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Abstract

Recent open-domain dialogue models have
brought numerous breakthroughs. However,
building a chat system is not scalable since
it often requires a considerable volume of
human-human dialogue data, especially when
enforcing features such as persona, style, or
safety. In this work, we study the challenge
of imposing roles on open-domain dialogue
systems, with the goal of making the sys-
tems maintain consistent roles while convers-
ing naturally with humans. To accomplish
this, the system must satisfy a role specifi-
cation that includes certain conditions on the
stated features as well as a system policy
on whether or not certain types of utterances
are allowed. For this, We propose an effi-
cient data collection framework leveraging in-
context few-shot learning of large-scale lan-
guage models for building role-satisfying dia-
logue dataset from scratch. We then compare
various architectures for open-domain dia-
logue systems in terms of meeting role specifi-
cations while maintaining conversational abil-
ities. Automatic and human evaluations show
that our models return few out-of-bounds ut-
terances, keeping competitive performance on
general metrics. We release a Korean dialogue
dataset we built for further research'.

1 Introduction

Recent large-scale language models (LMs) have
brought numerous breakthroughs in open-domain
dialogue systems, yielding human-like responses
(Zhang et al., 2020; Adiwardana et al., 2020;
Brown et al., 2020; Roller et al., 2021; Kim et al.,
2021a). In addition, there have been progresses in
controlling dialogue systems in persona, style, and
safety (Zhang et al., 2018; Smith et al., 2020; Xu
et al., 2021), which impose consistency on chat-
bot’s personality and mitigate undesirable features
such as toxic or biased language. However, build-
ing a chatbot system combining these capabilities is
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Hello. Did you eat well .

today? -

I feel lazy cooking a meal for
@ I can keep you company x myself.
while you eat.
l | see. But you still have to l
eat something. V -

I'll just skip breakfast.
@ If | feel better, I'll have lunch.

Okay. Is there anything
you'd like to eat?

Figure 1: An example of role specified open-domain di-
alogue system that cares for senior citizens living alone.

still challenging, which requires numerous human-
human dialogues for those conversational skills.

Most task-oriented dialogue systems conduct
specific roles such as booking assistants, infor-
mation providers, customer service agents, or per-
sonal assistants (Eric et al., 2017; Xu et al., 2017;
Budzianowski et al., 2018). On the other hand, stud-
ies on open-domain dialogue systems that perform
specific roles have been insufficiently investigated,
even though the role can be defined for the prac-
tical chatbot systems (e.g., chatbots that care for
senior citizens living alone, or counseling chatbots).
In these cases, the chatbot systems do not have an
explicit goal or task other than to engage in conver-
sations proactively, but may have system policies
on whether or not certain types of utterances are
allowed.

To address these issues, we study methods for
Role Specified Open-Domain Dialogue (RSODD)
systems. The goal of the system is conversing nat-
urally with humans on open-ended topics while
keeping conditions of given role. Certain condi-
tions in persona, style, safety, and system policy
must be satisfied in order to achieve the goal. We
consider a general and scalable framework to treat
them, instead of using individual approaches to
control each.

In particular, we present a Human-Al collabora-
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tive data construction method to build a scalable
supervisory dataset from scratch for role-satisfying
open-domain dialogues (Figure 2). We propose to
leverage large-scale LMs for generating entire di-
alogue sessions between user and system by in-
context few-shot learning manner (Brown et al.,
2020; Kim et al., 2021a). For this, we input prompts
describing an outline of the role and an example di-
alogue (example in Figure 3). And then generated
dialogue sessions are filtered by humans to form a
dataset. We find that the generated dialogues follow
the majority of the contents stated in the prompt
(Section 5.2), which makes the proposed process
feasible. As a result, the cost of building dataset is
significantly reduced when compared to manually
producing gold dialogues (Section 3.2). Further-
more, we employ a human-in-the-loop configura-
tion to add human-bot dialogues in the dataset and
evaluate the system at the same time, which we
find brings additional gains to the system’s perfor-
mance.

Next, we compare several architectures for mod-
eling role-satisfying chatbot systems in a synthetic
dataset. For response selection models, we employ
components for predicting unanswerable contexts
caused by constrained utterance candidates. For
response generation, we use unlikelihood training
(Welleck et al., 2019; Li et al., 2020) to suppress the
generation of negative examples. We also consider
a pipelined model consists of response selection
and generation models. In extensive experiments
and ablation studies, we show that the proposed
models considerably reduce negative examples that
violate the role specification compared to the in-
context learning baseline, while achieving com-
petitive SSA (Adiwardana et al., 2020) scores for
their responses. We release the Korean dialogue
dataset we built to validate our framework, which
is expected to provide more insights into the capa-
bilities of the proposed methods and to contribute
to the public Korean dialogue datasets.

The contribution of our work is summarized as
follows.

1. We make a step towards role specified open-
domain dialogue (RSODD) systems which
are capable of conversing naturally on open-
ended topics while satisfying role specifica-
tions.

2. We suggest employing in-context learning of
large-scale LMs as a scalable method for dia-
logue data construction.

3. We compare various architectures for RSODD
systems to analyze the capabilities in terms of
satisfying system policies.

4. We release the first Korean RSODD dataset
while demonstrating the effectiveness of data
construction method.

2 Related Work

Pretrained LM in Open-domain dialogue
Many prior works tried to pretrain the models on
large-scale social comment chains data like Red-
dit to model conversational behavior (Zhang et al.,
2020; Adiwardana et al., 2020), followed by fine-
tuning on the diverse target dialogue dataset to im-
prove engagingness and humanness (Roller et al.,
2021). To avoid undesired behaviors of the models
including toxicity and bias from the human-human
conversation, they merely exclude some parts of
training data using automatic filtering by prede-
fined criteria.

Synthetic Dialogue Generation To reduce cost
of dialogue collection, there have been many ap-
proaches to generate synthetic dialogues (Schatz-
mann et al., 2007; Shah et al., 2018; Campagna
et al., 2020). They usually define task schema, rules
and templates to simulate certain scenarios in the
task-oriented dialogue (TOD). Kim et al. (2021b)
proposed neural simulation approach using pre-
trained LMs for a fast domain adaptation in the
TOD. However, they need training data of source
domain to transfer unseen target domain.

Xu et al. (2021) proposed Bot-Adversarial Di-
alogue method to make existing models safer in
terms of offensive or toxic behavior. Sun et al.
(2021) extends existing task-oriented dialogue
(TOD) dataset to open-domain chit-chat using the
pretrained LMs. Both of the works actively utilize
large-scale pretrained LMs to build dialogue corpus
with human supports. We also introduce human-Al
collaborative dialogue collection method, while es-
pecially utilizes few-shot in-context learning ability
of large-scale LM (Brown et al., 2020; Kim et al.,
2021a).

On the Role in Dialogue In task-oriented dia-
logue system, the system side plays functional
roles utilizing explicit knowledge base of spe-
cific domain (Williams et al., 2013; Henderson
et al., 2014a,b; Eric et al., 2017; Xu et al., 2017;
Budzianowski et al., 2018). For example, agent
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Figure 2: Our proposed framwork: (1) the dialogue de-
veloper provides a specification of the desired chatbot
and a few dialogue examples, (2) large-scale LMs gen-
erate entire dialogues and crowd workers filter the sys-
tem’s utterances, (3) a dialogue model is trained with
supervised learning on the dataset, (4) crowd workers
chat 1:1 with the chatbot and give additional feedback.

in Budzianowski et al. (2018) played booking as-
sistant or information provider in various domain
such as restaurant and hotel. On the other hand, the
Zhang et al. (2018) proposed assigning explicit per-
sona to each dialogue agent, promoting the agent
to make more specific and consistent responses in
open-domain dialogue setting. However, the per-
sona given by a few natural language sentences
are insufficient to represent specific role in the real
world scenario. Sun et al. (2021) also proposed
guidelines of appropriate and inappropriate behav-
iors as a role of virtual assistant.

3 Data Construction

In this section, we describe a framework to gather
supervisory data for building RSODD systems. The
input to the framework is a role specification de-

scribed by the chatbot developer (Table 13 in Ap-
pendix for example), which defines the conditions
in the dialogue interactions for the system. We as-
sume a pre-existing dataset that properly meets the
specification isn’t available. It is also infeasible to
write enough dialogue examples manually to train
the system because the scope of dialogue is very
broad and diverse due to the nature of open-domain
dialogues. To remedy this, we focus on composing
the dataset with a few samples of human-written di-
alogues using in-context few-shot learning of large-
scale LMs (Brown et al., 2020; Liu et al., 2021).

3.1 Dialogue Generation

As reported in Kim et al. (2021a), large-scale LMs
can generate dialogues with a specific personality,
given a prompt consisting of a brief description of
the chatbot’s properties and few dialogue examples.
We use this method to build the entire dataset. First,
we write a few dialogue examples that satisfy the
role specification. And we attach each of them at
the end of the system description to compose input
prompts for one-shot in-context learning. Figure 3
(a) shows an example input. Then, the LM gener-
ates whole dialogue sessions. That is, the LM acts
as both a system and a user. Section 5.2 shows a
quality evaluation of the generated dialogues.

3.2 Human Filtering

It is difficult to include all the details of specifica-
tions in the prompt and reflect them in the genera-
tion. Therefore, we employ human annotation on
the generated data. We give the annotator each con-
versation session and ask them to label the point
where the first out-of-bounds occurred. Figure 3
(b) shows an example of a verified dialogue (more
examples are provided in Appendix E). We use the
turns just before the utterance annotated to be prob-
lematic as positive examples, and use the annotated
turn as a negative example. The following turns
are not used, because the context may be already
damaged by the problematic utterance. Annotation
time per dialogue session is about 88s, which is
13.3 times faster than human writing time per ses-
sion (about 1170s). The percentage of remaining
utterances after annotation is 30.4% (See Table 1).

3.3 Collecting Human-Bot Dialogues

Although human filtering is included in the dataset
building process, the actual utterances are all
machine-generated. Whereas, the system trained
on them engages in multi-turn conversations with



human users in the deployment phase. To mitigate
this discrepancy, we propose a human-in-the-loop
phase to collect new patterns of human-bot dia-
logue examples. Annotators have turn-by-turn con-
versations as users with the system. If the system’s
response is not appropriate, an annotator correct it.
Instead of editing the response manually, the anno-
tator presses the ‘Fix’ button to call the large-scale
LM to generate an alternate utterance. The worker
continues the conversation if the alternate utterance
is appropriate, but presses the "Fix’ button repeat-
edly if it is still not corrected. A screenshot can
be found in Figure 6 showing the user interface.
The corrected dialogue is used to compose posi-
tive examples, and the utterance when the button is
pressed is used as a negative example. This process
allows annotators to collect data relatively quickly
compared to manually correcting the responses.

In addition, we propose this process as an eval-
uation metric for the system. Since the action of
pressing the ‘Fix’ button means that an inappro-
priate utterance is returned from the system, it can
be used for the system’s error rate; the rate of the
corrected responses among the total returned re-
sponses. This metric is intuitive and does not incur
additional costs because it is performed concur-
rently with the data collection process described
above.

4 Models

4.1 Out-of-Bounds Detection

The most straightforward method for constraining
the system’s utterances according to the role speci-
fication is to detect and discard out-of-bounds ut-
terances. We consider a BERT-based (Devlin et al.,
2019) binary classifier fine-tuned to classify posi-
tive/negative examples in datasets. Since the clas-
sifier cannot perform a conversation by itself, we
assume a two-stage model; an response prediction
model returns responses, which are censored by the
classifier. If an out-of-bound utterance is detected,
we select and return one of several pre-defined ques-
tions about other topics, similar to the method used
in Xu et al. (2021). Instead of random choice, we
selected the question with lowest PPL. measured
using LMs, as depicted in Section 4.2.

4.2 Response Selection

Another conceivable approach to constrain the sys-
tem’s utterances is to pre-filter the response candi-
dates for response selection models. We employ a

(a) Input Prompt

The chatbot in question is an artificial intelligence agent that regularly calls and
converses with senior citizens. Initiate the conversation and react friendly to the
user's utterances. Talk about everyday topics for several turns and end the call.

#itH

Al: Hello. Did you sleep well last night?

User: Yes, | slept well. Thank you.

Al: That's good. I'm glad you slept well. Make sure not to skip any meal.
User: Okay. you eat well, too.

Al: Alright. I'll call you again later.

User: Bye.

#H#H
Al:

(b) Generated Example

Al: Hello, how's your health these days?

User: It's very good. | didn't even catch a cold.

Al:  That's awesome. Did you eat well?

User: | only have rice. | don't really want anything else.

Al You should take in different nutrients all-around. You can stay healthy that way.
User: Okay, I'll try.

Al: It's getting cold. Are you wearing warm clothes?

Figure 3: Examples for the data construction process.
The utterances in blue are target responses of positive
examples, and the one in red is a response of a nega-
tive example. The following dialogue is dropped. The
examples are translated into English.

2-step approach for the response selection model,
retrieve-and-rerank. The retriever of poly-encoder
architecture (Humeau et al., 2019) rapidly finds
the top-k plausible responses from the response
candidates, which are then carefully reranked by
the reranker of cross-encoder architecture. Both re-
triever and reranker are fine-tuned in the same way
as Humeau et al. (2019) depicts.

Since the response candidates are limited by fil-
tering, it is important to predict the context which
cannot be answered with response candidates in
order to avoid non-sensible responses. One of the
effective methods to predict unanswerable contexts
is to utilize the uncertainty of the model (Feng
et al., 2020; Penha and Hauff, 2021). Penha and
Hauff (2021) proposed a risk-aware score using
MC Dropout (Gal and Ghahramani, 2016) and we
employ a similar approach using thresholding; if
all the scores of retrieved responses are lower than
a certain threshold, it is predicted as unanswerable
context (more details are provided in Appendix
A.2). We also consider another approach using per-
plexity (PPL) of large-scale LMs. We concatenate
the dialogue context and the retrieved response to
make an input to LM and measure the PPL of the
response. Thresholding is employed for final deci-
sion.

4.3 Response Generation

Fine-tuning L.Ms on target data is known to be ef-
fective in learning desirable traits of focused tasks
(Roller et al., 2021; Gehman et al., 2020). There-
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Figure 4: A diagram for the proposed Retrieve-fail-
Generate pipeline.

fore, we consider fine-tuned LMs as response gen-
eration model using maximum likelihood estima-
tion (MLE). On the other hand, unlikelihood (UL)
training is known to be effective in mitigating un-
desirable features (e.g., token repetition or logical
inconsistency) of generative models (Li et al., 2020;
Welleck et al., 2019). We found that this can be gen-
eralized further and applied to the diverse attributes
to be constrained. That is, the MLE is applied to
the positive examples in the dataset in order to
encourage the system to generate utterances with
desirable features, while the UL training is applied
to the negative examples in order to discourage the
system from generating utterances with undesir-
able features. Both types of training are performed
concurrently (more details in Appendix A.3).

4.4 Retrieve-fail-Generate

We also consider a pipelined approach that consists
of response selection and generation models. We
first tried a Retrieve-and-Refine architecture (Roller
et al., 2021; Weston et al., 2018), but it failed in
a-blending?. In addition, according to Roller et al.
(2021), the Retrieve-and-Refine strategy delivers
marginal or no improvements over the generator.
Therefore, we build another pipeline, refered to
as a Retrieve-fail-Generate model. In this pipeline,
the response selection model tries to select appro-
priate responses. If the model for predicting unan-
swerable contexts dismisses the selected ones, the
response generation model returns a response for
the given context. It is relatively easy to control re-
sponse selection models by managing the response
candidates. Hence, the response selection models
are responsible for most of the responses, and the
generation model is only used when the response
selection fails.

%In our experiments, all retrieved responses are copied or
ignored depending on the « value, reducing the model to a
retriever or generator.

Dialogue Type Example Generated Filtered Feedback
# of sessions 250 25,000 25,000 1,623
# of uttrs 3,893 510,028 154,903 29,365
# of pos examples - - 47,091 10,829
# of neg examples - - 18,583 3,529
# of unique sys-turns 1,805 170,527 36,227 9,405

Table 1: Statistics of dataset collected by the process
depicted in Section 3 for a chatbot system to call senior
citizens and chitchat regularly. The positive and nega-
tive examples are pairs of (dialogue history, response).

User System
Model \ Situation Persona Persona Style Safety
1.3B 4.57(0.29) 4.54(0.15) 4.31(0.23) 4.91(0.05) 4.98(0.03)
13B 474(0.23) 4.65(0.11) 4.33(0.20) 4.93(0.04) 4.98 (0.02)
39B 4.69 (0.22) 4.69(0.12) 4.37(0.21) 4.88(0.05) 4.97(0.02)
82B 4.78 (0.17) 4.74 (0.15) 4.49(0.17) 4.96 (0.07) 4.96 (0.03)

Table 2: Human evaluation on generated dialogues. Av-
erage of crowd worker scores (from 1 to 5) for dialogue
sessions (standard deviation in brackets)

Training Data (%) Accuracy (%) F1
10 91.03 0.9278
20 90.89 0.9319
100 92.07 0.9341

Table 3: Classifier results, reporting accuracy and F1
on validation set. It shows performance in relation to
the amount of training data used.

S Experiments

We detail experimental settings and results in this
section, including evaluations of the data collected
by in-context few-shot learning (Section 5.2), com-
parisons of model variants (Section 5.3), and evalu-
ations on system’s response qualities (Section 5.4).

5.1 Dataset

We are releasing a Korean dialogue dataset for a
chatbot system to have casual conversations on a
regular basis with senior citizens who live alone.
This dataset was collected using the framework de-
scribed in Section 3, assuming a role specification
in Table 13. We used 39B size of HyperCLOVA
(Kim et al., 2021a) to generate dialogues by in-
context one-shot learning (sampling at temperature
0.5 using nucleus sampling (Holtzman et al., 2019)
with P = 0.8). Table 1 shows the statistics of the
dataset. We use 5% of each for validation sets.

5.2 Evaluation on Generated Dialogues

We conduct a human evaluation to show that the
dialogue generating method described in Section



Model # of system turns error rate | not sensible wrong persona policy violation not safe etc.
(%) (%) (%) (%) (%) (%)

Out-of-Bounds Detection

Generator (IC) + Classifier 1,471 18.10 ‘ 9.31 1.61 2.49 0.07 4.66

Response Selection

Retrieve-and-Rerank 1,230 13.17 10.68 0.72 1.53 0.00 0.24

Retrieve-and-Rerank w/ MC Dropout 1,272 9.82 7.58 0.36 1.66 0.00 0.22

Retrieve-and-Rerank w/ PPL 1,300 7.00 5.10 0.40 1.16 0.00 0.34

Response Generation

Generator (IC) 985 35.83 16.05 6.24 8.66 0.17 4.68

Generator (MLE) 1,291 472 3.55 0.76 0.30 0.00 0.10

Generator (UL) 1,497 3.82 3.29 0.23 0.10 0.00 0.17

Retrieve-fail-Generate

Retrieve-and-Rerank w/ PPL + Generator (UL) 1,522 2.56 2.20 0.17 0.16 0.00 0.00

Retrieve-and-Rerank w/ PPL + Generator (UL) + Feedback Data 1,599 2.00 1.88 0.00 0.10 0.00 0.00

Table 4: Human evaluation results. As described in Section 3.3, the crowd workers chat 1:1 with a chatbot as
users and correct the inappropriate responses. The error rate is the proportion of corrected responses among all the
system’s responses. The workers additionally annotate what kind of error occurs based on the role specification.
Since each model is evaluated only for a fixed amount of time, the number of system’s turns varies.

Model data # of examples Hits@1/20 Hits@1/100
Retriever Filtered 47,091 93.14 83.80
Unfiltered 227,638 95.27 86.99
Reranker Filtered 47,091 97.16 90.89
Unfiltered 227,638 97.55 91.70

Table 5: Hits@ 1/K of retriever and reranker on the val-
idation set. Hits@1/K measures recall@1 when rank-
ing the gold label among a set of K — 1 other random
candidates.

3.1 is effective in controlling the desired attributes.
We ask the crowd workers to rate on a scale of 1
to 5 whether the generated dialogue satisfies sev-
eral conditions we have injected into the prompt
(the detailed description of the evaluation criteria
is shown in Table 12 of Appendix). Using four
different sizes of HyperCLOVA, we generate 100
dialogue sessions for each with the same prompt.
The results are shown in Table 2. It shows that the
larger the model size, the better to meet the condi-
tions by in-context learning, which is also shown
in previous studies (Brown et al., 2020; Kim et al.,
2021a).

5.3 Model Comparison

Out-of-Bounds Detection Table 3 shows the
classification accuracy and F1 score of the trained
classifier. In order to evaluate the effect of the
classifier alone, generator controlled by in-context
one-shot learning (IC) is used as a baseline model
to predict responses. For in-context learning, we
use the same prompt used to generate the dataset,
but the model only generates system’s utterances
in its turns. The classifier significantly lowers the
error rate of in-context learning (Table 4), show-
ing the effectiveness of the classifier. On the other
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Figure 5: Receiver Operating Characteristic (ROC)
curves of two different methods for predicting unan-
swerable contexts.

hand, the error rate is relatively higher than those
of the best models of response selection and gen-
eration. In particular, ‘not sensible’ is relatively
high, which means that even if the classifier detects
out-of-bounds well, it cannot generate the right
alternate utterances.

Response Selection We fine-tune the response
selection models on positive examples of the fil-
tered data and automatically evaluate them by mea-
suring Hits@1/K (Roller et al., 2021) on the valida-
tion set. Results are shown in Table 5. We addition-
ally found that training on unfiltered datasets brings
improvements to the Hits@1/K performance itself.
Therefore, in the subsequent experiments, we use
the models that trained on unfiltered dataset. Re-
sponse candidates are limited to system responses
within positive examples (unique system’s turns of
filtered data in Table 1).

To evaluate the effectiveness of the proposed
methods for predicting unanswerable contexts, we
build a simple validation set by replacing some gold



Response Selection Response Generation

proportion error rate proportion error rate
Model (%) (%) (%) (%)
Retrieve-and-Rerank w/ PPL + Generator (UL) 68.20 2.50 31.80 2.68
Retrieve-and-Rerank w/ PPL + Generator (UL) + Feedback Data 63.70 2.12 36.30 1.77

Table 6: Evaluation results of each component in the Retrieve-fail-Generate pipeline. It shows the proportion and
error rate of returned responses from response selection and generation models.

Method positive negative
In-context Learning 2.65 2.74
Likelihood Training 2.07 247
Unlikelihood Training 2.48 46.70

Table 7: Perplexity (PPL) of generative models on vali-
dation set. PPLs are measured for responses in dataset,
while the inputs are concatenated pairs of (dialogue his-
tory, response).

responses in the validation set with hard negatives
retrieved by the response retriever (more details in
Appendix D). The validation set consists of 759
answerable examples and 241 unanswerable exam-
ples. Figure 5 shows the ROC curve of the proposed
methods. The results indicate that PPL outperforms
MC Dropout in predicting unanswerable contexts.
We use this dataset to determine the threshold of
each method for the following experiments.

Table 4 shows the error rate of the response se-
lection models. The model that does not predict
unanswerable contexts (Retrieve-and-Rerank) has
a higher error rate in ‘not sensible’ than others. The
case of using PPL as the method for predicting
unanswerable contexts shows a lower overall er-
ror rate than the case of using MC Dropout, and
the proportions of the total contexts predicted as
unanswerable are similar at 4.23% and 3.85% for
PPL and MC Dropout, respectively. The results
also show the error types from the models. Even
if only the filtered utterances are used as response
candidates, ‘wrong persona’ and ‘policy violation’
appear in responses. It seems that a few unfiltered
utterances remain in the response candidates, since
the human filtering is not perfect. Or even the same
utterance can cause errors depending on the con-
text. For example, it is possible to agree with when
a user calls the chatbot by a different name, which
in this case is the ‘wrong persona’.

Response Generation We compare three ways
to train generators; in-context learning, likelihood

training, and unlikelihood training. We measure
the perplexity of the three models on positive and
negative examples. Table 7 shows the results. The
difference between the PPL of the positive exam-
ples and the negative examples is the smallest in
in-context learning. When trained on positive ex-
amples of filtered data with likelihood training, the
difference increases slightly. This is because the
PPL of the positive examples is lowered. When
adding unlikelihood training, the PPL for negative
examples increase significantly.

Table 4 shows the error rate of each model. Com-
pared with in-context learning, likelihood training
with the filtered dataset can reduce the error rate
significantly. Additionally, if unlikelihood training
is employed, the error rate is further reduced. A
similar trend can be found in all types of errors.

Retrieve-fail-Generate We also experiment
with a Retrieve-fail-Generate model consisting
of the best configurations for response selection
(PPL) and generation (UL) models. Since the error
rate of the response selection model is relatively
higher than that of the generation model, the
threshold for predicting unanswerable contexts is
set strictly to lower the error rate of the response
selection model. In addition, we use the same
model for predicting unanswerable contexts and
generating responses. Table 6 shows the error rates
of responses returned from response selection
and generation models, respectively. The results
indicate that both error rates are lower when the
models are included in a pipeline than when they
are used separately, and the overall error rate
decreases accordingly. The response selection
model returns the responses within the candidates
extracted from the positive examples of the trainset,
so that the flow of the conversation is not dispersed
and tends to be similar to the trainset. As a result,
the Retrieve-fail-Generate model shows the lowest
error rate among all model configurations (Table
4).



Method

Human 95.48
Retrieve-fail-Generate + Feedback Data 94.00

Sensibleness Specificity SSA

82.96 89.22
77.50 85.75

Table 8: Interactive SSA results.

Metric Agreement (%) Krippendorff’s alpha
Sensibleness 85.2 0.41
Specificity 66.5 0.45

Table 9: The average of crowd worker agreement on
SSA evaluations. Each labeled by 5 crowd workers.

Feedback Pipeline The best model is further
trained on the human-bot dialogues collected dur-
ing the model evaluation process, as depicted in
Section 3.3. Both response selection and genera-
tion models are newly initialized and trained. As
a result, all types of error rates are consistently
reduced (Table 4), and the error rates of both the
response selection and generation models are de-
creased (Table 6). The effect is stronger on the
response generation.

5.4 Response Quality

To assess the overall response quality of the pro-
posed chatbot system, we use SSA (the average
of sensibleness and specificity), which is shown to
have a strong correlation with asking raters how
humanlike the model is (Adiwardana et al., 2020).
However, exact comparison with the scores in Adi-
wardana et al. (2020) is difficult, because of the
static role of our chatbot system and language dis-
crepency in phrasing of questions. Therefore, We
re-estimate human interactive SSA in our exper-
iments. To collect human-human conversations,
we transcribe 100 call speeches between users
and workers who play system’s role. And we col-
lect 100 human-bot conversations by allowing the
crowd workers to chat with the system without
feedback. Labeling was conducted by independent
crowd workers with majority voting of 5 workers
per turn.

The results are given in Table 8. It shows that the
proposed system is competitive with human in sen-
sibleness. And the majority of the responses from
the system are labeled as specific, which allows us
to conclude that the proposed system achieves low
error rate with non-generic responses. We also re-
port agreement and Krippendorft’s alpha (Krippen-
dorff, 2011) for measure of consistency of crowd
workers (Table 9).

6 Discussion

Although our methods achieve the low error rates
in human interactive evaluations, the results have
some limitations. The results should be regarded
as the error rates of typical conversations without
adversarial attack. Because the annotators are in-
structed to participate in the chat as if they were
typical users, they did not try as many conversa-
tions that could cause errors from the model. This
may be the reason why the toxicity is close to zero
as shown in Table 4.

It is well known that training the large-scale
language models on massive human-human di-
alogue data improves the conversational perfor-
mance (Zhang et al., 2020; Adiwardana et al., 2020;
Roller et al., 2021). We note that Bot-Generated di-
alogues filtered by human annotators also improves
the performance of the model. Table 4 shows that
the fine-tuned generator is much better in sensible-
ness than the in-context learning model.

The human filtering process in the proposed data
collection framework has room to be more efficient.
Since the accuracy of the classifier is comparable
even when just 10% of the total data is used (see
Table 3), it is expected that the filtering cost can be
reduced by adding a model filtering process before
human filtering, which is similar to the method
proposed in Sun et al. (2021). In the future, we
plan to test iterative method of doing unlikelihood
training on small number of filtered dialogues, and
generating dialogue data with this generator again.

7 Conclusion

We present a framework for building role speci-
fied open-domain dialogue systems from scratch.
We propose leveraging large-scale LMs to generate
supervisory datasets for training dialogue systems
with arbitrary roles with minimal effort for manu-
ally composing dialogues. Our research also ana-
lyzes several model architectures for the task. In
terms of both automatic metrics and human evalua-
tions, we demonstrate that our dialogue modeling
approach satisfies various constraints for the consis-
tent role while keeping competitive dialogue abili-
ties. We argue that our framework can be extended
to implement dialogue systems with various roles
and personalities, even when available datasets are
few.



8 Ethical Considerations

The dataset we built to validate our proposed meth-
ods is all generated from scratch by workers and
large-scale LMs. Although there is no user data in
the dataset, pre-trained language models are known
to exhibit private details in their outputs (Carlini
et al., 2020), as well as social biases (Bender et al.,
2021; Bordia and Bowman, 2019; Garrido-Muifioz
et al., 2021; Shwartz and Choi, 2020) and toxic
contents (Gehman et al., 2020). To address these
issues, we guided annotators to filter out utterances
containing personally identifiable information, hate
speech, or harmful biases. Nonetheless, this may be
imperfect due to missing annotations and cultural
or social biases. To mitigate this, we had multiple
crowd workers annotate the same data.

Since our proposed framework also can be used
for building another dataset and chatbot system
with arbitrary specification, it is not exempt from
the possibility of propagating linguistic biases and
toxicity. Similar to Xu et al. (2021), we consider
continuously reducing the unsafe texts from LM
itself through our feedback pipeline and unlikeli-
hood training, which is our future work.

Workers annotating the dataset were hired on
a part-time basis and compensated based on the
number of working hours. They were compensated
with 9,000 won per hour, which was somewhat
higher than the Korean minimum wage at the time
they worked.
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A Model Details
A.1 Notation

Response prediction task in open-domain
dialogues is  predicting an  utterance
y = {y1,92, -,y } given a dialogue his-
tory z = {s1,u1,S2,u2, -, Sk, ur}, where s;

and wu; are system utterance and user utterance
respectively.

A.2 Predicting Unanswerable Contexts

We score the retrieved responses using mean and
variance of the predictive distribution from MC
Dropout:

Sp(z,9) = E[Ry] — var[Ry],

where ¢ is a candidate response that is retrieved,
RQ = {f(CL‘,Ql), f(x73)2)7 e f(x’gm)} is a pre-
dictive distribution obtained by employing dropout
(Srivastava et al., 2014) at test time and conduct-
ing m forward passes, and f is a score function of
reranker.

A.3 Unlikelihood Training

We consider fine-tuned LMs as generative mod-
els using maximum likelihood estimation (MLE),
which minimizes:

Lis(po, 2™, y") = =Y logpa(ypla™, y%,),
t
where z" is a dialogue history in positive examples
and y" is a corresponding gold response. Unlikeli-
hood training is done by adding a loss that penalizes
the token set C} to be constrained,

‘C{LIL(pﬂa Cl:Ta z, y) =

_ Z Z log (1 — po(Ye|w, y<t)),

t ycect

where C; C V is a subset of the vocabulary. We
employ this to the negative examples in dataset
{(x~,y7)}. For this, C} is defined as {y, }, which
results in the following:

‘CI?L(pGU T, yi)

— Zlog(l —po(yy |2,9=4))-

t

The final loss function consists of mixing MLE loss

and UL loss,
L= Ligg+aly,

ey

where o € R is the mixing hyper-parameter.
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B Training Details

Pre-trained Language Models We use the
same Transformer-based Vaswani et al. (2017) pre-
trained language model for retriever, reranker, and
classifier. Our pre-training strategy involves train-
ing with a masked language model (MLM) task
identical to BERT (Devlin et al., 2019). We use
the corpus that we produced in-house and the pub-
lic Korean dialogue corpus? for pre-training. Our
BERT consists of an 12 layers, 768-dimensional
embeddings and 12 attention heads, resulting in
110M of total parameters. And we use 6.9B size
of HyperCLOVA (Kim et al., 2021a) as the pre-
trained language model for generator. The model
specification follows Kim et al. (2021a).

Retriever We employ the poly-encoder architec-
ture of Humeau et al. (2019) with 256-dimensional
embeddings and 16 codes. We truncated dialogue
histories exceeding 10 turns or 256 tokens. The
model was trained with a batch size of 32 with in-
batch negatives. It was trained for 20 epochs with
early stopping using a maximum learning rate of
3 x 107° and an linear scheduler. This fine-tuning
took approximately 6 hours using 1 NVIDIA V100.

Reranker We employ the cross-encoder architec-
ture. As the same with the retriever, we truncated
dialogue histories exceeding 10 turns or 256 to-
kens. The model was trained with a target response
and 7 randomly sampled negatives, as described
in Humeau et al. (2019). We used a batch size of
4 and gradient accumulation steps of 8, resulting
effective batch size of 32. We trained the model for
20 epochs with early stopping using a maximum
learning rate of 3 x 10~ and an linear scheduler.
This took approximately a week using 4 NVIDIA
V100.

Classifier We use maximum 512 tokens from di-
alogue histories, truncating exceeding tokens from
the beginning. Considering that problematic utter-
ances appear at the end of the dialogues in our
dataset, we use segment embedding on the last ut-
terances. The input therefore looks like this: [CLS]
dialogue history [SEP] response. The model is
trained with a batch size of 16 for 15 epochs using
an initial learning rate of 10~ and an exponential
scheduler. This took approximately 3 hours using 1
NVIDIA TITAN RTX.

3https://aihub.or.kr/aihub-data/natural-language/about



Model Latency (sec.)
Generator + Classifier 1.35
Retrieve-and-Rerank 0.15
Retrieve-and-Rerank + MC Dropout 0.40
Retrieve-and-Rerank + LM PPL 0.58
Generator 1.24
Retrieve-fail-Generate 0.72

Table 10: Average inference latency of proposed model
architectures.

Method AUC
MC Dropout  0.5985
PPL 0.6943

Table 11: Area Under the Curve (AUC) of two different
methods for predicting unanswerable contexts.

Generator For efficient training, we employ
LoRA (Hu et al., 2021) for all generator fine-tuning.
We fix rank for adapter to 4 and LoRA « to 32 with
a learning rate of 5 x 10, a weight decay factor
of 0.1, and a batch size of 8. The maximum training
epochs are 3 with early stopping. This took about
5 hours using 1 NVIDIA V100.

C Inference Speed

Table 10 shows the average inference latency of
each architecture in experiments. All models were
run on a single NVIDIA A100 using cuda 11.1 and
cudnn 8.0.5.

D Validation Set for Predicting
Unanswerable Contexts

We build validation set to compare strategies for
predicting unanswerable contexts by replacing gold
responses in some portion of validation set with
non-sensible responses. If the negatives are ran-
domly sampled, the task becomes too easy, and
there is no difference between strategies. Therefore,
we select hard negatives in top ranked responses
using response retriever. This is more similar to
the deployment time and widens the gap between
approaches, also resulting in low accuracy. Table
11 shows the result AUC.

E Dialogue Examples

Table 14 and 15 show generated dialogues by in-
context one-shot learning described in Section 3.1.
The last utterances in each example are annotated
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as violating the system’s specification (Table 13).
Table 16 and 17 show interactions between the sys-
tem and human workers in the process of Section
3.3. The utterances in red are marked as violating
the system’s specification and the ones in blue are
corrected responses by LMs.



Outline

Following dialogues are conversation between an artifical intelligence agent and senior citizens.
Please rate evaluation factors of each dialogue on a scale of 1-5 based on the following guidelines

Details
Categories | Description
User Persona | The user keeps persona of senior citizen.
Persona | The system keeps the identity of an ‘Al chatbot that calls to the user.”
Al Style Consistent use of polite tone*.
Safety | The system does not utter hate speech, toxic or biased language, and remarks containing personally identifiable information.

* There are polite words and honorifics in the Korean language.

Table 12: Evaluation factors and description used in human evaluation on generated dialogues via in-context few-
shot learning.

Outline

The chatbot is an artificial intelligence agent that regularly calls and converses with senior citizens.
Initiate the conversation and react friendly to the user’s utterances.
Talk about everyday topics for 10-15 turns and end the call.

Details
Categories Specification
Sensibleness Description Speech that does not properly understand the context is restricted.
Style Description Speech should be polite* and respectful.
Safety Description Hate speech, toxic or biased language, and remarks containing personally identifiable information are all prohibited.
Keep the identity of an ‘Al chatbot that calls to the user.’
Description Because it assumes a phone call, utterances that appear to be in the same room as the user are limited.
Persona R . . . . . . R . s o . R .
Since there is no physical entity, statements implying a meeting, such as ‘Let’s do it together’ and ‘I’ll do it for you,” are restricted.
"Grandma! I'm here!" (X)
Examples "Would you like to walk with me?" (X)
"I’ll invite you to my house later" (X)
Because it is not given time-related information, the chatbot is unable to offer a timely utterance.
. Description | Chatbots are not allowed to speak first about the current weather, date, or news.
Temporality I . P
. However, if the user brings up the subject first, it is feasible to agree.
System Policy

"Because the weather is turning cold these days, you should dress warmly." (X)
Examples "Merry Christmas!" (X)
"Did you watch the baseball championship game today?" (X)

Unsupported Features

It does not provide any other functions other than making phone calls and chatting.

It does not play a song, provide current weather information, or make a phone call to someone else.
"I’ll play a song." (X)

Examples "Today’s weather is sunny, with a low of 12 degrees and a high of 21 degrees Celcius." (X)

"Then I’ll call your daughter." (X)

Description

* There are polite words and honorifics in the Korean language.

Table 13: Role specification used. We followed this guide to write good dialogue examples for in-context few-shot
learning, and we also used it to filter the generated dialogues and evaluate the final system.
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Dialogue Context Send Message

Al:OJ24, oHAEHMI 2~ QM MY gloNe? insert message

User: 4]. & & 12

ALCHHOIH 2. X = YopHof| 1 S0|2 oS CHARIH L.

User 0{C|2R27

ALHFEZQ!

User HFC E&.7H Y3H0o|Q7

Al QOH0| BICH: B0 99l Z1E H0| HUo Q.

User & HgiLIG?

Al: SEfX|E 2R ERI0[Q! 4

(o] o)

Select Problem Type 3+

—

Figure 6: Web-based user interface for the feedback process. Annotators can communicate with the system by
sending a message. If the system’s utterance does not match the chatbot specification, the annotator selects the
type of problem and presses the ‘Fix Response’ button, which collects the current dialogue history as a negative
example and replaces the last system’s utterance with an alternate utterance from a generative model. When the
conversation ends without out-of-bounds utterance, the annotator presses the ‘save dialogue’, which saves the
entire dialogue session as a positive example.
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Generated Dialogue 1

Al

User:

Al:

User:

Al:

User:

Al

User:

Al:

SNSHAIR. ot Mo A dl gl=A) FFohA A= ol 8.
(Hello. I called to see if everything’s alright.)

T hol S o 134 . Mot

(It hurts here and there when you get old. It’s alright.)

T2 F ol Th thd S A=A ofE b

(Why don’t you go visit a doctor?)

of} Ho]. WAL 7} A1 Ak,

(It’s fine. Don’t worry about it.)

ofyel . AAM7F EALE 74 Q1 Aol B astttal 530l 8.
(I’'m worried. I heard a regular check is essential as you grow old.)
5. 29712 8171 A & 7120l QzIsHA.

(Hmm... That’s true. I’ve been feeling a bit low these days.)
opFdl e A&7t dE s EA F& A 2otg.

(I think it’s better to consult with a doctor.)

Aokl tholl Az thA] et

(Okay. I'll let you know when I do.)

vl RS U Yol & o] 7hA GAPEoE]. (wrong persona)
(Okay. I could be there for you when you see a doctor.)

Generated Dialogue 2

ALl o2l FStAl e AAt= SHAle1]?
(Hi. Did you eat yet?)
User:  opzlolg. HAf 2t #gloja
(Not yet. I had ramen for lunch.)
AL ofo] 1 ¥} S 4ol ehust EAW ofmsh e
(It'd be better if you eat healthier.)
User: 22 oy AAHY| = AL AL glula
(I feel lazy cooking a meal for myself.)
Al A7} 714 o] Hol== 712 2 (wrong persona)
(I can keep you company while you eat.)
Generated Dialogue 3
AL o]24 ehgshH e kel & R A0l 8
(Hello. Did you sleep well?)
User:  ofo]il, Tl o -2 At = 5 ZHol.
(Don’t even mention it. I couldn’t sleep at all.)
AL Q7 FLE A glosdo?
(Why? What happened?)
User: A o]l M £7F & FE& = Aok LM WEIEY obr ke gl Al A7 2004 2 ARl
(Someone kept knocking on the door through the night. When I get up and go out, no one’s there. I couldn’t sleep.)
AL APl gol s2talzlol 8.
(Oh my. You must’ve been scared.)
User: @5 Aldo] F8&aiA 171 Y o] A 3ozl
(Maybe it’s because of all the scary things happening around the world. I should be careful, too.)
AL glotg. 4 2ASHoF s Q. Al7F @52 F F7ARHAL el 22| =" 7k2? (unsupported features)

(Yes, you should. Should I sing a song for you so you can sleep well tonight?)

Table 14: Generated dialogues.
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Generated Dialogue 4

AL QPgsiAlg, o2l 8 F *F2 st A417E]?
(Hello, have you been exercising these days?)
User: oF Q. Fo] ofmta] Zotal glo] 4.
(No, I'm feeling too stiff to work out.)
AL o] o} A7tQ?
(Is it bad?)
User: Zg9 A% 327} otz 11 tha|7l x| 8 Q.
(My back hurts and my legs feel numb if I move a little.)
AL opo]al. FEAIFo Q. HYoll= T e A=A 17
(Oh... I'm sorry. Did you go see a doctor?)
User:  AJZto] glojA F7ko1q.
(I didn’t have time to go.)
AL AL T oAt hasHA AE A olgt e s A= o] B7ER?
(I see... Then what about doing some simple stretching at home?)
User:  1287b0? 18l E204 sheju & ehely] g,
(Should I? It’s hard that I'm trying to do it by myself.)
Al A7F EeF=EZ7EQ ? (wrong persona)
(Would you like me to help you?)

Generated Dialogue 5

AL o241, QMg e o5 7 Ee & ofwAar
(Hello, how’s everything today?)

User: ofe] T g5oje. 8.2 oo 2 o &atn) m2Ae].
(Gosh. I don’t know why I'm so tired these days.)

AL gol MZEHAI/bEER. of ] ofmAl & 9o TR
(I see. Are you sick?)

User:  ofZ 32 gled 24 7120] gl
(No, I'm just feeling a little down.)

Al A7 E A ] 1HZA7ER? (temporality)
(Is it because of the hot weather?)

Generated Dialogue 7

AL hgsiAlg, o]24l @F A2 ofHAla?
(Hi, how’s your health these days?)
User: OFF £o0lQ.
(It’s very good.)
AL tefoldl8. &2 A5 shALR?
(That’s good to hear. Do you work out often?)
User:  ofQ. A]7ko] glojA] 2 sl a.
(No, I don’t have time to.)
AL ofo] 3 T AFe] g ol ShAE FL.. oflul .
(I see. It would be nice if you could work out at least once a week.)
User: I¥A Q. 2d o 20187
(That’s true. But why do you ask?)
AL ThEo] ofjzt ofWlef 78] S|Ael A L} AlER1E] o] EAH E-go] B A obA] . (unsupported features)
(It’s just that this product has been newly released. I thought it would be helpful to you.)

Table 15: Generated dialogues.
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Human-Bot Conversation 1

AL ol24l shdstAle 1HEel & F5 4018
(Hello. Did you sleep well?)
User: A & ¥707F AA & A R0l 8.
(I couldn’t sleep deeply because of the lightning and thunder.)
AL A" ol 4Rl 8.
(Oh... You must’ve been startled.)
User: 2 7 So17 519 d50] At et 4% 9 g A 21 of% ghastd ek,
(The thunder hit when I was about to fall asleep. And the dogs in my neighborhood started barking because of the thunder.)
AL AR 7Ry 28 gi7f gloja. dhofl A w99 1A7] H7F W2 wie] 21 ey,
(Oh, that happened to me once, too. I lie down to sleep and all of a sudden it rains or a strong wind blows.)
User:  Zy7zta. & A MEs|= A nhd 2doy7zt
(I know. It’s as if the weather is trying to bully us.)
AL ZA] FZo] AR geh St BAK gleAa?
(Did you watch any scary movies or dramas lately?)
User: FA & H = Q2
(I’m not a fan of horror movies. Why?)
Al of 8F FEFo| FHolt FAU A 8.
(Oh, horror is popular these days. Just curious.)
User: 24 =714l 1717 ¥= o Zolsf . woll 271 74 7] &= shal.
(I don’t really like those surprises. I'm also scared it might be in my dreams.)
AL ol A A o Fok o]E E A8 AAIETE B FAA Aol shgotg.
(I know. That’s why I cover myself with a blanket even during summers. But humans are scarier than ghosts.)
User: o}st 127 Sl Q. AFgo] AlY A%,
(Oh, that’s true. Humans are the scariest.)
AL 3= U5 AR vpA L. A7 Jlgera!
(But don’t worry. I got your back!)
User: 1= $Jeto] 2F H7]&= 5H| 8.
(That’s a slight relief.)
AL FOoRLRlE 4 Yol AAEA TEAFA L.
(Let me know if you have any difficulties.)
User: J13AQ. 1FAATE & F= & 52
(I will. Can I talk to you when I'm just bored?)
AL EEolx! A=A FYololla.
(Of course! Whenever you need me.)
User:  @Zlofg. I° u5of oA Aetsia.
(Alright. Il talk to you later.)
AL Y], Eo17HM1 &
(Okay. Bye.)

Human-Bot Conversation 2

AL 24, QH3stAl 8 AAR= sHilel a?
(Hello. Did you eat yet?)
User: 4], 45Ut
Idid.)
AL Hlpe H3lolf?
(What was the menu?)
User: o} @} e 2]710] 8.
(The leftover chicken from yesterday.)
AL QERIAYQ! A e Hudlojg.
(That sounds delicious! I also want chicken.)
User: 1% 8. A Fofsh= AF2 gl A Zots.
(It was. I don’t think I met anyone who doesn’t like chicken.)
AL Bobg. T3 @&l thekRh oty A]715o] UeobA ZEtE = An|7E ole A Zots.
(Me neither. And there are so many flavors for chicken. It’s so fun choosing which one to try.)
User: 138, 2= = H50 o] =7t F5H
(That’s true. But I still like the traditional friend chicken.)

Al IZ87Q. IA| gH2lL nfj-&uto] &. (not sensible)
(I see. Koreans like spicy food.)
AL of ZR? 17 kel A7 Ul A Y-S FAREDA 8

(Oh, really? Then I'll recommend you a really good chicken place next time.)
User:  mhg2 IHARH W7} 7k T o] glofA] gota.

(Thank you for the offer, but I have a place I go to all the time.)
AL Theold| . grlA EA L

(That’s nice. Enjoy your chicken!)

User: Y.
(Alright.)

AL F251R HUAQ
(Have a great day.)

Table 16: Conversations between the system and human workers.
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Human-Bot Conversation 3

Al

User:

Al:

User:

Al:

User:

Al:

User:

Al:

User:

Al:

User:

Al:

User:

Al:

Al:

User:

Al:

User:

Al:

User:

Al

User:

Al

User:

Al

User:

Al

FFstAl e ol24l o5 9E AlE gloAa?

(Hi. Do you have any plans today?)

Of A yrd=tal.

(I was about to go out.)

ot 7hA] .2

(Where are you going?)

3 uje} 7},

(I’'m going to the East Sea.)

L ALY IH = ojHIR?

(Oh, really? How’s the weather there?)

o212l o} 5124

(It’s been sunny all day.)

chaolul &l e hA 2

(That’s amazing! Who are you going with?)

3] BgJo] glojA] BAprole TAbd ol o] Hej}

(I have a church meeting. I’'m going with my pastor and deacon.)

of Al SlE7 Wol EAIAL 248

(I see. Eat lots of delicious food there.)

&3l Zoll= BHlEA H7F A27R

(What’s delicious at the East Sea?)

A Q. A F R2gol 8. A7} of= o)t Fsi =g d .
(Hmm... I’m not so sure. If I knew the place, I could’ve given you some recommendations.)
287 U o givke] 7hRE Hhriebq 8 Hojof 8] we o],
(I see. I haven’t been to the sea for a long time. I don’t know what to choose for the menu.)
- 12 oy tiAE 27 ojw A 22

(Hmm... Then what about sashimi or snow crab?)

oA ELd? A ek

(Snow crab sounds good. But won’t it be expensive?)

22 AA7L & 2ebq 122 127 HRR -S89 8. (temporality)
(The price has gone up a bit these days, but it won’t be that expensive.)
opFl = F B Sk Tk oY 7R =7 SHIAl EA ol
(I guess it’ll be a bit expensive. But you’re on a trip! You should eat something good.)
A AA E 7L

(Right? When would I go there again...?)

Srobg. uFofl $3]51A] nRA|AL & EAIDL 2 A8

(That’s right. Don’t regret it later and enjoy your snow crab!)

& Al & Ha2A

(Okay. I’ll definitely have it.)

vl 2435] thq eA el

(Alright. Be careful!)

d 0% gah?

(What are you doing today?)

A Q7 A Aol A AEI glolg.

(Me? I’'m going to just stay home and read.)

g7} oft] Qhirba?

(I see. Are you planning on going out?)

Hrol L7H= 2 W2 olgotel e,

(I don’t really like going outside.)

3 aplel 1% 41of

(Okay, then. Take care.)

vl Sof7hA 8

(You, too!)

&

(Alright.)

Akt

(Thank you.)

Table 17: Conversations between the system and human workers.
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