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ABSTRACT

The LLM-as-a-judge paradigm is widely used in both evaluating free-text model
responses and reward modeling for model alignment and finetuning. Recently,
finetuning judges with judge-specific data has emerged as an often preferred
choice over directly prompting frontier models as judges, as the former achieves
better performance with smaller model sizes while being more robust to common
biases. However, the standard evaluation ignores several practical concerns of
finetuned judges regarding their real world deployment. In this paper, we identify
and formalize three aspects that affect the shelf life of these judges: future proofing
and backward compatibility — how well judges finetuned on responses by today’s
generator models perform on responses by future models or past models, as well
as question generalization — how well judges generalize to unseen questions at
test time. We study these three aspects in the math domain under a unified frame-
work with varying train and test distributions, three SFT- and DPO-based finetun-
ing algorithms and three different base models. Experiments suggest that future-
proofing is challenging for most models, while backward compatibility is rela-
tively easy, with DPO-trained models consistently improving performance. We
further find that continual learning provides a more balanced adaptation to shifts
between older and newer response distributions than training solely on stronger or
weaker responses. Moreover, all models observe certain degrees of performance
degradation when moving from questions seen during training to unseen ones,
showing that current judges do not fully generalize to unseen questions. These
findings provide insights into practical considerations for developing and deploy-
ing judge models in the face of ever-changing generators.

1 INTRODUCTION

Automatic evaluators have become a central part of the large language model (LLM) development
cycle. They serve both as reward models during training (Stiennon et al., 2020; Ouyang et al., 2022}
Yuan et al., [2024) and as verifiers in inference-time compute scaling (Zhou et al., 2025} Kim et al.,
2025} |Singhi et al.| 2025). In the LLM-as-judge paradigm, a generative language model evaluates
the outputs of other models for a given input question, providing a scalable approach to automatic
evaluation. Past work on LLM-as-judges began with zero-shot prompting of capable LLMs (Liu
et al.; 2023; Dubois et al., |2023). However, such judges have been shown to be prone to various
biases, such as stylistic bias (Zeng et al.,|2024; Raina et al., [2024), length bias (Zheng et al., |2023}
Zeng et al., 2024), and positional bias (Wang et al., [2023} [Pezeshkpour & Hruschkal [2024). As a
result, recent efforts have finetuned specialized evaluators |Li et al.| (2024b); [Kim et al.| (20244); |Vu
et al.| (2024), which have been shown to be more robust to common forms of bias (Zhu et al., 2025}
‘Wang et al.| 2024a; |Park et al., 2024a) while matching the performance of larger prompted models.

Although recent advances in judge model finetuning have largely focused on developing training
methodology [Chen et al.| (2025aic), little attention has been devoted to understanding how these
models behave as a function of their training inputs. In this work, we investigate this gap by asking
three key questions: First, can judge models trained on fixed datasets of input questions, model
responses, and ground-truth verdicts accurately evaluate the responses of newer models, i.e., are
judges future proof? Second, if we train a judge on up-to-date responses from newer models, can it
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Figure 1: High-level overview of our setup for studying Future Proofing, Backward Compatibility,
and Question Generalization through the lens of generalization and robustness to input distribution
shifts. Q and R represent questions and responses, respectively, with responses generated by the
shown generator models (Gemma?2, Qwen2, Gemma3, Qwen2.5). Future Proofing evaluates how
well judges trained on responses from weaker, older generators (green: Gemma2, Qwen2) assess
responses from stronger, newer generators (yellow: Gemma3, Qwen2.5). Backward Compatibility
examines the reverse direction. Question Generalization measures performance on in-distribution
questions and corresponding responses that were both not included (dashed Q and R) in the training.

reliably evaluate responses from older models, i.e., is the trained judge backward compatible? Third,
fixing the response generating models, how reliably can judges assess questions that differ from
those seen during training, i.e., do they generalize to new questions? We examine these questions,
as illustrated in Figure |1} through the lens of generalization and robustness, aiming to understand
the shelf life of trained judges.

In this work, we propose a dual-distribution formulation of automatic evaluation. Concretely, we
model the judge’s input as comprising elements drawn from two distinct distributions: the question
distribution, which characterizes the input questions to be evaluated, and the response distribution,
which characterizes the responses to be judged. We study the performance of trained judges when
responses are drawn from relatively weak and strong generators, henceforth referred to as weak
responses and strong responses. We also examine how well trained judges evaluate questions that are
(1) seen during training but paired with new responses, and (2) completely unseen during training.
By focusing on weak and strong generators and novel questions, we gain insights into the shelf life
of trained judge models through four practical questions:

* Future-proofing. Given a judge trained on responses from older (“weak’’) models, how accurately
can it evaluate responses from newer (‘“‘strong’”’) models? If the goal is to evaluate strong responses,
how much benefit do practitioners gain by training on strong responses rather than weak ones?

* Backward-compatibility. Given a judge trained on responses from newer (‘“strong”) models, can
it reliably assess responses from older (“weak’”) models? If the goal is to evaluate weak responses,
does training a judge on strong responses provide any benefit?

* Continual learning. Compared to judges trained only on weak or strong responses, how well does
a continually trained judge adapt to distribution shifts between the two response distributions?

* Question generalization. Does judge performance depend on whether a question was seen during
training? Even for seen questions, can a judge reliably assess new responses?

Using the mathematics domain, we set up a suite of controlled experiments to analyze the shelf life
of judge models, training across three base models of varying sizes and capabilities and three pop-
ular judge-training recipes. Our findings reveal that fine-tuned judges struggle to evaluate newer,
stronger model responses and therefore require training with up-to-date response distribution. Once
trained on newer, stronger responses, judges exhibit some degree of backward compatibility. Con-
tinual training provides a more balanced adaptation to shifts between older and newer response
distributions than training solely on stronger or solely on weaker responses. Finally, we find that
fine-tuned judges struggle to generalize to new questions. In all, our findings inform the develop-
ment and deployment of future generations of finetuned judge models.
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2 BACKGROUND AND RELATED WORK

2.1 AN OVERVIEW OF FINETUNED JUDGES.

LLM-based judges are automatic evaluators that evaluate LLM outputs given some evaluation cri-
teria. While many judges accommodate different evaluation tasks, such as single rating (“Rate this
response on a scale of 1-5”) (Hu et al., [2024])) or classification (“Is this response appropriate?”’) (Vu
et al., 2024), the dominant evaluation paradigm LLM-based judges are deployed with is pairwise
evaluation. Here, a judge is given a question and two candidate responses, and tasked with selecting
the “better” response according to some criteria. Formally, the judge performs the transformation

(Q,Ri,Ry) — (C,V), C optional, (1)

where () is the question, R;, R, are the two candidate responses, C' is an optional chain-of-thought
explanation, and V' is the verdict of which response is better. We denote z = (Q, R1, Ry) ~

X to be the judge input and y = (C, V) to be the judge output. Pairwise judges are typically
evaluated using accuracy or consistent accuracy, the latter accounting for response-order bias as
detailed in Appendix [C] Due to its popularity and practicality, pairwise evaluation forms the focus
of our study.

Past work in judge finetuning uses supervised finetuning (SFT) (Li et al., 2024b; Kim et al., [2024b;
Zhu et al.||2025)), preference optimization methods, like direct preference optimization (DPO) (Wang
et al.,[2024a;|Ye et al., 2024} Saad-Falcon et al.}[2024), or more recently, reinforcement learning with
verifiable rewards (RLVR) (Chen et al., |2025ajc; Whitehouse et al.|[2025 Xu et al.,|2025b). Starting
from a dataset of (x, V*(z)) pairs, where V* denotes the ground-truth verdict/label, each approach
constructs training samples differently: SFT and DPO approaches sample judge outputs from a
teacher model, then use V*(z) to categorize judge outputs as either correct outputs 3™ or incorrect
outputs y~. Then, the judge is trained on (x,y™) pairs for SFT and (z,y™",y ™) triplets for DPO.
On the other hand, RL approaches directly make use of the (x, V*(x)) pairs, omitting the need for
teacher model explanations.

2.2 RELATED WORK

Distribution Shifts and Generalization. Distribution shift, the mismatch between training and
evaluation data, is a long-standing challenge in machine learning (Hendrycks & Dietterich), 2019
Koh et al.l 2021)). Early computer vision studies demonstrated significant accuracy drops under mi-
nor perturbations (Hendrycks & Dietterich, [2019), and WILDS extended this to real-world domain
shifts (Koh et al.l 2021). In LLMs, the problem is amplified as both data and model capabilities
evolve over time (Shi et al., 2025). Recent frameworks explore how models transfer across distri-
butions. Easy-to-hard generalization examines whether training on easier tasks transfers to harder
ones (Sun et al.l 2024), which relates to scalable oversight where only easy tasks can be reliably
supervised (Amodei et al., 2016); task-difficulty can be estimated using either model or data-centric
measures (Swayamdipta et al.| 2020). Weak-to-strong generalization investigates improving strong
models using supervision derived from weaker ones (Burns et al.l2024). Our setting complements
these efforts by focusing on distribution shifts that arise from an evolving population of generators
and by evaluating how judge models adapt to both weak-to-strong and strong-to-weak shifts.

Analyzing LLM-as-Judge. Prior work analyzes systematic judge biases such as positional (Wang
et al., 2023} |Li et al.| |2024b), length (Zeng et al., 2024} [Park et al.,2024b), and self-preference (Pan-
ickssery et al.| 2024} [Chen et al.,[2025b). Prompt design, instructions, and scoring format strongly
affect reliability (Murugadoss et al., 2025} L1 et al., 2024a), with pairwise judgments often reduc-
ing noise and aligning better with human preferences than pointwise scores (Tripathi et al., 2025}
Jeong et al.,[2024). Other works have emphasized the importance of carefully selecting reference an-
swers (Krumdick et al.,2025)), linking to how generator capabilities influence the judge’s inputs (Tan
et al.| [2025). While most studies consider static judges on fixed datasets, we instead analyze judges
in a dynamic setting where generators change over time, introducing response-distribution shifts that
motivate our metrics for future-proofing, backward compatibility, and question generalization.
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3 AUTOMATIC EVALUATION AS A DUAL-DISTRIBUTION PROBLEM

We propose a novel formulation of the automatic evaluation problem in terms of two distributions:
the question distribution and the response distribution. Concretely, let Q denote the distribution
of questions @, and let R denote the distribution of responses R. For pairwise judges, the input
distribution X therefore takes the form

X=9OXxRxR )

The question distribution is defined by characteristics such as semantic content (e.g., domains like
medical, legal, finance, scientific, or math) and question difficulty (e.g., difficulty can be defined by
pedagogical levels, such as high school vs. olympiad-level math problems). For example, we can
consider all questions in GSM8K (Cobbe et al.||2021) to come from the same question distribution,
as they are all arguably of similar difficulty and semantic content. The response distribution defines
the characteristics of the model responses being evaluated, such as style, capability-specific content,
or model-family-specific quirks. We denote the training and test input distributions to be

Xtrazn — Qtrmn x Rtrmn X Rtraln and Xtest — Qtest X Rtest X Rtest (3)

respectively. Notably, the two responses come from the same generating model, as described in the
data construction details in Section [4.2] Separating the question distribution Q from the response
distribution R reflects two real-world sources of shift: (1) the emergence of more capable generators
(an evolving R), and (2) the introduction of new questions (an evolving Q). This decomposition
allows us to isolate and quantify the impact of each factor on judge performance. In Section [5
we instantiate this framework using the weak response distribution R 4% and the strong response
distribution Rs¢r-ong to simulate a model-development timeline (older, weaker vs. newer, stronger
responses and LLLMs), along with question splits () drawn from Q that are either seen or unseen dur-
ing training. Informally, weak (strong) responses are drawn from LLMs with relatively low (high)
accuracy on questions (); we precisely describe generator strength in Section ] This instantiation
enables us to investigate the four practical questions mentioned in Section [T| regarding the shelf life
of judges. The specifics of how dual-distribution formalization supports our analysis are detailed
in Section 5] with a concise connection provided in Appendix

4 EXPERIMENTAL SETUP

4.1 GAUGING GENERATOR STRENGTH.

We ground our study in mathematics, a domain with verifiable solutions, and use the DeepScaleR
dataset, which contains 40K Olympiad-style problems with gold answers. For each generator, we
sample 20 responses per question and measure its strength using pass@1. The pass@1 metric cap-
tures the probability that a uniformly sampled attempt is correct. This yields two clear tiers, as
shown in Figure[7]in Appendix B} recent or larger models attain pass@ 1 scores of about 0.45, while
smaller or older models cluster near 0.25. We therefore group generators into weaker and stronger
strength and use these groups to define our response-distribution shifts. Further details on the choice
of generators and how their strength is gauged are provided in Appendix [B}

4.2 TRAINING SETUP.

Dataset Construction. To create the training and evaluation splits, we first construct pairwise
input samples for the judge, following prior work (Tan et al.| 2025} Wang et al., |2024b)). For each
question, we sample multiple responses from each generator, and each response is then labeled as
“correct” or “incorrect” according to the ground-truth answer A*. We then form response pairs,
where each pair consists of one correct response and one incorrect response, resulting in a pairwise
sample with an objectively correct answer. Importantly, responses in a pair are drawn from a single
generator only. Based on the generator strengths defined above, we construct datasets of aggregated
pairwise samples consisting exclusively of either weak or strong responses, which we refer to as our
weak dataset and strong dataset, respectively.

Judge Data Distillation & Training Objectives. We train judges using three commonly adopted
recipes: supervised fine-tuning (SFT) (L1 et al., [2024b; [Kim et al.| [2024a; Vu et al., 2024), direct
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Figure 2: (a) Future-proofing measured by FutureProof; negative values show degraded perfor-
mance on stronger responses. All models and recipes performance degrade, indicating poor eval-
uation of newer, stronger responses. (b) Benefits of re-training on strong responses, measured by
RefreshAdvantage. Re-training consistently improves performance, with the largest gains un-
der DPO.
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(a) BackCompatibility. (b) CompatibilityShift.

Figure 3: (a) BackCompatibility of judges trained on strong responses when evaluating older
responses; positive values indicate improved performance relative to older-judge baselines. Judges
trained on newer responses show good BackCompatibility, with minimal drops—or even ab-
solute gains. (b) Despite strong absolute performance, newer judges still face a distribution shift,
reflected by CompatibilityShift, with performance drops relative to evaluating strong re-
sponses. (c) Compared with future-proofing metrics in Section .2} backward-compatibility met-
rics are smaller, indicating that strong-response—trained judges are more backward-compatible than
weak-response—trained judges are future-proof.

preference optimization (DPO) (Hu et al.; [2024; Wang et al., [2024b), and a combined SFT and
DPO objective (Wang et al., |2024a}; |Ye et al.| 2024} [Saad-Falcon et all 2024). As these recipes
require supervision, specifically, the CoT explanation C' (Sec. [2)), we adopt the common teacher
model convention (Li et al., |2024b; Wang et al., |2024a). Based on the ground-truth verdict V*, we
categorize responses as correct (positive) samples iy or incorrect (negative) samples y~. Positive
samples are then used for SFT, whereas positive-negative pairs are used for DPO-based recipes.

Training and Evaluation Splits. To analyze the four practical questions described in Section
using the dual-distribution framework from Section [3| we split the weak and strong datasets into
training and test sets. For testing, we construct two distinct splits: an unseen-questions split and a
seen-questions split. The unseen-questions split contains questions not present during training, while
seen-questions split reuses training questions but samples new responses, with pairs constructed
following the same process as described above. Unless otherwise specified, we use the unseen-
questions split for evaluation. We choose three models to train: Llama-3.1-8B, Ministral-8B, and
Mistral-24B, covering a range of model sizes and intrinsic strengths.

We provide more details on different aspects of the training setup in Appendix [E]
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5 EXPERIMENTAL RESULTS

In this section, we present our analysis setup and findings on future-proofing, backward-
compatibility, and question-generalization of judge models. Our analysis builds on the dual-
distribution framework introduced in Section [3] where judge inputs are factorized into a question
distribution Q and a response distribution R. We instantiate the response distribution at two levels
of generator strength: R cqk (0lder, less capable models) and R s4rong (newer, more capable mod-
els). The question distribution Q remains fixed but varies in whether a question was seen or unseen
during training. In this way, our setup simulates model development timelines. We measure judge
performance using consistent accuracy, as defined in Appendix [C} Raw consistent accuracy scores
are reported in Table [2]of Appendix [C] and serve as the foundation for the results below.

Notation. For clarity, we denote the consistent accuracy of a judge .J; trained on response distribu-
tion ¢ as Acc.(J;), where ¢ € {weak, strong}. The subscript e indicates the evaluation distribution,
with e € {weak, strong}. Thus, Acc,(J;) ties back to our dual-distribution formalism: it measures
the accuracy of a judge trained on distribution ¢ when evaluated on responses from distribution e.

5.1 HOW FUTURE-PROOF ARE JUDGE MODELS?

Experimental Setup. To study future-proofing in our simulated model development timeline, we
design the following setup: weak generators serve as proxies for existing LLMs, and judges are
trained on their responses. Strong generators represent newly released LLMs with greater capabili-
ties. By future-proofing, we refer to how well weak-response-trained judges can evaluate responses
from newer, stronger LLMs. Specifically, we quantify future-proofing using the following metrics:

FutureProof is defined as the difference in the performance of a weak-response-trained judge
between the weak and strong evaluation sets:

FutureProof = AcCstrong(Jweak) — ACCweak (Jweak)- 4)

This measures the change in performance when the evaluation distribution shifts from Rt to

Riest g» 1-€., a weak-to-strong response distribution shift. A positive value indicates relatively better
performance on strong responses, while a negative value indicates degradation; thus, higher values

correspond to more future-proof judges.
RefreshAdvantage is defined as the gain from re-training judges with strong responses:
RefreshAdvantage = AcCsirong(Jstrong) — ACCstrong (Jweak)- (5)

This can be viewed as the data advantage from changing the training response distribution from
Rie to REsen  when evaluating on Ri5sL, . Higher values indicate greater benefit from re-

training judges with the latest and stronger responses.

FutureProof Findings: For all models and training recipes, we plot the FutureProof values
in Figure Across all settings, we do not observe any instance where judges generalize to new
or stronger responses, with all FutureProof values being negative. Interestingly, no discernible
trend emerges across training recipes or model families. Generally, we find that SFT leads to higher
degradations in smaller models, but a smaller degradation in the large judge. In all, our results
show that current judge training approaches do not produce judges capable of reliably generalizing
to new, more capable model responses. Beyond lack of generalization, current judge recipes do
not exhibit consistent trends across base models and scales. In the absence of recipe-specific or
base-model-specific trends, we recommend evaluating FutureProof on a model-by-model basis.

RefreshAdvantage Findings. Our results, presented in Figure[2b] indicate that re-training with
up-to-date responses consistently leads to performance gains. In particular, across all training recipes
and base models, we observe positive RefreshAdvantage values. Training recipes also follow
a clear trend: retraining with SFT yields minimal but positive gains, whereas DPO yields the largest
improvements, providing up to 7.6 absolute percentage points for larger models. The combination
of DPO and SFT losses provides additional benefit over DPO alone for couple of models. We further
observe that as judge model size increases, updating training data has a larger impact for DPO-based
approaches. For example, with DPO, Mistral-24B exhibits an absolute gain of 7.6 percentage points
compared to its 8B counterpart, Mistral-8B, which improves by 4.3 points. Overall, these results
reveal that to evaluate the most capable models, evaluators must be trained on their outputs; relying
on stale training data leaves significant performance gains unrealized.



Under review as a conference paper at ICLR 2026

Llama3.1-8b Ministral-8b Mistral-24b
10 10 10
8 8 B FutureProof 8
7.0 mmm RefreshAdvantage
6 6 4.3 6 4.4
v 4 3.3 4 4
s 2 2 2
g 0 0 0 mm(”
=04 -00
-0.4 N
-2 21 16 -2 08
_4 -2.9 _4 —4f 32
—61 -5.5 -6 -6
DPO DPO-Cont DPO DPO-Cont DPO DPO-Cont

Figure 4: Changes in future-proofing metrics when replacing a weak-response-trained judge (solid)
with a continually trained judge (dashed). We observe a decrease in RefreshAdvantage and an
increase in FutureProof, with values approaching zero for a couple of models. This suggests that
continual training enables judges to evaluate strong responses more effectively than weak-trained
judges, as well as strong-trained judges, and adapts better to the weak-to-strong response shift.
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Figure 5: Changes in backward-compatibility metrics when replacing a strong-response-trained
judge (solid) with a continually-trained judge (dashed). We see an increase in BackCompat for a
couple of models, suggesting that continual training can help models better evaluate weak responses
than purely strong-trained judges. We also observe an increase in CompatShift, showing that
continually trained judges adapt better to the strong-to-weak response shift.

5.2 HOW BACKWARD-COMPATIBLE ARE JUDGE MODELS?

Experimental setup. Now, we extend our setup for future-proofing in Section [5.1] to study
backward-compatibility in a simulated model development timeline. A judge trained on strong or
newer generator responses represents the current judge, which is adept at evaluating new responses,
while weak generators represent older LLMs with lower capabilities. By backward-compatibility,
we refer to how well strong-response-trained judges can evaluate the responses of older, weaker
generators. Specifically, we quantify backward-compatibility using the following metrics:

BackCompatibility measures the performance gap when evaluating older, weaker responses
with the refreshed strong-response-trained judge instead of the weak-response-trained judge:

BackCompatibility = AcCyeak(Jstrong) — ACCweak (Jweak)- (6)

This setting is particularly important for established evaluation pipelines: if an old judge is replaced
by a new one while the task remains the same, how much does performance differ? We view this

as the data disadvantage from changing training data from Rra™ o RIin 4 When evaluating on

Rlest . A positive BackCompatibility indicates that the strong-trained judge outperforms
the weak-trained judge on weak responses (good backward compatibility), while a negative value

reflects performance degradation (poor backward compatibility).

CompatibilityShift quantifies the weak-to-strong distribution shift when evaluating older,
weaker responses with a strong-response-trained, refreshed judge. As noted in the previous section,
the reverse shift (strong-to-weak) can strongly affect judge performance. Here, we measure how the
out-of-distribution nature of backward compatibility impacts the newly trained judge:

CompatibilityShift = ACCweak(Jstrong) - Accstrong(tjstrong)- (7)

This captures the response-distribution shift opposite to FutureProof, i.e., from R, to Rirsy

or strong-to-weak. It measures how far a strong-trained judge falls below its potential under in-
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distribution evaluation. A positive value indicates better relative performance on weak responses,
while a negative value indicates degradation.

BackCompatibility Findings. In Figure[3a] we visualize the backward compatibility of judge
models trained on strong responses. When evaluating on weak responses, there is little drop in ab-
solute performance between judges trained on strong responses and those trained on in-distribution
weak responses. While methods involving SFT consistently cause small performance drops, our
results show that DPO training can enable newly trained judges to outperform weak-judge models.
The drop due to incompatibility is smaller than the advantage gained when moving from weak to
strong responses, as noted in the RefreshAdvantage findings. This indicates that judges trained
on newer responses are indeed backward compatible: they closely mimic the performance of weak-
trained judges, even in out-of-distribution settings. Thus, combined with our findings in Section[5.1]
we conclude that re-training with updated responses is universally beneficial: such refreshed judges
are not only much better at evaluating new model responses but can also serve as drop-in replace-
ments for their older counterparts with minimal loss in performance.

CompatibilityShift Findings. As shown above, judges trained on strong responses roughly
match the performance of those trained on weak responses when evaluating older responses. Despite
strong absolute performance, such newer judges are evaluating under a strong-to-weak distribution
shift; Figure [3b] plots the drop in performance due to this shift. Here, we observe that across all
judges and recipes, judges still experience degradation due to the out-of-distribution nature of evalu-
ation, with the lone exception being SFT-trained Llama3.1-8B. Surprisingly, here, the largest model,
finetuned from Mistral-24B, experiences the largest absolute drops across all training recipes. These
findings highlight that, while stronger trained judges can serve as appropriate drop-in replacements
for weaker judges, distribution shift causes them to underperform relative to their potential. How-
ever, compared to the degradation from the weak-to-strong response-distribution shift (as measured
by FutureProof in Section[5.1), these degradations are relatively smaller. This suggests that the
weak-to-strong evaluation response-distribution shift is a harder setting than strong-to-weak, again
highlighting the importance of retraining judges on new model responses.

5.3 CAN CONTINUAL TRAINING IMPROVE FUTURE-PROOFING AND
BACKWARD-COMPATIBILITY OF JUDGE MODELS?

Experimental setup. As discussed in Sections and training a judge from scratch on re-
sponses from newer generators is advantageous in evaluations. An alternative is to continually up-
date a judge originally trained on older responses by incrementally fine-tuning it on newer, stronger
responses. We simulate this continual learning paradigm by iteratively training Jy,cq% On responses
from stronger generators, denoting the resulting model as Jyeqk—sstrong (€€ Appendix [Ef for de-
tails). All experiments in this section use the DPO recipe due to compute constraints.

To assess the effect of continual training, we evaluate Jyeqk— strong 0N both future-proofing and
backward-compatibility metrics, comparing its performance against that of the original weakly
trained judge and the strongly trained judge, respectively. Specifically, we compare FutureProof
and RefreshAdvantage when replacing Jyear With Jyeak—strong in Equations (5)—(6), as
shown in Figure[d] We also compare CompatibilityShift and BackCompat when replacing
Jstrong With Jyeak—strong in Equations (7)—(8), as shown in Figure@ Together, these comparisons
reveal how continual training helps weak judges adapt to future distribution shifts while retaining
compatibility with weaker responses, relative to training from scratch.

Changes in Future-Proofing.  Figure shows that continual training consistently im-
proves future-proofing. FutureProof scores increase across all three models, while
RefreshAdvantage decreases, approaching zero for Ministral-8B and Mistral-24B. The reduc-
tion in RefreshAdvantage indicates that the benefit of retraining a strong model from scratch,
relative to continual training, largely disappears when evaluating stronger responses. At the same
time, the higher FutureProof scores of Jycqk—s strong demonstrate that continual training enables
better adaptation to the weak-to-strong distribution shift than simply retaining the weak model.

Changes in Backward-Compatibility. Figure [5|shows mixed but informative results on backward-
compatibility. BackCompatibility scores increase for Mistral-24B and Llama-3.1-8B but de-
crease for Ministral-8B. Higher BackCompatibility indicates that a continually trained judge
remains closer to the weakly trained judge when evaluating weak responses, compared to a model
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Figure 6: Generalization of judges trained on weak vs. strong responses to seen and unseen ques-
tions. Judges typically fail to generalize to unseen questions, showing large performance drops
relative to evaluating unseen responses on seen questions.

trained solely on strong responses. We also observe a notable increase in CompatibilityShift,
highlighting that continual training improves adaptation to older, weaker responses relative to purely
strong-trained models. Together, these results suggest that continual training can better preserve
backward-compatibility in several settings while also enhancing adaptability to distribution shifts.

5.4 HOW DO JUDGES GENERALIZE TO UNSEEN QUESTIONS AND RESPONSES?

Experimental setup. As LLMs advance, both responses and questions evolve (e.g., AIME24
vs. AIME25). We therefore examine how judges perform on previously unseen questions by sam-
pling from Q in our dual-distribution framework. To quantify the benefits of question exposure
during judge training, we define two evaluation splits. In the first, we select a subset of training
questions and sample new responses for them, which we call the seen-questions, unseen-responses
split. In the second, we draw questions from Q" that were excluded from training and pair them
with new responses, defining the unseen-questions, unseen-responses split. Comparing judge per-
formance across these splits reveals the performance gap due to question generalization.

QuestionGeneq.r = ACCweak,unseen(Jweak) - Accweak,seen(t]weak) (®)
QuGStionGenstrong = Accst'rong,unseen(Jstrong) - Accstrong,seen(']st'r'ong)- (9)

These metrics capture how well judges generalize across guestions: responses are drawn from the
same generator, with only the question split (seen vs. unseen during training) varied. A positive
value of Que st ionGen indicates better performance on unseen questions, while a negative value
indicates failure to generalize to unseen questions.

Findings. As shown in Figure[6] current judge models do not generalize well to unseen questions,
with nearly all judges exhibiting performance drops compared to evaluating on seen questions with
unseen responses. Surprisingly, we find that SFT enables the best generalization, with SFT-trained
judges showing the smallest absolute drops in most cases. Mistral-24B, however, exhibits the largest
drops within each training recipe, indicating poorer generalization compared to smaller models.
Overall, our experiments reveal that exposing judges to the questions they are likely to evaluate can
lead to significant performance gains.

6 CONCLUSION

We present a dual-distribution framework for automatic evaluation and analyze four key questions
surrounding finetuned LLM-as-judge models, a crucial component of the LLM development cy-
cle. First, we study future-proofing and show that judges trained on older responses struggle to
evaluate outputs from newer, stronger LLMs, but re-training on newer responses yields substantial
gains. Second, we examine backward compatibility and find that judges trained on newer responses
incur only minor drops, or even improvements, when evaluating older responses. Third, we demon-
strate that continual learning provides a more balanced adaptation to both older and newer response
distributions compared to training solely on stronger or weaker responses. Finally, we investigate
question generalization and find that judges experience large drops in performance on questions un-
seen during training. Overall, our work highlights critical challenges and actionable strategies for
developing robust, future-proof, and backward-compatible judge models.
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A LLM USAGE

Other than being used as part of the experiments conducted in this work, LLMs were used solely
as a writing assistance tool in preparing this paper submission. Their role was limited to polishing
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Figure 7: Generator strength on the DeepScaleR dataset, measured using pass@1 with 20 inde-
pendently sampled responses. A clear clustering emerges, with stronger, newer models (yellow)
outperforming weaker, older (green) ones.

language, improving clarity, and reducing redundancy. The prompt used for this purpose was similar
to “Please revise the writing of this, making sure to remove any grammatical mistakes.” All research
ideas, experimental designs, analyses, and claims presented in the paper are entirely the original
work of the authors. No part of the conceptual, methodological, or empirical contributions relies on
or originates from LLM outputs.

B GENERATORS AND GENERATOR STRENGTHS

Shorthand Full Model Identifier

Llama3.3-70B meta-1lama/Llama-3.3-70B-Instruct
Llama3.1-8B  meta-llama/Llama-3.1-8B-Instruct

Qwen2-7B Qwen/Qwen2-7B-Instruct

Qwen2.5-7B Qwen/Qwen?2.5-7B-Instruct

Qwen2.5-14B Qwen/Qwen2.5-14B-Instruct

Qwen2.5-32B Qwen/Qwen2.5-32B-Instruct

Gemma2-9B |google/gemma-2-9b-it

Gemma3-12B |google/gemma-3-12b-it

Ministral-8B  mistralai/Ministral-8B-Instruct-2410
Mistral-24B mistralai/Mistral-Small-24B-Instruct-2501

Table 1: Mapping of shorthand model names to their corresponding Hugging Face identifiers.

To ground our study, we choose the mathematics domain, as it provides objective verifiability and
has also been the focus of much contemporary LLM reasoning research. We begin with a set of can-
didate generators and a collection of math questions (), along with verifiable ground-truth answers
A*. For each question, we sample 20 responses from each generator using temperature sampling and
compute a pass@ [ score. This score represents the probability of obtaining at least one correct so-
lution when randomly selecting one solution from the 20 attempts, where correctness is determined
by matching the generator’s responses against A*.

Concretely, we use the DeepScaleR [Luo et al (2025) dataset, which contains 40K challeng-
ing Olympiad-level math problems spanning multiple years with corresponding ground-truth an-
swers. We then select popular open-source instruction-tuned models, as listed in Table [T} Gemma-

2-9B (Riviere et al] 2024), Gemma-3-12B (Kamath et al [2025), Llama-3.1-8B, Llama-3.3-
70B [Dubey et al| (2024), Ministral-8B la), and Mistral-Small-24B [b), Qwen2-
7B (Yang et al.,[2024a), Qwen2.5-7B (Yang et al.|[2024b), and Qwen2.5-32B (Yang et al.| [2024b).
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Figure[7} which plots the pass@1 scores of these models, reveals two distinct tiers within the group:
Newer, larger models (e.g., Qwen2.5-32B, Mistral-Small-24B) tend to have pass rates around 0.45,
whereas smaller, older models lag, with average pass-rate around 0.25. We therefore divide our set
of models into two groups: Weak generators (Gemma-2-9B, Llama3.1-8B, Qwen2-7B, Ministral-
8B) and strong generators (Gemma-3-12B, Qwen2.5-7B, Mistral-Small-24B, Llama3.3-70B, and
Qwen2.5-32B).

C CONSISTENT ACCURACY AND JUDGE’S PERFORMANCE ACROSS SPLITS

Consistent Accuracy. Since judge models are prone to positional biases (Wang et al.,[2023}|Li et al.,
2024b}; Xu et al., 2025b)—where their preference shifts depending on whether R; or Ro appears first
in the prompt—it is standard practice to evaluate judges using both response orderings (Tan et al.,
2025; Xu et al., 2025agb). Concretely, for input x = (Q, Ry, Rs), let Z denote the same sample,
but with response order flipped in the input prompt, i.e., Z = (Q, R2, R1). Then, evaluation with
consistent accuracy considers the judge correct only if it correctly identifies the better response
under both orderings:

Ace = ﬁ SO 1V (@) = Vi (@) A V(E) = V@), (10)

where 1[-] is the indicator function, P is the evaluation set consisting of pairs (z, V*(z)), and the
judge’s verdicts V() are compared against the ground-truth verdicts V*(x).

Furthermore, we report all consistent accuracy scores for our trained judges across different evalua-
tion splits in Table

D RESEARCH QUESTIONS IN THE DUAL-DISTRIBUTION FORMULATION

As described in Section [3| the dual-distribution formulation separates the question distribution Q
from the response distribution R, reflecting two real-world sources of shift: (1) more capable gen-
erators (an evolving R) and (2) new questions (an evolving Q). This decomposition allows us to
isolate and quantify the impact of each factor on judge performance. Building on this, we investigate
several practical questions about the shelf life of trained judges, focusing on four distinct settings:

How future-proof are judge models? For a judge to be future-proof, it must be able to evaluate
responses from newer, stronger models. To study this, we examine how a judge trained on responses
from the current generation of weak models performs when evaluating responses from strong mod-
els. Specifically, we train a judge on R %/ and evaluate it on both RI¢5!, and RLG5,, . This setup
characterizes how robust judges are to a distribution shift from weak to strong responses. Addition-
ally, we quantify the gains from retraining a judge on strong responses by replacing training data

train  ,; train
from R 2ok with responses from R0 .

How backward-compatible are judge models? Newly trained judges are fine-tuned to evaluate
newer, stronger response-generating models. However, does this focus on state-of-the-art genera-
tors come at the expense of performance on older, more established generators? To complement
our future-proofing experiments, we examine backward compatibility. Specifically, given a judge
trained on responses from R1%" we ask: how well does it match a judge trained on weaker

strong?®
responses from R when both are evaluating R'5!, responses? Beyond this comparison, eval-
uating weaker responses with a judge trained on strong responses also introduces a distribution shift

from strong to weak responses. We quantify any performance losses that result from this shift.

Can continual learning improve future-proofing and backward-compatibility of judge models?

Rather than training a new judge from scratch on Rtrong, We start with a judge trained on RE%%

and continually fine-tune it on RY%" to obtain a continually trained judge. In parallel to the

strong
settings above, we ask whether the continually trained judge narrows the gap on RSt | o relative to

one trained only on R!7%" "and whether it retains performance on R¢5!, relative to a judge trained

from scratch on R o+ This setup tests whether continual training helps a weak judge adapt to the

weak to strong response shift while preserving compatibility with older responses.
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How do judges generalize across unseen questions? As new questions are introduced for evalu-
ating LLMs, judge models must accurately assess responses to these questions. Here, we quantify
the benefit of a judge model having seen a question during training. To study this form of gener-
alization, we construct two evaluation splits. The first is a seen-questions, unseen-responses split,
created by selecting questions that appeared in the training set and sampling a new set of responses
for these questions from R!"%", The second is an unseen-questions, unseen-responses split, gen-
erated by sampling questions from Q'"%" that were not included in the training data, along with
their corresponding responses from R!"%". Comparing performance across these splits enables us
to assess how well judges generalize to previously seen questions versus entirely new ones.

E TRAINING SETUP DETAILS

Dataset Construction. To create the training and evaluation splits, we first construct pairwise in-
put samples for the judge, following prior work (Tan et al.l 2025} Wang et al., [2024b). For each
question, we sample multiple responses from each generator, and each response is then labeled as
“correct” or “incorrect” according to the ground-truth answer A*. We then form response pairs,
where each pair consists of one correct response and one incorrect response, resulting in a pairwise
sample with an objectively correct answer. Importantly, responses in a pair are drawn from a sin-
gle generator only. This choice ensures that the judge learns to distinguish correctness based on
reasoning quality rather than relying on stylistic differences between models, which could occur if
responses from different generators were mixed in a single pair. For each generator and question, we
only keep samples where there is at least one correct and one incorrect response and if this condition
is not met, the question is discarded for that generator. Based on the generator strengths defined
above, we construct datasets of aggregated pairwise samples consisting exclusively of either weak
or strong responses, which we refer to as our weak dataset and strong dataset, respectively.

Judge Data Distillation & Training Objectives. We train judges using three commonly adopted
recipes: supervised fine-tuning (SFT) (Li et al.| [2024b} Kim et al.l 2024a; [Vu et al.| [2024), direct
preference optimization (DPO) (Hu et al., 2024;|Wang et al.,|2024b), and a combined SFT and DPO
objective (Wang et al, |2024a; |Ye et al.| [2024; [Saad-Falcon et al.l [2024). As these recipes require
supervision, specifically, the CoT explanation C' (Sec. [2), we adopt the common feacher model
convention (Li et al., 2024b; Wang et al., [2024a). We prompt GPT-4o with (Q, Ry, R2) inputs,
sampling multiple responses (C, ‘7) per input. Based on the ground-truth verdict V*, we categorize
responses as correct (positive) samples ™ or incorrect (negative) samples y~. We only keep inputs
for which at least one y and y~ exists. This ensures that the inputs are exactly comparable for

SFT and DPO. Positive samples are then used for SFT, whereas positive-negative pairs are used for
DPO-based recipes.

Train and Evaluation Splits. To analyze the four practical questions described in Section[Iusing
the dual-distribution framework from Section |3 we split the weak and strong datasets into training
and test sets. For testing, we construct two distinct splits: an unseen-questions split and a seen-
questions split. The unseen-questions split contains questions not present during training, while
seen-questions split reuses training questions but samples new responses, with pairs constructed
following the same process as described above. Unless otherwise specified, we use unseen-questions
split for evaluation. Each training set contains roughly 70K samples, and each evaluation split
contains about 2.5K response-order-unflipped samples (5K after including response-order flips).

Base Judge and Generator Details. We choose three base models to finetune: Llama-3.1-8B,
Ministral-8B, and Mistral-24B, covering a range of model sizes and intrinsic strengths. Prior
work (Tan et al.| [2025) has shown that models often struggle to judge the correctness of pairs of
their own sampled responses. Another line of work (Chen et al.| [2025b; |[Panickssery et al., [2024)
has shown that models can recognize their own responses and exhibit self-bias. Thus, to disentangle
any effects of training a judge on self-generated responses, we exclude the base judge model from
serving as a generator. Specifically, we create two training sets (each with weak and strong splits),
ensuring that the base judge model is not included in the list of generators. We summarize these
training sets and the associated base models in Table 3]

Hyperparameters. All experiments with SFT, DPO, SFT+DPO are implemented using the AX-
OLOTL framework |/Axolotl maintainers and contributors| (2023). For SFT, we sweep learning rates
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in {1 x 1075, 2.5 x 1076, 5 x 1075, 1 x 107"} with a cosine decay scheduler. Across all eval-
uation splits, a learning rate of 2.5 x 106 consistently yields the best performance. For DPO, we
adopt standard hyperparameter choices from prior work (Ivison et al.l [2023), using a learning rate
of 5 x 10~7 and a preference strength parameter 3 = 0.1. For SFT+DPO, we optimize a joint loss
with equal weighting between the SFT and DPO objectives, using the same DPO hyperparameters
(learning rate 5 x 10~7, B = 0.1). All weak and strong judges are trained for 3 epochs, corre-
sponding to 2,800 gradient steps. For continual training experiments (section [5.3), we start from a
weak-response DPO-trained judge (trained for 3 epochs) and further train it on strong responses for
1 additional epoch, amounting to roughly 1,000 additional gradient steps. We sweep § € {0.1,1.0}
and report results in the main text using § = 1.0; additional results are included in Table [2] and
in Appendix
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Metric | Base | SFT | DPO | SFT+DPO
Llama3.1-8B (Judge trained on Weak)
Weak, Seen 3244 | 48.14 | 43.95 63.40

Strong, Seen 2841 | 44.66 | 36.62 60.48
Weak, Unseen | 30.79 | 46.06 | 39.41 58.47
Strong, Unseen | 27.76 | 41.91 | 33.94 55.29

Llama3.1-8B (Judge trained on Strong)
Weak, Seen 3244 | 4533 | 42.53 61.72
Strong, Seen 28.41 | 46.41 | 43.74 65.15
Weak, Unseen 30.79 | 44.12 | 39.61 57.60
Strong, Unseen | 27.76 | 42.21 | 40.91 59.27

Llama3.1-8B (Continual, 5 = 0.1)

Weak, Seen 32.44 44.69 -
Strong, Seen 28.41 - 41.19 -
Weak, Unseen 30.79 - 40.09 -
Strong, Unseen | 27.76 - 38.41 -
Llama3.1-8B (Continual, 8 = 1.0)

Weak, Seen 32.44 - 4543 -
Strong, Seen 28.41 - 39.13 -
Weak, Unseen 30.79 - 40.07 -
Strong, Unseen | 27.76 - 37.22 -

Ministral-8B (Judge trained on Weak)
Weak, Seen 33.87 | 48.06 | 61.04 61.39
Strong, Seen 28.72 | 41.94 | 5555 56.41
Weak, Unseen 33.81 | 45.93 | 56.41 56.72
Strong, Unseen | 29.14 | 41.91 | 54.86 53.26

Ministral-8B (Judge trained on Strong)
Weak, Seen 33.87 | 45.05 | 60.60 62.25
Strong, Seen 28.72 | 4331 | 64.69 67.30
Weak, Unseen 33.81 | 42.62 | 57.15 58.82
Strong, Unseen | 29.14 | 43.90 | 59.15 60.86

Ministral-8B (Continual, 5 = 0.1)

Weak, Seen 33.87 62.11 -
Strong, Seen 28.72 - 60.43 -
Weak, Unseen 33.81 - 54.67 -
Strong, Unseen | 29.14 - 53.13 -
Ministral-8B (Continual, 5 = 1.0)

Weak, Seen 33.87 - 59.24 -
Strong, Seen 28.72 - 58.51 -
Weak, Unseen 33.81 - 55.28 -
Strong, Unseen | 29.14 - 54.84 -

Mistral-24B (Judge trained on Weak)
Weak, Seen 41.00 | 52.18 | 76.57 76.90
Strong, Seen 37.69 | 4534 | 72.16 71.94
Weak, Unseen 40.75 | 47.49 | 68.56 71.41
Strong, Unseen | 38.03 | 46.57 | 65.36 65.21

Mistral-24B (Judge trained on Strong)
Weak, Seen 41.00 | 47.55 | 73.75 75.69
Strong, Seen 37.69 | 50.07 | 79.12 81.31
Weak, Unseen 40.75 | 45.85 | 66.30 68.52
Strong, Unseen | 38.03 | 47.70 | 69.73 71.14

Mistral-24B (Continual, 8 = 0.1)
41.00 -

Weak, Seen . 73.70 -
Strong, Seen 37.69 - 73.80 -
Weak, Unseen 40.75 - 64.45 -
Strong, Unseen | 38.03 - 62.37 -
Mistral-24B (Continual, 5 = 1.0)

Weak, Seen 41.00 - 78.22 -
Strong, Seen 37.69 - 75.45 -
Weak, Unseen 40.75 - 66.83 -
Strong, Unseen | 38.03 - 66.08 -

Table 2: Judge’s Consistent Accuracy. Columns represent different judge training configurations:
Base (zero-shot), SFT, DPO, and SFT+DPO. Each model is presented in multiple blocks: one for

judges trained on Weak data (Jweax), one for judges trained on Strong data (Jsyong), and additional
blocks for continual training runs (J\’feak _mrong) with 8 € {0.1,1.0}. Rows correspond to evaluation
splits, defined by the source of responses (Weak or Strong) and the novelty of questions (Seen
or Unseen). Base (zero-shot) values are repeated across all blocks to facilitate direct comparison

between different judge training strategies.
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Base Judge LLM Weak Response Dataset Strong Response Dataset

Ministral-8B, Mistral-Small-24B  Gemma?2-9B, Qwen2-7B, Qwen2.5-7B, Gemma3-12B,
Llama3.1-8B Llama3.3-70B

Llama3.1-8B Gemma2-9B, Qwen2-7B, Qwen2.5-7B, Gemma3-12B,

Ministral-8B

Mistral-Small-24B

Table 3: Overview of training data composition on a per-base LLM basis. To mitigate bias from
the difficulty of evaluating self-generated responses, we avoid training judge models on their own
responses. This produces per-judge training datasets composed of different generator responses.
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