

000 001 002 003 004 005 006 007 008 009 010 011 012 ON THE SHELF LIFE OF FINE-TUNED LLM-JUDGES: FUTURE-PROOFING, BACKWARD-COMPATIBILITY, AND QUESTION GENERALIZATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 The LLM-as-a-judge paradigm is widely used in both evaluating free-text model
014 responses and reward modeling for model alignment and finetuning. Recently,
015 finetuning judges with judge-specific data has emerged as an often preferred
016 choice over directly prompting frontier models as judges, as the former achieves
017 better performance with smaller model sizes while being more robust to common
018 biases. However, the standard evaluation ignores several practical concerns of
019 finetuned judges regarding their real world deployment. In this paper, we identify
020 and formalize three aspects that affect the *shelf life* of these judges: *future-proofing*
021 and *backward-compatibility* – how well judges finetuned on responses by today’s
022 generator models perform on responses by future models or past models, as well
023 as *question generalization* – how well judges generalize to unseen questions at
024 test time. We study these three aspects under a unified framework with varying
025 train and test distributions in two reasoning datasets, three SFT- and DPO-based
026 fine-tuning algorithms, and three different backbone models. Experiments suggest
027 that *future-proofing* is challenging for most models, while *backward-compatibility*
028 is relatively easy, with DPO-trained models consistently *improving* performance.
029 We further find that continual learning provides a more balanced adaptation to
030 shifts between older and newer response distributions than training solely on
031 stronger or weaker responses. Moreover, all models observe certain degrees of
032 performance degradation when moving from questions seen during training to
033 unseen ones, showing that current judges do not fully generalize to unseen ques-
034 tions. These findings provide insights into practical considerations for developing
035 and deploying judge models in the face of ever-changing generators.

036 1 INTRODUCTION

037 Automatic evaluators have become a central part of the large language model (LLM) development
038 cycle. They serve both as reward models during training (Stiennon et al., 2020; Ouyang et al., 2022;
039 Yuan et al., 2024) and as verifiers in inference-time compute scaling (Zhou et al., 2025; Kim et al.,
040 2025; Singhi et al., 2025). In the LLM-as-judge paradigm, a generative language model evaluates
041 the outputs of other models for a given input question, providing a scalable approach to automatic
042 evaluation. Past work on LLM-as-judges began with zero-shot prompting of capable LLMs (Liu
043 et al., 2023; Dubois et al., 2023). However, such judges have been shown to be prone to various
044 biases, such as stylistic bias (Zeng et al., 2024; Raina et al., 2024), length bias (Zheng et al., 2023;
045 Zeng et al., 2024), and positional bias (Wang et al., 2023; Pezeshkpour & Hruschka, 2024). As a
046 result, recent efforts have finetuned specialized evaluators Li et al. (2024b); Kim et al. (2024a); Vu
047 et al. (2024), which have been shown to be more robust to common forms of bias (Zhu et al., 2025;
048 Wang et al., 2024a; Park et al., 2024a) while matching the performance of larger prompted models.

049 Although recent advances in judge model finetuning have largely focused on developing training
050 methodology Chen et al. (2025a;c), little attention has been devoted to understanding how these
051 models behave as a function of their training inputs. In this work, we investigate this gap by asking
052 three key questions: First, can judge models trained on fixed datasets of input questions, model
053 responses, and ground-truth verdicts accurately evaluate the responses of newer models, i.e., are
judges *future-proof*? Second, if we train a judge on up-to-date responses from newer models, can it

Figure 1: High-level overview of our setup for studying *Future-Proofing*, *Backward-Compatibility*, and *Question Generalization* through the lens of generalization and robustness to input distribution shifts. Q and R represent questions and responses, respectively, with responses generated by the shown generator models (Gemma2, Qwen2, Gemma3, Qwen2.5). *Future-Proofing* evaluates how well judges trained on responses from weaker, older generators (green: Gemma2, Qwen2) assess responses from stronger, newer generators (yellow: Gemma3, Qwen2.5). *Backward-Compatibility* examines the reverse direction. *Question Generalization* measures performance on in-distribution questions and corresponding responses that were both not included (dashed Q and R) in the training.

reliably evaluate responses from older models, i.e., is the trained judge *backward-compatible*? Third, fixing the response generating models, how reliably can judges assess questions that differ from those seen during training, i.e., do they *generalize to new questions*? We examine these questions, as illustrated in Figure 1, through the lens of generalization and robustness, aiming to understand the *shelf life* of trained judges.

In this work, we propose a *dual-distribution* formulation of automatic evaluation. Concretely, we model the judge’s input as comprising elements drawn from two distinct distributions: the *question distribution*, which characterizes the input questions to be evaluated, and the *response distribution*, which characterizes the responses to be judged. We study the performance of trained judges when responses are drawn from relatively weak and strong generators, henceforth referred to as weak responses and strong responses. We also examine how well trained judges evaluate questions that are (1) seen during training but paired with new responses, and (2) completely unseen during training. By focusing on weak and strong generators and novel questions, we gain insights into the shelf life of trained judge models through four practical questions:

- **Future-proofing.** Given a judge trained on responses from older (“weak”) models, how accurately can it evaluate responses from newer (“strong”) models? If the goal is to evaluate strong responses, how much benefit do practitioners gain by training on strong responses rather than weak ones?
- **Backward-compatibility.** Given a judge trained on responses from newer (“strong”) models, can it reliably assess responses from older (“weak”) models? If the goal is to evaluate weak responses, does training a judge on strong responses provide any benefit?
- **Continual learning.** Compared to judges trained only on weak or strong responses, how well does a continually trained judge adapt to distribution shifts between the two response distributions?
- **Question generalization.** Does judge performance depend on whether a question was seen during training? Even for seen questions, can a judge reliably assess new responses?

Using two verifiable datasets (DeepScaleR and MMLU-Pro), we set up a suite of controlled experiments to analyze the shelf life of judge models, training across three backbone models of varying sizes and capabilities and three popular judge-training recipes. Our findings reveal that fine-tuned judges struggle to evaluate newer, stronger model responses and therefore require training with up-to-date response distribution. Once trained on newer, stronger responses, judges exhibit some degree of *backward-compatibility*. Continual training provides a more balanced adaptation to shifts between older and newer response distributions than training solely on stronger or solely on weaker responses. Finally, we find that fine-tuned judges struggle to generalize to new questions. In all, our findings inform the development and deployment of finetuned judge models.

2 BACKGROUND AND RELATED WORK

2.1 AN OVERVIEW OF FINETUNED JUDGES.

LLM-based judges are automatic evaluators that evaluate LLM outputs given some evaluation criteria. While many judges accommodate different evaluation tasks, such as single rating (“Rate this response on a scale of 1-5”) (Hu et al., 2024) or classification (“Is this response appropriate?”) (Vu et al., 2024), the dominant evaluation paradigm LLM-based judges are deployed with is *pairwise evaluation*. Here, a judge is given a question and two candidate responses, and tasked with selecting the “better” response according to some criteria. Formally, the judge performs the transformation

$$(Q, R_1, R_2) \rightarrow (C, \hat{V}), \quad C \text{ optional,} \quad (1)$$

where Q is the question, R_1, R_2 are the two candidate responses, C is an optional chain-of-thought explanation, and \hat{V} is the verdict of which response is better. We denote $x = (Q, R_1, R_2) \sim \mathcal{X}$ to be the judge input and $y = (C, \hat{V})$ to be the judge output. Pairwise judges are typically evaluated using accuracy or consistent accuracy, the latter accounting for response-order bias as detailed in Appendix D. Due to its popularity and practicality, pairwise evaluation forms the focus of our study.

Past work in judge finetuning uses supervised finetuning (SFT) (Li et al., 2024b; Kim et al., 2024b; Zhu et al., 2025), preference optimization methods, like direct preference optimization (DPO) (Wang et al., 2024a; Ye et al., 2024; Saad-Falcon et al., 2024), or more recently, reinforcement learning with verifiable rewards (RLVR) (Chen et al., 2025a;c; Whitehouse et al., 2025; Xu et al., 2025b). Starting from a dataset of $(x, V^*(x))$ pairs, where V^* denotes the ground-truth verdict/label, each approach constructs training samples differently: SFT and DPO approaches sample judge outputs from a *teacher model*, then use $V^*(x)$ to categorize judge outputs as either correct outputs y^+ or incorrect outputs y^- . Then, the judge is trained on (x, y^+) pairs for SFT and (x, y^+, y^-) triplets for DPO. On the other hand, RL approaches directly make use of the $(x, V^*(x))$ pairs, omitting the need for teacher model explanations.

2.2 RELATED WORK

Distribution Shifts and Generalization. Distribution shift, the mismatch between training and evaluation data, is a long-standing challenge in machine learning (Hendrycks & Dietterich, 2019; Koh et al., 2021). Early computer vision studies demonstrated significant accuracy drops under minor perturbations (Hendrycks & Dietterich, 2019), and WILDS extended this to real-world domain shifts (Koh et al., 2021). In LLMs, the problem is amplified as both data and model capabilities evolve over time (Shi et al., 2025). Recent frameworks explore how models transfer across distributions. *Easy-to-hard generalization* examines whether training on easier tasks transfers to harder ones (Sun et al., 2024), which relates to scalable oversight where only easy tasks can be reliably supervised (Amodei et al., 2016); task-difficulty can be estimated using either model or data-centric measures (Swayamdipta et al., 2020). *Weak-to-strong generalization* investigates improving strong models using supervision derived from weaker ones (Burns et al., 2023). Our setting complements these efforts by focusing on distribution shifts that arise from an *evolving population of generators* and by evaluating how judge models adapt to both weak-to-strong and strong-to-weak shifts.

Analyzing LLM-as-Judge. Prior work analyzes systematic judge biases such as positional (Wang et al., 2023; Li et al., 2024b), length (Zeng et al., 2024; Park et al., 2024b), and self-preference (Panickssery et al., 2024; Chen et al., 2025b). Prompt design, instructions, and scoring format strongly affect reliability (Li et al., 2024a), with pairwise judgments often reducing noise and aligning better with human preferences than pointwise scores (Tripathi et al., 2025; Jeong et al., 2024). Other works have emphasized the importance of carefully selecting reference answers (Krumdick et al., 2025), linking to how generator capabilities influence the judge’s inputs (Tan et al., 2025). While most studies consider *static* judges on *fixed* datasets, we instead analyze judges in a dynamic setting where generators change over time, introducing response-distribution shifts that motivate our metrics for *future-proofing*, *backward-compatibility*, and *question generalization*.

162 3 AUTOMATIC EVALUATION AS A DUAL-DISTRIBUTION PROBLEM
163164 We propose a novel formulation of the automatic evaluation problem in terms of two distributions:
165 the question distribution and the response distribution. Concretely, let \mathcal{Q} denote the distribution
166 of questions Q , and let \mathcal{R} denote the distribution of responses R . For pairwise judges, the input
167 distribution \mathcal{X} therefore takes the form

168
$$\mathcal{X} = \mathcal{Q} \times \mathcal{R} \times \mathcal{R} \quad (2)$$

169

170 The question distribution is defined by characteristics such as semantic content (e.g., domains like
171 medical, legal, finance, scientific, or math) and question difficulty (e.g., difficulty can be defined by
172 pedagogical levels, such as high school vs. olympiad-level math problems). For example, we can
173 consider all questions in GSM8K (Cobbe et al., 2021) to come from the same question distribution,
174 as they are all arguably of similar difficulty and semantic content. The response distribution defines
175 the characteristics of the model responses being evaluated, such as style, capability-specific content,
176 or model-family-specific quirks. We denote the training and test input distributions to be

177
$$\mathcal{X}^{train} = \mathcal{Q}^{train} \times \mathcal{R}^{train} \times \mathcal{R}^{train} \quad \text{and} \quad \mathcal{X}^{test} = \mathcal{Q}^{test} \times \mathcal{R}^{test} \times \mathcal{R}^{test} \quad (3)$$

178

179 respectively. Notably, the two responses come from the same generating model, as described in the
180 data construction details in Section 4.2. Separating the *question distribution* \mathcal{Q} from the *response*
181 *distribution* \mathcal{R} reflects two real-world sources of shift: (1) the emergence of more capable generators
182 (an evolving \mathcal{R}), and (2) the introduction of new questions (an evolving \mathcal{Q}). This decomposition
183 allows us to isolate and quantify the impact of each factor on judge performance. In Section 5,
184 we instantiate this framework using the weak response distribution \mathcal{R}_{weak} and the strong response
185 distribution \mathcal{R}_{strong} to simulate a model-development timeline (older, weaker vs. newer, stronger
186 responses and LLMs), along with question splits Q drawn from \mathcal{Q} that are either seen or unseen during
187 training. Informally, weak (strong) responses are drawn from LLMs with relatively low (high)
188 accuracy on questions Q ; we precisely describe generator strength in Section 4. This instantiation
189 enables us to investigate the four practical questions mentioned in Section 1 regarding the *shelf life*
190 of judges. The specifics of how dual-distribution formalization supports our analysis are detailed
in Section 5, with a concise connection provided in Appendix E.191 4 EXPERIMENTAL SETUP
192

193 4.1 GAUGING GENERATOR STRENGTH.

194 We ground our study in two datasets with verifiable solutions: DeepScaleR (Luo et al., 2025)
195 and MMLU-Pro (Wang et al., 2024c). DeepScaleR contains 40K Olympiad-style, reasoning-
196 intensive math problems with gold answers. MMLU-Pro, by contrast, provides verifiable MCQ-
197 style, knowledge-intensive questions spanning 14 diverse domains, including STEM, humanities,
198 social sciences, law, business, psychology, and philosophy, enabling us to study judge shelf-life
199 across a broad range of domains. For generators, we utilise a diverse set of popular instruction-
200 tuned models, which are listed in Table 1. For each generator, we sample 20 responses per question
201 and measure its strength using Pass@1. Pass@1 captures the probability that a uniformly sampled
202 attempt is correct and yields two clearly separated clusters, as shown in Figures 7 and 8 in Ap-
203 pendix B, where recent or larger models achieve substantially higher scores than smaller or old.
204 Based on this distinguishable performance difference, we cluster low- and high-performing gen-
205 erators into weak (Gemma-2-9B, Qwen-2-7B, Llama-3.1-8B, Minstral-8B) and strong (Gemma-3-
206 12B, Qwen-2.5-7B, Qwen-2.5-32B, Llama-3.3-70B, Mistral-Small-24B) groups, respectively, and
207 use these clusters to define our response-distribution shifts. Further details on generator selection
208 and strength estimation are provided in Appendix B.210 4.2 TRAINING SETUP.
211212 **Dataset Construction.** To create the training and evaluation splits, we first construct pairwise
213 input samples for the judge, following prior work (Tan et al., 2025; Wang et al., 2024b). For each
214 question, we sample multiple responses from each generator, and each response is then labeled as
215 “correct” or “incorrect” according to the ground-truth answer A^* . We then form response pairs,
where each pair consists of one correct response and one incorrect response, resulting in a pairwise

(a) FutureProof.

(b) RefreshAdvantage.

Figure 2: *Future-proofing of DeepScaler-Trained Judges.* (a) Future-proofing measured by FutureProof; negative values show degraded performance on stronger responses. All models and recipes performance degrade, indicating poor evaluation of newer, stronger responses. (b) Benefits of re-training on strong responses, measured by RefreshAdvantage. Re-training consistently improves performance, with the largest gains under DPO.

sample with an objectively correct answer. Importantly, responses in a pair are drawn from a single generator only. Based on the generator strengths defined above, we construct datasets of aggregated pairwise samples consisting exclusively of either weak or strong responses, which we refer to as our *weak dataset* and *strong dataset*, respectively.

Judge Data Distillation & Training Objectives. We train judges using three commonly adopted recipes: supervised fine-tuning (SFT) (Li et al., 2024b; Kim et al., 2024a; Vu et al., 2024), direct preference optimization (DPO) (Hu et al., 2024; Wang et al., 2024b), and a combined SFT and DPO objective (Wang et al., 2024a; Ye et al., 2024; Saad-Falcon et al., 2024). As these recipes require supervision, specifically, the CoT explanation C (Sec. 2), we adopt the common *teacher model* convention (Li et al., 2024b; Wang et al., 2024a). Based on the ground-truth verdict V^* , we categorize responses as correct (positive) samples y^+ or incorrect (negative) samples y^- . Positive samples are then used for SFT, whereas positive-negative pairs are used for DPO-based recipes.

Training and Evaluation Splits. To analyze the four practical questions described in Section 1 using the dual-distribution framework from Section 3, we split the weak and strong datasets into training and test sets. For testing, we construct two distinct splits: an *unseen-questions* split and a *seen-questions* split. The unseen-questions split contains questions not present during training, while seen-questions split reuses training questions but samples *new* responses, with pairs constructed following the same process as described above. Unless otherwise specified, we use the unseen-questions split for evaluation. We choose three models to train: Llama-3.1-8B, Minstral-8B, and Mistral-24B, covering a range of model sizes and intrinsic strengths.

We provide more details on different aspects of the training setup in Appendix C.

5 EXPERIMENTAL RESULTS

In this section, we present our analysis setup and findings on future-proofing, backward-compatibility, and question-generalization of judge models. Our analysis builds on the dual-distribution framework introduced in Section 3, where judge inputs are factorized into a question distribution Q and a response distribution \mathcal{R} . We instantiate the response distribution at two levels of generator strength: $\mathcal{R}_{\text{weak}}$ (older, less capable models) and $\mathcal{R}_{\text{strong}}$ (newer, more capable models). The question distribution Q remains fixed but varies in whether a question was seen or unseen during training. In this way, our setup simulates model development timelines. We measure judge performance using consistent accuracy, as defined in Appendix D. Raw consistent accuracy scores are reported in Table 4 of Appendix D, and serve as the foundation for the results below.

Notation. For clarity, we denote the consistent accuracy of a judge J_t trained on response distribution t as $\text{Acc}_e(J_t)$, where $t \in \{\text{weak}, \text{strong}\}$. The subscript e indicates the evaluation distribution,

(a) BackCompatibility.

(b) CompatibilityShift.

Figure 3: *Backward-Compatibility of DeepScaler-Trained Judges*. (a) BackCompatibility of judges trained on strong responses when evaluating older responses; positive values indicate improved performance relative to older-judge baselines. Judges trained on newer responses show good BackCompatibility, with minimal drops—or even absolute gains. (b) Despite strong absolute performance, newer judges still face a distribution shift, reflected by CompatibilityShift, with performance drops relative to evaluating strong responses. (c) Compared with future-proofing metrics in Figure 2, backward-compatibility metrics are smaller, indicating that strong-response-trained judges are more backward-compatible than weak-response-trained judges are future-proof.

with $e \in \{\text{weak, strong}\}$. Thus, $\text{Acc}_e(J_t)$ ties back to our dual-distribution formalism: it measures the accuracy of a judge trained on distribution t when evaluated on responses from distribution e .

5.1 HOW FUTURE-PROOF ARE JUDGE MODELS?

Experimental Setup. To study *future-proofing* in our simulated model development timeline, we design the following setup: weak generators serve as proxies for existing LLMs, and judges are trained on their responses. Strong generators represent newly released LLMs with greater capabilities. By future-proofing, we refer to how well weak-response-trained judges can evaluate responses from newer, stronger LLMs. Specifically, we quantify future-proofing using the following metrics:

FutureProof is defined as the difference in the performance of a weak-response-trained judge between the weak and strong evaluation sets:

$$\text{FutureProof} = \text{Acc}_{\text{strong}}(J_{\text{weak}}) - \text{Acc}_{\text{weak}}(J_{\text{weak}}). \quad (4)$$

This measures the change in performance when the evaluation distribution shifts from $\mathcal{R}_{\text{weak}}^{\text{test}}$ to $\mathcal{R}_{\text{strong}}^{\text{test}}$, i.e., a *weak-to-strong* response distribution shift. A positive value indicates relatively better performance on strong responses, while a negative value indicates degradation; thus, higher values correspond to more future-proof judges.

RefreshAdvantage is defined as the gain from re-training judges with strong responses:

$$\text{RefreshAdvantage} = \text{Acc}_{\text{strong}}(J_{\text{strong}}) - \text{Acc}_{\text{strong}}(J_{\text{weak}}). \quad (5)$$

This can be viewed as the *data advantage* from changing the training response distribution from $\mathcal{R}_{\text{weak}}^{\text{train}}$ to $\mathcal{R}_{\text{strong}}^{\text{train}}$ when evaluating on $\mathcal{R}_{\text{strong}}^{\text{test}}$. Higher values indicate greater benefit from re-training judges with the latest and stronger responses.

FutureProof Findings: For all models and training recipes, we plot the FutureProof values on DeepScaler in Figure 2a. Across all settings, we do not observe any instance where judges generalize to new or stronger responses, with all FutureProof values being negative. Interestingly, no discernible trend emerges across training recipes or model families. Generally, we find that SFT leads to higher degradations in smaller models, but a smaller degradation in the large judge. In all, our results show that current judge training approaches do not produce judges capable of reliably generalizing to new, more capable model responses. Beyond lack of generalization, current judge recipes do not exhibit consistent trends across models or scales. **These findings align with those on MMLU-Pro, which we discuss in more detail in Appendix F.1.** In the absence of recipe-specific or model-specific trends, we recommend evaluating FutureProof on a model-by-model basis.

Figure 4: Changes in future-proofing metrics when replacing a weak-response-trained judge (solid) with a continually trained judge (dashed). We observe a decrease in RefreshAdvantage and an increase in FutureProof, with values approaching zero for a couple of models. This suggests that continual training enables judges to evaluate strong responses more effectively than weak-trained judges, as well as strong-trained judges, and adapts better to the weak-to-strong response shift.

Figure 5: Changes in backward-compatibility metrics when replacing a strong-response-trained judge (solid) with a continually-trained judge (dashed). We see an increase in BackCompat for a couple of models, suggesting that continual training can help models better evaluate weak responses than purely strong-trained judges. We also observe an increase in CompatShift, showing that continually trained judges adapt better to the strong-to-weak response shift.

RefreshAdvantage Findings. Our results on DeepScaleR, presented in Figure 2b, indicate that re-training with up-to-date responses consistently leads to performance gains. In particular, across all training recipes and **backbone** models, we observe positive RefreshAdvantage values. Training recipes also follow a clear trend: retraining with SFT yields minimal but positive gains, whereas DPO yields the largest improvements, providing up to 7.6 absolute percentage points for larger models. The SFT+DPO loss provides additional benefit over DPO alone for couple of models. We further observe that as judge model size increases, updating training data has a larger impact for DPO-based approaches. For example, with DPO, Mistral-24B exhibits an absolute gain of 7.6 percentage points compared to its 8B counterpart, Mistral-8B, which improves by 4.3 points. **These trends are consistent with corresponding findings on MMLU-Pro, discussed further in Appendix F.1.** Overall, we conclude that evaluating the most capable models requires training judges on their outputs; relying on stale training data leaves substantial performance gains unrealized.

5.2 HOW BACKWARD-COMPATIBLE ARE JUDGE MODELS?

Experimental setup. Now, we extend our setup for *future-proofing* in Section 5.1 to study *backward-compatibility* in a simulated model development timeline. A judge trained on strong or newer generator responses represents the current judge, which is adept at evaluating new responses, while weak generators represent older LLMs with lower capabilities. By *backward-compatibility*, we refer to how well strong-response-trained judges can evaluate the responses of older, weaker generators. Specifically, we quantify backward-compatibility using the following metrics:

BackCompatibility measures the performance gap when evaluating older, weaker responses with the refreshed strong-response-trained judge instead of the weak-response-trained judge:

$$\text{BackCompatibility} = \text{Acc}_{\text{weak}}(J_{\text{strong}}) - \text{Acc}_{\text{weak}}(J_{\text{weak}}). \quad (6)$$

This setting is particularly important for established evaluation pipelines: if an old judge is replaced by a new one while the task remains the same, how much does performance differ? We view this as the *data disadvantage* from changing training data from $\mathcal{R}_{\text{weak}}^{\text{train}}$ to $\mathcal{R}_{\text{strong}}^{\text{train}}$ when evaluating on $\mathcal{R}_{\text{weak}}^{\text{test}}$. A positive **BackCompatibility** indicates that the strong-trained judge outperforms the weak-trained judge on weak responses (good **backward-compatibility**), while a negative value reflects performance degradation (poor **backward-compatibility**).

CompatibilityShift quantifies the weak-to-strong distribution shift when evaluating older, weaker responses with a strong-response-trained, refreshed judge. As noted in the previous section, the reverse shift (strong-to-weak) can strongly affect judge performance. Here, we measure how the out-of-distribution nature of **backward-compatibility** impacts the newly trained judge:

$$\text{CompatibilityShift} = \text{Acc}_{\text{weak}}(J_{\text{strong}}) - \text{Acc}_{\text{strong}}(J_{\text{strong}}). \quad (7)$$

This captures the response-distribution shift opposite to **FutureProof**, i.e., from $\mathcal{R}_{\text{strong}}^{\text{test}}$ to $\mathcal{R}_{\text{weak}}^{\text{test}}$ or *strong-to-weak*. It measures how far a strong-trained judge falls below its potential under in-distribution evaluation. A positive value indicates better relative performance on weak responses, while a negative value indicates degradation.

BackCompatibility Findings. In Figure 3a, we visualize the **backward compatibility** of judge models trained on strong responses for the DeepScaleR dataset. When evaluating on weak responses, there is little drop in absolute performance between judges trained on strong responses and those trained on in-distribution weak responses. While methods involving SFT consistently cause small performance drops, our results show that DPO training can enable newly trained judges to *outperform* weak-judge models. The drop due to incompatibility is smaller than the advantage gained when moving from weak to strong responses, as noted in the **RefreshAdvantage** findings. This indicates that judges trained on newer responses are indeed **backward-compatible**: they closely mimic the performance of weak-trained judges, even in out-of-distribution settings. Likewise on **MMLU-Pro**, **strongly trained judges perform on par with or better than weak-trained judges when evaluating weak responses, as discussed in Appendix F.2**. Thus, combined with our findings in Section 5.1, we conclude that re-training with updated responses is universally beneficial: such refreshed judges are not only much better at evaluating new model responses but can also serve as drop-in replacements for their older counterparts with minimal loss in performance.

CompatibilityShift Findings. As shown above, judges trained on strong responses roughly match the performance of those trained on weak responses when evaluating older responses. Despite strong absolute performance, such newer judges are evaluating under a *strong-to-weak* distribution shift; Figure 3b plots the drop in performance due to this shift on DeepScaleR dataset. Here, we observe that across all judges and recipes, judges still experience degradation due to the out-of-distribution nature of evaluation, with the lone exception being SFT-trained Llama3.1-8B. Surprisingly, here, the largest model, finetuned from Mistral-24B, experiences the largest absolute drops across all training recipes. These findings highlight that, while stronger trained judges can serve as appropriate drop-in replacements for weaker judges, distribution shift causes them to underperform relative to their potential. We see the same pattern on **MMLU-Pro**, where **strong-trained judges also degrade under response-distribution shift, as discussed in Appendix F.2**. However, on DeepScaleR, compared to the degradation from the weak-to-strong response-distribution shift (as measured by **FutureProof** in Section 5.1), these degradations are relatively smaller. This suggests that the weak-to-strong evaluation response-distribution shift is a harder setting than strong-to-weak, again highlighting the importance of retraining judges on new model responses.

5.3 CAN CONTINUAL TRAINING IMPROVE FUTURE-PROOFING AND BACKWARD-COMPATIBILITY OF JUDGE MODELS?

Experimental setup. Sections 5.1 and 5.2 show that training a judge *from scratch* on responses from newer generators is advantageous in evaluations. An alternative is to *continually update* a judge originally trained on older responses by incrementally fine-tuning it on newer, stronger responses. We simulate this continual-learning paradigm by further training J_{weak} on responses from stronger generators, denoting the resulting model as $J_{\text{weak} \rightarrow \text{strong}}$ (details in Appendix C). **All experiments in this section are restricted to training judges on DeepScaler with DPO due to compute constraints.**

To assess the effect of continual training, we evaluate $J_{\text{weak} \rightarrow \text{strong}}$ on both future-proofing and backward-compatibility metrics, comparing its performance against that of the original weakly

Figure 6: *Question Generalization of DeepScaler-Trained Judges.* Generalization of judges trained on weak vs. strong responses to seen and unseen questions. Judges typically fail to generalize to unseen questions, showing large performance drops relative to evaluating unseen responses on seen questions.

trained judge and the strongly trained judge, respectively. Specifically, we compare FutureProof and RefreshAdvantage when replacing J_{weak} with $J_{weak \rightarrow strong}$ in Equations (4)–(5), as shown in Figure 4. We also compare CompatibilityShift and BackCompat when replacing J_{strong} with $J_{weak \rightarrow strong}$ in Equations (6)–(7), as shown in Figure 5. Together, these comparisons reveal how continual training helps weak judges adapt to future distribution shifts while retaining compatibility with weaker responses, relative to training from scratch.

Changes in Future-Proofing. Figure 4 shows that continual training consistently improves future-proofing. FutureProof scores increase across all three models, while RefreshAdvantage decreases, approaching zero for Minstral-8B and Mistral-24B. The reduction in RefreshAdvantage indicates that the benefit of retraining a strong model from scratch, relative to continual training, largely disappears when evaluating stronger responses. At the same time, the higher FutureProof scores of $J_{weak \rightarrow strong}$ demonstrate that continual training enables better adaptation to the weak-to-strong distribution shift than simply retaining the weak model.

Changes in Backward-Compatibility. Figure 5 shows mixed but informative results on backward-compatibility. BackCompatibility scores increase for Mistral-24B and Llama-3.1-8B but decrease for Minstral-8B. Higher BackCompatibility indicates that a continually trained judge remains closer to the weakly trained judge when evaluating weak responses, compared to a model trained solely on strong responses. We also observe a notable increase in CompatibilityShift, highlighting that continual training improves adaptation to older, weaker responses relative to purely strong-trained models. Together, these results suggest that continual training can better preserve backward-compatibility in several settings while also enhancing adaptability to distribution shifts.

5.4 HOW DO JUDGES GENERALIZE TO UNSEEN QUESTIONS AND RESPONSES?

Experimental setup. As LLMs advance, both responses and questions evolve (e.g., AIME24 vs. AIME25). We therefore examine how judges perform on previously unseen questions by sampling from \mathcal{Q} in our dual-distribution framework. To quantify the benefits of question exposure during judge training, we define two evaluation splits. In the first, we select a subset of training questions and sample new responses for them, which we call the *seen-questions, unseen-responses* split. In the second, we draw questions from \mathcal{Q}^{train} that were excluded from training and pair them with new responses, defining the *unseen-questions, unseen-responses* split. Comparing judge performance across these splits reveals the performance gap due to question generalization.

$$\text{QuestionGen}_{weak} = \text{Acc}_{weak,unseen}(J_{weak}) - \text{Acc}_{weak,seen}(J_{weak}) \quad (8)$$

$$\text{QuestionGen}_{strong} = \text{Acc}_{strong,unseen}(J_{strong}) - \text{Acc}_{strong,seen}(J_{strong}). \quad (9)$$

These metrics capture how well judges generalize across *questions*: responses are drawn from the same generator, with only the question split (seen vs. unseen during training) varied. A positive value of QuestionGen indicates better performance on unseen questions, while a negative value indicates failure to generalize to unseen questions.

QuestionGen Findings. As shown in Figure 6, current judge models do not generalize well to unseen questions, with nearly all judges exhibiting performance drops compared to evaluating on

486 seen questions with unseen responses. Surprisingly, we find that SFT enables the best generalization,
 487 with SFT-trained judges showing the smallest absolute drops in most cases. Mistral-24B, however,
 488 exhibits the largest drops within each training recipe, indicating poorer generalization compared
 489 to smaller models. These trends are consistent with the corresponding findings on MMLU-Pro,
 490 discussed in detail in Appendix F.3. Overall, our experiments reveal that exposing judges to the
 491 questions they are likely to evaluate can lead to significant performance gains.

492 6 CONCLUSION

493 We present a dual-distribution framework for automatic evaluation and analyze four key questions
 494 surrounding finetuned LLM-as-judge models, a crucial component of the LLM development cycle.
 495 First, we study future-proofing and show that judges trained on older responses struggle to
 496 evaluate outputs from newer, stronger LLMs, but re-training on newer responses yields substantial
 497 gains. Second, we examine **backward-compatibility** and find that judges trained on newer responses
 498 incur only minor drops, or even improvements, when evaluating older responses. Third, we demon-
 499 strate that continual learning provides a more balanced adaptation to both older and newer response
 500 distributions compared to training solely on stronger or weaker responses. Finally, we investigate
 501 question generalization and find that judges experience large drops in performance on questions un-
 502 seen during training. Overall, our work highlights critical challenges and actionable strategies for
 503 developing robust, future-proof, and backward-compatible judge models.

504 REFERENCES

505 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Francis Christiano, John Schulman, and Dan-
 506 delion Mané. Concrete problems in ai safety. *ArXiv*, abs/1606.06565, 2016. URL <https://api.semanticscholar.org/CorpusID:10242377>.

507 Axolotl maintainers and contributors. Axolotl: Post-training for ai models, 2023. URL <https://github.com/axolotl-ai-cloud/axolotl>.

508 Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschen-
 509 brenner, Yining Chen, Adrien Ecoffet, Manas R. Joglekar, Jan Leike, Ilya Sutskever, Jeff Wu,
 510 and OpenAI. Weak-to-strong generalization: Eliciting strong capabilities with weak super-
 511 vision. *ArXiv*, abs/2312.09390, 2023. URL <https://api.semanticscholar.org/CorpusID:266312608>.

512 Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
 513 Judgelrm: Large reasoning models as a judge. *ArXiv*, abs/2504.00050, 2025a. URL <https://api.semanticscholar.org/CorpusID:277467872>.

514 Wei-Lin Chen, Zhepei Wei, Xinyu Zhu, Shi Feng, and Yu Meng. Do llm evaluators prefer themselves
 515 for a reason? *arXiv preprint arXiv:2504.03846*, 2025b.

516 Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
 517 Denghui Zhang, Tong Zhang, Hanghang Tong, and Heng Ji. Rm-r1: Reward modeling as rea-
 518 soning. *ArXiv*, abs/2505.02387, 2025c. URL <https://api.semanticscholar.org/CorpusID:278327900>.

519 Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
 520 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
 521 Training verifiers to solve math word problems. *ArXiv*, abs/2110.14168, 2021. URL <https://api.semanticscholar.org/CorpusID:239998651>.

522 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 523 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony S.
 524 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
 525 Arun Rao, Aston Zhang, Aur’elien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
 526 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
 527 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
 528 Cris tian Cantón Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,
 529

540 Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
 541 Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova, Emily Dinan,
 542 Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle Lee, Geor-
 543 gia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong Pang, Guillem Cucurell, Hailey
 544 Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
 545 Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
 546 Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee,
 547 Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe
 548 Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden
 549 Alwala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591 neth Heafield, Kevin R. Stone, Khalid
 550 El-Arini, Krithika Iyer, Kshitiz Malik, Kuen ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
 551 rrens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,
 552 Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pa-
 553 supuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya
 554 Pavlova, Melissa Hall Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Has-
 555 san, Naman Goyal, Narjes Torabi, Niko lay Bashlykov, Nikolay Bogoychev, Niladri S. Chatterji,
 556 Olivier Duchenne, Onur cCelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasić,
 557 Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
 558 Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
 559 Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron
 560 nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
 561 Sa hana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shao-
 562 liang Nie, Sharan Narang, Sharath Chandra Raparth, Sheng Shen, Shengye Wan, Shruti Bhos-
 563 ale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
 564 Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
 565 Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
 566 Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
 567 Vir ginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit ney
 568 Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
 569 Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yiqian Wen, Yiwen Song, Yuchen
 570 Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zhengxu Yan, Zhengxing Chen, Zoe
 571 Papakipos, Aaditya K. Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adi
 572 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
 573 Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
 574 Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
 575 Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
 576 Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Ben-
 577 jamin Leonhardi, Po-Yao (Bernie) Huang, Beth Loyd, Beto de Paola, Bhargavi Paranjape, Bing
 578 Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian
 579 Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu
 580 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichten-
 581 hofer, Damon Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li, Danny Wyatt, David Adkins,
 582 David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang
 583 Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora
 584 Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 585 thers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm'an,
 586 Frank J. Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Geor-
 587 gia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory G. Sizov, Guangyi Zhang, Guna
 588 Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Han Zha, Haroun Habeeb,
 589 Harrison Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Igor Molybog, Igor Tufanov,
 590 Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-
 591 Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
 592 Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
 593 McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kaixing(Kai) Wu, U KamHou, Karan
 594 Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veer-
 595 araghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle
 596 Huang, Lailin Chen, Lakshya Garg, A Lavender, Leandro Silva, Lee Bell, Lei Zhang, Liang-
 597 peng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani,
 598 Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthias Lennie, Matthias

594 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer,
 595 Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
 596 Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Mun
 597 ish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Sing-
 598 hal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Nor-
 599 man Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth
 600 Parekh, Paul Saab, Pavan Balaji, Pe dro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollár,
 601 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 602 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
 603 Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh
 604 Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan,
 605 Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Sheng-
 606 hao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 607 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 608 field, Sudarshan Govindaprasad, Sumit Kumar Gupta, Sung-Bae Cho, Sunny Virk, Suraj Sub-
 609 ramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 610 Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 611 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 612 mar, Vishal Mangla, Vlad Ionescu, Vlad Andrei Poenaru, Vlad T. Mihailescu, Vladimir Ivanov,
 613 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xia Tang, Xiaofang
 614 Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu,
 615 Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu Wang, Yuchen
 616 Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
 617 Yang, and Zhiwei Zhao. The llama 3 herd of models. *ArXiv*, abs/2407.21783, 2024. URL
<https://api.semanticscholar.org/CorpusID:271571434>.
 618 Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
 619 Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for
 620 methods that learn from human feedback. *ArXiv*, abs/2305.14387, 2023. URL <https://arxiv.org/pdf/2305.14387.pdf>.
 621
 622 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 623 ruptions and perturbations. In *International Conference on Learning Representations*, 2019. URL
<https://openreview.net/forum?id=HJz6tiCqYm>.
 624
 625 Xinyu Hu, Li Lin, Mingqi Gao, Xunjian Yin, and Xiaojun Wan. Themis: A reference-free nlg
 626 evaluation language model with flexibility and interpretability. *arXiv preprint arXiv:2406.18365*,
 627 2024.
 628
 629 Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
 630 Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing cli-
 631 mate: Enhancing lm adaptation with tulu 2. *arXiv preprint arXiv:2311.10702*, 2023.
 632
 633 Hawon Jeong, chaeHun Park, Jimin Hong, and Jaegul Choo. The comparative trap: Pairwise
 634 comparisons amplifies biased preferences of lm evaluators. 2024. URL <https://api.semanticscholar.org/CorpusID:270562681>.
 635
 636 Gemma Team Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Mer-
 637 hej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ram'e, Morgane Rivière, Louis Rouil-
 638 lard, Thomas Mesnard, Geoffrey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec,
 639 Michelle Casbon, Etienne Pot, Ivo Penchev, Gael Liu, Francesco Visin, Kathleen Kenealy, Lucas
 640 Beyer, Xiaohai Zhai, Anton Tsitsulin, Róbert Istvan Busa-Fekete, Alex Feng, Noveen Sachdeva,
 641 Benjamin Coleman, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal,
 642 Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal,
 643 Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, An-
 644 dreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesh Sharma, Adi Mayrav Gilady, Adrian
 645 Goedeckemeyer, Alaa Saade, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit
 646 Vadi, Andr'as Gyorgy, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine
 647 Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Boxi Wu, Bobak Shahri-
 648 ari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, Cj Carey,
 649 Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas,

648 Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Er-
 649 win Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi
 650 Hashemi, Hanna Klimczak-Pluci’nska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hus-
 651 sein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan,
 652 Joe Stanton, J. Michael Wieting, Jonathan Lai, Jordi Orbay, Joe Fernandez, Joshua Newlan,
 653 Junsong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff,
 654 Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Wat-
 655 son, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan
 656 Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Oskar Bunyan, Pankil Botarda, Paul Caron,
 657 Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Pi-
 658 otr Stańczyk, Pouya Dehghani Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Ardesir
 659 Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Gir-
 660 gin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram
 661 Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra,
 662 Utku Evcı, Vedant Misra, Vincent Roseberry, Vladimir Feinberg, Vlad Kolesnikov, Woohyun
 663 Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor
 664 Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Jessica Lo, Erica Moreira, Luiz Gustavo Mar-
 665 tins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab S. Mirrokni, Evan
 666 Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley,
 667 Slav Petrov, Noah Fiedel, Noam M. Shazeer, Oriol Vinyals, Jeffrey Dean, Demis Hassabis, Koray
 668 Kavukcuoglu, Clément Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry
 669 Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin,
 670 Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report. *ArXiv*, abs/2503.19786,
 2025. URL <https://api.semanticscholar.org/CorpusID:277313563>.

671 Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
 672 Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing
 673 fine-grained evaluation capability in language models. In *The Twelfth International Confer-
 674 ence on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=8euJaTveKw>.

675 Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
 676 Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
 677 model specialized in evaluating other language models. *ArXiv*, abs/2405.01535, 2024b. URL
 678 <https://api.semanticscholar.org/CorpusID:269502688>.

679 Seungone Kim, Ian Wu, Jinu Lee, Xiang Yue, Seongyun Lee, Mingyeong Moon, Kiril Gashtelovski,
 680 Carolin Lawrence, J. Hockenmaier, Graham Neubig, and S. Welleck. Scaling evaluation-time
 681 compute with reasoning models as process evaluators. *ArXiv*, abs/2503.19877, 2025. URL
 682 <https://api.semanticscholar.org/CorpusID:277313538>.

683 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 684 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
 685 Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure
 686 Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
 687 Wilds: A benchmark of in-the-wild distribution shifts. In Marina Meila and Tong Zhang
 688 (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
 689 *Proceedings of Machine Learning Research*, pp. 5637–5664. PMLR, 18–24 Jul 2021. URL
 690 <https://proceedings.mlr.press/v139/koh21a.html>.

691 Michael Krumdick, Charles Lovering, Varshini Reddy, Seth Ebner, and Chris Tanner. No free labels:
 692 Limitations of llm-as-a-judge without human grounding. *arXiv preprint arXiv:2503.05061*, 2025.

693 Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
 694 Liu. Llms-as-judges: A comprehensive survey on llm-based evaluation methods. *ArXiv*,
 695 abs/2412.05579, 2024a. URL <https://api.semanticscholar.org/CorpusID:274596907>.

696 Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, hai zhao, and Pengfei Liu. Generative judge
 697 for evaluating alignment. In *The Twelfth International Conference on Learning Representations*,
 698 2024b. URL <https://openreview.net/forum?id=gtkFw6sZGS>.

702 Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg eval-
 703 uation using gpt-4 with better human alignment. In *Conference on Empirical Methods in Natural*
 704 *Language Processing*, 2023. URL <https://arxiv.org/pdf/2303.16634.pdf>.

705 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
 706 Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
 707 o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

708 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 709 Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kel-
 710 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 711 and Ryan Lowe. Training language models to follow instructions with human feedback. In
 712 Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neu-
 713 ral Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=TG8KACxEON>

714

715 Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM evaluators recognize and favor their
 716 own generations. In *The Thirty-eighth Annual Conference on Neural Information Processing
 717 Systems*, 2024. URL <https://openreview.net/forum?id=4NJBV6Wp0h>.

718

719 Junsoo Park, Seungyeon Jwa, Meiyi Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias:
 720 Leveraging debiased data for tuning evaluators. *ArXiv*, abs/2407.06551, 2024a. URL <https://arxiv.org/pdf/2407.06551.pdf>.

721

722 Junsoo Park, Seungyeon Jwa, Meiyi Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias: Lever-
 723 aging debiased data for tuning evaluators. *arXiv preprint arXiv:2407.06551*, 2024b.

724

725 Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of op-
 726 tions in multiple-choice questions. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
 727 *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 2006–2017, Mex-
 728 ico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 729 findings-naacl.130. URL [https://aclanthology.org/2024.findings-naacl.](https://aclanthology.org/2024.findings-naacl.130/)
 730 130/.

731

732 Vyas Raina, Adian Liusie, and Mark J. F. Gales. Is llm-as-a-judge robust? investigating universal
 733 adversarial attacks on zero-shot llm assessment. *ArXiv*, abs/2402.14016, 2024. URL <https://api.semanticscholar.org/CorpusID:267770121>.

734

735 Gemma Team Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 736 patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ram'e, Johan Fer-
 737 ret, Peter Liu, Pouya Dehghani Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Ku-
 738 mar, Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stańczyk, Ser-
 739 tan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam
 740 Neyshabur, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
 741 Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, An-
 742 tonia Paterson, Ben Bastian, Bilal Piot, Boxi Wu, Brandon Royal, Charlie Chen, Chintu Ku-
 743 mar, Chris Perry, Christopher A. Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov,
 744 David Weinberger, Dimple Vijaykumar, Dominika Rogozi'nska, D. Herbison, Elisa Bandy, Emma
 745 Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshov, Francesco Visin, Gabriel
 746 Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluci'nska,
 747 Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stan-
 748 way, Jetha Chan, Jin Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez,
 749 Joost R. van Amersfoort, Josh Gordon, Josh Lipschultz, Joshua Newlan, Junsong Ji, Kareem
 750 Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Ki-
 751 ranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, L. Sifre, Lena Heuermann, Leti-
 752 cia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins,
 753 Machel Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth,
 754 Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi,
 755 Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khat-
 wani, Natalie Dao, Nen shad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan,
 Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Peng chong Jin,

756 Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena
 757 Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy,
 758 Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti
 759 Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan,
 760 Tomás Kociský, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari,
 761 Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu,
 762 Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang,
 763 Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell,
 764 D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeffrey Dean, Demis Hassabis,
 765 Koray Kavukcuoglu, Clément Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel,
 766 Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2:
 767 Improving open language models at a practical size. *ArXiv*, abs/2408.00118, 2024. URL
 768 <https://api.semanticscholar.org/CorpusID:270843326>.

769 Jon Saad-Falcon, Rajan Vivek, William Berrios, Nandita Shankar Naik, Matija Franklin, Bertie
 770 Vidgen, Amanpreet Singh, Douwe Kiela, and Shikib Mehri. Lmunit: Fine-grained evaluation
 771 with natural language unit tests. *arXiv preprint arXiv:2412.13091*, 2024.

772 Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang,
 773 Sayna Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive
 774 survey. *ACM Comput. Surv.*, May 2025. ISSN 0360-0300. doi: 10.1145/3735633. URL <https://doi.org/10.1145/3735633>. Just Accepted.

775 Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach,
 776 and Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and
 777 generative verification for llm reasoning. *ArXiv*, abs/2504.01005, 2025. URL <https://api.semanticscholar.org/CorpusID:277467695>.

778 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
 779 Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feed-
 780 back. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in
 781 Neural Information Processing Systems*, volume 33, pp. 3008–3021. Curran Associates, Inc.,
 782 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf.

783 Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
 784 Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In *The Thirty-
 785 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=qwgfh2fTtN>.

786 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
 787 Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets
 788 with training dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
 789 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
 790 (EMNLP)*, pp. 9275–9293, Online, November 2020. Association for Computational Linguistics.
 791 doi: 10.18653/v1/2020.emnlp-main.746. URL <https://aclanthology.org/2020.emnlp-main.746/>.

792 Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Yuan Tang, Alejandro Cuadron, Chenguang
 793 Wang, Raluca Popa, and Ion Stoica. Judgebench: A benchmark for evaluating LLM-based judges.
 794 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=G0dksFayVq>.

795 Mistral Team. Un ministral, des ministraux, a. URL <https://mistral.ai/news/ministraux>.

796 Mistral Team. Mistral small 3, b. URL <https://mistral.ai/news/mistral-small-3>.

797 Tuhina Tripathi, Manya Wadhwa, Greg Durrett, and Scott Niekum. Pairwise or pointwise? evalu-
 798 ating feedback protocols for bias in LLM-based evaluation. In *Second Conference on Language
 799 Modeling*, 2025. URL <https://openreview.net/forum?id=uyX5Vnow3U>.

810 Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung.
 811 Foundational autoraters: Taming large language models for better automatic evaluation. In Yaser
 812 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on*
 813 *Empirical Methods in Natural Language Processing*, pp. 17086–17105, Miami, Florida, USA,
 814 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 815 949. URL <https://aclanthology.org/2024.emnlp-main.949>.

816 Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong, and Shafiq Joty. Direct judgement prefer-
 817 ence optimization. *arXiv preprint arXiv:2409.14664*, 2024a.

818 Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
 819 Zifang Sui. Large language models are not fair evaluators. *ArXiv*, abs/2305.17926, 2023. URL
 820 <https://api.semanticscholar.org/CorpusID:258960339>.

821 Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
 822 Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
 823 uators. *arXiv preprint arXiv:2408.02666*, 2024b.

824 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 825 Ren, Aaran Arulraj, Xuan He, Ziyuan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 826 Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and challenging multi-task
 827 language understanding benchmark. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
 828 quet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*,
 829 volume 37, pp. 95266–95290. Curran Associates, Inc., 2024c. doi: 10.5220/079017-3018.
 830 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafbb99a24-Paper-Datasets_and_Benchmarks_Track.pdf.

831 Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
 832 Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. *arXiv preprint*
 833 *arXiv:2505.10320*, 2025.

834 Austin Xu, Srijan Bansal, Yifei Ming, Semih Yavuz, and Shafiq Joty. Does context matter?
 835 contextualjudgebench for evaluating llm-based judges in contextual settings. *arXiv preprint*
 836 *arXiv:2503.15620*, 2025a.

837 Austin Xu, Yilun Zhou, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. J4r: Learning to judge
 838 with equivalent initial state group relative policy optimization. *ArXiv*, abs/2505.13346, 2025b.
 839 URL <https://api.semanticscholar.org/CorpusID:278768650>.

840 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 841 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
 842 Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou,
 843 Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin Yang,
 844 Mei Li, Min Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
 845 Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xi-
 846 aodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren,
 847 Yang Fan, Yang Yao, Yichang Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang,
 848 and Zhi-Wei Fan. Qwen2 technical report. *ArXiv*, abs/2407.10671, 2024a. URL <https://api.semanticscholar.org/CorpusID:271212307>.

849 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 850 Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
 851 Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
 852 Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
 853 Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
 854 Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
 855 Zekun Wang. Qwen2.5 technical report. *ArXiv*, abs/2412.15115, 2024b. URL <https://api.semanticscholar.org/CorpusID:274859421>.

856 Ziyi Ye, Xiangsheng Li, Qiuchi Li, Qingyao Ai, Yujia Zhou, Wei Shen, Dong Yan, and Yiqun Liu.
 857 Beyond scalar reward model: Learning generative judge from preference data. *arXiv preprint*
 858 *arXiv:2410.03742*, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason E. Weston. Self-rewarding language models. *ArXiv*, abs/2401.10020, 2024. URL <https://arxiv.org/pdf/2401.10020.pdf>.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large language models at evaluating instruction following. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=tr0KidwPLc>.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.

Yilun Zhou, Austin Xu, PeiFeng Wang, Caiming Xiong, and Shafiq Joty. Evaluating judges as evaluators: The jets benchmark of llm-as-judges as test-time scaling evaluators. *ArXiv*, abs/2504.15253, 2025. URL <https://api.semanticscholar.org/CorpusId:277955867>.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. JudgeLM: Fine-tuned large language models are scalable judges. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=xSElpEPn4A>.

A LLM USAGE

Other than being used as part of the experiments conducted in this work, LLMs were used solely as a writing assistance tool in preparing this paper submission. Their role was limited to polishing language, improving clarity, and reducing redundancy. The prompt used for this purpose was similar to “Please revise the writing of this, making sure to remove any grammatical mistakes.” All research ideas, experimental designs, analyses, and claims presented in the paper are entirely the original work of the authors. No part of the conceptual, methodological, or empirical contributions relies on or originates from LLM outputs.

B GENERATORS AND GENERATOR STRENGTHS

Shorthand	Full Hugging Face Identifier
Llama3.3-70B	meta-llama/Llama-3.3-70B-Instruct
Llama3.1-8B	meta-llama/Llama-3.1-8B-Instruct
Qwen2-7B	Qwen/Qwen2-7B-Instruct
Qwen2.5-7B	Qwen/Qwen2.5-7B-Instruct
Qwen2.5-14B	Qwen/Qwen2.5-14B-Instruct
Qwen2.5-32B	Qwen/Qwen2.5-32B-Instruct
Gemma2-9B	google/gemma-2-9b-it
Gemma3-12B	google/gemma-3-12b-it
Minstral-8B	mistralai/Minstral-8B-Instruct-2410
Mistral-Small-24B	mistralai/Mistral-Small-24B-Instruct-2501
DeepScaleR	agentica-org/DeepScaleR-Preview-Dataset
MMLU-Pro	TIGER-Lab/MMLU-Pro

Table 1: Mapping from shorthand model and dataset names to their corresponding Hugging Face identifiers.

To curate generator responses, we begin with a set of candidate generators and a collection of questions Q , along with verifiable ground-truth answers A^* . For each question, we sample 20 responses from each generator using temperature sampling and compute a $pass@1$ score. This score represents

Figure 7: Generator strength on the DeepScaleR dataset, measured using pass@1 with 20 independently sampled responses. Models fall into two well-separated strength clusters: weak (0.17–0.26) and strong (0.42–0.50). No models occupy the 0.26–0.42 gap (a 0.16-wide gap), making the clustering robust to any threshold chosen within this interval. This clustering also aligns with model release dates, with stronger, newer models (yellow) outperforming weaker, older ones (green).

Figure 8: Generator strength on the MMLU-Pro dataset, measured using pass@1 with 20 independently sampled responses. The same two-tier structure appears: weak (0.34–0.43) vs. strong (0.56–0.69), with no models in the 0.43–0.56 intermediate gap (a 0.13-wide gap). This clustering aligns with the weak–strong clustering observed in DeepScaleR (Figure 7), indicating that the clustering reflects underlying model strength rather than threshold choice or dataset-specific artifacts.

the probability of obtaining at least one correct solution when randomly selecting one solution from the 20 attempts, where correctness is determined by matching the generator’s responses against A^* .

Concretely, we use two verifiable datasets, as shown in Table 1: DeepScaleR (Luo et al., 2025) and MMLU-Pro (Wang et al., 2024c). DeepScaleR contains 40K challenging Olympiad-level math problems spanning multiple years, each paired with a ground-truth answer. In contrast, MMLU-Pro contains 12K multiple-choice problems, spanning 57 subjects across 14 categories and drawing from diverse sources such as MMLU, STEM websites, TheoremQA, and SciBench. We include MMLU-Pro to demonstrate the broader applicability of our results beyond mathematics. For all experiments, we use popular open-source instruction-tuned models, as listed in Table 1. Gemma-2-9B (Riviere et al., 2024), Gemma-3-12B (Kamath et al., 2025), Llama-3.1-8B, Llama-3.3-70B Dubey et al. (2024), Minstral-8B (Team, a), and Mistral-Small-24B (Team, b), Qwen2-7B (Yang et al., 2024a), Qwen2.5-7B (Yang et al., 2024b), and Qwen2.5-32B (Yang et al., 2024b).

972	Judge Backbone LLM	Weak Response Dataset	Strong Response Dataset
973	Minstral-8B, Mistral-Small-24B	Gemma2-9B, Qwen2-7B, Llama3.1-8B	Qwen2.5-7B, Gemma3-12B, Llama3.3-70B
974	Llama3.1-8B	Gemma2-9B, Qwen2-7B, Minstral-8B	Qwen2.5-7B, Gemma3-12B, Mistral-Small-24B

975
976
977
978
979 Table 2: Overview of training data composition on a **per-backbone** LLM basis. To mitigate bias from
980 the difficulty of evaluating self-generated responses, we avoid training judge models on their own
981 responses. This produces per-judge training datasets composed of different generator responses.

982
983
984 Figure 7, which plots the pass@1 scores of all candidate generators, reveals two clearly separated
985 capability bands on DeepScaleR. Weak models fall in the 0.17–0.26 range, whereas strong models
986 fall in the 0.42–0.50 range, leaving a 0.16-wide empty gap (0.26–0.42) with no model in the
987 intermediate region. Thus, any threshold chosen within this interval produces the same weak-strong
988 grouping. This separation also aligns well with model release dates, as shown in Figure 7. We ob-
989 serve the same two-tier pattern on MMLU-Pro, as shown in Figure 8: weak models score 0.34–0.43,
990 while strong models score 0.56–0.69, again with no models occupying the 0.43–0.56 interval (a
991 0.13-wide gap). The alignment of weak–strong groups across two very different datasets indicates
992 that the distinction captures genuine differences in underlying model strength, rather than artifacts
993 of a particular dataset or threshold choice.

994 C TRAINING SETUP DETAILS

995
996
997 **Dataset Construction.** To create the training and evaluation splits, we first construct pairwise in-
998 put samples for the judge, following prior work (Tan et al., 2025; Wang et al., 2024b). For each
999 question, we sample multiple responses from each generator, and each response is then labeled as
1000 “correct” or “incorrect” according to the ground-truth answer A^* . We then form response pairs,
1001 where each pair consists of one correct response and one incorrect response, resulting in a pairwise
1002 sample with an objectively correct answer. Importantly, responses in a pair are drawn from a sin-
1003 gle generator only. This choice ensures that the judge learns to distinguish correctness based on
1004 reasoning quality rather than relying on stylistic differences between models, which could occur if
1005 responses from different generators were mixed in a single pair. For each generator and question, we
1006 only keep samples where there is at least one correct and one incorrect response and if this condition
1007 is not met, the question is discarded for that generator. In Table 3, we report the percentage of ques-
1008 tions retained for each generator after applying this discarding criterion. Further, in Figure 9, we
1009 show that weak models discard many hard questions because all 20 samples are incorrect, whereas
1010 strong models discard many easy questions because all 20 samples are correct. Mid-tier models re-
1011 tain the most questions because they more frequently produce mixed outcomes, resulting in a clear
1012 U-shaped trend in the rank–retention plot. Thus, the retained subset is enriched for borderline ques-
1013 tions near each model’s decision boundary, naturally inducing a medium-difficulty selection bias.
1014 Following this, and based on the generator strengths defined in Appendix B, we construct aggregated
1015 pairwise datasets consisting exclusively of either weak or strong responses, which we refer to as the
1016 *weak dataset* and *strong dataset*, respectively.

1017
1018 **Judge Data Distillation & Training Objectives.** We train judges using three commonly adopted
1019 recipes: supervised fine-tuning (SFT) (Li et al., 2024b; Kim et al., 2024a; Vu et al., 2024), direct
1020 preference optimization (DPO) (Hu et al., 2024; Wang et al., 2024b), and a combined SFT and DPO
1021 objective (Wang et al., 2024a; Ye et al., 2024; Saad-Falcon et al., 2024). As these recipes require
1022 supervision, specifically, the CoT explanation C (Sec. 2), we adopt the common *teacher model*
1023 convention (Li et al., 2024b; Wang et al., 2024a). We prompt GPT-4o with (Q, R_1, R_2) inputs,
1024 sampling multiple responses (C, \hat{V}) per input. Based on the ground-truth verdict V^* , we categorize
1025 responses as correct (positive) samples y^+ or incorrect (negative) samples y^- . We only keep inputs
1026 for which at least one y^+ and y^- exists. This ensures that the inputs are exactly comparable for
1027 SFT and DPO. Positive samples are then used for SFT, whereas positive-negative pairs are used for
1028 DPO-based recipes.

1026	Generator	DeepScaleR Ret% _{rank}	MMLU-Pro Ret% _{rank}
1027	Gemma-2-9B	36.1 ₁	63.83 ₂
1028	Gemma-3-12B	57.2 ₈	49.23 ₆
1029	Qwen-2-7B	52.2 ₃	79.31 ₃
1030	Qwen-2.5-7B	63.7 ₅	58.75 ₅
1031	Qwen-2.5-32B	62.9 ₇	43.61 ₈
1032	Llama-3.1-8B	52.2 ₂	76.38 ₄
1033	Llama-3.3-70B	47.1 ₉	34.29 ₉
1034	Minstral-8B	62.5 ₄	62.32 ₁
1035	Mistral-Small-24B	64.6 ₆	50.73 ₇

1037 Table 3: Retention percentage (Ret%) across DeepScaleR and MMLU-Pro for various generators.
1038 The subscript rank denotes each model’s Pass@1 rank; higher ranks correspond to models with su-
1039 perior performance, as shown in Figure 7 and Figure 8. Retention measures the fraction of questions
1040 where a generator produces both a correct and an incorrect sample across 20 generations.

1041
1042 Figure 9: Retention vs. Pass@1 rank, derived from Table 3. Weak generators drop hard questions
1043 because all sampled responses are incorrect, strong generators drop easy ones because all sampled
1044 responses are correct, and mid-tier generators retain the most by producing responses with mixed
1045 correctness. This concentrates the retained questions on borderline, medium-difficulty items near
1046 each generator’s decision boundary.

1047
1048
1049
1050
1051
1052
1053
1054
1055 **Train and Evaluation Splits.** To analyze the four practical questions described in Section 1 using
1056 the dual-distribution framework from Section 3, we split the weak and strong datasets into training
1057 and test splits. For testing, we construct two distinct splits: an *unseen-questions* split and a *seen-
1058 questions* split. The unseen-questions split contains questions not present during training, while
1059 the seen-questions split reuses training questions but samples *new* responses, with pairs constructed
1060 following the same process as described above. Unless otherwise specified, we use the unseen-
1061 questions split for evaluation. Note that the corresponding weak and strong splits use exactly the
1062 same set of questions; we remove any question that appears in only one split. This prevents question-
1063 difficulty differences from confounding our findings. Overall, for DeepScaleR each training split
1064 contains 70K samples, whereas for MMLU-Pro each contains 10K samples. For both datasets, each
1065 evaluation split includes 2.5K response-order-unflipped samples (5K after response-order flips).

1066
1067 **Generator and Judge Backbone Details.** We choose three **backbone** models to finetune: Llama-
1068 3.1-8B, Minstral-8B, and Mistral-24B, covering a range of model sizes and intrinsic strengths. Prior
1069 work (Tan et al., 2025) has shown that models often struggle to judge the correctness of pairs of their
1070 own sampled responses. Another line of work (Chen et al., 2025b; Panickssery et al., 2024) has
1071 shown that models can recognize their own responses and exhibit self-bias. Thus, to disentangle any
1072 effects of training a judge on self-generated responses, we exclude the **backbone** judge model from
1073 serving as a generator. Specifically, we create two training sets (each with weak and strong splits),
1074 ensuring that the **backbone** judge model is not included in the list of generators. We summarize
1075 these training sets and the associated **backbone** models in Table 2.

Hyperparameters. All experiments with SFT, DPO, SFT+DPO are implemented using the Axolotl framework Axolotl maintainers and contributors (2023). For SFT, we sweep learning rates in $\{1 \times 10^{-6}, 2.5 \times 10^{-6}, 5 \times 10^{-6}, 1 \times 10^{-5}\}$ with a cosine decay scheduler. Across all evaluation splits, a learning rate of 2.5×10^{-6} consistently yields the best performance. For DPO, we adopt standard hyperparameter choices from prior work (Ivison et al., 2023), using a learning rate of 5×10^{-7} and a preference strength parameter $\beta = 0.1$. For SFT+DPO, we optimize a joint loss with equal weighting between the SFT and DPO objectives, using the same DPO hyperparameters (learning rate 5×10^{-7} , $\beta = 0.1$). DeepScaler weak and strong judges are trained for 3 epochs (2,800 gradient steps). In contrast, MMLU-Pro weak and strong judges are trained for 10 epochs (1,500 gradient steps). For continual training experiments (section 5.3), we start from a weak-response DPO-trained judge (trained for 3 epochs) and further train it on strong responses for 1 additional epoch, amounting to roughly 1,000 additional gradient steps. We sweep $\beta \in \{0.1, 1.0\}$ and report results in the main text using $\beta = 1.0$; additional results are included in Table 4 and in Appendix D.

D CONSISTENT ACCURACY AND JUDGE’S PERFORMANCE ACROSS SPLITS

Consistent Accuracy. Since judge models are prone to positional biases (Wang et al., 2023; Li et al., 2024b; Xu et al., 2025b)—where their preference shifts depending on whether R_1 or R_2 appears first in the prompt—it is standard practice to evaluate judges using both response orderings (Tan et al., 2025; Xu et al., 2025a;b). Concretely, for input $x = (Q, R_1, R_2)$, let \bar{x} denote the same sample, but with response order flipped in the input prompt, i.e., $\bar{x} = (Q, R_2, R_1)$. Then, evaluation with *consistent accuracy* considers the judge correct only if it correctly identifies the better response under both orderings:

$$\text{Acc} = \frac{1}{|P|} \sum_{x \in P} \mathbb{1}[\hat{V}(x) = V^*(x) \wedge \hat{V}(\bar{x}) = V^*(\bar{x})], \quad (10)$$

where $\mathbb{1}[\cdot]$ is the indicator function, P is the evaluation set consisting of pairs $(x, V^*(x))$, and the judge’s verdicts $\hat{V}(x)$ are compared against the ground-truth verdicts $V^*(x)$.

Judge’s Performance. We report all consistent-accuracy scores of our trained judges for both DeepScaler and MMLU-Pro across the different evaluation splits in Table 4.

E RESEARCH QUESTIONS IN THE DUAL-DISTRIBUTION FORMULATION

As described in Section 3, the dual-distribution formulation separates the *question distribution* Q from the *response distribution* \mathcal{R} , reflecting two real-world sources of shift: (1) more capable generators (an evolving \mathcal{R}) and (2) new questions (an evolving Q). This decomposition allows us to isolate and quantify the impact of each factor on judge performance. Building on this, we investigate several practical questions about the *shelf life* of trained judges, focusing on four distinct settings:

How future-proof are judge models? For a judge to be future-proof, it must be able to evaluate responses from newer, stronger models. To study this, we examine how a judge trained on responses from the current generation of weak models performs when evaluating responses from strong models. Specifically, we train a judge on $\mathcal{R}_{\text{weak}}^{\text{train}}$ and evaluate it on both $\mathcal{R}_{\text{weak}}^{\text{test}}$ and $\mathcal{R}_{\text{strong}}^{\text{test}}$. This setup characterizes how robust judges are to a *distribution shift from weak to strong* responses. Additionally, we quantify the gains from retraining a judge on strong responses by replacing training data from $\mathcal{R}_{\text{weak}}^{\text{train}}$ with responses from $\mathcal{R}_{\text{strong}}^{\text{train}}$.

How backward-compatible are judge models? Newly trained judges are fine-tuned to evaluate newer, stronger response-generating models. However, does this focus on state-of-the-art generators come at the expense of performance on older, more established generators? To complement our future-proofing experiments, we examine *backward-compatibility*. Specifically, given a judge trained on responses from $\mathcal{R}_{\text{strong}}^{\text{train}}$, we ask: how well does it match a judge trained on weaker responses from $\mathcal{R}_{\text{weak}}^{\text{train}}$ when both are evaluating $\mathcal{R}_{\text{weak}}^{\text{test}}$ responses? Beyond this comparison, evaluating weaker responses with a judge trained on strong responses also introduces a *distribution shift from strong to weak* responses. We quantify any performance losses that result from this shift.

Can continual learning improve future-proofing and backward-compatibility of judge models? Rather than training a new judge from scratch on $\mathcal{R}_{\text{strong}}$, we start with a judge trained on $\mathcal{R}_{\text{weak}}^{\text{train}}$

(a) FutureProof.

(b) RefreshAdvantage.

Figure 10: *Future-proofing of MMLU-Pro-trained judges.* (a) Future-proofing measured by FutureProof; negative values indicate degraded performance on stronger responses. All models and training recipes degrade, reflecting poor evaluation of newer, stronger responses. (b) Benefits of re-training on strong responses, measured by RefreshAdvantage. Re-training consistently improves performance, with larger gains under DPO-based recipes. These results largely follow the trends observed on DeepScaler (Figure 10), except with smaller absolute magnitudes, indicating that response-distribution shift can depend on the domain.

(a) BackCompatibility.

(b) CompatibilityShift.

Figure 11: *Backward-Compatibility of MMLU-Pro-Trained Judges.* (a) BackCompatibility measures how well judges trained on strong responses evaluate older responses; positive values indicate improvements over weak-judge baselines. Strong-trained judges show clear gains, larger than those on DeepScaler Figure 3a, suggesting that strong judges are as good as or better than weak judges when evaluating weak responses. (b) Despite strong absolute performance, newer judges still face distribution shift, reflected in CompatibilityShift, which captures performance drops relative to evaluating strong responses. These shifts are similar to those observed on DeepScaler Figure 3b.

and continually fine-tune it on $\mathcal{R}_{\text{strong}}^{\text{train}}$ to obtain a continually trained judge. In parallel to the settings above, we ask whether the continually trained judge narrows the gap on $\mathcal{R}_{\text{strong}}^{\text{test}}$ relative to one trained only on $\mathcal{R}_{\text{weak}}^{\text{train}}$, and whether it retains performance on $\mathcal{R}_{\text{weak}}^{\text{test}}$ relative to a judge trained from scratch on $\mathcal{R}_{\text{strong}}^{\text{train}}$. This setup tests whether continual training helps a weak judge adapt to the weak to strong response shift while preserving compatibility with older responses.

How do judges generalize across unseen questions? As new questions are introduced for evaluating LLMs, judge models must accurately assess responses to these questions. Here, we quantify the benefit of a judge model having seen a question during training. To study this form of *generalization*, we construct two evaluation splits. The first is a *seen-questions, unseen-responses* split, created by selecting questions that appeared in the training set and sampling a new set of responses for these questions from $\mathcal{R}^{\text{train}}$. The second is an *unseen-questions, unseen-responses* split, generated by sampling questions from $\mathcal{Q}^{\text{train}}$ that were not included in the training data, along with their corresponding responses from $\mathcal{R}^{\text{train}}$. Comparing performance across these splits enables us to assess how well judges generalize to previously seen questions versus entirely new ones.

Figure 12: *Question Generalization of MMLU-Pro-Trained Judges*. Generalization of judges trained on weak and strong responses to seen and unseen questions. Judges consistently fail to generalize to unseen questions, showing large performance drops relative to their performance on seen questions. These trends align with our findings on DeepScaler dataset in Figure 6.

F DETAILED FINDINGS FROM MMLU-PRO DATASET

In this section, we present the future-proofing, backward-compatibility, and question-generalization results for the MMLU-Pro dataset and place them in context with the corresponding findings on DeepScaler. As discussed in Section 5, the overall trends on MMLU-Pro closely match those observed on DeepScaler. However, compared to DeepScaler, which is math-oriented and reasoning-intensive, MMLU-Pro exhibits noticeably smaller degradations across all metrics. Since MMLU-Pro is more knowledge-centered, this suggests that the severity of response-distribution shift is domain dependent. These observations imply that a judge model’s shelf-life metrics can vary meaningfully with task domain, even when the training recipe and backbone model are held constant. Below, we describe the results for each metric on MMLU-Pro.

F.1 HOW FUTURE-PROOF ARE JUDGE MODELS?

FutureProof Findings. Figure 10a reports the FutureProof values for all models and training recipes. Consistent with DeepScaler, we do not observe any case where judges generalize to newer or stronger responses: all FutureProof values are negative. However, the magnitudes on MMLU-Pro are noticeably smaller than those on DeepScaler (see Figure 2a), suggesting that degradation under response-distribution shift is less severe on knowledge-oriented, non-math tasks than on reasoning-intensive math-olympiad problems. This highlights that the extent of future-proofing failure can vary by domain.

RefreshAdvantage Findings. As shown in Figure 10b, re-training on up-to-date responses consistently improves evaluation performance: all training recipes and backbone models exhibit positive RefreshAdvantage values. Mirroring DeepScaler, DPO-based recipes yield larger gains than SFT alone, and the benefits grow with judge model size. For instance, under SFT+DPO, Mistral-24B gains 4.4 absolute points, compared to 3.2 points for its 8B counterpart, Mistral-8B. Overall, these results reinforce the DeepScaler observation that reliably evaluating stronger generators requires judges trained on strong, contemporary responses. However, the gains on MMLU-Pro are slightly weaker compared to DeepScaler, again indicating that the absolute advantage from refreshing is domain-dependent.

F.2 HOW BACKWARD-COMPATIBLE ARE JUDGE MODELS?

BackCompatibility Findings. In Figure 11a, we visualize the backward-compatibility of judge models trained on strong responses. When evaluated on weak responses, these judges show little improvement over judges trained directly on in-distribution weak responses. In comparison, on DeepScaler (see Section 5.2), we observed a minimal performance drop, with the BackCompatibility metric slightly negative. Taken together, these results indicate that judges trained on newer, stronger responses are indeed backward-compatible: they perform on par with weak-trained judges, even when evaluated out of distribution.

CompatibilityShift Findings. Our findings in BackCompatibility show that judges trained on strong responses perform comparably to, or better than, weak-trained judges when scoring

1242 older responses. However, these stronger judges are evaluated under a *strong-to-weak* distribution
 1243 mismatch, and Figure 11b illustrates the resulting drop in accuracy. These drops are consistent
 1244 across models and training recipes. Thus, even though stronger judges can effectively replace weaker
 1245 ones, distribution shift still limits their realized performance. We observed a similar pattern on the
 1246 DeepScaleR dataset, as discussed in Section 5.2.
 1247

1248 F.3 HOW DO JUDGES GENERALIZE TO UNSEEN QUESTIONS AND RESPONSES?

1249
 1250 **QuestionGen Findings.** From Figure 12, we observe that judges trained on MMLU-Pro do not
 1251 generalize well to unseen questions, with nearly all judges showing performance drops compared to
 1252 evaluating on seen questions with unseen responses. The trends are similar to those for DeepScaleR
 1253 in Figure 6: more performant judges using the DPO recipe and larger backbones such as Mistral-24B
 1254 exhibit larger drops when evaluated on in-distribution questions not encountered during training.
 1255

1256 G PROMPTS AND SAMPLING HYPERPARAMETERS

1257 To obtain generator responses, we sample multiple completions from each generator in order to
 1258 better capture the diversity of its reasoning behaviors. We use five temperature–sampling config-
 1259urations, where n denotes the number of sampled completions and t the sampling temperature:
 1260 $(n=1, t=0.0)$, $(n=4, t=0.4)$, $(n=5, t=0.5)$, $(n=5, t=0.6)$, and $(n=5, t=0.7)$, with top- p fixed at
 1261 1.0. This yields 20 total responses per question for each generator model.
 1262

1263 To reduce prompt-format bias and further increase response diversity, we randomly select one of
 1264 four generator prompt templates (Prompts 1–4) for each sampled completion in the DeepScaleR
 1265 dataset. For multi-domain experiments using MMLU-Pro, we use the prompt in Prompt 5.

1266 For the judge models, we provide the original question along with two generator responses, each
 1267 containing both the intermediate reasoning and the final numerical answer. Judge models are de-
 1268 coded greedily using $(n=1, t=0.0)$, as we found pass@ k judge accuracies to be highly correlated
 1269 with greedy decoding while being more computationally efficient.

1270 We use the prompt in Prompt 6 for judge evaluation.
 1271

1272 Generator Prompt Template 1 — DeepScaleR

1273 **Instruction:**

1274 Solve the following math problem **step by step**. The last line of your
 1275 response should be:
 1276

1277 Answer: \$Answer

1278 where \$Answer is the **final answer**.

1279 **Problem:**

1280 {{problem}}

1281 **Output Format:**

1282 Answer: <your answer here>

1283 Prompt 1: Generator prompt template used in DeepScaleR for structured, step-by-step solutions.
 1284

1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296

Generator Prompt Template 2 — DeepScaleR

1297

Instruction:

1298

Solve the following math problem **efficiently and clearly**.

1299

- For **simple problems (2 steps or fewer)**: give a concise solution with minimal explanation.

1300

- For **complex problems**: use the structured step-by-step format:

1301

Step 1: [Concise description]

1302

[Explanation / calculations]

1303

Step 2: [Concise description]

1304

[Explanation / calculations]

1305

...

1306

Important:

1307

Always conclude with:

1308

Therefore, the final answer is: $\boxed{\text{answer}}$.

1309

where **answer** is the **final numeric answer**.

1310

Problem:

1311

Problem: {{problem}}

1312

Prompt 2: Generator prompt template used in DeepScaleR that adapts to problem complexity, producing either concise explanations or multi-step structured reasoning.

1313

Generator Prompt Template 3 — DeepScaleR

1314

Instruction:

1315

Read the problem, **reason through it**, and provide a final answer.

1316

Problem:

1317

{{problem}}

1318

Output Requirement:

1319

Your response must end with:

1320

The final answer is [answer]

1321

where [answer] is the **final computed answer**.

1322

1323

1324

Prompt 3: Generator prompt template that prompts models to reason and explicitly report a final answer.

1325

Generator Prompt Template 4 — DeepScaleR

1326

Problem:

1327

{{problem}}

1328

1329

Prompt 4: A minimal generator prompt template presenting only the raw problem.

1330

1331

Generator Prompt Template — MMLU-Pro

1332

Instruction:

1333

You are given a multiple-choice question from the domain of {{domain}}. Each answer option corresponds to a lettered choice.

1334

Question:

1335

{{question}}

1336

Options:

1337

{{options}}

1338

Task:

1339

Provide a careful, **step-by-step analysis** of the question. Use your reasoning to evaluate all relevant information and identify the correct option. After completing your reasoning, produce your final choice in the following format:

1340

<answer>X</answer>

1341

where X is the letter of the correct option.

1342

1343

1344

1345

1346

1347

1348

1349

Prompt 5: Prompt template used for reasoning over multiple-choice questions in MMLU-Pro.

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363

1364 Judge Prompt Template

1365 Task:

1366 You are a rigorous evaluator comparing **two responses** to the same math
 1367 question. Judge which response is **better**, based solely on **logical**
 1368 **soundness** and **correctness**.

1369 You are given:

- 1370 - A **Question**
- 1371 - **Response A**
- 1372 - **Response B**

1373 Evaluation Guidelines:

- 1374 1. **Correctness is top priority.** Prefer responses with correct
 reasoning and correct final answers.
- 1375 2. If both have reasoning flaws, choose the one that still reaches the
correct final answer.
- 1376 3. Ignore style, length, formatting, verbosity, or fluency.

1377 ---

1378 Output Format (JSON):

1379 Your final output must be **exactly one** of the following:

```
1380 {"verdict": "A"}  

1381 {"verdict": "B"}
```

1382 ---

1383 Question:

```
1384 {{question}}
```

1385 Response A:

```
1386 {{response_a}}
```

1387 Response B:

```
1388 {{response_b}}
```

1389 Prompt 6: Judge prompt template used to compare two generator responses based on final-answer
 1390 correctness and reasoning quality.

1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

		DeepScaler				MMLU-Pro			
Train	Eval	0-Shot	SFT	DPO	SFT+DPO	0-Shot	SFT	DPO	SFT+DPO
Llama3.1-8B									
J_{Wk}	Wk, Sn	32.44	48.14	43.95	63.40	—	—	—	—
	St, Sn	28.41	44.66	36.62	60.48	—	—	—	—
	Wk, Un	30.79	46.06	39.41	58.47	—	—	—	—
	St, Un	27.76	41.91	33.94	55.29	—	—	—	—
J_{St}	Wk, Sn	32.44	45.33	42.53	61.72	—	—	—	—
	St, Sn	28.41	46.41	43.74	65.15	—	—	—	—
	Wk, Un	30.79	44.12	39.61	57.60	—	—	—	—
	St, Un	27.76	42.21	40.91	59.27	—	—	—	—
$J_{Wk \rightarrow St}^{0.1}$	Wk, Sn	32.44	—	44.69	—	—	—	—	—
	St, Sn	28.41	—	41.19	—	—	—	—	—
	Wk, Un	30.79	—	40.09	—	—	—	—	—
	St, Un	27.76	—	38.41	—	—	—	—	—
$J_{Wk \rightarrow St}^{1.0}$	Wk, Sn	32.44	—	45.43	—	—	—	—	—
	St, Sn	28.41	—	39.13	—	—	—	—	—
	Wk, Un	30.79	—	40.07	—	—	—	—	—
	St, Un	27.76	—	37.22	—	—	—	—	—
Minstral-8B									
J_{Wk}	Wk, Sn	33.87	48.06	61.04	61.39	26.87	34.86	47.24	47.81
	St, Sn	28.72	41.94	55.55	56.41	27.14	34.04	46.38	47.08
	Wk, Un	33.81	45.93	56.41	56.72	27.05	33.72	44.54	45.03
	St, Un	29.14	41.91	54.86	53.26	25.74	33.62	43.56	43.96
J_{St}	Wk, Sn	33.87	45.05	60.60	62.25	26.87	35.20	46.32	48.04
	St, Sn	28.72	43.31	64.69	67.30	27.14	36.34	48.98	50.38
	Wk, Un	33.81	42.62	57.15	58.82	27.05	34.46	44.48	46.18
	St, Un	29.14	43.90	59.15	60.86	25.74	34.90	45.82	47.12
$J_{Wk \rightarrow St}^{0.1}$	Wk, Sn	33.87	—	62.11	—	—	—	—	—
	St, Sn	28.72	—	60.43	—	—	—	—	—
	Wk, Un	33.81	—	54.67	—	—	—	—	—
	St, Un	29.14	—	53.13	—	—	—	—	—
$J_{Wk \rightarrow St}^{1.0}$	Wk, Sn	33.87	—	59.24	—	—	—	—	—
	St, Sn	28.72	—	58.51	—	—	—	—	—
	Wk, Un	33.81	—	55.28	—	—	—	—	—
	St, Un	29.14	—	54.84	—	—	—	—	—
Mistral-24B									
J_{Wk}	Wk, Sn	41.00	52.18	76.57	76.90	38.51	45.14	57.14	57.53
	St, Sn	37.69	45.34	72.16	71.94	37.17	44.81	55.25	56.42
	Wk, Un	40.75	47.49	68.56	71.41	37.64	43.81	53.58	53.92
	St, Un	38.03	46.57	65.36	65.21	36.25	42.02	52.86	52.92
J_{St}	Wk, Sn	41.00	47.55	73.75	75.69	38.51	44.92	56.13	57.75
	St, Sn	37.69	50.07	79.12	81.31	37.17	46.22	59.20	61.82
	Wk, Un	40.75	45.85	66.30	68.52	37.64	43.62	54.92	55.31
	St, Un	38.03	47.70	69.73	71.14	36.25	43.98	55.81	57.31
$J_{Wk \rightarrow St}^{0.1}$	Wk, Sn	41.00	—	73.70	—	—	—	—	—
	St, Sn	37.69	—	73.80	—	—	—	—	—
	Wk, Un	40.75	—	64.45	—	—	—	—	—
	St, Un	38.03	—	62.37	—	—	—	—	—
$J_{Wk \rightarrow St}^{1.0}$	Wk, Sn	41.00	—	78.22	—	—	—	—	—
	St, Sn	37.69	—	75.45	—	—	—	—	—
	Wk, Un	40.75	—	66.83	—	—	—	—	—
	St, Un	38.03	—	66.08	—	—	—	—	—

Table 4: *Judge’s Consistent Accuracy*. Left block: DeepScaler; right block: MMLU-Pro. *Train* indicates whether the judge is trained on Weak data (J_{Wk}), Strong data (J_{St}), or via continual weak-to-strong training ($J_{Wk \rightarrow St}^{\beta}$). *Eval* indicates the type of evaluation split defined by the source of responses among Weak (Wk) or Strong (St) and whether questions are Seen (Sn) or Unseen (Un). Within each dataset, columns correspond to the judge-training configurations: Zero-Shot, SFT, DPO, and SFT+DPO. For both datasets, backbone (zero-shot) values are repeated across all blocks to facilitate direct comparison across judge-training strategies.