only on weak or strong responses, how well does
a continually trained judge adapt to distribution shifts between the two response distributions?

* Question generalization. Does judge performance depend on whether a question was seen during
training? Even for seen questions, can a judge reliably assess new responses?

Using two verifiable datasets (DeepScaleR and MMLU-Pro), we set up a suite of controlled exper-
iments to analyze the shelf life of judge models, training across three backbone models of varying
sizes and capabilities and three popular judge-training recipes. Our findings reveal that fine-tuned
judges struggle to evaluate newer, stronger model responses and therefore require training with
up-to-date response distribution. Once trained on newer, stronger responses, judges exhibit some
degree of backward-compatibility. Continual training provides a more balanced adaptation to shifts
between older and newer response distributions than training solely on stronger or solely on weaker
responses. Finally, we find that fine-tuned judges struggle to generalize to new questions. In all, our
findings inform the development and deployment of future generations of finetuned judge models.



Under review as a conference paper at ICLR 2026

2 BACKGROUND AND RELATED WORK

2.1 AN OVERVIEW OF FINETUNED JUDGES.

LLM-based judges are automatic evaluators that evaluate LLM outputs given some evaluation cri-
teria. While many judges accommodate different evaluation tasks, such as single rating (“Rate this
response on a scale of 1-5”) (Hu et al., [2024])) or classification (“Is this response appropriate?”’) (Vu
et al., 2024), the dominant evaluation paradigm LLM-based judges are deployed with is pairwise
evaluation. Here, a judge is given a question and two candidate responses, and tasked with selecting
the “better” response according to some criteria. Formally, the judge performs the transformation

(Q,Ri,Ry) — (C,V), C optional, (1)

where () is the question, R;, R, are the two candidate responses, C' is an optional chain-of-thought
explanation, and V' is the verdict of which response is better. We denote z = (Q, R1, Ry) ~

X to be the judge input and y = (C, V) to be the judge output. Pairwise judges are typically
evaluated using accuracy or consistent accuracy, the latter accounting for response-order bias as
detailed in Appendix [D] Due to its popularity and practicality, pairwise evaluation forms the focus
of our study.

Past work in judge finetuning uses supervised finetuning (SFT) (Li et al., 2024b; Kim et al., [2024b;
Zhu et al.||2025)), preference optimization methods, like direct preference optimization (DPO) (Wang
et al.,[2024a;|Ye et al., 2024} Saad-Falcon et al.}[2024), or more recently, reinforcement learning with
verifiable rewards (RLVR) (Chen et al., |2025ajc; Whitehouse et al.|[2025 Xu et al.,|2025b). Starting
from a dataset of (x, V*(z)) pairs, where V* denotes the ground-truth verdict/label, each approach
constructs training samples differently: SFT and DPO approaches sample judge outputs from a
teacher model, then use V*(z) to categorize judge outputs as either correct outputs 3™ or incorrect
outputs y~. Then, the judge is trained on (x,y™) pairs for SFT and (z,y™",y ™) triplets for DPO.
On the other hand, RL approaches directly make use of the (x, V*(x)) pairs, omitting the need for
teacher model explanations.

2.2 RELATED WORK

Distribution Shifts and Generalization. Distribution shift, the mismatch between training and
evaluation data, is a long-standing challenge in machine learning (Hendrycks & Dietterich), 2019
Koh et al.l 2021)). Early computer vision studies demonstrated significant accuracy drops under mi-
nor perturbations (Hendrycks & Dietterich, [2019), and WILDS extended this to real-world domain
shifts (Koh et al.l 2021). In LLMs, the problem is amplified as both data and model capabilities
evolve over time (Shi et al., 2025). Recent frameworks explore how models transfer across distri-
butions. Easy-to-hard generalization examines whether training on easier tasks transfers to harder
ones (Sun et al.l 2024), which relates to scalable oversight where only easy tasks can be reliably
supervised (Amodei et al., 2016); task-difficulty can be estimated using either model or data-centric
measures (Swayamdipta et al.| 2020). Weak-to-strong generalization investigates improving strong
models using supervision derived from weaker ones (Burns et al.l 2023)). Our setting complements
these efforts by focusing on distribution shifts that arise from an evolving population of generators
and by evaluating how judge models adapt to both weak-to-strong and strong-to-weak shifts.

Analyzing LLM-as-Judge. Prior work analyzes systematic judge biases such as positional (Wang
et al., 2023} |Li et al.| |2024b), length (Zeng et al., 2024} [Park et al.,2024b), and self-preference (Pan-
ickssery et al.| 2024} |Chen et al.,|2025b)). Prompt design, instructions, and scoring format strongly
affect reliability (Li et al., [2024a)), with pairwise judgments often reducing noise and aligning bet-
ter with human preferences than pointwise scores (Tripathi et al [2025; Jeong et al.| [2024). Other
works have emphasized the importance of carefully selecting reference answers (Krumdick et al.,
2025), linking to how generator capabilities influence the judge’s inputs (Tan et al., 2025). While
most studies consider static judges on fixed datasets, we instead analyze judges in a dynamic set-
ting where generators change over time, introducing response-distribution shifts that motivate our
metrics for future-proofing, backward-compatibility, and question generalization.
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3 AUTOMATIC EVALUATION AS A DUAL-DISTRIBUTION PROBLEM

We propose a novel formulation of the automatic evaluation problem in terms of two distributions:
the question distribution and the response distribution. Concretely, let Q denote the distribution
of questions @, and let R denote the distribution of responses R. For pairwise judges, the input
distribution A" therefore takes the form

X=0xRxR 2

The question distribution is defined by characteristics such as semantic content (e.g., domains like
medical, legal, finance, scientific, or math) and question difficulty (e.g., difficulty can be defined by
pedagogical levels, such as high school vs. olympiad-level math problems). For example, we can
consider all questions in GSM8K (Cobbe et al.,[2021)) to come from the same question distribution,
as they are all arguably of similar difficulty and semantic content. The response distribution defines
the characteristics of the model responses being evaluated, such as style, capability-specific content,
or model-family-specific quirks. We denote the training and test input distributions to be

Xtrazn — Qtrazn % Rtrazn X Rtrazn and Xtest — Qtest % Rtest x Rtest (3)

respectively. Notably, the two responses come from the same generating model, as described in the
data construction details in Section Separating the question distribution Q from the response
distribution R reflects two real-world sources of shift: (1) the emergence of more capable generators
(an evolving R), and (2) the introduction of new questions (an evolving Q). This decomposition
allows us to isolate and quantify the impact of each factor on judge performance. In Section [3
we instantiate this framework using the weak response distribution R ,cq and the strong response
distribution Rs¢r-ong to simulate a model-development timeline (older, weaker vs. newer, stronger
responses and LLMs), along with question splits ) drawn from Q that are either seen or unseen dur-
ing training. Informally, weak (strong) responses are drawn from LLMs with relatively low (high)
accuracy on questions (Q); we precisely describe generator strength in Section @ This instantiation
enables us to investigate the four practical questions mentioned in Section [I| regarding the shelf life
of judges. The specifics of how dual-distribution formalization supports our analysis are detailed
in Section[5] with a concise connection provided in Appendix [E]

4 EXPERIMENTAL SETUP

4.1 GAUGING GENERATOR STRENGTH.

We ground our study in two datasets with verifiable solutions: DeepScaleR
and MMLU-Pro (Wang et al] 2024c). DeepScaleR contains 40K Olympiad-style, reasoning-
intensive math problems with gold answers. MMLU-Pro, by contrast, provides verifiable MCQ-
style, knowledge-intensive questions spanning 14 diverse domains, including STEM, humanities,
social sciences, law, business, psychology, and philosophy, enabling us to study judge shelf-life
across a broad range of domains. For generators, we utilise a diverse set of popular instruction-
tuned models, which are listed in Table[T} For each generator, we sample 20 responses per question
and measure its strength using Pass@1. Pass@1 captures the probability that a uniformly sampled
attempt is correct and yields two clearly separated clusters, as shown in Figures [7] and [§] in Ap-
pendix [B] where recent or larger models achieve substantially higher scores than smaller or old.
Based on this distinguishable performance difference, we cluster low- and high-performing gener-
ators into weak (Gemma-2-9B, Qwen-2-7B, Llama-3.1-8B, Ministral-8B) and strong (Gemma-3-
12B, Qwen-2.5-7B, Qwen-2.5-32B, Llama-3.3-70B, Mistral-Small-24B) groups, respectively, and
use these clusters to define our response-distribution shifts. Further details on generator selection
and strength estimation are provided in Appendix [B]

4.2 TRAINING SETUP.

Dataset Construction. To create the training and evaluation splits, we first construct pairwise
input samples for the judge, following prior work (Tan et al., 2025} Wang et al, 2024b). For each
question, we sample multiple responses from each generator, and each response is then labeled as
“correct” or “incorrect” according to the ground-truth answer A*. We then form response pairs,
where each pair consists of one correct response and one incorrect response, resulting in a pairwise
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Figure 2: Future-proofing of DeepScaler-Trained Judges. (a) Future-proofing measured by
FutureProof; negative values show degraded performance on stronger responses. All models
and recipes performance degrade, indicating poor evaluation of newer, stronger responses. (b) Ben-
efits of re-training on strong responses, measured by RefreshAdvantage. Re-training consis-
tently improves performance, with the largest gains under DPO.

sample with an objectively correct answer. Importantly, responses in a pair are drawn from a single
generator only. Based on the generator strengths defined above, we construct datasets of aggregated
pairwise samples consisting exclusively of either weak or strong responses, which we refer to as our
weak dataset and strong dataset, respectively.

Judge Data Distillation & Training Objectives. We train judges using three commonly adopted
recipes: supervised fine-tuning (SFT) (Li et al 2024b; [Kim et al., 2024aj, [Vu et al., 2024)), direct
preference optimization (DPO) (Hu et al., [2024; Wang et al., [2024b), and a combined SFT and
DPO objective (Wang et al., 2024a; |Ye et al., [2024} |Saad-Falcon et al., |2024). As these recipes
require supervision, specifically, the CoT explanation C' (Sec. [2), we adopt the common teacher
model convention (Li et al., |2024b; Wang et al., |2024a). Based on the ground-truth verdict V*, we
categorize responses as correct (positive) samples i or incorrect (negative) samples y~. Positive
samples are then used for SFT, whereas positive-negative pairs are used for DPO-based recipes.

Training and Evaluation Splits. To analyze the four practical questions described in Section
using the dual-distribution framework from Section |3] we split the weak and strong datasets into
training and test sets. For testing, we construct two distinct splits: an unseen-questions split and a
seen-questions split. The unseen-questions split contains questions not present during training, while
seen-questions split reuses training questions but samples new responses, with pairs constructed
following the same process as described above. Unless otherwise specified, we use the unseen-
questions split for evaluation. We choose three models to train: Llama-3.1-8B, Ministral-8B, and
Mistral-24B, covering a range of model sizes and intrinsic strengths.

We provide more details on different aspects of the training setup in Appendix [C]
5 EXPERIMENTAL RESULTS

In this section, we present our analysis setup and findings on future-proofing, backward-
compatibility, and question-generalization of judge models. Our analysis builds on the dual-
distribution framework introduced in Section [3| where judge inputs are factorized into a question
distribution Q and a response distribution R. We instantiate the response distribution at two levels
of generator strength: Reqr (older, less capable models) and R g¢0ng (newer, more capable mod-
els). The question distribution Q remains fixed but varies in whether a question was seen or unseen
during training. In this way, our setup simulates model development timelines. We measure judge
performance using consistent accuracy, as defined in Appendix [D} Raw consistent accuracy scores
are reported in Table 4] of Appendix D} and serve as the foundation for the results below.

Notation. For clarity, we denote the consistent accuracy of a judge J; trained on response distribu-
tion ¢ as Acc.(J;), where t € {weak, strong}. The subscript e indicates the evaluation distribution,
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Figure 3: Backward-Compatibility of DeepScaler-Trained Judges. (a) BackCompatibility of
judges trained on strong responses when evaluating older responses; positive values indicate im-
proved performance relative to older-judge baselines. Judges trained on newer responses show good
BackCompatibility, with minimal drops—or even absolute gains. (b) Despite strong absolute
performance, newer judges still face a distribution shift, reflected by CompatibilityShift,
with performance drops relative to evaluating strong responses. (c) Compared with future-
proofing metrics in Figure [2| backward-compatibility metrics are smaller, indicating that strong-
response—trained judges are more backward-compatible than weak-response—trained judges are
future-proof.

with e € {weak, strong}. Thus, Acc(J;) ties back to our dual-distribution formalism: it measures
the accuracy of a judge trained on distribution ¢ when evaluated on responses from distribution e.

5.1 HOW FUTURE-PROOF ARE JUDGE MODELS?

Experimental Setup. To study future-proofing in our simulated model development timeline, we
design the following setup: weak generators serve as proxies for existing LLMs, and judges are
trained on their responses. Strong generators represent newly released LLMs with greater capabili-
ties. By future-proofing, we refer to how well weak-response-trained judges can evaluate responses
from newer, stronger LLMs. Specifically, we quantify future-proofing using the following metrics:

FutureProof is defined as the difference in the performance of a weak-response-trained judge
between the weak and strong evaluation sets:

FutureProof = AcCstrong(Jweak) — ACCweak(Jweak)- 4)

This measures the change in performance when the evaluation distribution shifts from RS, to

Riest g» 1-€., a weak-to-strong response distribution shift. A positive value indicates relatively better
performance on strong responses, while a negative value indicates degradation; thus, higher values

correspond to more future-proof judges.

RefreshAdvantage is defined as the gain from re-training judges with strong responses:
RefreshAdvant age = ACCstrong (Jstrong) - ACCstrong (Jweak ) . (5)

This can be viewed as the data advantage from changing the training response distribution from
Riy& to RE4n  when evaluating on RYS, . Higher values indicate greater benefit from re-

training judges with the latest and stronger responses.

FutureProof Findings: For all models and training recipes, we plot the FutureProof values
on DeepScaleR in Figure[2al Across all settings, we do not observe any instance where judges gen-
eralize to new or stronger responses, with all FutureProof values being negative. Interestingly,
no discernible trend emerges across training recipes or model families. Generally, we find that SFT
leads to higher degradations in smaller models, but a smaller degradation in the large judge. In all,
our results show that current judge training approaches do not produce judges capable of reliably
generalizing to new, more capable model responses. Beyond lack of generalization, current judge
recipes do not exhibit consistent trends across models or scales. These findings align with those on
MMLU-Pro, which we discuss in more detail in Appendix In the absence of recipe-specific or
model-specific trends, we recommend evaluating FutureProof on a model-by-model basis.
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Figure 4: Changes in future-proofing metrics when replacing a weak-response-trained judge (solid)
with a continually trained judge (dashed). We observe a decrease in RefreshAdvantage and an
increase in FutureProof, with values approaching zero for a couple of models. This suggests that
continual training enables judges to evaluate strong responses more effectively than weak-trained
judges, as well as strong-trained judges, and adapts better to the weak-to-strong response shift.
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Figure 5: Changes in backward-compatibility metrics when replacing a strong-response-trained
judge (solid) with a continually-trained judge (dashed). We see an increase in BackCompat for a
couple of models, suggesting that continual training can help models better evaluate weak responses
than purely strong-trained judges. We also observe an increase in CompatShift, showing that
continually trained judges adapt better to the strong-to-weak response shift.

RefreshAdvantage Findings. Our results on DeepScaleR, presented in Figure indicate
that re-training with up-to-date responses consistently leads to performance gains. In particular,
across all training recipes and backbone models, we observe positive Re freshAdvantage values.
Training recipes also follow a clear trend: retraining with SFT yields minimal but positive gains,
whereas DPO yields the largest improvements, providing up to 7.6 absolute percentage points for
larger models. The SFT+DPO loss provides additional benefit over DPO alone for couple of models.
We further observe that as judge model size increases, updating training data has a larger impact
for DPO-based approaches. For example, with DPO, Mistral-24B exhibits an absolute gain of 7.6
percentage points compared to its 8B counterpart, Mistral-8B, which improves by 4.3 points. These
trends are consistent with corresponding findings on MMLU-Pro, discussed further in Appendix[F1]
Overall, we conclude that evaluating the most capable models requires training judges on their
outputs; relying on stale training data leaves substantial performance gains unrealized.

5.2 HOW BACKWARD-COMPATIBLE ARE JUDGE MODELS?

Experimental setup. Now, we extend our setup for future-proofing in Section to study
backward-compatibility in a simulated model development timeline. A judge trained on strong or
newer generator responses represents the current judge, which is adept at evaluating new responses,
while weak generators represent older LLMs with lower capabilities. By backward-compatibility,
we refer to how well strong-response-trained judges can evaluate the responses of older, weaker
generators. Specifically, we quantify backward-compatibility using the following metrics:

BackCompatibility measures the performance gap when evaluating older, weaker responses
with the refreshed strong-response-trained judge instead of the weak-response-trained judge:

BackCompatibility = Accyeak(Jstrong) — AcCweak (Jweak)- (6)
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This setting is particularly important for established evaluation pipelines: if an old judge is replaced
by a new one while the task remains the same, how much does performance differ? We view this

as the data disadvantage from changing training data from R %% to RIyain 4 When evaluating on

Riest . A positive BackCompatibility indicates that the strong-trained judge outperforms
the weak-trained judge on weak responses (good backward-compatibility), while a negative value

reflects performance degradation (poor backward-compatibility).

CompatibilityShift quantifies the weak-to-strong distribution shift when evaluating older,
weaker responses with a strong-response-trained, refreshed judge. As noted in the previous section,
the reverse shift (strong-to-weak) can strongly affect judge performance. Here, we measure how the
out-of-distribution nature of backward-compatibility impacts the newly trained judge:

CompatibilityShift = AcCyeak(Jstrong) — ACCsirong(Jstrong)- 7
This captures the response-distribution shift opposite to FutureProof, i.e., from R, to Rivy,

or strong-to-weak. It measures how far a strong-trained judge falls below its potential under in-
distribution evaluation. A positive value indicates better relative performance on weak responses,
while a negative value indicates degradation.

BackCompatibility Findings. In Figure[3a] we visualize the backward compatibility of judge
models trained on strong responses for the DeepScaleR dataset. When evaluating on weak responses,
there is little drop in absolute performance between judges trained on strong responses and those
trained on in-distribution weak responses. While methods involving SFT consistently cause small
performance drops, our results show that DPO training can enable newly trained judges to outper-
form weak-judge models. The drop due to incompatibility is smaller than the advantage gained when
moving from weak to strong responses, as noted in the RefreshAdvantage findings. This indi-
cates that judges trained on newer responses are indeed backward-compatible: they closely mimic
the performance of weak-trained judges, even in out-of-distribution settings. Likewise on MMLU-
Pro, strongly trained judges perform on par with or better than weak-trained judges when evaluating
weak responses, as discussed in Appendix[[2] Thus, combined with our findings in Section[5.1] we
conclude that re-training with updated responses is universally beneficial: such refreshed judges are
not only much better at evaluating new model responses but can also serve as drop-in replacements
for their older counterparts with minimal loss in performance.

CompatibilityShift Findings. As shown above, judges trained on strong responses roughly
match the performance of those trained on weak responses when evaluating older responses. Despite
strong absolute performance, such newer judges are evaluating under a strong-to-weak distribution
shift; Figure [3b] plots the drop in performance due to this shift on DeepScaleR dataset. Here, we
observe that across all judges and recipes, judges still experience degradation due to the out-of-
distribution nature of evaluation, with the lone exception being SFT-trained Llama3.1-8B. Surpris-
ingly, here, the largest model, finetuned from Mistral-24B, experiences the largest absolute drops
across all training recipes. These findings highlight that, while stronger trained judges can serve as
appropriate drop-in replacements for weaker judges, distribution shift causes them to underperform
relative to their potential. We see the same pattern on MMLU-Pro, where strong-trained judges also
degrade under response-distribution shift, as discussed in Appendix However, on DeepScaleR,
compared to the degradation from the weak-to-strong response-distribution shift (as measured by
FutureProof in Section [5.1)), these degradations are relatively smaller. This suggests that the
weak-to-strong evaluation response-distribution shift is a harder setting than strong-to-weak, again
highlighting the importance of retraining judges on new model responses.

5.3 CAN CONTINUAL TRAINING IMPROVE FUTURE-PROOFING AND
BACKWARD-COMPATIBILITY OF JUDGE MODELS?

Experimental setup. Sections[5.1|and[5.2]show that training a judge from scratch on responses from
newer generators is advantageous in evaluations. An alternative is to continually update a judge
originally trained on older responses by incrementally fine-tuning it on newer, stronger responses.
We simulate this continual-learning paradigm by further training Jye,x on responses from stronger
generators, denoting the resulting model as Jyeak—sstrong (details in Appendix E[) All experiments in
this section are restricted to training judges on DeepScaler with DPO due to compute constraints.

To assess the effect of continual training, we evaluate Jyeqk— strong 0N both future-proofing and
backward-compatibility metrics, comparing its performance against that of the original weakly
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Figure 6: Question Generalization of DeepScaler-Trained Judges. Generalization of judges trained
on weak vs. strong responses to seen and unseen questions. Judges typically fail to generalize to
unseen questions, showing large performance drops relative to evaluating unseen responses on seen
questions.

trained judge and the strongly trained judge, respectively. Specifically, we compare FutureProof
and RefreshAdvantage when replacing Jyear With Jyeak—strong in Equations (4)—(5), as
shown in Figure[d] We also compare CompatibilityShift and BackCompat when replacing
Jstrong With Jy,cak—s strong in Equations (6)—(7), as shown in FigureE} Together, these comparisons
reveal how continual training helps weak judges adapt to future distribution shifts while retaining
compatibility with weaker responses, relative to training from scratch.

Changes in Future-Proofing.  Figure shows that continual training consistently im-
proves future-proofing. = FutureProof scores increase across all three models, while
RefreshAdvantage decreases, approaching zero for Ministral-8B and Mistral-24B. The reduc-
tion in RefreshAdvantage indicates that the benefit of retraining a strong model from scratch,
relative to continual training, largely disappears when evaluating stronger responses. At the same
time, the higher FutureProof scores of Jycak— strong demonstrate that continual training enables
better adaptation to the weak-to-strong distribution shift than simply retaining the weak model.

Changes in Backward-Compatibility. Figure[5|shows mixed but informative results on backward-
compatibility. BackCompatibility scores increase for Mistral-24B and Llama-3.1-8B but de-
crease for Ministral-8B. Higher BackCompatibility indicates that a continually trained judge
remains closer to the weakly trained judge when evaluating weak responses, compared to a model
trained solely on strong responses. We also observe a notable increase in CompatibilityShift,
highlighting that continual training improves adaptation to older, weaker responses relative to purely
strong-trained models. Together, these results suggest that continual training can better preserve
backward-compatibility in several settings while also enhancing adaptability to distribution shifts.

5.4 HOW DO JUDGES GENERALIZE TO UNSEEN QUESTIONS AND RESPONSES?

Experimental setup. As LLMs advance, both responses and questions evolve (e.g., AIME24
vs. AIME25). We therefore examine how judges perform on previously unseen questions by sam-
pling from Q in our dual-distribution framework. To quantify the benefits of question exposure
during judge training, we define two evaluation splits. In the first, we select a subset of training
questions and sample new responses for them, which we call the seen-questions, unseen-responses
split. In the second, we draw questions from Qmain that were excluded from training and pair them
with new responses, defining the unseen-questions, unseen-responses split. Comparing judge per-
formance across these splits reveals the performance gap due to question generalization.

QuestionGenweak = ACCweak,unseen(Jweak) - ACCweak,seen(Jweak) (8)

QuestionGenStmng = ACCstrong,unseen(Jstrong) - ACCstrong,seen(Jstrong)- (9)

These metrics capture how well judges generalize across qguestions: responses are drawn from the
same generator, with only the question split (seen vs. unseen during training) varied. A positive
value of Quest ionGen indicates better performance on unseen questions, while a negative value
indicates failure to generalize to unseen questions.

QuestionGen Findings. As shown in Figure [f] current judge models do not generalize well to
unseen questions, with nearly all judges exhibiting performance drops compared to evaluating on
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seen questions with unseen responses. Surprisingly, we find that SFT enables the best generalization,
with SFT-trained judges showing the smallest absolute drops in most cases. Mistral-24B, however,
exhibits the largest drops within each training recipe, indicating poorer generalization compared
to smaller models. These trends are consistent with the corresponding findings on MMLU-Pro,
discussed in detail in Appendix Overall, our experiments reveal that exposing judges to the
questions they are likely to evaluate can lead to significant performance gains.

6 CONCLUSION

We present a dual-distribution framework for automatic evaluation and analyze four key questions
surrounding finetuned LL.M-as-judge models, a crucial component of the LLM development cy-
cle. First, we study future-proofing and show that judges trained on older responses struggle to
evaluate outputs from newer, stronger LLLMs, but re-training on newer responses yields substantial
gains. Second, we examine backward-compatibility and find that judges trained on newer responses
incur only minor drops, or even improvements, when evaluating older responses. Third, we demon-
strate that continual learning provides a more balanced adaptation to both older and newer response
distributions compared to training solely on stronger or weaker responses. Finally, we investigate
question generalization and find that judges experience large drops in performance on questions un-
seen during training. Overall, our work highlights critical challenges and actionable strategies for
developing robust, future-proof, and backward-compatible judge models.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Francis Christiano, John Schulman, and Dan-
delion Mané. Concrete problems in ai safety. ArXiv, abs/1606.06565, 2016. URL https:
//api.semanticscholar.org/CorpusID:10242377.

Axolotl maintainers and contributors. Axolotl: Post-training for ai models, 2023. URL https:
//github.com/axolotl—-ai-cloud/axolotll

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschen-
brenner, Yining Chen, Adrien Ecoffet, Manas R. Joglekar, Jan Leike, Ilya Sutskever, Jeff Wu,
and OpenAl. Weak-to-strong generalization: Eliciting strong capabilities with weak super-
vision. ArXiv, abs/2312.09390, 2023. URL https://api.semanticscholar.org/
CorpusID:266312608.

Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
Judgelrm: Large reasoning models as a judge. ArXiv, abs/2504.00050, 2025a. URL https:
//api.semanticscholar.org/CorpusId:277467872.

Wei-Lin Chen, Zhepei Wei, Xinyu Zhu, Shi Feng, and Yu Meng. Do llm evaluators prefer themselves
for a reason? arXiv preprint arXiv:2504.03846, 2025b.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, Hanghang Tong, and Heng Ji. Rm-rl: Reward modeling as rea-
soning. ArXiv, abs/2505.02387, 2025c. URL |https://api.semanticscholar.org/
CorpusID:278327900.

Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021. URL https:
//api.semanticscholar.org/CorpusID:239998651.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony S.
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aur’elien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cris tian Cantén Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,

10


https://api.semanticscholar.org/CorpusID:10242377
https://api.semanticscholar.org/CorpusID:10242377
https://github.com/axolotl-ai-cloud/axolotl
https://github.com/axolotl-ai-cloud/axolotl
https://api.semanticscholar.org/CorpusID:266312608
https://api.semanticscholar.org/CorpusID:266312608
https://api.semanticscholar.org/CorpusId:277467872
https://api.semanticscholar.org/CorpusId:277467872
https://api.semanticscholar.org/CorpusID:278327900
https://api.semanticscholar.org/CorpusID:278327900
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651

Under review as a conference paper at ICLR 2026

Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee,
Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe
Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden
Alwala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591 neth Heafield, Kevin R. Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuen ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,
Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pa-
supuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya
Pavlova, Melissa Hall Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Has-
san, Naman Goyal, Narjes Torabi, Niko lay Bashlykov, Nikolay Bogoychev, Niladri S. Chatterji,
Olivier Duchenne, Onur cCelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
Sa hana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shao-
liang Nie, Sharan Narang, Sharath Chandra Raparthy, Sheng Shen, Shengye Wan, Shruti Bhos-
ale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Vir ginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit ney
Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yigian Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zhengxu Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya K. Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adi
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Ben-
jamin Leonhardi, Po-Yao (Bernie) Huang, Beth Loyd, Beto de Paola, Bhargavi Paranjape, Bing
Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian
Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichten-
hofer, Damon Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li, Danny Wyatt, David Adkins,
David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang
Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora
Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm’an,
Frank J. Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Geor-
gia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory G. Sizov, Guangyi Zhang, Guna
Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Han Zha, Haroun Habeeb,
Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor Molybog, Igor Tufanov,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-
Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kaixing(Kai) Wu, U KamHou, Karan
Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veer-
araghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle
Huang, Lailin Chen, Lakshya Garg, A Lavender, Leandro Silva, Lee Bell, Lei Zhang, Liang-
peng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani,
Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthias Lennie, Matthias

11



Under review as a conference paper at ICLR 2026

Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer,
Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Mun
ish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy ata Bawa, Nayan Sing-
hal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Nor-
man Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth
Parekh, Paul Saab, Pavan Balaji, Pe dro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh
Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan,
Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Sheng-
hao Lin, Shengxin Cindy Zha, Shiva Shankar, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Kumar Gupta, Sung-Bae Cho, Sunny Virk, Suraj Sub-
ramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Andrei Poenaru, Vlad T. Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xia Tang, Xiaofang
Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu,
Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu Wang, Yuchen
Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
Yang, and Zhiwei Zhao. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL
https://api.semanticscholar.org/CorpusID:271571434.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. ArXiv, abs/2305.14387, 2023. URL https:
//arxiv.org/pdf/2305.14387.pdf.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJz6tiCqgYm.

Xinyu Hu, Li Lin, Mingqi Gao, Xunjian Yin, and Xiaojun Wan. Themis: A reference-free nlg
evaluation language model with flexibility and interpretability. arXiv preprint arXiv:2406.18365,
2024.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing cli-
mate: Enhancing Im adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

Hawon Jeong, chaeHun Park, Jimin Hong, and Jaegul Choo. The comparative trap: Pairwise
comparisons amplifies biased preferences of 1lm evaluators. 2024. URL https://api.
semanticscholar.org/CorpusID:270562681.

Gemma Team Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Mer-
hej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ram’e, Morgane Riviere, Louis Rouil-
lard, Thomas Mesnard, Geoffrey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec,
Michelle Casbon, Etienne Pot, Ivo Penchev, Gael Liu, Francesco Visin, Kathleen Kenealy, Lucas
Beyer, Xiaohai Zhai, Anton Tsitsulin, Rébert Istvan Busa-Fekete, Alex Feng, Noveen Sachdeva,
Benjamin Coleman, Yi Gao, Basil Mustafa, lain Barr, Emilio Parisotto, David Tian, Matan Eyal,
Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal,
Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, An-
dreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian
Goedeckemeyer, Alaa Saade, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit
Vadi, Andr’as Gyorgy, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine
Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Boxi Wu, Bobak Shahri-
ari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, Cj Carey,
Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas,

12


https://api.semanticscholar.org/CorpusID:271571434
https://arxiv.org/pdf/2305.14387.pdf
https://arxiv.org/pdf/2305.14387.pdf
https://openreview.net/forum?id=HJz6tiCqYm
https://api.semanticscholar.org/CorpusID:270562681
https://api.semanticscholar.org/CorpusID:270562681

Under review as a conference paper at ICLR 2026

Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Er-
win Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi
Hashemi, Hanna Klimczak-Pluci’nska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hus-
sein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan,
Joe Stanton, J. Michael Wieting, Jonathan Lai, Jordi Orbay, Joe Fernandez, Joshua Newlan,
Junsong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff,
Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Wat-
son, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan
Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Oskar Bunyan, Pankil Botarda, Paul Caron,
Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Pi-
otr Staficzyk, Pouya Dehghani Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Ardeshir
Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Gir-
gin, Shariq Igbal, Shashir Reddy, Shruti Sheth, Siim P&der, Sijal Bhatnagar, Sindhu Raghuram
Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra,
Utku Evci, Vedant Misra, Vincent Roseberry, Vladimir Feinberg, Vlad Kolesnikov, Woohyun
Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor
Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Jessica Lo, Erica Moreira, Luiz Gustavo Mar-
tins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab S. Mirrokni, Evan
Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley,
Slav Petrov, Noah Fiedel, Noam M. Shazeer, Oriol Vinyals, Jeffrey Dean, Demis Hassabis, Koray
Kavukcuoglu, Clément Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry
Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin,
Robert Dadashi, and L’eonard Hussenot. Gemma 3 technical report. ArXiv, abs/2503.19786,
2025. URL https://api.semanticscholar.org/CorpusID:277313563.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing
fine-grained evaluation capability in language models. In The Twelfth International Confer-
ence on Learning Representations, 2024a. URL |https://openreview.net/forum?id=
8euJdaTveKwl

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. ArXiv, abs/2405.01535, 2024b. URL
https://api.semanticscholar.org/CorpusID:269502688.

Seungone Kim, Ian Wu, Jinu Lee, Xiang Yue, Seongyun Lee, Mingyeong Moon, Kiril Gashteovski,
Carolin Lawrence, J. Hockenmaier, Graham Neubig, and S. Welleck. Scaling evaluation-time
compute with reasoning models as process evaluators. ArXiv, abs/2503.19877, 2025. URL
https://api.semanticscholar.org/CorpusId:277313538.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure
Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
Wilds: A benchmark of in-the-wild distribution shifts. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 5637-5664. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/koh2la.htmll

Michael Krumdick, Charles Lovering, Varshini Reddy, Seth Ebner, and Chris Tanner. No free labels:
Limitations of llm-as-a-judge without human grounding. arXiv preprint arXiv:2503.05061, 2025.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
Liu. Llms-as-judges: A comprehensive survey on llm-based evaluation methods. ArXiv,
abs/2412.05579, 2024a. URL https://api.semanticscholar.org/CorpusID:
2745969077

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, hai zhao, and Pengfei Liu. Generative judge
for evaluating alignment. In The Twelfth International Conference on Learning Representations,
2024b. URL |https://openreview.net/forum?id=gtkFw6sZGSl

13


https://api.semanticscholar.org/CorpusID:277313563
https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw
https://api.semanticscholar.org/CorpusID:269502688
https://api.semanticscholar.org/CorpusId:277313538
https://proceedings.mlr.press/v139/koh21a.html
https://api.semanticscholar.org/CorpusID:274596907
https://api.semanticscholar.org/CorpusID:274596907
https://openreview.net/forum?id=gtkFw6sZGS

Under review as a conference paper at ICLR 2026

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg eval-
uation using gpt-4 with better human alignment. In Conference on Empirical Methods in Natural
Language Processing, 2023. URL https://arxiv.org/pdf/2303.16634.pdf.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
ol-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
TG8KACXEON.

Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM evaluators recognize and favor their
own generations. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=4NJBV6WpOh.

Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias:
Leveraging debiased data for tuning evaluators. ArXiv, abs/2407.06551, 2024a. URL https:
//arxiv.org/pdf/2407.06551.pdf.

Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias: Lever-
aging debiased data for tuning evaluators. arXiv preprint arXiv:2407.06551, 2024b.

Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of op-
tions in multiple-choice questions. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Findings of the Association for Computational Linguistics: NAACL 2024, pp. 2006-2017, Mex-
ico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-naacl.130. URL https://aclanthology.org/2024.findings—-naacl.
130/1

Vyas Raina, Adian Liusie, and Mark J. F. Gales. Is llm-as-a-judge robust? investigating universal
adversarial attacks on zero-shot Ilm assessment. ArXiv, abs/2402.14016, 2024. URL https:
//api.semanticscholar.orqg/CorpusId:267770121l

Gemma Team Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, L’eonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ram’e, Johan Fer-
ret, Peter Liu, Pouya Dehghani Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Ku-
mar, Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stariczyk, Ser-
tan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam
Neyshabur, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, An-
tonia Paterson, Ben Bastian, Bilal Piot, Boxi Wu, Brandon Royal, Charlie Chen, Chintu Ku-
mar, Chris Perry, Christoper A. Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov,
David Weinberger, Dimple Vijaykumar, Dominika Rogozi’nska, D. Herbison, Elisa Bandy, Emma
Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel
Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluci’nska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stan-
way, Jetha Chan, Jin Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez,
Joost R. van Amersfoort, Josh Gordon, Josh Lipschultz, Joshua Newlan, Junsong Ji, Kareem
Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Ki-
ranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, L. Sifre, Lena Heuermann, Leti
cia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Mar-
tins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth,
Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi,
Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khat-
wani, Natalie Dao, Nen shad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan,
Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Peng chong Jin,

14


https://arxiv.org/pdf/2303.16634.pdf
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=4NJBV6Wp0h
https://arxiv.org/pdf/2407.06551.pdf
https://arxiv.org/pdf/2407.06551.pdf
https://aclanthology.org/2024.findings-naacl.130/
https://aclanthology.org/2024.findings-naacl.130/
https://api.semanticscholar.org/CorpusId:267770121
https://api.semanticscholar.org/CorpusId:267770121

Under review as a conference paper at ICLR 2026

Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy,
Sarah Perrin, Sébastien M. R. Arnold, Se bastian Krause, Shengyang Dai, Shruti Garg, Shruti
Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan,
Toméas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmad-
hikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu,
Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang,
Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell,
D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeffrey Dean, Demis Has-
sabis, Koray Kavukcuoglu, Clément Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah
Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2:
Improving open language models at a practical size. ArXiv, abs/2408.00118, 2024. URL
https://api.semanticscholar.org/CorpusID:270843326.

Jon Saad-Falcon, Rajan Vivek, William Berrios, Nandita Shankar Naik, Matija Franklin, Bertie
Vidgen, Amanpreet Singh, Douwe Kiela, and Shikib Mehri. Lmunit: Fine-grained evaluation
with natural language unit tests. arXiv preprint arXiv:2412.13091, 2024.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang,
Sayna Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive
survey. ACM Comput. Surv., May 2025. ISSN 0360-0300. doi: 10.1145/3735633. URL |https:
//doi.org/10.1145/3735633| Just Accepted.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach,
and Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and
generative verification for 1lm reasoning. ArXiv, abs/2504.01005, 2025. URL https://api.
semanticscholar.org/CorpusId:277467695.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feed-
back. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 3008-3021. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1£89885d556929e98d3ef9%086448f951-Paper.pdf.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=qwgfh2fTtN.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets
with training dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 9275-9293, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.746. URL https://aclanthology.org/2020.
emnlp-main.746/.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Yuan Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Popa, and Ion Stoica. Judgebench: A benchmark for evaluating LLM-based judges.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=G0dksFayVqg.

Mistral Team. Un ministral, des ministraux, a. URL lhttps://mistral.ai/news/
ministraux.

Mistral Team. Mistral small 3, b. URL https://mistral.ai/news/mistral-small-3.

Tuhina Tripathi, Manya Wadhwa, Greg Durrett, and Scott Niekum. Pairwise or pointwise? evalu-
ating feedback protocols for bias in LLM-based evaluation. In Second Conference on Language
Modeling, 2025. URL https://openreview.net/forum?id=uyX5Vnow3Ul

15


https://api.semanticscholar.org/CorpusID:270843326
https://doi.org/10.1145/3735633
https://doi.org/10.1145/3735633
https://api.semanticscholar.org/CorpusId:277467695
https://api.semanticscholar.org/CorpusId:277467695
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN
https://aclanthology.org/2020.emnlp-main.746/
https://aclanthology.org/2020.emnlp-main.746/
https://openreview.net/forum?id=G0dksFayVq
https://openreview.net/forum?id=G0dksFayVq
https://mistral.ai/news/ministraux
https://mistral.ai/news/ministraux
https://mistral.ai/news/mistral-small-3
https://openreview.net/forum?id=uyX5Vnow3U

Under review as a conference paper at ICLR 2026

Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung.
Foundational autoraters: Taming large language models for better automatic evaluation. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 1708617105, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
949. URL https://aclanthology.org/2024.emnlp-main.949/.

Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong, and Shafiq Joty. Direct judgement prefer-
ence optimization. arXiv preprint arXiv:2409.14664, 2024a.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. ArXiv, abs/2305.17926, 2023. URL
https://api.semanticscholar.org/CorpusID:258960339.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
uators. arXiv preprint arXiv:2408.02666, 2024b.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task
language understanding benchmark. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems,
volume 37, pp. 95266-95290. Curran Associates, Inc., 2024c. doi: 10.52202/079017-3018.
URL |https://proceedings.neurips.cc/paper_files/paper/2024/file/
ad236edc564f3e3156elb2feafb99%9a24-Paper—-Datasets_and_Benchmarks_
Track.pdf.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. arXiv preprint
arXiv:2505.10320, 2025.

Austin Xu, Srijan Bansal, Yifei Ming, Semih Yavuz, and Shafiq Joty. Does context matter?
contextualjudgebench for evaluating llm-based judges in contextual settings. arXiv preprint
arXiv:2503.15620, 2025a.

Austin Xu, Yilun Zhou, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. J4r: Learning to judge
with equivalent initial state group relative policy optimization. ArXiv, abs/2505.13346, 2025b.
URL https://api.semanticscholar.org/CorpusID:278768650.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou,
Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin Yang,
Mei Li, Min Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xi-
aodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren,
Yang Fan, Yang Yao, Yichang Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang,
and Zhi-Wei Fan. Qwen2 technical report. ArXiv, abs/2407.10671, 2024a. URL https:
//api.semanticscholar.org/CorpusID:271212307.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024b. URL https://api.
semanticscholar.org/CorpusID:274859421.

Ziyi Ye, Xiangsheng Li, Qiuchi Li, Qingyao Ai, Yujia Zhou, Wei Shen, Dong Yan, and Yiqun Liu.
Beyond scalar reward model: Learning generative judge from preference data. arXiv preprint
arXiv:2410.03742, 2024.

16


https://aclanthology.org/2024.emnlp-main.949/
https://api.semanticscholar.org/CorpusID:258960339
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://api.semanticscholar.org/CorpusID:278768650
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421

Under review as a conference paper at ICLR 2026

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason E.
Weston. Self-rewarding language models. ArXiv, abs/2401.10020, 2024. URL https://
arxiv.orqg/pdf/2401.10020.pdf.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqgi Chen. Evaluating
large language models at evaluating instruction following. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
trO0KidwPLcl

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LL.M-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlaol

Yilun Zhou, Austin Xu, PeiFeng Wang, Caiming Xiong, and Shafiq Joty. Evaluating judges
as evaluators: The jetts benchmark of llm-as-judges as test-time scaling evaluators. ArXiv,
abs/2504.15253, 2025. URL https://api.semanticscholar.org/CorpusId:
277955867

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. JudgeLM: Fine-tuned large language models
are scalable judges. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=xsELpEPn4A.

A LLM USAGE

Other than being used as part of the experiments conducted in this work, LLMs were used solely
as a writing assistance tool in preparing this paper submission. Their role was limited to polishing
language, improving clarity, and reducing redundancy. The prompt used for this purpose was similar
to “Please revise the writing of this, making sure to remove any grammatical mistakes.” All research
ideas, experimental designs, analyses, and claims presented in the paper are entirely the original
work of the authors. No part of the conceptual, methodological, or empirical contributions relies on
or originates from LLM outputs.

B GENERATORS AND GENERATOR STRENGTHS

Shorthand Full Hugging Face Identifier

Llama3.3-70B meta-llama/Llama-3.3-70B-Instruct
Llama3.1-8B meta—-1llama/Llama-3.1-8B-Instruct
Qwen2-7B Qwen/Qwen2-7B-Instruct

Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct

Qwen2.5-14B Qwen/Qwen2.5-14B-Instruct

Qwen2.5-32B Qwen/Qwen2.5-32B-Instruct

Gemma2-9B google/gemma-2-9b-1it

Gemma3-12B google/gemma-3-12b-it

Ministral-8B mistralai/Ministral-8B-Instruct-2410
Mistral-Small-24B mistralai/Mistral-Small-24B-Instruct-2501
DeepScaleR agentica-org/DeepScaleR-Preview-Dataset
MMLU-Pro TIGER-Lab/MMLU-Pro

Table 1: Mapping from shorthand model and dataset names to their corresponding Hugging Face
identifiers.

To curate generator responses, we begin with a set of candidate generators and a collection of ques-
tions (@, along with verifiable ground-truth answers A*. For each question, we sample 20 responses
from each generator using temperature sampling and compute a pass @ I score. This score represents
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N Weak Generators 0.500
B Strong Generators

Pass@1 Accuracy

Figure 7: Generator strength on the DeepScaleR dataset, measured using pass@ 1 with 20 indepen-
dently sampled responses. Models fall into two well-separated strength clusters: weak (0.17-0.26)
and strong (0.42-0.50). No models occupy the 0.26-0.42 gap (a 0.16-wide gap), making the clus-
tering robust to any threshold chosen within this interval. This clustering also aligns with model
release dates, with stronger, newer models (yellow) outperforming weaker, older ones (green).

0.7| ™ Weak Generators 0.690 0.691
I Strong Generators
0.6
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0.399

Pass@1 Accuracy

Figure 8: Generator strength on the MMLU-Pro dataset, measured using pass@1 with 20 inde-
pendently sampled responses. The same two-tier structure appears: weak (0.34-0.43) vs. strong
(0.56-0.69), with no models in the 0.43-0.56 intermediate gap (a 0.13-wide gap). This clustering
aligns with the weak—strong clustering observed in DeepScaleR (Figure[7), indicating that the clus-
tering reflects underlying model strength rather than threshold choice or dataset-specific artifacts.

the probability of obtaining at least one correct solution when randomly selecting one solution from
the 20 attempts, where correctness is determined by matching the generator’s responses against A*.

Concretely, we use two verifiable datasets, as shown in Table [T} DeepScaleR [2023)
and MMLU-Pro (Wang et al] 2024c)). DeepScaleR contains 40K challenging Olympiad-level math
problems spanning multiple years, each paired with a ground-truth answer. In contrast, MMLU-Pro
contains 12K multiple-choice problems, spanning 57 subjects across 14 categories and drawing from
diverse sources such as MMLU, STEM websites, TheoremQA, and SciBench. We include MMLU-
Pro to demonstrate the broader applicability of our results beyond mathematics. For all experiments,
we use popular open-source instruction-tuned models, as listed in Table[[} Gemma-2-9B (Riviere]

et al] 2024), Gemma-3-12B (Kamath et al} 2023), Llama-3.1-8B, Llama-3.3-70B [Dubey et al.
(2024)), Ministral-8B (Team| [a), and Mistral-Small-24B (Team) |b), Qwen2-7B .
Qwen2.5-7B (Yang et al] 2024b)), and Qwen2.5-32B (Yang et al| [2024B).
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Judge Backbone LLM Weak Response Dataset Strong Response Dataset

Ministral-8B, Mistral-Small-24B  Gemma?2-9B, Qwen2-7B, Qwen2.5-7B, Gemma3-12B,
Llama3.1-8B Llama3.3-70B

Llama3.1-8B Gemma2-9B, Qwen2-7B, Qwen2.5-7B, Gemma3-12B,
Ministral-8B Mistral-Small-24B

Table 2: Overview of training data composition on a per-backbone LLM basis. To mitigate bias from
the difficulty of evaluating self-generated responses, we avoid training judge models on their own
responses. This produces per-judge training datasets composed of different generator responses.

Figure []] which plots the pass@1 scores of all candidate generators, reveals two clearly separated
capability bands on DeepScaleR. Weak models fall in the 0.17-0.26 range, whereas strong models
fall in the 0.42-0.50 range, leaving a 0.16-wide empty gap (0.26-0.42) with no model in the in-
termediate region. Thus, any threshold chosen within this interval produces the same weak-strong
grouping. This separation also aligns well with model release dates, as shown in Figure []] We ob-
serve the same two-tier pattern on MMLU-Pro, as shown in Figure@ weak models score 0.34-0.43,
while strong models score 0.56-0.69, again with no models occupying the 0.43-0.56 interval (a
0.13-wide gap). The alignment of weak—strong groups across two very different datasets indicates
that the distinction captures genuine differences in underlying model strength, rather than artifacts
of a particular dataset or threshold choice.

C TRAINING SETUP DETAILS

Dataset Construction. To create the training and evaluation splits, we first construct pairwise in-
put samples for the judge, following prior work (Tan et al [2025; [Wang et al., 2024b). For each
question, we sample multiple responses from each generator, and each response is then labeled as
“correct” or “incorrect” according to the ground-truth answer A*. We then form response pairs,
where each pair consists of one correct response and one incorrect response, resulting in a pairwise
sample with an objectively correct answer. Importantly, responses in a pair are drawn from a sin-
gle generator only. This choice ensures that the judge learns to distinguish correctness based on
reasoning quality rather than relying on stylistic differences between models, which could occur if
responses from different generators were mixed in a single pair. For each generator and question, we
only keep samples where there is at least one correct and one incorrect response and if this condition
is not met, the question is discarded for that generator. In Table[3] we report the percentage of ques-
tions retained for each generator after applying this discarding criterion. Further, in Figure P we
show that weak models discard many hard questions because all 20 samples are incorrect, whereas
strong models discard many easy questions because all 20 samples are correct. Mid-tier models re-
tain the most questions because they more frequently produce mixed outcomes, resulting in a clear
U-shaped trend in the rank—retention plot. Thus, the retained subset is enriched for borderline ques-
tions near each model’s decision boundary, naturally inducing a medium-difficulty selection bias.
Following this, and based on the generator strengths defined in Appendix[B] we construct aggregated
pairwise datasets consisting exclusively of either weak or strong responses, which we refer to as the
weak dataset and strong dataset, respectively.

Judge Data Distillation & Training Objectives. We train judges using three commonly adopted
recipes: supervised fine-tuning (SFT) (Li et all 2024b; Kim et al., 20244} [Vu et al., [2024), direct
preference optimization (DPO) (Hu et al.,[2024; Wang et al., [2024b)), and a combined SFT and DPO
objective (Wang et al, 20244} [Ye et al.} 2024} [Saad-Falcon et al,[2024). As these recipes require
supervision, specifically, the CoT explanation C' (Sec. [2), we adopt the common feacher model
convention (Li et al., 2024b; Wang et al., 2024a). We prompt GPT-4o with (Q, R1, R2) inputs,

sampling multiple responses (C, V') per input. Based on the ground-truth verdict V*, we categorize
responses as correct (positive) samples ™ or incorrect (negative) samples y~. We only keep inputs
for which at least one 4™ and y~ exists. This ensures that the inputs are exactly comparable for
SFT and DPO. Positive samples are then used for SFT, whereas positive-negative pairs are used for
DPO-based recipes.
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Generator DeepScaleR Ret%, 2 MMLU-Pro Ret%;ank
Gemma-2-9B 36.17 63.832
Gemma-3-12B 57.25 49.23¢
Qwen-2-7B 52.23 79.313
Qwen-2.5-7B 63.75 58.755
Qwen-2.5-32B 62.97 43.61g
Llama-3.1-8B 52.29 76.384
Llama-3.3-70B 4719 34.299
Ministral-8B 62.54 62.321
Mistral-Small-24B 64.6¢ 50.737

Table 3: Retention percentage (Ret%) across DeepScaleR and MMLU-Pro for various generators.
The subscript rank denotes each model’s Pass@ 1 rank; higher ranks correspond to models with su-
perior performance, as shown in Figure[7]and Figure[8] Retention measures the fraction of questions
where a generator produces both a correct and an incorrect sample across 20 generations.
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Figure 9: Retention vs. Pass@]1 rank, derived from Table Weak generators drop hard questions
because all sampled responses are incorrect, strong generators drop easy ones because all sampled
responses are correct, and mid-tier generators retain the most by producing responses with mixed
correctness. This concentrates the retained questions on borderline, medium-difficulty items near
each generator’s decision boundary.

Train and Evaluation Splits. To analyze the four practical questions described in Section[I|using
the dual-distribution framework from Section [3] we split the weak and strong datasets into training
and test splits. For testing, we construct two distinct splits: an unseen-questions split and a seen-
questions split. The unseen-questions split contains questions not present during training, while
the seen-questions split reuses training questions but samples new responses, with pairs constructed
following the same process as described above. Unless otherwise specified, we use the unseen-
questions split for evaluation. Note that the corresponding weak and strong splits use exactly the
same set of questions; we remove any question that appears in only one split. This prevents question-
difficulty differences from confounding our findings. Overall, for DeepScaleR each training split
contains 70K samples, whereas for MMLU-Pro each contains 10K samples. For both datasets, each
evaluation split includes 2.5K response-order-unflipped samples (5K after response-order flips).

Generator and Judge Backbone Details. We choose three backbone models to finetune: Llama-
3.1-8B, Ministral-8B, and Mistral-24B, covering a range of model sizes and intrinsic strengths. Prior
work has shown that models often struggle to judge the correctness of pairs of their
own sampled responses. Another line of work (Chen et al.| [2025b} [Panickssery et al., [2024) has
shown that models can recognize their own responses and exhibit self-bias. Thus, to disentangle any
effects of training a judge on self-generated responses, we exclude the backbone judge model from
serving as a generator. Specifically, we create two training sets (each with weak and strong splits),
ensuring that the backbone judge model is not included in the list of generators. We summarize
these training sets and the associated backbone models in Table[2]
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Hyperparameters. All experiments with SFT, DPO, SFT+DPO are implemented using the AX-
OLOTL framework |/Axolotl maintainers and contributors| (2023). For SFT, we sweep learning rates
in {1 x107%,2.5 x107% 5 x 1075, 1 x 107°} with a cosine decay scheduler. Across all eval-
uation splits, a learning rate of 2.5 x 106 consistently yields the best performance. For DPO, we
adopt standard hyperparameter choices from prior work (Ivison et al.,2023), using a learning rate of
5x 10~7 and a preference strength parameter 3 = 0.1. For SFT+DPO, we optimize a joint loss with
equal weighting between the SFT and DPO objectives, using the same DPO hyperparameters (learn-
ing rate 5 x 1077, 8 = 0.1). DeepScaler weak and strong judges are trained for 3 epochs (2,800
gradient steps). In contrast, MMLU-Pro weak and strong judges are trained for 10 epochs (1,500
gradient steps). For continual training experiments (section [5.3), we start from a weak-response
DPO-trained judge (trained for 3 epochs) and further train it on strong responses for 1 additional
epoch, amounting to roughly 1,000 additional gradient steps. We sweep 5 € {0.1,1.0} and report
results in the main text using 8 = 1.0; additional results are included in Table [ and in Appendix [D]

D CONSISTENT ACCURACY AND JUDGE’S PERFORMANCE ACROSS SPLITS

Consistent Accuracy. Since judge models are prone to positional biases (Wang et al.,|2023};|Li et al.,
2024b; | Xu et al., 2025b)—where their preference shifts depending on whether R; or R5 appears first
in the prompt—it is standard practice to evaluate judges using both response orderings (Tan et al.,
2025}, (Xu et al.l 2025aib). Concretely, for input = (Q, Ry, R2), let Z denote the same sample,
but with response order flipped in the input prompt, i.e., Z = (Q, R2, R1). Then, evaluation with
consistent accuracy considers the judge correct only if it correctly identifies the better response
under both orderings:

1 A N
Acc= > 1[V(z) = V*(x) A\V(T) = V' (@), (10)
|P| reP
where 1[-] is the indicator function, P is the evaluation set consisting of pairs (z, V*(z)), and the
judge’s verdicts V (z) are compared against the ground-truth verdicts V* ().

Judge’s Performance. We report all consistent-accuracy scores of our trained judges for both Deep-
Scaler and MMLU-Pro across the different evaluation splits in Table ]

E RESEARCH QUESTIONS IN THE DUAL-DISTRIBUTION FORMULATION

As described in Section [3] the dual-distribution formulation separates the question distribution Q
from the response distribution R, reflecting two real-world sources of shift: (1) more capable gen-
erators (an evolving R) and (2) new questions (an evolving Q). This decomposition allows us to
isolate and quantify the impact of each factor on judge performance. Building on this, we investigate
several practical questions about the shelf life of trained judges, focusing on four distinct settings:

How future-proof are judge models? For a judge to be future-proof, it must be able to evaluate
responses from newer, stronger models. To study this, we examine how a judge trained on responses
from the current generation of weak models performs when evaluating responses from strong mod-
els. Specifically, we train a judge on R!;%}" and evaluate it on both R!¢5!, and RLGS, . This setup
characterizes how robust judges are to a distribution shift from weak to strong responses. Addition-
ally, we quantify the gains from retraining a judge on strong responses by replacing training data

train ,; train
from R, with responses from R e% .

How backward-compatible are judge models? Newly trained judges are fine-tuned to evaluate
newer, stronger response-generating models. However, does this focus on state-of-the-art genera-
tors come at the expense of performance on older, more established generators? To complement
our future-proofing experiments, we examine backward-compatibility. Specifically, given a judge

trained on responses from Rﬁ,@,‘fé’,ﬁg, we ask: how well does it match a judge trained on weaker

responses from R when both are evaluating R'¢5!, responses? Beyond this comparison, eval-
uating weaker responses with a judge trained on strong responses also introduces a distribution shift

from strong to weak responses. We quantify any performance losses that result from this shift.

Can continual learning improve future-proofing and backward-compatibility of judge models?

Rather than training a new judge from scratch on R gtyong, We start with a judge trained on R!7%%

21



Under review as a conference paper at ICLR 2026

6 6
I Ministral-8b Il Mistral-24b
&
= 4 8
e €
e 3
>
a > o
o <
g £
3 )

£ 01 ,;1_’
-0 07 -1.1 -1.0 -

-2 -1.8 -2

B Ministral-8b W Mistral-24b
SFT DPO SFT+DPO SFT DPO SFT+DPO

(a) FutureProof. (b) RefreshAdvantage.

Figure 10: Future-proofing of MMLU-Pro—trained judges. (a) Future-proofing measured by
FutureProof; negative values indicate degraded performance on stronger responses. All models
and training recipes degrade, reflecting poor evaluation of newer, stronger responses. (b) Benefits
of re-training on strong responses, measured by RefreshAdvantage. Re-training consistently
improves performance, with larger gains under DPO-based recipes. These results largely follow the
trends observed on DeepScaler (Figure[I0), except with smaller absolute magnitudes, indicating that
response-distribution shift can depend on the domain.
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(a) BackCompatibility. (b) CompatibilityShift.

Figure 11: Backward-Compatibility of MMLU-Pro-Trained Judges. (a) BackCompatibility
measures how well judges trained on strong responses evaluate older responses; positive values
indicate improvements over weak-judge baselines. Strong-trained judges show clear gains, larger
than those on DeepScaler Figure [33] suggesting that strong judges are as good as or better than
weak judges when evaluating weak responses. (b) Despite strong absolute performance, newer
judges still face distribution shift, reflected in CompatibilityShift, which captures perfor-
mance drops relative to evaluating strong responses. These shifts are similar to those observed on
DeepScaler Figure [3p]

and continually fine-tune it on Rg’;%ﬁg
settings above, we ask whether the continually trained judge narrows the gap on R

one trained only on R!"%" and whether it retains performance on R!¢5!

to obtain a continually trained judge. In parallel to the
Lot g Telative to

«; relative to a judge trained

“weak? wea
from scratch on RYim o+ This setup tests whether continual training helps a weak judge adapt to the

weak to strong response shift while preserving compatibility with older responses.

How do judges generalize across unseen questions? As new questions are introduced for evalu-
ating LLMs, judge models must accurately assess responses to these questions. Here, we quantify
the benefit of a judge model having seen a question during training. To study this form of gener-
alization, we construct two evaluation splits. The first is a seen-questions, unseen-responses split,
created by selecting questions that appeared in the training set and sampling a new set of responses
for these questions from R!"*™, The second is an unseen-questions, unseen-responses split, gen-
erated by sampling questions from Q'"%" that were not included in the training data, along with
their corresponding responses from R!"%", Comparing performance across these splits enables us
to assess how well judges generalize to previously seen questions versus entirely new ones.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

c Ministral-8b Mistral-24b
o
2
1ol
N
®
b
[}
c
[}
(L)
c
0
0 25
3‘5 wms \Weak  EEE Strong =5
(=4
SFT DPO SFT+DPO SFT DPO SFT+DPO

Figure 12: Question Generalization of MMLU-Pro-Trained Judges. Generalization of judges trained
on weak and strong responses to seen and unseen questions. Judges consistently fail to generalize to
unseen questions, showing large performance drops relative to their performance on seen questions.
These trends align with our findings on DeepScaler dataset in Figure@

F DETAILED FINDINGS FROM MMLU-PRO DATASET

In this section, we present the future-proofing, backward-compatibility, and question-generalization
results for the MMLU-Pro dataset and place them in context with the corresponding findings on
DeepScaler. As discussed in Section [5] the overall trends on MMLU-Pro closely match those ob-
served on DeepScaler. However, compared to DeepScaler, which is math-oriented and reasoning-
intensive, MMLU-Pro exhibits noticeably smaller degradations across all metrics. Since MMLU-
Pro is more knowledge-centered, this suggests that the severity of response-distribution shift is do-
main dependent. These observations imply that a judge model’s shelf-life metrics can vary mean-
ingfully with task domain, even when the training recipe and backbone model are held constant.
Below, we describe the results for each metric on MMLU-Pro.

F.1 HOW FUTURE-PROOF ARE JUDGE MODELS?

FutureProof Findings. Figure[T0g reports the FutureProof values for all models and train-
ing recipes. Consistent with DeepScaler, we do not observe any case where judges generalize to
newer or stronger responses: all FutureProof values are negative. However, the magnitudes on
MMLU-Pro are noticeably smaller than those on DeepScaler (see Figure[2a), suggesting that degra-
dation under response-distribution shift is less severe on knowledge-oriented, non-math tasks than
on reasoning-intensive math-olympiad problems. This highlights that the extent of future-proofing
failure can vary by domain.

RefreshAdvantage Findings. As shown in Figure[T0b} re-training on up-to-date responses con-
sistently improves evaluation performance: all training recipes and backbone models exhibit positive
RefreshAdvantage values. Mirroring DeepScaler, DPO-based recipes yield larger gains than
SFT alone, and the benefits grow with judge model size. For instance, under SFT+DPO, Mistral-24B
gains 4.4 absolute points, compared to 3.2 points for its 8B counterpart, Mistral-8B. Overall, these
results reinforce the DeepScaler observation that reliably evaluating stronger generators requires
judges trained on strong, contemporary responses. However, the gains on MMLU-Pro are slightly
weaker compared to DeepScaler, again indicating that the absolute advantage from refreshing is
domain-dependent.

F.2 HOW BACKWARD-COMPATIBLE ARE JUDGE MODELS?

BackCompatibility Findings. In Figure [[Ta] we visualize the backward-compatibility of
judge models trained on strong responses. When evaluated on weak responses, these judges
show little improvement over judges trained directly on in-distribution weak responses. In com-
parison, on DeepScaler (see Section B.2), we observed a minimal performance drop, with the
BackCompatibility metric slightly negative. Taken together, these results indicate that judges
trained on newer, stronger responses are indeed backward-compatible: they perform on par with
weak-trained judges, even when evaluated out of distribution.

CompatibilityShift Findings. Our findings in BackCompatibility show that judges
trained on strong responses perform comparably to, or better than, weak-trained judges when scoring
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older responses. However, these stronger judges are evaluated under a strong-to-weak distribution
mismatch, and Figure [TTH] illustrates the resulting drop in accuracy. These drops are consistent
across models and training recipes. Thus, even though stronger judges can effectively replace weaker
ones, distribution shift still limits their realized performance. We observed a similar pattern on the
DeepScaleR dataset, as discussed in Section@

F.3 HOW DO JUDGES GENERALIZE TO UNSEEN QUESTIONS AND RESPONSES?

QuestionGen Findings. From Figure[I2] we observe that judges trained on MMLU-Pro do not
generalize well to unseen questions, with nearly all judges showing performance drops compared to
evaluating on seen questions with unseen responses. The trends are similar to those for DeepScaleR
in Figure[6} more performant judges using the DPO recipe and larger backbones such as Mistral-24B
exhibit larger drops when evaluated on in-distribution questions not encountered during training.

G PROMPTS AND SAMPLING HYPERPARAMETERS

To obtain generator responses, we sample multiple completions from each generator in order to
better capture the diversity of its reasoning behaviors. We use five temperature—sampling config-
urations, where n denotes the number of sampled completions and ¢ the sampling temperature:
(n=1,1t=0.0), (n=4,t=0.4), (n=5,t=0.5), (n=5,t=0.6), and (n=>5,t=0.7), with top-p fixed at
1.0. This yields 20 total responses per question for each generator model.

To reduce prompt-format bias and further increase response diversity, we randomly select one of
four generator prompt templates (Prompts [THA) for each sampled completion in the DeepScaleR
dataset. For multi-domain experiments using MMLU-Pro, we use the prompt in Prompt 3]

For the judge models, we provide the original question along with two generator responses, each
containing both the intermediate reasoning and the final numerical answer. Judge models are de-
coded greedily using (n=1,¢=0.0), as we found pass@Fk judge accuracies to be highly correlated
with greedy decoding while being more computationally efficient.

We use the prompt in Prompt 6] for judge evaluation.

Generator Prompt Template 1 — DeepScaleR

Instruction:

Solve the following math problem step by step. The last line of your
response should be:

Answer: S$Answer

where S$Answer is the final answer.

Problem:

{{problem}}

Output Format:

Answer: <your answer here>

Prompt 1: Generator prompt template used in DeepScaleR for structured, step-by-step solutions.
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Generator Prompt Template 2 — DeepScaleR

Instruction:
Solve the following math problem efficiently and clearly.
— For simple problems (2 steps or fewer): give a concise solution with

minimal explanation.
- For complex problems: use the structured step-by-step format:

Step 1: [Concise description]
[Explanation / calculations]
Step 2: [Concise description]

[Explanation / calculations]

Important:

Always conclude with:

Therefore, the final answer is: S$\boxed {answer}$.
where answer is the final numeric answer.

Problem:

Problem: {{problem}}

Prompt 2: Generator prompt template used in DeepScaleR that adapts to problem complexity, pro-
ducing either concise explanations or multi-step structured reasoning.

Generator Prompt Template 3 — DeepScaleR

Instruction:

Read the problem, reason through it, and provide a final answer.
Problem:

{{problem}}

Output Requirement:

Your response must end with:

The final answer is [answer]

where [answer] is the final computed answer.

Prompt 3: Generator prompt template that prompts models to reason and explicitly report a final
answer.

Generator Prompt Template 4 — DeepScaleR

Problem:
{{problem}}

Prompt 4: A minimal generator prompt template presenting only the raw problem.

Generator Prompt Template — MMLU-Pro

Instruction:

You are given a multiple-choice question from the domain of {{domain}}.
Each answer option corresponds to a lettered choice.

Question:

{{question}}

Options:

{{options}}

Task:

Provide a careful, step-by-step analysis of the question. Use your
reasoning to evaluate all relevant information and identify the correct
option. After completing your reasoning, produce your final choice in
the following format:

<answer>X</answer>

where X is the letter of the correct option.

Prompt 5: Prompt template used for reasoning over multiple-choice questions in MMLU-Pro.
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Judge Prompt Template

Task:
You are a rigorous evaluator comparing two responses to the same math
question. Judge which response is better, based solely on logical

soundness and correctness.

You are given:

- A Question

— Response A

- Response B

Evaluation Guidelines:

1. Correctness is top priority. Prefer responses with correct
reasoning and correct final answers.

2. If both have reasoning flaws, choose the one that still reaches the
correct final answer.
3. Ignore style, length, formatting, verbosity, or fluency.

Output Format (JSON) :
Your final output must be exactly one of the following:

{"verdict": "A"}
{"verdict": "B"}
Question:
{{question}}

Response A:
{{response_a}}
Response B:
{{response b}}

Prompt 6: Judge prompt template used to compare two generator responses based on final-answer
correctness and reasoning quality.
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| DeepScaler MMLU-Pro
Train Eval | 0-Shot SFT DPO SFT+DPO | 0-Shot SFT DPO SFT+DPO
Llama3.1-8B
WK, Sn 3244  48.14 43.95 63.40 - - - -
J St, Sn 2841 44.66 36.62 60.48 - - - -
Wk Wk, Un | 30.79 46.06 39.41 58.47 - - - -
St, Un 2776 4191 3394 55.29 - - - -
WKk, Sn 3244 4533 4253 61.72 - - - -
J St, Sn 2841 4641 4374 65.15 - - - -
St Wk, Un | 30.79 44.12 39.61 57.60 - - - -
St, Un 2776 4221 40091 59.27 - - - -
WKk, Sn 32.44 - 44.69 - - - - -
Jol St, Sn 28.41 - 41.19 - - - - -
Wk=St Wk, Un | 30.79 - 40.09 - - - - -
St, Un 27.76 - 38.41 - - - - -
WKk, Sn 32.44 - 45.43 - - - _ _
JLo St, Sn 28.41 - 39.13 - - - - -
Wk=St Wk, Un | 30.79 - 40.07 - - - - -
St, Un 27.76 - 37.22 - - - - -
Ministral-8B
Wk, Sn 33.87 48.06 61.04 61.39 26.87 34.86 47.24 47.81
J St, Sn 28.72 4194 5555 56.41 27.14  34.04 46.38 47.08
Wk Wk, Un | 33.81 4593 5641 56.72 27.05 3372 4454 45.03
St, Un 20.14 4191 54.86 53.26 2574  33.62 43.56 43.96
WKk, Sn 33.87 45.05 60.60 62.25 26.87 3520 46.32 48.04
J St, Sn 28.72 4331 64.69 67.30 27.14  36.34 4898 50.38
St Wk, Un | 33.81 42.62 57.15 58.82 27.05 3446 44.48 46.18
St, Un 29.14 4390 59.15 60.86 2574 3490 45.82 47.12
Wk, Sn 33.87 - 62.11 - - - - -
Jo.1 St, Sn 28.72 - 60.43 - - - - -
Wk=St Wk, Un | 33.81 - 54.67 - - - - -
St, Un 29.14 - 53.13 - - - - -
Wk, Sn 33.87 - 59.24 - - - - -
JLo St, Sn 28.72 - 58.51 - - - - -
Wk=St Wk, Un | 33.81 - 55.28 - - - - -
St, Un 29.14 - 54.84 - - - - -
Mistral-24B
WKk, Sn 41.00 52.18 76.57 76.90 38.51 45.14 57.14 57.53
J St, Sn 37.69 4534 72.16 71.94 37.17 4481 55.25 56.42
Wk Wk, Un | 40.75 4749 68.56 71.41 37.64 43.81 53.58 53.92
St, Un 38.03 46.57 65.36 65.21 36.25 42.02 52.86 52.92
WKk, Sn 41.00 47.55 73.75 75.69 3851 4492 56.13 57.75
J St, Sn 37.69 50.07 79.12 81.31 37.17 4622 59.20 61.82
St Wk, Un | 40.75 4585 66.30 68.52 37.64 43.62 5492 55.31
St, Un 38.03 47770 69.73 71.14 36.25 4398 55.81 57.31
WKk, Sn 41.00 - 73.70 - - - - -
Jo.1 St, Sn 37.69 - 73.80 - - - - -
Wk=St Wk, Un | 40.75 - 64.45 - - - - -
St, Un 38.03 - 62.37 - - - - -
WKk, Sn 41.00 - 78.22 - - - - -
JLo St, Sn 37.69 - 75.45 - - - - -
Wk—=St Wk, Un | 40.75 - 66.83 - - - - -
St, Un 38.03 - 66.08 - - - - -

Table 4: Judge’s Consistent Accuracy. Left block: DeepScaler; right block: MMLU-Pro. Train
indicates whether the judge is trained on Weak data (Jwy), Strong data (Js), or via continual weak-
to-strong training (Jvf,k _s)- Eval indicates the type of evaluation split defined by the source of
responses among Weak (Wk) or Strong (St) and whether questions are Seen (Sn) or Unseen (Un).
Within each dataset, columns correspond to the judge-training configurations: Zero-Shot, SFT,
DPO, and SFT+DPO. For both datasets, backbone (zero-shot) values are repeated across all blocks
to facilitate direct comparison across judge-training strategies.
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